

ſ

EXAM ASSESSMENT GENERIC FEEDBACK FORM			
UNIT NUMBER	ME20021	UNIT CONVENOR(S)	
AND TITLE	Modelling Techniques 2	Dr D N Johnston	
	<i>C</i> 1	Dr D A S Rees	
DATE	15th May 2018		
QUESTION 1	(a) Mixed bag. Simple examples include symmetry, insulation,		
	free liquid surface.		
	(b) Mainly good. Use \approx instead of = for approximation to gradient.		
	(c) and (d) A mixed bag. Don't forget to use K instead of		
	Celcius. Allowance made for any confusion due to typo in		
	question.		
	(e) The key point is that the non-linear $(u_{nx}^{n+1})^4$ term cannot be		
	expressed in a linear matrix equation. Iterative methods need to		
	be used instead.		
QUESTION 2	Most chose this question, but it had the lowest average mark of		
	the four.		
	(a) Generally good. Best not to regurgitate points from notes		
	without thinking and putting them into context.		
	(b) Mainly good. The key point is that you have to cancel the		
	first derivative term.		
	(c) Few got this completely right. The key point is that the		
	unequal spacing equation only applies at $1=2$; the equation at $1=3$ should use equal spacing and Neumann boundary due to		
	symmetry.		
	(d) Despite this being the simplest possible double integration		
	(of a constant!), many over-	tomplicated it, and many lorgot the	
	that the answer should be ex	actly the same as the numerical	
	that the answer should be ex	$\partial^3 u$	
	answer, since the numerical	error depends on $\frac{\partial u}{\partial x^3}$, which is zero	
	as $\frac{\partial^2 u}{\partial x^2}$ = constant.		
	Perhaps the most insightful	(and my favourite) answer was:	
	"I would not expect the nu to be the same, because	merical and analytical solutions my integration is stupid"	

QUESTION 3	This question was generally answered very well indeed. There were very few mistakes. The chief error was not mentioning that the quarter-range series must take odd values of <i>n</i> . The strangest (and perhaps the most worrying) error was from those who used either a half range Fourier sine series or a half range Fourier cosine series in part (a), and who then went on to answer part (b) correctly <i>without</i> subsequently correcting part (a).
QUESTION 4	This entire question was covered in one of the lectures. This question too was done well, although there were a few common errors. One of these involved the solution of $\Theta'' - \omega^2 \Theta = 0$, which should have been $\Theta = C(\omega) e^{- \omega _y}$ to ensure decaying solutions for both positive and negative values of ω . The final part (showing that the desired contour was the appropriate circle) was often answered correctly but either without any workings or with incorrect works! I notice these things!