Department of Mechanical Engineering, University of Bath Mathematics 2 ME10305 Sheet 0

The following rather interesting pieces of mathematics were found in this year's Maths 1 examination scripts. The nature of the errors varies substantially from the trivial to the utterly appalling. Determine what the examinees did incorrectly in each case.

Q1. $\frac{d \ln |3 t|}{d t}=\frac{3}{t}$
Q2. $\ln |3 t| \Rightarrow \frac{3}{3 t}$
Q3. $\int \cos ^{2} \theta d \theta=\sin ^{2} \theta$
Q4. $\int \cos ^{2} \theta d \theta=\frac{1}{3} \cos ^{3} \theta$
Q5. $\int \cos ^{2} \theta d \theta=\frac{1}{3} \sin ^{3} \theta$
Q6. $\int \cos ^{2} \theta d \theta=\frac{1}{2} \cos ^{2} \theta^{2}$
Q7. $\int \cos ^{2} \theta d \theta=\frac{1}{3} \cos ^{3} \theta \sin \theta$

Q8. $x^{2}=3 x \Rightarrow x=3$

Q9. assymtote at $x=0$

Q10. Three saddles found - no max or min. Must be another point.

Q11. $z=13 e^{j(\theta+2 \pi n)}$ with $\theta=67.38^{\circ}$

Q12. Sorry for drawing in pen, I forgot I had my pencil with me.

Q13. $\int_{0}^{2} r^{3} d r=\left[3 r^{2}\right]_{0}^{2}$
Q14. $|-x|<1 \Rightarrow x<-1$ so there's an infinite radius of convergence

Q15. It is a maxima at $t=1$. The critical point is a minima.

Q16. $\underline{\mathrm{r}} \cdot \underline{\mathrm{b}}-\underline{\mathrm{a}}=\cdots$

Q17. $2\left(\cos \frac{\pi}{6}+j \sin \frac{\pi}{6}\right)=0.0350+j 3.190 \times 10^{-4}$
Q18. $e^{x} \sum_{n=0}^{\infty}=\frac{x^{n}}{n!}$
Q19. Using intergration by parts
Q20. $I=\int_{0}^{1} x^{2} \ln x d x . \quad$ Let $x=e^{-y} \quad \Longrightarrow$ $I=-\int_{e^{-1}}^{1} y e^{-3 y} d y$

Q21. $\int_{0}^{1} x^{3}\left[1+9 x^{4}\right]^{1 / 2} d x=\int_{0}^{1} x^{3}\left[1+3 x^{2}\right] d x$
Q22. It is a stationary maximum.

Q23. $72 \lambda=36 \Rightarrow \lambda=\frac{72}{36}=2$

Q24. Let $x=e^{-y}$ in x^{2}. Hence $e^{(-y)^{2}}$ or $e^{-y^{2}}$

Q25. $z(x, y)=x y(y+x-3) \quad \Longrightarrow$
$z(x)=y^{2}+2 x y-3 y$, and $z(y)=x^{2}+2 x y-3 x$
Q26. $\frac{x^{2}-2 x y-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{(x-y)^{2}}{\left(x^{2}+y^{2}\right)^{2}}$

Q27. Let $t=x$
Q28. $\int \frac{1}{x^{2}} d x=\ln \left|x^{2}\right|$
Q29. Find $r=2 e^{j \pi / 6}$. Let $z=a+b j$ Hence $r=2$.
So $\sqrt{a^{2}+b^{2}}=2$. Also $\arg (z)=\frac{1}{6} \pi$.
So $\tan \frac{1}{6} \pi=b / a=1 / \sqrt{3} \quad \Longrightarrow \quad a=\sqrt{3} b \ldots \ldots$. $a=\sqrt{3}$ and $b=1$.

