UNIVERSITY OF BATH DEPARTMENT OF MECHANICAL ENGINEERING

Outline Solution to Examination Question

Exami	ner: Dr D A S Ree	S	Date May 2019		
Unit T	Title: Modelling Tee	chniques 2	Unit Code: ME20021		
Year:	2018/19	Question Number: 3.	Page 1 of 1		
Part			Ma		
(a)	The boundary condition, $T = \theta^2$, is even, so we only need cosines and the constant term. Therefore let, $T(r, \theta) = R(r) \cos n\theta$.				
	Hence $r^2 R'' + rR' - n^2 R = 0$, a Cauchy-Euler equation, for which solutions take the form, $R = r^p$. Substitution yields,				
	$\left[p(p-1)+p-n^2\right]r^p=0 \Rightarrow p^2=n^2 \Rightarrow p=\pm n.$				
	Therefore $R = Ar^{-n} + Br^n$, when $n \neq 0$ and hence a fundamental solution is,				
	$T = \left[A_n r^{-n} + B_n r^n\right] \cos n\theta, \qquad (n = 1, 2, \cdots).$				
	When $n = 0$ we have $r^2 R'' + rR' = 0$. Division by r and a slight rearrangement gives, $(rR')' = 0$. Integration gives $R' = B/r$. Further integration gives $R = A + B \ln r$. We may add all of these solutions to give,				
		$T = A_0 + B_0 \ln r + \sum_{n=1}^{\infty} \left[A_n r^{-n} \right]$	$+ B_n r^n \Big] \cos n\theta.$ (1)		
	We need $B_0 = 0$ and $B_n = 0$ in Eq. (1) to avoid singularities at $r = 0$. Hence				
	$T = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n r^n \cos n\theta,$				
	where the usual $\frac{1}{2}$ has been used as the coefficient of A_0 .				
	At $r = 1$ we have	$T= heta^2$, hence $ heta^2=rac{1}{2}A_0\sum_{n=1}^\infty A_n\cos^2\theta$	$\sin n heta$, where		
		$A_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \theta^2 \cos n\theta = \frac{2}{\pi} \int_0^{\pi} \theta^2 d\theta$	$\cos n\theta = \frac{4}{n^2} (-1)^n,$		
	after integration b	by parts. Also $A_0=rac{2}{3}\pi^2.$ Hence the	required solution is,		
		$T = \frac{1}{3}\pi^2 + \sum_{n=1}^{\infty} \frac{4}{n^2} (-1)^n n$	$n^n \cos n\theta.$		
			10		
(b)	For the region occ retain terms which as for part (b) the	cupying the exterior of a unit circle to do not grow as $r \to \infty$. As the boxe same Fourier series analysis applies	then Eq. (1) still applies, but now we undary condition at $r = 1$ is the same s. Hence the solution is		
		$T = \frac{1}{3}\pi^2 + \sum_{n=1}^{4} \frac{4}{n^2} (-1)^n r$	$-n\cos n\theta.$		
L	1				

Total

33

UNIVERSITY OF BATH DEPARTMENT OF MECHANICAL ENGINEERING

Outline Solution to Examination Question

Exami	her: Dr D A S Rees	Date May 2019			
Unit T	itle: Modelling Techniques 2	Unit Code: ME20021			
Year:	2018/19 Question Number: 4.	Page 1 of 1			
Part		N	Mark		
(a)	This is bookwork. $\mathcal{F}_s[f''] = \int_0^\infty f'' \sin \omega x dx =$				
	$= \left[f'\right] \left[\sin \omega x\right]_0^\infty - \left[f\right] \left[\omega \cos \omega x\right]_0^\infty + \int_0^\infty \left[f\right] \left[-\omega^2 \sin \omega x\right] dx$				
	$= \omega f(0) - \omega^2 F_s(\omega).$				
(b)	The Fourier sine transform of $g(x)$ is				
	$\mathcal{F}_s[g(x)] = \int_0^\infty g(x)\sin(\omega x)dx = \int_0^1 1\sin(\omega x)dx = \frac{1-\cos\omega}{\omega}.$				
			8		
(b)	The application of the Fourier Sine Transform to Fourier's equation (together with the zero boundary condition at $x = 0$) gives				
	$\frac{\partial \Phi_s}{\partial t} = -\alpha \omega^2 \Phi_s.$				
	The general solution is, $\Phi_s = A(\omega)e^{-\alpha\omega^2 t}$		8		
	At $t = 0$ we have $\phi = g(x)$, and hence $\Phi_s = (1 - \cos \omega)/\omega$. Therefore $A = (1 - \cos \omega)/\omega$.				
	The solution for Φ_s is therefore $\Phi_s = \frac{(1 - \cos \omega)}{\omega} e^{-\alpha \omega^2}$	t .	5		
	Applying the inverse Fourier Sine Transform gives				
	$\phi = \frac{2}{\pi} \int_0^\infty \frac{(1 - \cos \omega)}{\omega} e^{-\alpha \omega^2 t} s$	in $\omega x d\omega$.	5		
<u> </u>		Total	33		