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SUMMARY
An analysis is presented of steady free convection in a saturated porous medium

bounded by a heated flat surface and a second thermally insulated (or cold) flat
surface, which forms a wedge of angle a. The flow is induced by the heated surface,
which is at an angle 8 to the gravity vector, where — JTT<S«JTT. The pressure-
gradient-velocity relation is taken to be nonlinear, with departure from the linear
Darcy situation measured by a parameter G. Matched asymptotic expansions are
employed in analysing two distinct cases: the heated surface is (i) horizontal and (ii)
at a finite angle above the horizontal. In the former case the flow is driven along by a
buoyancy-induced pressure gradient, whilst in the latter it is the direct action of
buoyancy forces that drives the flow. Extensive consideration is given to the effects of
varying a, 8 and G.

1. Introduction

CoNVEcnvE flows in porous media are of interest in many varied situations,
for example in geothermal energy resource and oil-reservoir modelling, in
the analysis of insulating systems and in flows through tobacco rods. There is
a plethora of literature covering these situations, most of which concentrates
on the classical Darcy-flow case. It is known, however, that at higher flow
rates or in highly porous media there is a departure from the linear law and
inertial effects become important. In terms of the Reynolds number based
on a typical particle diameter (say), it has been found that the flow becomes
non-Darcian when the Reynolds number exceeds unity (1). Physically, this
departure is believed to be due to flow separation within the medium, whilst
mathematically it manifests itself -as a nonlinear term in the velocity-
pressure-gradient relationship. The particular problem that we wish to
address in this paper is the non-Darcian buoyancy-induced boundary-layer
flow due to a heated inclined flat surface bounding a wedge-shaped satu-
rated isotropic porous medium.

The corresponding Darcian situations have been considered by Cheng and
his co-workers (2 to 5), whilst a matched asymptotic analysis of the vertical
configuration has recently been carried out by Daniels and Simpkins (6).
There seems to be only one paperf in the literature dealing with the

t A further paper (13) appeared after this present paper had been submitted.

[Q. Jl Mecb. tpp). Mitb., Vol. 38, PI. 2, 1985]
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non-Darcian case: Plumb and Huenefeld (7) considered non-Darcy natural
convection in a saturated isotropic medium. They employed equations which
are not invariant under rotations and therefore not strictly relevant to
isotropic media. Fortunately, however, their equations took on the correct
form in the boundary-layer limit. It should be noted in passing that they
quote a one-dimensional model equation of Forchheimer which is also
inappropriate for isotropic media. Finally it was stated in (3, 4) that there is
no boundary-layer solution for a non-vertical isothermal surface (Darcy
flow). This however was implicitly retracted, at least in the horizontal case,
by the appearance of (5) wherein a boundary-layer solution was determined.

In section 2 we derive the equations governing buoyancy-induced flows
over generally inclined surfaces and then in sections 3 and 4 we analyse
boundary-layer flows over horizontal heated surfaces and those inclined at
finite angles above the horizontal, respectively. In the former case the flow is
driven by a buoyancy-induced pressure gradient, whilst in the latter it is
driven by the direct action of buoyancy forces. There is, of course, a range
of inclinations (very near to the horizontal, in fact) where a transition regime
exists when both driving mechanisms are present. This transition zone has a
structure akin to that found by Jones (8) for a Newtonian fluid: the flow is
driven initially by the induced pressure gradient but asymptotically by the
buoyancy forces. The analysis of this transition problem will be considered in
another report (9).

The analyses of the problems, using matched asymptotic expansions, are
terminated at the appearance of eigensolutions. In the case of the inclined
surface, the eigensolution is related to the usual leading-edge shift (10), whilst
the precise nature of the eigensolution in the horizontal case is not clear. In
the non-Darcian situation considered here, we find that we must include
logarithmic terms in our asymptotic expansions, essentially because of the
existence of the eigensolutions. This is in contrast to the Darcian situation
(see (6)), where logarithms must again be included but via a different
mechanism. There they are generated by a breakdown of the outer expan-
sion and are dependent on the angle between the hot and cold or insulated
surfaces.

In section 5 we consider the heat transfer from the hot surface and, using
our asymptotic results, derive local heat-transfer values. These, however,
give no information concerning the total heat output from the hot surface.
Thus we follow Heiber (11) in considering the total convective heat transfer
at any cross-section of the boundary layer, thereby obtaining global heat-
transfer results and a measure of the leading-edge heat transfer.

Finally in section 6 we discuss our results.

2. Governing equations

The configuration is as shown in Fig. 1. The surface y' = 0, x'>0 is
isothermal at temperature T\ whilst the ambient temperature of the satu-
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saturated
porous
medium

heated surface

cold or insulated surface

FIG. 1. How domain and coordinate system

rated medium is To. The other bounding surface is also at ambient tempera-
ture To or is insulated—it has no effect on our analysis which condition we
consider, as we neglect exponentially small terms (cf. (6)). We consider
7\ > To and examine the resulting steady two-dimensional flow induced by
buoyancy forces in the saturated porous medium. We take as our constitu-
tive relation

fcr . f £ I
[gradp + pg]= 1+—pq q,

(x L n J

where Darcy's law is recovered if k = 0. Here fc is the permeability of the
medium and k is a material parameter which may be thought of as a
measure of its inertial impedance; q is the velocity, p the fluid density, /x the
coefficient of viscosity and p the total pressure. To illustrate how the
additional nonlinear term comes into play when the porosity is high, we may
quote Ergun's relations (see (7)) for k and k~:

k =
L V

150(1-e)2 k~ =
1-75L

150(1-e) '

where e denotes porosity and L the characteristic pore or particle diameter.
Clearly when e ~ 1, k~ is large and the nonlinear term is important.
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On assuming thermodynamic equilibrium between the porous matrix and
the fluid and invoking the Boussinesq approximation, the governing equa-
tions become

] [ ^ ] (2)

(3)
/x L dy

\d2T

where q = (u, v), T is the temperature, |3 the coefficient of cubical expansion
and K the effective thermal diffusiviry. Introducing non-dimensional vari-
ables

(x ' ,y ' )= *K ^

and a dimensionless stream function \fr such that

(u-uH—^—JW'-^)'
we obtain, on eliminating the pressure,

= ey cos 5 - 0x sin 8 (6)

and

^yex-^xey=v2d. (7)

In the above, V2 denotes the two-dimensional Laplacian, Q = ($\ +1/>2)* is
the dimensionless speed and G is the parameter (pin^kflgfiiT-L— To), which
measures the inertial effects and is thought of as a modified Grashof number
in (7).

In terms of the usual polar coordinates (r, <p) defined by

x = r cos <i>, y = r sin </>,

the boundary condition may be expressed as

i£ = 0, « = 1 on <fi = 0,

^ = 0, 0 = 0 or a0/a<£ = O on 4> = a, I (8)

as r-*°o,
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3. The asymptotic structure as r—•<*> for the horizontal configuration

A simple order-of-magnitude analysis suggests the form of solution valid
near the hot horizontal boundary. In view of the boundary condition at the
wall, we take 6 = O(l) as x —> °°, whilst on assuming that the temperature
adjusts rapidly to its ambient value, (7) implies that t{/ = O(xjy) as x —*• oo.
Finally from (6) y = O(x'), which is exactly the similarity form found by
Cheng and Chang (5). Thus it is assumed that, in the boundary layer, as
x -*°°,

where
T) = y/x*. (9)

The functions f0 and g0 satisfy

/S-lngo = 0, gS + ̂ /ogo = 0, (10a)
subject to

/o(0) = 0, go(0)=l, (10b)

whilst in order to recover the ambient conditions,

/6-»0, go-"0, as n-»•«>. (10c)

The flow is Darcian to this lowest order as might be expected since, in this
configuration, the induced velocities are weak and consequently the non-
linear terms are unimportant. This problem was solved numerically by
Cheng and Chang (5) who found that, as 17 —> oo,

/ 0 ^ 2-813

and go decays exponentially. We, however, re-solved the problem and found
values of f0 and g0 which are in slight disagreement with their values. For
example, we found that fo(°°) = 2-816. Thus the boundary-layer flow entrains
fluid from an outer region where the temperature is of exponentially small
order. The fact that there are neither logarithmic nor algebraic terms in the
outer-temperature expansion can easily be proved mathematically as in (6),
but we omit the details.

After further analysis, it becomes clear that in the boundary-layer region
the solutions have the following expansions:

x-i/2(T,) + |

as x —><». The terms of O(x~*ln x) and O(x~'ln x) have to be included in
the i/>- and ^-expansions, respectively, in order to be able to solve the
equations for f2 and g2.

In the outer region it proves convenient to use polar coordinates. On
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neglecting the temperature terms (which are exponentially small), the gov-
erning equation is

[l + G(tf2+r^lfli^ + r Vr + r2^) +
G

and the formal expansion is

as r-K*>, (13)

while 0 is exponentially small.
Having determined the forms of the series it is a straightforward matter to

generate the governing equations for the coefficient functions and perform
asymptotic matching in the usual manner (see (6)); the full details will thus
be omitted.

In the results, the eigensolution (/2, g j has been written in the form

(f* &) = *(#«) , (14)
where 9, <0 are eigenfunctions satisfying the governing equations and
boundary conditions, together with the normalizing condition ^'(0) = 1. The
eigenconstant A is determined by ensuring that (f2, g j satisfy the approp-
riate boundary conditions: this process is akin to that adopted by Merkin
(12).

The solution for (f2, g j is non-unique, since arbitrary multiples of (9, 'S)
are involved.

4. The asymptotic structure as r —• °° for the inclined case

We now consider the case where \S\ <\IT, that is, the heated surface lies at
a finite angle above the horizontal. Proceeding as for the horizontal config-
uration, the form of the solution valid near the heated boundary is

e ~ UO+x-1 in x UO+-1^)+ J
as x -* °°, where

£ = y M (16)

The corresponding expansions in the outer region are

F2(<*>)+..., | ^ ^ ^ ( i 7 )

ially small,J6 is exponentially

Again it is a routine exercise to generate the governing equations and
match. For example, the governing system for (f0, g0) is

roCos8, (18)

0, (19)
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with
go(0)=l, /o(0) = 0, ft.go-O as f ->« . (20)

By introducing

/„(£) = (cos 8)*r(f), go(C) = s(0, C = (cos Syh (21)

this system simplifies to

r" + 2Hr'r"=s', (22)

0, (23)
with

r(0) = 0, s(0)=l, r', s->0 as t-*oo, (24)

where the one essential parameter H is equal to G cos 5.
In this inclined case the problem for (/2, £2) possesses leading-edge shift

eigensolutions, so that

), (25)
with

# = ttf6" fo)/go(0), 3 = Kf&]/g&(0), (26)

where the normalizing condition <$'(0) = 1 has been employed. We deter-
mine A in the same way as A in the horizontal case.

5. Surface heat transfer

The local surface heat flux ^ into the saturated region is given by

• < 2 7 )

where fcc is the effective thermal conductivity denned by

with &„„ kf denoting the thermal conductivities of the matrix material and
fluid, respectively, and e the porosity of the medium. In terms of dimension-
less quantities, we have

after using K = kjpc^ where c,, is the specific heat of the fluid. Now from
sections 3 and 4, we know the asymptotic forms of (d0/dy)y_o for large x:

(horizontal case) (29)
(inclined case) (30)

and so we may compute the local heat transfer. We cannot, however,
compute the total transfer Qw from the hot surface between x = 0
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and x = X:

', (31)
Jn

because our results are strictly asymptotic. Nevertheless global heat-transfer
results can be obtained by calculating the thermal flux at any cross-section of
the boundary layer,

Qf= J
boundary

layer

^-TA~J*dy-2 t2
3y J dx

This quantity Qf, evaluated at x = X with X » 1 , must be equal (to algebraic
orders) to the total surface heat transfer Qw (defined above) and can be
evaluated by using our asymptotic results. Thus,

J "°dd> (h0x* + h1 + h2x
i]nx + O(x~i) (horizontal case) (33)

— ddy~{
o 5y [hoxi + ̂  + fi^-ilnx + Oix-i) (inclined case) (34)where

r - r. r -
"o— I foSodf], h1— f[go dr), h2— I (jigo + Togz) dr\, (35)

Jo Jo Jo
and

ko=f/&god£ Ki=\ h§odC ^2= f (/2go+/6g2)^- (36)
Jo Jo Jo

A little manipulation involving the governing differential equations yields
that

h0=-3go(0), h2=3A, (37)

and

h0 = —2go(0), h2 = 2A. (38)

These four terms in Qf have their associates in Qw, but the (hlt /t1)-terms do
not—they must therefore be strongly associated with the leading-edge
contribution to Qw. The conduction terms in (32) are of the same order as
the remainder terms in (33) and (34) for the horizontal and inclined cases,
respectively.

6. Results and discussion

The results of numerically solving the governing differential equations are
shown in Figs 2 to 14 and Tables 1 to 4. They were obtained by using a
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Runge-Kutta-Merson procedure with either a shooting method or the
method of complementary functions, as appropriate. Using these results, the
physical velocity components

and temperature
=To + (T1-To)0

may be calculated, together with the heat-transfer data described in section
5.

For the horizontal configuration we have
1 In x SF'

and

-dil,/dx =

6 =

The results pertaining to this case are shown in Figs 2 to 4 and Tables 1, 2.

X10

35n

30-

25-

20-

15-

10-

5-

- l

10

FIG. 2. Horizontal boundary-layer functions f0, \
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Fio. 3. Horizontal boundary-layer functions f'o, &', g0, "9

O
0-

-12

Fio. 4. Behaviour of the horizontal boundary-layer function / ; for G = 0,
0 1 , 0-2, 0-5 and 1. The wedge angle in the illustration is |TT; results for
other wedge angles may be obtained by a shift in the vertical axis according

to equation (39)
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TABLE 1. Variation of A with a and G in the horizon-
tal configuration

287

IT

G = 0
0
0
0

G
0
0
0

= 0-01
•014
•005
•002

G
0
0
0

A

= 0 1
•146
•060
•021

G = l
0-301
0-128
0-050

G
0'
0-

= 10
821
390

0 194

G
1
1
0

= 100
•870
•008
•616

TABLE 2. Variation of the convective heat-transfer coeffi-
cient ht with a and G in the horizontal configuration

a G = 0 G = 0-01 G = 0 1 G = l G = 10 G = 100
\TT -2-575 -2-586 -2-691 -2-807 -3-157 -3-739

•n -0-858 -0-870 -0-975 -1-091 -1-440 -2-023
ITT 0 -0-012 -0-116 -0-233 -0-582 -1-164

#-10

FIG. 5. Boundary-layer function f0
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The stream functions /0 and 9 are displayed in Fig. 2, whilst the cor-
responding effective horizontal velocity and thermal profiles are in Fig. 3.
Note that both the zeroth- and second-order functions are independent of
the wedge angle a and parameter G. Figure 4 shows the effect of varying G,
for fixed a, on the first-order velocity / } . This velocity is zero in the Darcy
case and, as the departure from the Darcian regime increases (that is, as G
increases), this velocity becomes more negative, implying that as the inertial
effects grow the induced velocity decreases. The effect of varying the wedge
angle on f[ is given by the simple shift

*), (39)

so that /i increases as a increases. Table 1, which gives the values of A. for
various a and G, together with the fact that

g&(0) = -0-4302,

enables the local heat transfer to be calculated from (28) and (29). Table 2

X10 - l

FIG. 6. The leading-order velocity parallel to the heated inclined surface
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gives the convective heat-transfer coefficient h± which facilitates the compu-
tation of the global heat transfer from (32), (33) and (34). Clearly the heat
transfer falls as G increases or as the wedge angle decreases, which is
consistent with the velocity behaviour, as this also decreases. Finally it is
noted that as G —*• 0, A. —*• 0 which is consistent with the analysis in (5) of the
Darcy case.

For the inclined configuration

h x-lf[(£) + A V 1 In x #'(£) + O{x~l),

and

The results for this inclined case, which are presented in Figs 5 to 14 and
Tables 3 and 4, are more involved than the horizontal case because of the

+ Ax"* In

Fio. 7. The temperature profile g0
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log10//
FIG. 8. Variation of the dimensionless heat transfer —go(0) with

asymptotic results for H « 1; - - asymptotic results for H » 1
H:

dependency on the parameter G and on the angle that the heated surface
makes with the gravity vector S. Three different attitudes of the heated
surface have been considered—vertical, that is parallel to the gravity vector,
and at \TT to the vertical facing upwards and downwards, respectively. In
conjunction with this, the effect of wedge angle has been examined: angles
of \TT, \TT, IT and §ir were taken.

Figures 5, 6 and 7 display, for various H, the zeroth-order stream
function, the velocity parallel to the heated surface, and thermal profiles.
The variation of the zeroth-order wall heat transfer with H is shown in Fig.
8, together with the asymptotic results

go(0)-
'-0-4438 + 0-1636*H-0-03538*H2 for H«l,

, -0-4938*H~i for H » 1 ,

which follow from (22) to (24). The first-order 'velocities' f[ are plotted in
Figs 9, 10 and 11 for the three heated-plate attitudes, respectively. These
velocities increase as the heated plate is rotated clockwise or as the wedge
angle increases or as G increases. Moreover it may be shown that /i(8, a) =
—f'i(—S, 2 i r - a ) as confirmed by the graphs. Figures 12 to 14 are the
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Fio. 9. Behaviour of the first-order boundary-layer function f\ when S = 0:
G = 0; G = l; G = 10. D: a=i i r ;

x: a = 7r;V: a=^Tr;A: a=J-rr. The graphs for a = TT, G = 0, 1 and 10 are
all coincident

c
Fio. 10. Behaviour of the first-order boundary-layer function fx when
5=jir: G = 0; G = l; G = 10.

D: a =§ir; x: a = TT; V: a=jir; A: a=jir



FIG. 11. Behaviour of the first-order boundary-layer function /; when
8 = iir: G=0; G = l; G = 10.

• : a=\ir; X: « = TT;V: a =JTT: A: a=j7r

FIG. 12. Comparison of 9 for f/ = 0, 1 and 10
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,#-0

293

4 6 8 ^ 10

(cos <5)* C
Fio. 13. Comparison of # ' for H = 0, 1 and 10

second-order analogues of Figs 5 to 7 (the solutions are symmetric with
respect to 8).

The local heat transfer may be calculated from (28) and (30) using Fig. 8
to obtain go(O) and Table 3 for A. Furthermore, the global heat transfer may
be obtained from (32), (33) and (38) if reference is also made to Table 4,
which gives the coefficient fix. The general trend is that the heat transfer
decreases if (i) the heated surface is inclined away from the vertical, (ii) the
wedge angle is decreased, or (iii) G is increased. It is interesting to note that
the behaviour of A with G is not monotonic (see Table 4). Again in the
vertical case we note that A —» 0 as G —* 0 consistent with the analysis of the
Darcy case presented in (6). For the inclined cases, however, A-^0 as G—»0,
so that the logarithms remain, even for Darcy flow. Thus the mechanism
described in (6) for the generation of logarithmic terms, although still
present in the inclined case, is of prime importance only in the vertical case.

Finally, the analysis presented in this paper may be easily extended to
cover cooled surfaces at inclinations |5|>|ir and downward-facing horizon-
tal cooled surfaces. It may also be extended for non-isothermal horizontal
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(cos i

FIG. 14. Comparison of the second-order thermal profiles $ for H = 0, 1
and 10

TABLE 3. Variation of\ with a, S and G

iir
J7T

w

fr
J7T

h

s
0
0
0
0
J7Tu
\TT

ITT

3TT

JTT

G = 0
0
0
0
0
1-536
0-768
0-384
0-256

-1-536
-0-768
-0-384
-0.256

G = 0-l
0-146
0030

-0-008
-0-056

1-606
0-756
0-364
0-222

-1-303
-0-711
-0-398
-0-344

G = l
0-286
0055

-0-048
-0-309

1-509
0-654
0-287
0006

-0-727
-0-500
-0-378
-0-612

G = 10
0-126

-0001
-0170
-0-965

0-923
0-429
0098

-0-739
-0-375
-0-237
-0-277
- 1 0 7 1



NON-DARCY NATURAL CONVECTION 295

TABLE 4. Variation of the convective heat-
transfer coefficient h~1 with a, 5 and G

hi

a 5 G = 0 G = 0 1 G = l G = 10
Jir 0 - 3 1 5 3 -2-623 -1-310 -0-423
\TT 0 -1-306 -1-087 -0-543 -0-175
i7 0 0 0 0 0

1-n- 0 1-306 1-087 0-543 0-175

\ir -\-n -4-153 -3-627 -2-037 -0-500
\n -\TT -2-306 -2-020 -1-165 -0-154
•n - s i r -1-000 -0-884 -0-548 -0-311

1-TT -j-TT 0-306 0-252 0-069 - 0 1 0 9

JIT JT7 -2 -153 -1 -859 -0 -941 -0-177
\tr \TT -0-306 -0-252 -0-069 0-109

TT JTT 1 0-884 0-548 0-311
iir JIT 2-306 2-020 1-165 0-514

surfaces with power-law temperature variations, but, when G ^ 0 , the
inclined-surface case apparently does not admit similarity solutions to the
zeroth-order problem for such general variations.
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