3. Unsteady one-dimensional heat conduction takes place in a bar of unit length and the evolving temperature profile is governed by Fourier's equation,

$$
\frac{\partial \theta}{\partial t}=\alpha \frac{\partial^{2} \theta}{\partial x^{2}},
$$

where θ is the temperature and α is the thermal diffusivity.
(a) If the ends of the bar are insulated, i.e. that $\partial \theta / \partial x$ is set to be zero at both $x=0$ and $x=1$, then use the technique of separation of variables to show that physically meaningful solutions may be written in the form of an infinite sum of terms.
(b) The initial temperature profile is

$$
\theta=x(1-x) \quad \text { at } \quad t=0 .
$$

Use the result of part (a) and the definition of the Fourier Cosine Series given below to determine the temperature within the bar.
(c) Provide a rough sketch to indicate how the temperature profile evolves in time. [5 marks]
(d) What is the significance of the value, $\frac{1}{2} A_{0}$?

You may use the following expression for the Fourier Cosine Series of a function, $f(x)$, in the range, $0 \leq x \leq 1$:

$$
f(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos n \pi x
$$

where

$$
A_{n}=2 \int_{0}^{1} f(x) \cos n \pi x d x \quad n=0, \cdots, \infty
$$

4. The Fourier Sine Transform of $f(x)$ is given by $\mathcal{F}_{s}[f(x)]=F_{s}(\omega)$, where the definition of the Fourier Sine Transform is given at the end of the question.
(a) Show that

$$
\mathcal{F}_{s}\left[\frac{d^{2} f}{d x^{2}}\right]=\omega f(0)-\omega^{2} F_{s}(\omega)
$$

provided that $f(x) \rightarrow 0$ and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$.
(b) The function, $g(x)$, is a unit pulse and is defined as follows:

$$
g(x, 0)= \begin{cases}1 & (0 \leq x<1) \\ 0 & (1<x<\infty)\end{cases}
$$

Show also that

$$
\mathcal{F}_{s}[g(x)]=\frac{1-\cos \omega}{\omega} .
$$

(c) The conduction of heat in a semi-infinite slab is modelled by Fourier's equation

$$
\frac{\partial \phi}{\partial t}=\alpha \frac{\partial^{2} \phi}{\partial x^{2}}, \quad x \geq 0, \quad t \geq 0
$$

where α is the thermal diffusivity and ϕ is the temperature. The initial temperature profile is given by $\psi(x, 0)=g(x)$, where $g(x)$ is as given in Part (b), while the left hand boundary is maintained at a zero temperature, $\phi(0, t)=0$.

If $\Phi_{s}(\omega, t)$ is the Fourier sine transform of $\phi(x, t)$ with respect to x, then determine $\Phi_{s}(\omega, t)$ by first taking the Fourier sine tranform of Fourier's equation. Then write down an expression for $\phi(x, t)$ in terms of an integral.

You may use the following expressions for the Fourier sine transform and its inverse:

$$
\begin{aligned}
\mathcal{F}_{s}[f(x)] & =\int_{0}^{\infty} f(x) \sin (\omega x) d x \equiv F_{s}(\omega), \\
\mathcal{F}_{s}^{-1}\left[F_{s}(\omega)\right] & =\frac{2}{\pi} \int_{0}^{\infty} F_{s}(\omega) \sin (\omega x) d \omega=f(x) .
\end{aligned}
$$

