3. Unsteady one-dimensional heat conduction takes place in a bar of unit length and the evolving temperature field is governed by Fourier's equation,

$$
\frac{\partial \theta}{\partial t}=\alpha \frac{\partial^{2} \theta}{\partial x^{2}}
$$

where θ is the temperature and α is the thermal diffusivity.
(a) The ends of the rod are located at $x=0$ and $x=1$, and they are held at $\theta=0$ indefinitely. Use the technique of separation of variables to show that physically meaningful solutions may be written in the form of a suitable infinite sum of terms.
(b) At the initial time, $t=0$, the temperature profile is given by,

$$
\theta=\left\{\begin{array}{cc}
1-2 x & \left(0 \leq x \leq \frac{1}{2}\right) \\
0 & \left(\frac{1}{2} \leq x \leq 1\right)
\end{array}\right.
$$

Use the result of part (a) and the definition of the Fourier Sine Series given below to determine an expression for the subsequent evolution of the temperature field.
(c) On the same diagram, sketch both the initial temperature profile, as given above, and a profile that corresponds to the very initial stages of its evolution in time.

You may use the following expression for the half-range Fourier Sine Series of a function, $f(x)$, in the range, $0 \leq x \leq 1$:

$$
f(x)=\sum_{n=1}^{\infty} B_{n} \sin (n \pi x)
$$

where

$$
B_{n}=2 \int_{0}^{1} f(x) \sin (n \pi x) d x \quad n=1, \cdots, \infty
$$

4. The Fourier Sine Transform of $f(x)$ is given by $\mathcal{F}_{s}[f(x)]=F_{s}(\omega)$, where the definition of the Fourier Sine Transform is given at the end of the question.
(a) Show that

$$
\mathcal{F}_{s}\left[\frac{d^{2} f}{d x^{2}}\right]=\omega f(0)-\omega^{2} F_{s}(\omega),
$$

provided that $f(x) \longrightarrow 0$ and $f^{\prime}(x) \longrightarrow 0$ as $x \longrightarrow \infty$.
(b) The displacement, $y(x, t)$, of a taut elastic string satisfies the wave equation,

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}},
$$

where c is the wave speed. The string lies in the region, $0 \leq x<\infty$ and it is assumed to be at rest (i.e. $y=0$) for $t<0$.

Suppose now that, at $t=0$, the end of the string at $x=0$ is moved instantaneously to the new displacement, $y=1$, and is held there for all time.

Use the Fourier Sine Transform and the result from part (a) to show that the subsequent evolution of the string is given by,

$$
y=\frac{2}{\pi} \int_{0}^{\infty} \frac{(1-\cos c \omega t)}{\omega} \sin \omega t d \omega
$$

(c) Using other methods it is possible to show that the solution may also be written down in the very simple form, $y=H(c t-x)$, where H is the unit step function. Find the Fourier Sine Transform of $H(c t-x)$ in order to confirm that the solution to part (b) is correct.

What is the physical interpretation of this step-function solution?

You may use the following expressions for the Fourier sine transform and its inverse:

$$
\begin{aligned}
\mathcal{F}_{s}[f(x)] & =\int_{0}^{\infty} f(x) \sin (\omega x) d x \equiv F_{s}(\omega), \\
\mathcal{F}_{s}^{-1}\left[F_{s}(\omega)\right] & =\frac{2}{\pi} \int_{0}^{\infty} F_{s}(\omega) \sin (\omega x) d \omega=f(x)
\end{aligned}
$$

DNJ/DASR

