UNIVERSITY OF BATH DEPARTMENT OF MECHANICAL ENGINEERING

Outline Solution to Examination Question

xamine	er: Dr D A S Rees	Date May 2022	
nit Tit	le: Modelling Techniques 2	Unit Code: ME20021	
ear: 2	2021/22 Question Number: 3	Page 1 of 1	
art			Mark
	Need $0 = T(t) \sin n\pi x$ (n PDE => $T' = - \propto n^{7}\pi$ Superpose => $0 = Be$ $E = D$	Ene si nico	र भी चर्च
	So $B_n = 2\int (given fet)ds$ $= 2\int (1-7x) \sin n\pi x$ $= 7\left[(1-7x)\left(-\frac{\cos n\pi}{n\pi}\right)\right]$	ninax dx	2
	N=1	Unin Ment	(15) Sin
(c)	Thermal boundary layer	t=0 t = very small tiffusion >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	(8)
		Total	
		I otal	33

UNIVERSITY OF BATH DEPARTMENT OF MECHANICAL ENGINEERING

Outline Solution to Examination Question

Exam		Date May 2072	
Unit Title: Modelling Techniques 2 Unit Code: ME20021			
Year:	21/72 Question Number: 4.	Page 1 of 1	
Part			Mari
(a)	This is bookwork. $\mathcal{F}_s[f''] = \int_0^\infty f'' \sin \omega x dx = $ $= \left[f'\right] \left[\sin \omega x\right]_0^\infty - \left[f\right] \left[\omega \cos \omega x\right]_0^\infty + $ $= \omega f(0) - \omega^2 F_s(\omega).$		8
(b)	The application of the Fourier Sine Transform nonzero boundary condition at $x=0$) gives $\frac{\partial^2 Y_s}{\partial t^2} + c^2 \omega^2 Y_s$		
	The general solution is, $Y_s = \frac{1}{\omega} + A(\omega) \cos c\omega t$		6
	At $t=0$ we have zero displacement, i.e. $y=0$,	and hence $Y_s=0$. Therefore $A=-1/\omega$.	2
	At $t=0$ we also have a zero velocity, i.e. $\partial y/\partial t$	$=0$, hence $\partial Y_s/\partial t=0$. Therefore $B=0$.	3
	The solution is $Y_s = \frac{(1-\cosc\omega t)}{\omega}$.		2
	Applying the inverse Fourier Sine Transform giv	$\text{ves } y = \frac{2}{\pi} \int_0^\infty \frac{(1 - \cos c\omega t)}{\omega} \sin \omega x d\omega.$	2
(c)	The given analytical solution, $y=H(ct-x)$ is equal to 1 when $x< ct$ (i.e. when $ct-x>0$), and equal to zero when $x>ct$. Therefore the Fourier Sine Transform of this function is $\mathcal{F}_s[H(ct-x)]=\int_0^\infty H(ct-x)\sin\omega xdx=\int_0^{ct}1\sin\omega xdx=\frac{(1-\cos c\omega t)}{\omega}.$		
	This final answer is the same as Y_s above.		5
	This solution corresponds to a shock wave moving	g with velocity c in the positive x -direction.	5
		Total	33