2. The unsteady pressure distribution in a clarinet is like that of a uniform pipe which is open at one end and closed at the other. The pressure satisfies the wave equation,

$$
\frac{\partial^{2} P}{\partial t^{2}}=c^{2} \frac{\partial^{2} P}{\partial x^{2}}
$$

where P is the gauge pressure and c is the wave speed. Additionally, the pressure satisfies $P=0$ at the open end at $x=0$ and $\partial P / \partial x=0$ at the closed end at $x=1$.
(a) Use the technique of separation of variables to show that physically meaningful solutions may be written in the form of a suitable infinite sum of terms.
(b) At an initial time, $t=0$, the pressure distribution satisfies

$$
P=x \quad \text { and } \quad \frac{\partial P}{\partial t}=0 .
$$

Use the result of part (a) and the definition of the quarter-range Fourier Sine Series given below to determine the subsequent evolution of the pressure field. [15 marks]

You may use the following expression for the quarter-range Fourier Sine Series of a function, $f(x)$, in the range, $0 \leq x \leq 1$:

$$
f(x)=\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} B_{n} \sin (n \pi x / 2)
$$

where

$$
B_{n}=2 \int_{0}^{1} f(x) \sin (n \pi x / 2) d x \quad n=1, \cdots, \infty
$$

3. The Fourier Cosine Transform of $f(x)$ is given by $\mathcal{F}_{c}[f(x)]=F_{c}(\omega)$, where the definition of the Fourier Cosine Transform is given at the end of the question.
(a) Show that

$$
\mathcal{F}_{c}\left[\frac{d^{2} f}{d x^{2}}\right]=-f^{\prime}(0)-\omega^{2} F_{c}(\omega)
$$

provided that $f(x) \rightarrow 0$ and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$.
(b) The function, $g(x)$, is a triangular pulse which is defined as follows:

$$
g(x, 0)=\left\{\begin{array}{cc}
1-x & (0 \leq x<1) \\
0 & (1<x<\infty)
\end{array}\right.
$$

Find its Fourier Cosine Transform.
(c) The conduction of heat in a semi-infinite slab is modelled by Fourier's equation

$$
\frac{\partial \theta}{\partial t}=\alpha \frac{\partial^{2} \theta}{\partial x^{2}}, \quad x \geq 0, \quad t \geq 0
$$

where α is the thermal diffusivity and θ is the temperature. The initial temperature profile at $t=0$ is given by $\theta(x, 0)=g(x)$, where $g(x)$ is given in Part (b), while the left hand boundary is insulated, i.e. where $\partial \theta / \partial x=0$ at $x=0$.

If $\Theta_{c}(\omega, t)$ is defined to be the Fourier Cosine Transform of $\theta(x, t)$ with respect to x, then determine $\Theta_{c}(\omega, t)$ by first taking the Fourier Cosine Tranform of Fourier's equation. Then write down an expression for $\theta(x, t)$ in terms of an integral.
(d) Give a sketch of how you would expect the temperature profile to evolve in time.

You may use the following expressions for the Fourier Cosine Transform and its inverse:

$$
\begin{aligned}
\mathcal{F}_{c}[f(x)] & =\int_{0}^{\infty} f(x) \cos (\omega x) d x \equiv F_{c}(\omega), \\
\mathcal{F}_{c}^{-1}\left[F_{c}(\omega)\right] & =\frac{2}{\pi} \int_{0}^{\infty} F_{c}(\omega) \cos (\omega x) d \omega=f(x) .
\end{aligned}
$$

DASR

