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Problem Sheet — Root finding and iteration schemes.

Q1. The aim for this question is to repeat some of the techniques used in the lectures to find roots of equations.

(a) Use a suitable sketch to find the number of roots there are likely to be of the equation, f(x) =
x3 − 2x+ 1 = 0.

(b) Use two ad hoc iteration schemes to determine the roots of the equation.

(c) Use the Newton–Raphson scheme with x0 = 1.1 as the initial iterate to find one of those roots.

(d) Taking this root, use the perturbation method to determine how quickly each method used converges
to that root.

Q2. Find the only real root of the cubic x3 − x2 − x− 1 = 0 correct to six significant figures. Use any method
you like.

Q3. Use a suitable sketch to show that f(x) = e−x − x = 0 has only one root. Use both the possible ad hoc
schemes and the Newton-Raphson method to find that root. Analyze the approach to the solution for all
three methods by setting xn = X + ǫn where X is the solution of f(X) = 0, i.e. it satisfies e−X = X.

Q4. Use the Newton-Raphson method to find the first 4 positive roots of f(x) = x sinx − 1 = 0. Rough
locations of the roots may be obtained using a suitable sketch.

Q5. So let us create a general perturbation analysis of the convergence of the Newton-Raphson method towards
a double root. We’ll fix the roots to be at x = 0 reflects a general situation perfectly, and therefore we
will consider f(x) = x2g(x) where g(0) 6= 0. Write down the Newton-Raphson formula for this f(x), and
use a perturbation analysis to determine how quickly the iteration scheme will converge to x = 0. What
happens when we have f(x) = xmg(x) where m is a positive integer?

Q6. [This question is best tackled using some suitable software to undertake the computations.]

The objective is to find the zeros of the function, f(x) = x1/3 − lnx, where it is no secret that any such
zeros must be positive. Use both of the possible ad hoc methods and the Newton-Raphson method to find
these zeros. I am not sure that it will be useful to sketch this function, but trialling a few tentative values
of x is a good start.

Q7. [If you have access to a machine/software which can compute with complex numbers, then you may
undertake this question, should you wish.]

Write down the Newton-Raphson scheme for f(x) = x2 +1. Now use x0 = 0.5 + 0.5j as the initial iterate.
To what value does the Newton-Raphson scheme converge?

Use the same method for finding the square root of 2j. Use x0 = 1 + 0j in this case.
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Q8. [This is a project-style of question. It is lengthy and intricate, but it ends up with an algebraic equation
to solve for which the Newton-Raphson method is well-suited. The background application is on the
vibrations of a beam.]

First, an introduction to Ordinary Differential Eigenvalue problems. I’ll summarise the process first with
a 2nd order ODE, and your job will be to apply the same ideas to a 4th order ODE.

The vibrations of a taut string are described by the wave equation, and eventually one obtains the ODE,

d2y

dx2
+ ω2y = 0, subject to y(0) = 0, y(1) = 0.

The value, y, is a displacement, like that of a violin string, and the boundary conditions represent a zero
displacement at both ends, which is what one expects of a violin. Clearly y = 0 satisfies the ODE and
boundary conditions, but we’ve heard violins and therefore we need nonzero solutions. The value, ω, is
related to the frequency of vibration of the string, and nonzero solutions (eigensolutions!) arise for certain
frequencies only, and it is these values which we seek (eigenvalues!). The analysis proceeds as follows.

The general solution is y = A cosωx+B sinωx. Given that y(0) = 0 we must therefore have A = 0, which
means that we now have y = B sinωx. Application of y(1) = 0 yields,

B sinω = 0.

We can’t have B = 0 because that means that string has no displacement, and that defeats the purpose
of the analysis. So we must have ω = nπ, where n is a positive integer; these values of ω are called the
eigenvalues of the ODE. For a chosen value of n, the associated disturbance shape is y = B sinnπx where
B is arbitary; these are the eigensolutions.

Your task, should you wish to take it on, is to use a similar analysis of the corresponding equation for a
beam, namely,

d4y

dx4
− ω4y = 0 subject to y(0) = y′(0) = 0, y(1) = y′(1) = 0.

The boundary conditions are consistent with those of a cantilever: zero displacement and zero slope.

(a) Use the substitution, y = eλx, to write down the general solution in terms of four functions and with four
arbitrary constants. Where you have to choose between exponentials and hyperbolic functions, I would
advise the hyperbolics on this occasion. Sorry.

b) Now apply the boundary conditions to get four algebraic equations. The following will be a somewhat
arduous trek. The aim is to try to eliminate three of the arbitrary constants in order to have an equation
involving the last arbitrary constant and an expression involing ω. If this has worked correctly you should
get

cosω coshω = 1. (1)

(c) Sketch both cosω and 1/ coshω to estimate where the first root of Eq. (1) might be. (Ignore the obvious
one at x = 0 which actually yields nothing of any use!)

(d) Apply Newton-Raphson to find this first value of ω. Again, ω is the freqency of vibration of the beam and,
given how much more constrained the beam is compared with the string, you should obtain a higher lowest
frequency here. In the solutions I will provide the first four values of ω and the corresponding shapes of
vibration.
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