UNIVERSITY OF BATH DEPARTMENT OF MECHANICAL ENGINEERING

Outline Solution to Examination Question

Exami	ner: Dr D A S Rees		Date May 2023	
Unit 7	Title: Modelling Techniques 2		Unit Code: ME20021	
Year:	2022/23 Question I	Number: 3.	Page 1 of 1	
Part				Mark
(a)	When $n=0$ we have $T=2$	4. When $n \neq 0$ we	For $n=0,1,2,\cdots$. Hence $T'=-\alpha n^2\pi^2$ have $T=Ae^{-\alpha n^2\pi^2t}$. The 7 marks is allocated if A_0 is missing),	T.
	6	$\theta = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \epsilon$	$e^{-\alpha n^2 \pi^2 t} \cos n \pi x.$	10
(b)	At $t=0$ we have $\theta=x-x$	x^2 , hence $x - x^2 =$	$+rac{1}{2}A_0+\sum_{n=1}^{\infty}A_n\cos n\pi x$, where	
	When $n=0$ we have $\label{eq:hence}$ Hence the full solution is	$A_n = 2 \int_0^1 (x - x)^n$ $A_n = 0 \text{ when } n \text{ is}$ $A_0 = 2 \int_0^1 (x - x)^n$ $\theta = \frac{1}{6} - \sum_{\substack{n=1 \\ n \text{ even}}}^{\infty} 4^{\frac{CC}{n}}$	s odd, and $A_n = -4/n^2\pi^2$ when n is every $(x^2) dx = \frac{1}{3}$.	ven.
(c)	The sketch is as below. O All curves must have zero s	t =	∞ x	5
(d)			x=1 for full marks. ure or the long-term temperature whic	
			Total	33

UNIVERSITY OF BATH DEPARTMENT OF MECHANICAL ENGINEERING

Outline Solution to Examination Question

Exami	ner: Dr D A S Rees	Date May 2023			
Unit Title: Modelling Techniques 2 Unit Code: ME20021					
Year:	2022/23 Question Number: 4.	Page 1 of 1			
Part			Mark		
(a)	This is bookwork. $\mathcal{F}_s[f''] = \int_0^\infty f'' \sin \omega x dx =$				
	$= \left[f' \right] \left[\sin \omega x \right]_0^{\infty} - \left[f \right] \left[\omega \cos \omega x \right]_0^{\infty} + \int_0^{\infty} \left[f \right] \left[-\omega^2 \sin \omega x \right] dx$				
	$=\omega f(0)-\omega^2 F_s(\omega).$		5		
(b)	The Fourier sine transform of $g(x)$ is $\mathcal{F}_s[g(x)] = \int_0^\infty g(x) \sin(\omega x) dx = \int_0^1 1 \sin(\omega x) dx = \frac{1 - \cos \omega}{\omega}.$				
	J_0	ω	8		
(b)	The application of the Fourier Sine Transform to Four boundary condition at $x=0$) gives	ier's equation (together with the zero			
	$\frac{\partial \Phi_s}{\partial t} = -\alpha \omega^2 \Phi_s$				
		•			
	The general solution is, $\Phi_s = A(\omega)e^{-\alpha\omega^2t}$		8		
	At $t=0$ we have $\phi=g(x)$, and hence $\Phi_s=(1-\cos\theta)$	$\omega)/\omega$. Therefore $A=(1-\cos\omega)/\omega$.	2		
	The solution for Φ_s is therefore $\Phi_s = \frac{(1-\cos\omega)}{\omega}e^{-\alpha}$	$^{2}\omega^{2}t$	5		
	Applying the inverse Fourier Sine Transform gives				
	$\phi = \frac{2}{\pi} \int_0^\infty \frac{(1 - \cos \omega)}{\omega} e^{-\alpha \omega}$	$a^2 t \sin \omega x d\omega$.	5		
		Total	33		