UNIVERSITY OF BATH DEPARTMENT OF MECHANICAL ENGINEERING

Outline Solution to Examination Question

Exami	ner: Dr D A S Rees	Date May 2016				
Unit Title: Modelling Techniques 2		Unit Code: ME20021	Unit Code: ME20021			
Year:	2015/16 Question Number: 3.	Page 1 of 1				
Part		M	Iark			
(a)	Separation of variables: let $\theta=T(t)\cos n\pi x$ for $n=0,1,2,\cdots$. Hence $T'=-\alpha n^2\pi^2T$. When $n=0$ we have $T=A$. When $n\neq 0$ we have $T=Ae^{-\alpha n^2\pi^2t}$.					
	Reconstructing $ heta$ and superposing yields (where 7 marks is allocated if A_0 is missing),					
	$\theta = \frac{1}{2}A_0 + \sum_{i}$	$\sum_{n=1}^{\infty} A_n e^{-\alpha n^2 \pi^2 t} \cos n\pi x.$	10			
(b)	At $t=0$ we have $\theta=x-x^2$, hence x	$-x^2=rac{1}{2}A_0+\sum_{n=1}^{\infty}A_n\cos n\pi x$, where				
	$A_n=2\int_0^1(x-x^2)\cos n\pi xdx.$ After integration we obtain $A_n=0$ when n is odd, and $A_n=-4/n^2\pi^2$ when n is even. When $n=0$ we have $A_0=2\int_0^1(x-x^2)dx=\tfrac13.$					
	Hence the full solution is					
		$\sum_{\substack{n=1\\ \text{even}}}^{\infty} 4 \frac{\cos n\pi x}{n^2 \pi^2} e^{-\alpha n^2 \pi^2 t}.$	16			
(c)	The sketch is as below.					
		$t = 0$ $t = \infty$				
	All curves must have zero slope at $\boldsymbol{x} =$	$0 \ {\rm and} \ x=1 \ {\rm for \ full \ marks.}$	5			
(d)	The value $\frac{1}{2}A_0$ is the mean initial tenachieved.	mperature or the long-term temperature which is	2			
		Total 3	33			

UNIVERSITY OF BATH DEPARTMENT OF MECHANICAL ENGINEERING

Outline Solution to Examination Question

Examiner: Dr D A S Rees		Date May 2016				
Unit Title: Modelling Techniques 2		Unit Code: ME20021				
Year:	Year: 2015/16 Question Number: 4. Page 1 of 1					
Part				Mark		
(a)	This is bookwork. $\mathcal{F}_s[f''] = \int_0^\infty f'' \sin \omega x dx =$ $= \left[f' \right] \left[\sin \omega x \right]_0^\infty - \left[f \right] \left[\omega \cos \omega x \right]_0^\infty + \int_0^\infty \left[f \right] \left[-\omega^2 \sin \omega x \right] dx$					
	$=\omega f(0)-\omega^2 F_s(\omega).$					
(b)	The application of the Fourier Sine Transform to the wave equation (together with the nonzero boundary condition at $x=0$) gives $\frac{\partial^2 Y_s}{\partial t^2} + c^2 \omega^2 Y_s = c^2 \omega.$					
	The general solution is, $Y_s = \frac{1}{\omega} + A(\omega)\cos c\omega t + B(\omega)\sin c\omega t$.					
	ω					
	At $t=0$ we have zero displacement, i.e. $y=0$, and hence $Y_s=0$. Therefore $A=-1/\omega$.					
	At $t=0$ we also have a zero velocity, i.e. $\partial y/\partial t=0$, hence $\partial Y_s/\partial t=0$. Therefore $B=0$. The solution is $Y_s=\frac{(1-\cos c\omega t)}{\omega}$. Applying the inverse Fourier Sine Transform gives $y=\frac{2}{\pi}\int_0^\infty \frac{(1-\cos c\omega t)}{\omega}\sin \omega xd\omega$.					
(c)	The given analytical solution, $y = H(ct-x)$ is equal to 1 when $x < ct$ (i.e. when $ct-x > 0$), and equal to zero when $x > ct$. Therefore the Fourier Sine Transform of this function is					
	$\mathcal{F}_s[H(ct-x)] = \int_0^\infty H(ct-x)\sin\omega x dx = \int_0^{ct} 1\sin\omega x dx = \frac{(1-\cos c\omega t)}{\omega}.$					
	This final answer is the same as Y_s above. This solution corresponds to a shock wave moving with velocity c in the positive x -direction.					
			Total	33		