UNIVERSITY OF BATH DEPARTMENT OF MECHANICAL ENGINEERING

Outline Solution to Examination Question

Examiner: Dr D A S Rees Dat				Date May 2017		
Unit Title: Modelling Techniques 2			Unit Code:	Unit Code: ME20021		
Year:	2016/17	Question Number: 3 .	Page 1 of 1	Page 1 of 1		
Part					Mark	
(a)	Separation of variables: let $\theta = T(t) \cos(n\pi x/2)$ for $n = 0, 1, 2, \cdots$. Hence $T' = -\alpha(n^2\pi^2/4)T$. When $n = 0$ we have $T = A$. When $n \neq 0$ we have $T = Ae^{-\alpha n^2\pi^2 t/4}$.					
	Reconstructing θ and superposing yields (where only 7 marks is allocated if A_0 is missing),					
	$\theta = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n e^{-\alpha n^2 \pi^2 t/4} \cos(n\pi x/2).$					
(1-)	At the Owner have		$\sum_{n=1}^{\infty} A_{n-1} \exp(n - \frac{1}{2}) \cdots$	h e ue		
(b)	At $t = 0$ we have $\theta = x$, hence $x = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos(n\pi x/2)$, where					
	$A_n = \int_0^2 x \cos(n\pi x/2) dx.$					
	After integration we obtain $A_n = 0$ when n is even, and $A_n = -8/n^2 \pi^2$ when n is odd. When $n = 0$ we have $A_0 = \int_0^2 x dx = 2.$					
	J_0 Hence the full solution is					
		$\theta = 1 - \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} 8 \frac{\cos(n)}{n^2}$	$\frac{\pi x/2}{\pi^2}e^{-\alpha n^2\pi^2 t/4}.$			
					15	
(c)	The sketch is as below. $\since t = 0$					
	$t = \infty$					
	All curves must have zero slope at $x = 0$ and $x = 1$ for full marks (apart from when $t = 0$).					
(d)	The value $\frac{1}{2}A_0$ is the mean initial temperature <i>and</i> the long-term temperature which is achieved.				3	

Total

33

UNIVERSITY OF BATH DEPARTMENT OF MECHANICAL ENGINEERING

Outline Solution to Examination Question

Exami	ner: Dr D A S Rees	Date May 2017				
Unit T	· · · · · · · · · · · · · · · · · · ·	Unit Code: ME20021				
Year:						
Part				Mark		
(a)	This is bookwork. $\mathcal{F}_s[f''] = \int_0^\infty f'' \sin \omega x dx =$ = $\left[f'\right] \left[\sin \omega x\right]_0^\infty - \left[f\right] \left[\omega \cos \omega x\right]_0^\infty + \int_0^\infty \left[f\right] \left[-\omega^2 \sin \omega x\right] dx$ = $\omega f(0) - \omega^2 F_s(\omega).$					
(b)	$\mathcal{F}[e^{-x}] = \int_0^\infty e^{-x} \sin \omega x dx = \frac{\omega}{1+\omega^2}$					
	using either integration by parts or by taking the imaginary part of the integral of $e^{-(1-j)x}$.					
(c)	The application of the Fourier Sine Transform to Fourier's equation together with the zero BC at $x = 0$ gives, $\frac{\partial \Phi_s}{\partial t} = -\alpha \omega^2 \Phi_s.$ The general solution is, $\Phi_s = B(\omega)e^{-\alpha \omega^2 t}$.					
	At $t=0$ we have $\phi=e^{-x}$, and hence $\Phi_s=\omega/(1+\omega^2)$. Therefore $B=\omega/(1+\omega^2)$.					
	Hence the solution is $\Phi_s = \frac{\omega e^{-\alpha \omega^2 t}}{1 + \omega^2}$. Applying the inverse Fourier Sine Transform gives $\phi = \frac{2}{\pi} \int_0^\infty \frac{\omega e^{-\alpha \omega^2 t} \sin \omega x}{1 + \omega^2} d\omega$.					
L	1		Total	33		