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Solution Sheet — Root finding and iteration schemes.

Q1. The aim for this question is to repeat some of the techniques used in the lectures to find roots of equations.

(a) Use a suitable sketch to find the number of roots there are likely to be of the equation, f(x) =
x3 − 2x+ 1 = 0.

(b) Use two ad hoc iteration schemes to determine the roots of the equation.

(c) Use the Newton–Raphson scheme with x0 = 1.1 as the initial iterate to find one of those roots.

(d) Taking this root, use the perturbation method to determine how quickly each method used converges
to that root.

A1. A sketch of x3 and 2x−1 on the same graph using a few integer values of x is sufficient to show that x = 1
is one root. At x = 0 we have x3 > 2x− 1 whereas when x is very large but negative we have x3 < 2x− 1.
This means that there is a second real root for a negative value of x. A cubic equation must have 3 roots,
but since 2 are real, so must the third be.

One ad hoc method is to make the x–term as the subject of the equation, and use that to form an iteration
scheme:

x =
x3 + 1

2
and hence we set xn+1 =

x3
n + 1

2
.

Choosing 0 as the initial guess yields the sequence, (rounded here to 4 decimal places): 0, 0.5, 0.5625,
0.5889, 0.6022, 0.6092, 0.6130, 0.6152, 0.6164, 0.6171, 0.6175, 0.6177, 0.6179, 0.6179, 0.6180. To 6 decimal
places the root is 0.618034, which is 1

2
(
√
5 − 1). Convergence is very slow for this method. Other initial

guesses will be found either to converge to this root, or to diverge.

The second ad hoc method makes the x3 term the subject of the equation. Hence

x = (2x− 1)1/3 and hence we set xn+1 = (2xn − 1)1/3.

We get the following sequences on choosing 2 and −1 as the initial guesses:

2 → 1.4422 → 1.2352 → 1.1371 → 1.0841 · · · → 1

−1 → −1.4422 → −1.6439 → −1.6246 → −1.6197 · · · → −1.618034.

The cube root guarantees that very large initial guesses are reduced substantially in size, and one of these
two roots will always be obtained using this method. The root found using the first method cannot be
found using this second method, as illustrated by the following:

0.619 → 0.6197 → 0.6210 → 0.6231 · · · → 1.

The three roots are 1, 0.618034, and −1.618034.
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The Newton-Raphson method is xn+1 = xn − f(xn)/f
′(xn). In this case we have

xn+1 = xn − x3 − 2x+ 1

3x2 − 2
=

2x3 − 1

3x2 − 2
. (1)

Using 1.1 as the initial guess we have

1.1 → 1.0196319 → 1.0010468 → 1.0000033 → 1.0000000

which is a much improved rate of convergence. This method also recovers the other two roots:

0.5 → 0.6 → 0.6173913 → 0.6180331 → 0.6180340

−2 → −1.7 → −1.6230885 → −1.6180551 → −1.6180340.

These different schemes clearly have different properties. Our ad hoc methods seem to converge for every
other root, with divergence away from the intervening roots. On the other hand the Newton-Raphson
method appears to find all possible roots. But given the form of the Newton-Raphson formula in equa-
tion (1), above, where f ′(xn) appears in the denominator, we must avoid choosing an initial guess close to
where f ′(x) = 0.

Convergence

For the first ad hoc method, set xn = 1 + ǫ where ǫ is very small, i.e. we are perturbing about x = 1.
Using the iteration formula we get

xn+1 =
(1 + ǫ)3 + 1

2
≃ 2 + 3ǫ

2
= 1 + 3

2
ǫ,

thereby implying divergence from x = 1. For the second method we have

xn+1 =
(

2(1 + ǫ)− 1
)1/3

= (1 + 2ǫ)1/3 ≃ 1 + 2

3
ǫ,

which implies convergence. Finally the Newton-Raphson method yields

xn+1 =
2(1 + 3ǫ+ 3ǫ2 + ǫ3)− 1

3(1 + 2ǫ+ ǫ2
≃ 1 + 6ǫ+ 6ǫ2

1 + 6ǫ+ 3ǫ2
= 1 +

3ǫ2

1 + 6ǫ+ 3ǫ2
≃ 1 + 3ǫ2.

Therefore, if ǫ is very small, then convergence is quadratic.

Q2. Find the only real root of the cubic x3 − x2 − x− 1 = 0 correct to six significant figures. Use any method
you like.

A2. Of the three possible ad hoc schemes I decided to opt for the following,

xn+1 =
(

x2 + x+ 1
)1/3

,

because the cube root is likely to inhibit any wild excursions of the iterates. Using an initial iterate of 1,
I got the answer 1.83929 after about 15 iterations, although I needed a few more just to make absolutely
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sure. On using a Fortran program written in quadruple precision, the answer which is correct to 12 decimal
places is 1.839286755214.

I chose x0 = 1 for the ad hoc scheme on a whim, although it did feel as though that was in the right ball
park. Unfortunately, when one uses the Newton-Raphson method,

xn+1 = xn − x3
n − x2

n − xn − 1

3x2
n − 2xn − 1

,

then there is a trap because the denominator is zero when xn = 1. Therefore I used x0 = 3. This gave the
answer correct to over 30 decimal places in 7 iterations. That answer is

1.8392867552141611325518525646532867,

in case you were wondering.

Q3. Use a suitable sketch to show that f(x) = e−x − x = 0 has only one root. Use both the possible ad hoc
schemes and the Newton-Raphson method to find that root. Analyze the approach to the solution for all
three methods by setting xn = X + ǫn where X is the solution of f(X) = 0, i.e. it satisfies e−X = X.

A3. Sketching x and e−x shows very easily that the curves cross once and once only since x has a positive slope
and e−x a negative slope.

The two prospective ad hoc schemes are,

xn+1 = e−xn (Scheme 1), xn+1 = − lnxn (Scheme 2).

For the first scheme we choose x0 = 0.5 as the first iterate. We get,

0.5 → 0.6065307 → 0.5452392 → 0.5797031 → 0.5600646 → 0.5711721 · · ·

and it takes anther 19 iterations to get the solution, 0.5671433, correct to seven decimal places. It is
interesting to note that the successive iterates oscillate in their convergence.

For the second scheme we have,

0.5 → 0.6931472 → 0.3665129 → 1.0037215 → −0.0037146

and at this point the iteration scheme fails because then has to find the logarithm of a negative number.

The Newton Raphson method is

xn+1 = xn − e−x − x

−e−x − 1
= · · · = (x+ 1)e−x

e−x + 1
.

On choosing 1 as the initial guess we obtain,

1 → 0.5378828 → 0.5669870 → 0.5671433 → 0.5671433.

Now we analyze the approach to the root by setting xn = X + ǫ. For ad hoc scheme 1 we have,

xn+1 = e−X+ǫ = e−X(1− ǫ+ · · ·) = X(1− ǫ+ · · ·) ≃ X −Xǫ.
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Here we have used the fact that e−X = X to simplify the appearance of the terms. Given that |X| < 1
this means that we have linear convergence. But given that the coefficient of ǫ is negative, it means that
the iterates oscillate about the root as they approach it.

For the second ad hoc scheme we have,

xn+1 = − ln(X + ǫ) = − lnX(1 + ǫ/X) = − lnX − ln(1 + ǫ/X) ≃ X − ǫ/X.

Again we have used − lnX = X to simplify this, and the final line is obtained using a two-term binomial
expansion of the logarithm. The coefficient of ǫ is negative but greater than 1 in magnitude, and therefore
we have an oscillatory divergence.

Finally, for the Newton-Raphson scheme we have the following, which is a bit lengthy....

xn+1 =
xn + 1)e−xn

1 + e−xn

=
(X + 1 + ǫ)e−X+ǫ

1 + e−X+ǫ

= X
(X + 1 + ǫ)eǫ

1 +Xeǫ
using e−X = X

= X
(X + 1 + ǫ)(1− ǫ+ 1

2
ǫ2 · · ·)

(X + 1)− ǫX + 1

2
Xǫ2 + · · ·

= X
[ (X + 1)− ǫX + 1

2
(X − 1)ǫ2 + · · ·

(X + 1)− ǫX + 1

2
Xǫ2 + · · ·

]

= X
[

1− ǫ2

2(X + 1)
+ · · ·

]

= X − X

2(X + 1)
ǫ2 + · · ·

This shows that we have quadratic convergence.

Q4. Use the Newton-Raphson method to find the first 4 positive roots of f(x) = x sinx − 1 = 0. Rough
locations of the roots may be obtained using a suitable sketch.

A4. A sketch of sinx and 1/x shows that one root is below π/2, the next between π/2 and π, the third just
above 2π and the fourth just below 3π. The Newton-Raphson scheme is

xn+1 = xn − xn sinxn − 1

xn cos xn + sinxn
=

x2
n cos xn + 1

xn cos xn + sinxn
.

We get the following sequences using the initial guesses, π/2, π, 2π and 3π:

π/2 → 1 → 1.1147287 → 1.1141571 → 1.1141571

π → 2.8232828 → 2.774129 → 2.7726062 → 2.7726047

2π → 6.4423403 → 6.439118 → 6.439117

3π → 9.3186747 → 9.3172433 → 9.3172429
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— the final numbers above being the fully converged solutions.

Q5. So let us create a general perturbation analysis of the convergence of the Newton-Raphson method towards
a double root. We’ll fix the roots to be at x = 0 reflects a general situation perfectly, and therefore we
will consider f(x) = x2g(x) where g(0) 6= 0. Write down the Newton-Raphson formula for this f(x), and
use a perturbation analysis to determine how quickly the iteration scheme will converge to x = 0. What
happens when we have f(x) = xmg(x) where m is a positive integer?

A5. If we set f(x) = x2g(x) then f ′(x) = 2xg(x) + x2g′(x). Therefore the Newton-Raphson scheme is

xn+1 = xn − x2
ng(xn)

2xng(xn) + x2
ng

′(xn)

= xn − xng(xn)

2g(xn) + xn2g′(xn)
.

The double root is at x = 0, and therefore we will set x = ǫ. If this is substituted into the Newton-Raphson
formula, then we obtain,

xn+1 = ǫ− ǫg(ǫ)

2g(ǫ) + ǫg′(ǫ)

=
2ǫg(ǫ) + ǫ2g′(ǫ)− ǫg(ǫ)

2g(ǫ) + ǫg′(ǫ)

=
ǫg(ǫ) + ǫ2g′(ǫ)

2g(ǫ) + ǫg(′ǫ)

≃ 1

2
ǫ.

Therefore errors are halved every iteration for the general case of a double root.

A similar analysis for the general multiple root, f(x) = xmg(x), gives

xn = ǫ ⇒ xn+1 =
m− 1

m
ǫ.

Therefore the linear convergence gets worse as the multiplicity of the root increases.

Q6. [This question is best tackled using some suitable software to undertake the computations.]

The objective is to find the zeros of the function, f(x) = x1/3 − lnx, where it is no secret that any such
zeros must be positive. Use both of the possible ad hoc methods and the Newton-Raphson method to find
these zeros. I am not sure that it will be useful to sketch this function, but trialling a few tentative values
of x is a good start.
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A6. It is clear that f(1) = 1 and f(10) = −0.14815 and so there must be a root between x = 1 and x = 10.

It is also known that lnx grows more slowly than any positive power of x, and therefore f(x) should
become positive again at some point. If one tries x = 100, then f(100) = 0.03642 which is positive again.
So a second root must lie between x = 10 and x = 100. So we could use these three values of x as starting
iterates for the three schemes.

So we’ll define the three schemes:

A : xn+1 = (lnxn)
1/3, B : xn+1 = ex

1/3
n , NR : xn+1 = xn − x

1/3
n − lnx

1

3
x−2/3 − x−1

.

The following shows the values to which the three schemes converged and the numner of iterations (shown
in brackets) taken to achieve 8 significant figures of accuracy.

x0 Scheme A Scheme B N.R.
1 ln(-ve) 6.405672 (42) 6.405672 (7)
10 93.354461 (60) 6.405672 (41) 6.405672 (6)
70 93.354461 (52) 6.405672 (49) 93.354461 (4)
100 93.354461 (48) −→ ∞ 93.354461 (3)

So the Scheme A iterations eventually yield a negative number, and therefore the iterations terminate due
to not being able to find its logarithm. It is also clear that Scheme A obtains just one of the roots while
Scheme B obtains the other.

The Newton-Raphson scheme gives both roots and quadratic convergence is obtained, as expected. I have
included the extra value, x0 = 70 because there is a watershed value of x at which f ′(x) = 0. For this
example, x = 27 is the watershed. When x0 < 27 then the lower root is found, while the upper root is
found when x0 > 27. When x0 is very close to 27, then x1 will be miles away (which is even further than
kilometers....). Perhaps megaparsecs..... More precisely, if x0 = 27 + δ where |δ| ≪ 1, then I challenge you
to show that x1 ≈ 647/δ.

The idea for this question came from: https://www.youtube.com/watch?v=MZEstWFl-Cc

Q7. [If you have access to a machine/software which can compute with complex numbers, then you may
undertake this question, should you wish.]

Write down the Newton-Raphson scheme for f(x) = x2 +1. Now use x0 = 0.5 + 0.5j as the initial iterate.
To what value does the Newton-Raphson scheme converge?

Use the same method for finding the square root of 2j. Use x0 = 1 + 0j in this case.

A7. The Newton-Raphson scheme is

xn+1 = xn − x2
n + 1

2xn
.

The iterations are,
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n xn

0 0.500000 + 0.500000j
1 −0.250000 + 0.750000j
2 0.075000 + 0.975000j
3 −0.001716 + 0.997304j
4 0.000005 + 1.000002j
5 0.000000 + 1.000000j
6 0.000000 + 1.000000j

This converges to x = j, perhaps not surprisingly.

For the second problem we need to use f(x) = x2 − 2j, and hence,

xn+1 = xn − x2
n − 2j

2xn
.

The iterations are,
n xn

0 1.000000 + 0.000000j
1 0.500000 + 1.000000j
2 1.050000 + 0.900000j
3 0.995588 + 0.999029j
4 1.000007 + 0.999998j
5 1.000000 + 1.000000j
6 1.000000 + 1.000000j

This example shows that we are, in effect, solving for two coupled equations in two unknowns, namely
the real and imaginary parts of x. Although this is nice and perhaps quite surprising, a different route is
required when solving five equations in five unknowns. We will not be covering this aspect, but it is an
essential part of solving ODE BVPs.

Q8. [This is a project-style of question. It is lengthy and intricate, but it ends up with an algebraic equation
to solve for which the Newton-Raphson method is well-suited. The background application is on the
vibrations of a beam.]

First, an introduction to Ordinary Differential Eigenvalue problems. I’ll summarise the process first with
a 2nd order ODE, and your job will be to apply the same ideas to a 4th order ODE.

The vibrations of a taut string are described by the wave equation, and eventually one obtains the ODE,

d2y

dx2
+ ω2y = 0, subject to y(0) = 0, y(1) = 0.

The value, y, is a displacement, like that of a violin string, and the boundary conditions represent a zero
displacement at both ends, which is what one expects of a violin. Clearly y = 0 satisfies the ODE and
boundary conditions, but we’ve heard violins and therefore we need nonzero solutions. The value, ω, is
related to the frequency of vibration of the string, and nonzero solutions (eigensolutions!) arise for certain
frequencies only, and it is these values which we seek (eigenvalues!). The analysis proceeds as follows.

The general solution is y = A cosωx+B sinωx. Given that y(0) = 0 we must therefore have A = 0, which
means that we now have y = B sinωx. Application of y(1) = 0 yields,

B sinω = 0.
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We can’t have B = 0 because that means that string has no displacement, and that defeats the purpose
of the analysis. So we must have ω = nπ, where n is a positive integer; these values of ω are called the
eigenvalues of the ODE. For a chosen value of n, the associated disturbance shape is y = B sinnπx where
B is arbitary; these are the eigensolutions.

Your task, should you wish to take it on, is to use a similar analysis of the corresponding equation for a
beam, namely,

d4y

dx4
− ω4y = 0 subject to y(0) = y′(0) = 0, y(1) = y′(1) = 0.

The boundary conditions are consistent with those of a cantilever: zero displacement and zero slope.

(a) Use the substitution, y = eλx, to write down the general solution in terms of four functions and with four
arbitrary constants. Where you have to choose between exponentials and hyperbolic functions, I would
advise the hyperbolics on this occasion. Sorry.

b) Now apply the boundary conditions to get four algebraic equations. The following will be a somewhat
arduous trek. The aim is to try to eliminate three of the arbitrary constants in order to have an equation
involving the last arbitrary constant and an expression involing ω. If this has worked correctly you should
get

cosω coshω = 1. (1)

(c) Sketch both cosω and 1/ coshω to estimate where the first root of Eq. (1) might be. (Ignore the obvious
one at x = 0 which actually yields nothing of any use!)

(d) Apply Newton-Raphson to find this first value of ω. Again, ω is the freqency of vibration of the beam and,
given how much more constrained the beam is compared with the string, you should obtain a higher lowest
frequency here. In the solutions I will provide the first four values of ω and the corresponding shapes of
vibration.

A8. We are solving,
d4y

dx4
− ω4y = 0 subject to y(0) = y′(0) = 0, y(1) = y′(1) = 0.

If we substitute y = eλx then the Auxiliary Equation is,

λ4 = ω4.

Therefore, λ = ±ω, ±ωj. Given the hint in the question, I will write the general solution in the form,

y = A cosωx+B sinωx+ C coshωx+D sinhωx. (1)

We’ll also need the derivative:

y′ = ω
(

−A sinωx+B cosωx+ C sinhωx+D coshωx
)

. (2)
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(b) Applying the four boundary conditions:

Eq. (1) at t = 0 0 = A+ C

Eq. (2) at t = 0 0 = B +D

Eq. (1) at t = 1 0 = A cosω +B sinω + C coshω +D sinhω

Eq. (2) at t = 1 0 = −A sinω +B cosω + C sinhω +D coshω.

Clearly we have C = −A and D = −B and therefore the two remaining equations become,

A(cosω − coshω) +B(sinω − sinhω) = 0, (3)

A(− sinω − sinhω) +B(cosω − coshω) = 0. (4)

Now we can obtain A in terms of B in two ways and equate them, or B in terms of A in two ways and
equate them. Or, even better, we may write this out in matrix/vector form:

(

(cosω − coshω) (sinω − sinhω)
(− sinω − sinhω) (cosω − coshω)

)(

A
B

)

=

(

0
0

)

.

Nonzero solutions require the determinant to be zero, and hence

(cosω − coshω)2 + (sinω − sinhω)(sinω + sinhω) = 0. (5)

Using cos2 +sin2 = 1 and cosh2 − sinh2 = 1, this simplifies greatly to yield,

cosω coshω = 1,

as desired.

(c) If one sketches both cosω and 1/ cosh ω, then we are seeking where these graphs cross in order to obtain
the value of ω that we need. Clearly ω = 0 is one, but this one leads nowhere. Both functions descend
as ω increases from zero. The next possible occasion when the curves can cross is when cosω is positive
again. The value of cosω passes zero when ω = 3

2
π, at which point 1/ coshω is very small. So I would say

that this would be a good starting iterate for the Newton-Raphson scheme.

(d) The Newton-Raphson scheme is,

ωn+1 = ωn − cosωn coshωn − 1

cosωn sinhωn − sinωn coshωn
.

The first four values of ω are,

4.730041
7.853207
10.995252
14.137212

which should be compared with,
3/2π = 4.712389
5/2π = 7.853982
7/2π = 10.995574
9/2π = 14.137167

and which shows how close the values of ω are to odd multiples of 1

2
π.
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Mode 4: Green (three nodes)

Just to say that, if had been considering a pin-jointed beam for which the boundary conditions are that
y = y′′ = 0 at x = 0 and x = 1, then the natural frequencies would be π, 2π, 3π and so on, which are
exactly the same as for the taut string.

D.A.S.R. 15/03/2021


