

EXAM ASSESSMENT GENERIC FEEDBACK FORM		
UNIT NUMBER	ME20021	UNIT CONVENOR(S)
AND TITLE	Modelling Techniques 2	Dr D N Johnston
		Dr D A S Rees
DATE	14th May 2019	
QUESTION 1	(a) Generally well done. Make clear that central differencing	
	is an approximation and not exact.	
	(b) Generally well done. A few comments to guide the	
	examiner through the derivation can be helpful.	
	(c) Good. Some ambiguity over whether u_1^2 or velocity V_i^1	
	should be the subject of the equation; credit was given	
	for both.	
	(d) Mixed results. Make sure formulae go in the right place	
	using proper Matlab syntax. Initial velocity can be a	
	vector; using a matrix is inefficient. The timestep was	
	deliberately omitted from the question, as it can be	
	calculated as dx/c .	······································
	(e) A description of alla	asing and its avoidance using low-
OUESTION 2	pass filters and fight	a the oritorie for L'Henital's theorem
QUESTION 2	(a) Show that it satisfies the criteria for L Hopital's theorem (f and $g \rightarrow 0$).	
	(b) Bear in mind that r	in the PDE is the radius of the ith
	point, not the outsid	e radius. Note that NX=4, not 3, as
	the radius is 6mm a	nd step 2mm, and the differencing
	equations are applie	d to points $i=1$ to 3. Allowance was
	made for any confus	sion due to this.
	(c) As part b.	
	(d) Robin boundary car	be applied to represent convection
	(radiation is probab	ly minor). Note that boiling may take
	place, changing hea	t transfer in a complex way and
	probably making it	asymmetric. May need to use CFD to
	handle this properly	,

OUDGETON A			
QUESTION 3	Generally quite well done. The chief error was the initial		
	substitution of $T(r,\theta) = R(r) \sin n\theta$ instead of $R(r) \cos n\theta$. The		
	latter conforms with the symmetry of the boundary condition on		
	the outside of the outlinder which is an even function of A		
	une outside of the cynnicer, which is an even function of σ .		
	Approximately $1/3^{44}$ students did this, and most followed up		
	with an correct integration by parts but an incorrect substitution		
	of the limits to obtain a Fourier Series consisting of sines. Of		
	the rest some forgot the $A_0/2$ term		
	For part (b) the solution is given by replacing the r^n from part (a)		
	with r^{-n} . There was no need to rederive the solution and the		
	Fourier series.		
QUESTION 4	The question on Fourier Transforms is usually the 'desperation'		
	question when all has gone wrong on the first three questions, or		
	the 'I am so very happy' question when the first three have gone		
	une 1 diff so very happy question when the first three have gone		
	well. On this occasion the great majority of students answered		
	this one very well indeed. There were a few who tried to hide a		
	sign error in part (a) by quoting the right answer even though the		
	previous line was incorrect.		