UNIVERSITY OF BATH DEPARTMENT OF MECHANICAL ENGINEERING

Outline Solution to Examination Question

-			010	
Examiner: Dr D A S Rees		-	Date May 2018	
Unit T				
Year:	2017/18 Question Number: 3.	Page 1 of 1		1
Part				Mark
(a)	Given that $\theta = 0$ at $x = 0$ and $\theta_x = 0$ at $x = 1$, we use a quarter-range series. Hence $\theta = T(t)\sin(n\pi x/2)$ for $n = 1, 3, 5, \cdots$.			
	Hence $T' = -\alpha (n^2 \pi^2/4) T$, and the solution is $T = B e^{-\alpha n^2 \pi^2 t/4}$	^{/4} .		5
	Superpose all of these to get,			
	$\theta = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} B_n e^{-\alpha n^2 \pi^2 t/4} \operatorname{st}$	$in(n\pi x/2).$		
	3 marks off if neither $n = 1, 3, 5$ nor ' $n = \text{odd'}$ app	pears here.		3
(b)	At $t = 0$ we have $\theta = 2x - x^2$, hence $2x - x^2 =$	$\sum_{\substack{n=1\\n \text{ odd}}}^{\infty} B_n \sin(n\pi x)$:/2).	5
	Using the given formula,			
	$B_n = 2 \int_0^1 (2x - x^2) \sin(n\pi x/2) dx,$ = $2 \left[\left(2x - x^2 \right) \left(-\frac{2}{n\pi} \cos(n\pi x/2) \right) + \left(-2 \right) \left(\frac{8}{n^3 \pi^3} \cos(n\pi x/2) \right) \right]$ = $\frac{32}{n^3 \pi^3}.$		$\frac{4}{2\pi^2}\sin(n\pi x/2)\Big)$	10
	Hence the full solution is			
	$\theta = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{32}{n^3 \pi^3} \sin(n\pi x/2)$	$)e^{-\alpha n^2\pi^2 t/4}.$		5
	·		Total	33

UNIVERSITY OF BATH DEPARTMENT OF MECHANICAL ENGINEERING

Outline Solution to Examination Question

Examin	er: Dr D A S Rees	Date May 2018			
Unit Title: Modelling Techniques 2		Unit Code: ME20021			
Year:	Year: 2017/18 Question Number: 4. Page 1 of 1				
Part					
(a)	This is bookwork. $\mathcal{F}[f''] = \int_{-\infty}^{\infty} f'' e^{-j\omega x} dx =$ $= \left[f'\right] \left[e^{-j\omega x}\right]_{-\infty}^{\infty} - \left[f\right] \left[-j\omega e^{-j\omega x}\right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \left[f\right] \left[-\omega^2 e^{-j\omega x}\right] dx$ $= -\omega^2 F(\omega) \qquad \text{(since } f, f' \longrightarrow 0 \text{ as } x \to \pm\infty\text{)}.$				
	$\mathcal{F}[e^{-a x }] = \int_{-\infty}^{\infty} e^{-a x } e^{-j\omega x} dx = 2 \int_{0}^{\infty} e^{-ax} \cos \omega x dx = \frac{2a}{a^{2} + \omega^{2}},$ using symmetry, and then either integration by parts or by taking the imaginary part of the integral of $e^{-(a+\omega j)x}$. The symmetry theorem now gives,				
	$\mathcal{F}\Big[\frac{2a}{a^2+x^2}\Big] = 2\pi e^{-a }$	ω.			
	Dividing by 2π gives the required result.		8		
· · /	The application of the Fourier Transform, using the immediately: $\frac{\partial^2 \Theta}{\partial y^2} - \omega^2 \Theta = 0.$	result of part (a), gives the result	5		
(d)	The general solution is, $\Theta = A(\omega)e^{\omega y} + B(\omega)e^{-\omega y}$, which may be compressed into the form, $\Theta = C(\omega)e^{-y \omega }$, given that decaying solutions are required as $y \to \infty$ (Bookwork).				
	At $y = 0$ we have $\theta = \delta(x)$, and hence its transform is the solution is $\Theta = e^{-y \omega }$. Using the result of part (b) $\theta = \frac{1}{\pi} \left(\frac{y}{x^2 + y^2}\right)$.	$\Theta = 1$. Therefore $C = 1$ and hence with a set equal to y we get	5		
	The $\theta = 1/2\pi$ contour gives us $\frac{1}{2\pi} = \frac{1}{\pi} \left(\frac{y}{x^2 + y^2} \right) \qquad \Rightarrow \qquad x^2 + (y - 1)^2 = 1,$ which is a circle of radius, 1, centred at $(x, y) = (0, 1)$.				
		Total	33		