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ME10305 Mathematics 2.

Matrices Sheet 2 — Determinants, Cramer’s Rule and Gaussian Elimination.

Q1. Find the determinant of the following matrices. Which matrices are singular (i.e. have a zero determinant)?
For (d) and (g) attempt the evaluation of the determinant in more than one way just to practice the skill.

(a)

(

6 2
8 3

)

(b)

(

0 1
1 0

)

(c)

(

4 −2
−2 1

)

(d)





2 1 1
0 3 −3
1 2 −1





(e)





1 2 3
4 5 6
7 8 9



 (f)





1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5



 (g)







2 1 1 1
0 3 −3 1
1 2 −1 0
1 1 1 1






(h)







b a a a
a b a a
a a b a
a a a b







ANSWER:

(a)
∣

∣

∣

6 2
8 3

∣

∣

∣ = (6 × 3)− (8× 2) = 18− 16 = 2.

(b)
∣

∣

∣

0 1
1 0

∣

∣

∣
= 0− 1 = −1

(c)
∣

∣

∣

4 −2
−2 1

∣

∣

∣ = (4× 1)− (−2)× (−2) = 4− 4 = 0.

(d)

∣

∣

∣

∣

∣

2 1 1
0 3 −3
1 2 −1

∣

∣

∣

∣

∣

= 2
∣

∣

∣

3 −3
2 −1

∣

∣

∣+ 1
∣

∣

∣

1 1
3 −3

∣

∣

∣ = 0

In this case we expanded abut the first column in order to expoint the zero. An alternative approach would
be to add the third column to the second one to obtain,

∣

∣

∣

∣

∣

2 2 1
0 0 −3
1 1 −1

∣

∣

∣

∣

∣

= −(−3)
∣

∣

∣

2 2
1 1

∣

∣

∣ = 0.

(e) We may take the brute-force approach, as follows,

∣

∣

∣

∣

∣

1 2 3
4 5 6
7 8 9

∣

∣

∣

∣

∣

= 1
∣

∣

∣

5 6
8 9

∣

∣

∣
− 2

∣

∣

∣

4 6
7 9

∣

∣

∣
+ 3

∣

∣

∣

4 5
7 8

∣

∣

∣
= (45− 48)− 2(36− 42) + 3(32− 35) = 0,

where we have expanded about the first row, or we may use row manipulations, as follows,

∣

∣

∣

∣

∣

1 2 3
4 5 6
7 8 9

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 2 3
0 −3 −6
0 −6 −12

∣

∣

∣

∣

∣

R2 − 4R1

R3 − 7R1

=

∣

∣

∣

∣

∣

1 2 3
0 −3 −6
0 0 0

∣

∣

∣

∣

∣

R3 − 2R2

= 0 on expanding about the third row.
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(f)

∣

∣

∣

∣

∣

1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

∣

∣

∣

∣

∣

= 1
[

1

3
. 1
5
− 1

4
. 1
4

]

− 1

2

[

1

2
. 1
5
− 1

3
. 1
4

]

+ 1

3

[

1

2
. 1
4
− 1

3
. 1
3

]

= 1/2160

It is possible to use row and/or column manipulations for this, but the number of fractions becomes difficult
to handle.

(g) Again, the brute force approach (expanding about the 1st column) gives,

∣

∣

∣

∣

∣

∣

∣

2 1 1 1
0 3 −3 1
1 2 −1 0
1 1 1 1

∣

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

3 −3 1
2 −1 0
1 1 1

∣

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

∣

1 1 1
3 −3 1
1 1 1

∣

∣

∣

∣

∣

− 1

∣

∣

∣

∣

∣

1 1 1
3 −3 1
2 −1 0

∣

∣

∣

∣

∣

= 2[3 + 3] + 0− 1[3 + 3] = 6.

Using row manipulations gives,

∣

∣

∣

∣

∣

∣

∣

2 1 1 1
0 3 −3 1
1 2 −1 0
1 1 1 1

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 3 −3 1
1 2 −1 0
1 1 1 1

∣

∣

∣

∣

∣

∣

∣

R1 −R4

=

∣

∣

∣

∣

∣

∣

3 −3 1
2 −1 0
1 1 1

∣

∣

∣

∣

∣

∣

expanding about C1

=

∣

∣

∣

∣

∣

∣

2 −4 1
2 −1 0
0 0 1

∣

∣

∣

∣

∣

∣

Cnew

1 = Cold

1 − C3, Cnew

2 = Cold

2 − C3

=

∣

∣

∣

∣

2 −4
2 −1

∣

∣

∣

∣

expanding about R3

=6

Note that there are many different ways of using row and column manipulations to get this result.

(h) One way is to subtract row 1 from row 2, row 1 from row 3, and row 1 from row 4, followed by adding
each of columns 2, 3 and 4 to column 1. This yields the determinant of the following matrix:

∣

∣

∣

∣

∣

∣

∣

b+ 3a a a a
0 b− a 0 0
0 0 b− a 0
0 0 0 b− a

∣

∣

∣

∣

∣

∣

∣

whose value is (b+ 3a)(b− a)3.

Clearly this matrix has a zero determinant when b = a, and obviously so because all four rows of the original
matrix are then identical. Much less obviously the matrix is singular when b = −3a.

Finally, we may say that matrices (c), (d) and (e) are singular because their determinants are zero.
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Q2. The matrix Jn is an n × n matrix where the diagonal entries have the value −2, the superdiagonal and
subdiagonal entries the value 1, and 0 elsewhere. For example, J1, J2 and J5 are

J1 = (−2 ) J2 =

(

−2 1
1 −2

)

J5 =











−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2











.

Such matrices arise in the numerical solution of second order ordinary differential equations.

Assume that |J1| = −2, and then evaluate |J2|, |J3|, |J4| and |J5| directly from the matrix definitions. This
should show you how to derive the recurrence relation,

|Jn| = −2|Jn−1| − |Jn−2|.

Finally, what is the explicit value of |Jn|?

ANSWER: We’re given that |J1| = −2, which may come as a bit of a surprise because the modulus signs
here mean a “determinant” rather than an absolute value. So there is a difference between |J1|=|(−2)| = −2
and | − 2| = 2, the latter being the modulus of a number. This issue is exceptionally unlikely to arise in
practice because there’s no need to have a 1× 1 matrix!

The following is easy:

|J2| =
∣

∣

∣

−2 1
1 −2

∣

∣

∣ = 3.

For the next one we have,

|J3| =

∣

∣

∣

∣

∣

−2 1 0
1 −2 1
0 1 −2

∣

∣

∣

∣

∣

= −2
∣

∣

∣

−2 1
1 −2

∣

∣

∣ − 1
∣

∣

∣

1 1
0 −2

∣

∣

∣ = (−2)(3)− (1)(−2) = −4.

This one is a little longer:

|J4| =

∣

∣

∣

∣

∣

∣

∣

−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2

∣

∣

∣

∣

∣

∣

∣

expand using the 1st row

= −2

∣

∣

∣

∣

∣

∣

−2 1 0
1 −2 1
0 1 −2

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

1 1 0
0 −2 1
0 1 −2

∣

∣

∣

∣

∣

∣

expand using the 1st column

= −2

∣

∣

∣

∣

∣

∣

−2 1 0
1 −2 1
0 1 −2

∣

∣

∣

∣

∣

∣

− 1

∣

∣

∣

∣

−2 1
1 −2

∣

∣

∣

∣

= −2|J3| − |J2|.

So we have shown that |J4| = −2|J3| − |J2|. When one decides to do a similar expansion for |J5|, it becomes
apparent that the only change in the analysis from that of |J4| is the addition of an extra column on the
right and an extra row at the bottom. Therefore this result does indeed represent the general case.
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But just to check, consider the determinant of Jn, an n× n matrix.

|Jn| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−2 1
1 −2 1

1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Expanding about the first row yields

|Jn| = −2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1
0 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

The first determinant here is |Jn−1| (noting that it must be an (n− 1)× (n− 1) determinant. If we expand
the second determinant about the first column, we see that it is equal to |Jn−2|. Hence we obtain the result,

|Jn| = −2|Jn−1| − |Jn−2|.

We already have |J1| = −2 and |J2| = 3. Although we have already found that |J3| = −4 directly, the
rcurrence relation gives,

|J3| =

∣

∣

∣

∣

∣

−2 1 0
1 −2 1
0 1 −2

∣

∣

∣

∣

∣

= −2
∣

∣

∣

−2 1
1 −2

∣

∣

∣
− 1

∣

∣

∣

1 1
0 −2

∣

∣

∣
= (−2)(3)− (1)(−2) = −4.

Using the formula we obtain the following in turn: |J4| = 5, |J5| = −6, |J6| = 7 and so on. Hence

|Jn| = (−1)n(n+ 1).

Q3. Use Cramer’s rule to solve the following systems of equations.

(a) 2x+ 5y =− 1

−3x+ 2y =2

(b) 2x1 + 3x2 − 2x3 =1

6x1 − 2x2 − x3 =2

x1 − x2 + x3 =2

(c) x1 + 3x2 − x3 =3

x2 − 7x3 =2

2x1 − 5x3 =1

ANSWER: (a)

The equation is

(

2 5
−3 2

)(

x
y

)

=

(

−1
2

)

. The determinant of the matrix is
∣

∣

∣

2 5
−3 2

∣

∣

∣ = 4 + 15 = 19.

Using Cramer’s rule we have:

x = 1

19

∣

∣

∣

−1 5
2 2

∣

∣

∣ = − 12

19
y = 1

19

∣

∣

∣

2 −1
−3 2

∣

∣

∣ = 1

19
.
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(b)

∣

∣

∣

∣

∣

2 3 −2
6 −2 −1
1 −1 1

∣

∣

∣

∣

∣

= −19

Using Cramer’s rule:

x1 = −
1

19

∣

∣

∣

∣

∣

1 3 −2
2 −2 −1
2 −1 1

∣

∣

∣

∣

∣

=
−19

−19
= 1.

x2 = −
1

19

∣

∣

∣

∣

∣

2 1 −2
6 2 −1
1 2 1

∣

∣

∣

∣

∣

=
−19

−19
= 1.

x3 = −
1

19

∣

∣

∣

∣

∣

2 3 1
6 −2 2
1 −1 2

∣

∣

∣

∣

∣

=
−38

−19
= 2.

(c) The solution for this matrix is: x1 = 5/45, x2 = 41/45 and x3 = −7/45.

Q4. Use Gaussian Elimination to solve the following systems of equations.

(a) 2x+ 5y =− 1

−3x+ 2y =2

(b) 2x1 + 3x2 − 2x3 =1

6x1 − 2x2 − x3 =2

x1 − x2 + x3 =2

(c) x1 + 3x2 − x3 =3

x2 − 7x3 =2

2x1 − 5x3 =1

Note that the above three systems of equations are identical to those in which were solved in Q3 using
Cramer’s rule.

(d)






1 2 −1 1
1 1 −2 6
3 0 1 1
−2 1 −3 0













a
b
c
d






=







2
−4
2
−1







(e)






3 1 0 0
1 3 1 0
0 1 3 1
0 0 1 3













a
b
c
d






=







1
1
−2
7







ANSWER: (a) Using Gaussian Elimination with the augmented matrix notation:

[

2 5 | −1
−3 2 | 2

]

−→

[

2 5 | −1
0 19

2
| 1

2

]

R1

R2 +
3

2
R1

Hence 2x+ 5y = −1 and 19

2
y = 1

2
. And therefore we obtain,

x = −12/19 y = 1/19.
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(b) For the Gaussian Elimination algorithm, I have interchanged the order of the rows for convenience.
Hence

[

1 −1 1 | 2
2 3 −2 | 1
6 −2 −1 | 2

]

−→

[

1 −1 1 | 2
0 5 −4 | −3
0 4 −7 | −10

]

R1

R2 − 2R1

R3 − 6R1

−→

[

1 −1 1 | 2
0 5 −4 | −3
0 0 − 19

5
| − 38

5

]

R1

R2

R3 −
4

5
R2

Hence x3 = 2, x2 = (−3 + 4x3)/5 = 1 and x1 = 2− x3 + x2 = 1.

(c) The solution for this matrix is: x1 = 19/48, x2 = 41/48 and x3 = −2/48.

(d) Now a 4× 4 system. It follows as above but takes a little longer.







1 2 −1 1 | 2
1 1 −2 6 | −4
3 0 1 1 | 2
−2 1 −3 0 | −1






−→







1 2 −1 1 | 2
0 −1 −1 5 | −6
0 −6 4 −2 | −4
0 5 −5 2 | 3







R1

R2 − 2R1

R3 − 3R1

R4 + 2R1

−→







1 2 −1 1 | 2
0 −1 −1 5 | −6
0 0 10 −32 | 32
0 0 −10 27 | −27







R1

R2

R3 − 6R2

R4 + 5R2

−→







1 2 −1 1 | 2
0 −1 −1 5 | −6
0 0 10 −32 | 32
0 0 0 −5 | 5







R1

R2

R3

R4 +R3

From this we get d, c, b and a in turn. Hence,







a
b
c
d






=







1
1
0
−1







(e) There are a lot of fractions with this Gaussian Elimination problem. If one wishes to avoid fractions,
then it is possible to replace a row operation such as the new row 3 being equal to R3 +

2

5
R1, by the new

row 3 being equal to 5R3 + 2R1. This latter replacement is composed of adding twice the old row 1 to 5
times the old row 3 — this is perfectly valid since one is adding equations together.

The solution is,






a
b
c
d






=







0
1
−2
3






.
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Q5. The matrix given in Q1e is singular, by which is meant that it has a zero determinant, and therefore it either
has no solution or an infinite number of them. The aim of this question is to see how Gaussian Elimination
copes with such a situation.

Try to solve the matrix/vector equation





1 2 3
4 5 6
7 8 9









x
y
z



 =





1
1
1





using Gaussian Elimination to see the manner in which the procedure fails when the matrix is singular.
However, it is possible to write down solutions for this case. I haven’t covered this in the lectures and
therefore you’ll need to work out how to do it.

Now try to find the solution when the right hand side vector is (−2, 1, 5)T . Can you explain why two separate
equations involving the same matrix has solutions in one case but not in another? (Hint: use (a, b, c)T as
the right hand side as a third case.)

ANSWER: This problem involves solving two separate matrix/vector equations which use the same matrix.
It is instructive to solve a third equation where the right hand side is (a, b, c)T , which is why I have given
the hint.

I will use the augmented matrix notation with all three right hand sides represented, so that it is not
necessary to repeat the elimination part of the Gaussian Elimination algorithm.

[

1 2 3 | 1 −2 a
4 5 6 | 1 1 b
7 8 9 | 1 5 c

]

−→

[

1 2 3 | 1 −2 a
0 −3 −6 | −3 9 b− 4a
0 −6 −12 | −6 19 c− 7a

]

R2 − 4R1

R3 − 7R1

−→

[

1 2 3 | 1 −2 a
0 −3 −6 | −3 9 b− 4a
0 0 0 | 0 1 c− 2b+ a

]

R3 − 2R2

Note: all we have done here is to use the elimination part of Gaussian Elimination simultaneously for all
three right hand vectors; this has been to avoid duplicating the elimination stage as it is applied to the
matrix.

For the first right hand side the final row is equivalent to 0x+ 0y+ 0z = 0 which is fine. This leaves us two
equations in three unknowns. If we leave z as being unspecified and equal to α, say, then the second row of
the matrix leads us to y = 1− 2α, and the first to x = −1 + α. This solution may be written as





x
y
z



 =





−1
1
0



+ α





1
−2
1



 .

Therefore the first matrix/vector equation has an infinite number of solutions because α is an arbitrary
number. In fact, the vector that is multiplying α is the eigenvector of the matrix which corresponds to the
zero eigenvalue.

Consider now the second right hand side vector. The final row is equivalent to 0x+0y+0z = 1, which does
not have a solution. Therefore the second matrix/vector equation does not have a solution. This result is,
in fact, typical.

For the third right hand side vector we see that if c− 2b+ a = 0 we recover a situation where we can obtain
an infinite number of solutions, whereas if a − 2b + c 6= 0 then there is no solution. Thus c− 2b + a = 0 is
the condition whereby the equation has solutions, even though the matrix is singular.
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Q6. The aim here is to find the inverse of some matrices using Gaussian Elimination starting with the identity
matrix as part of the augmented matrix scheme. Other general properties of inverses will arise along the
way. Treat this question as practice in Gaussian elimination; the computation of inverses takes too long in
the examination context (with the possible exception of a tridiagonal 3× 3 matrix). Find the inverses of the
following matrices.

A =





1 1 1
1 −1 0
1 1 −2



 , B =





1 3 −1
0 4 −1
1 1 1



 , C =





2 1 1
1 2 1
1 1 2



 ,

D =







2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2






, E =





0 1 2
−1 0 3
−2 −3 0



 , F =





1/2 1/3 1/4
1/3 1/4 1/5
1/4 1/5 1/6





You may check your answer either by forming the product M−1M or the product MM−1 or by consulting
the web page: https://matrix.reshish.com/inverse.php.

What conclusion can you draw about the inverses of matrices which are symmetric, antisymmetric or tridi-
agonal?

ANSWER

Case A. We employ the identity in the form of three vector-like right hand sides.

[

1 1 1 | 1 0 0
1 −1 0 | 0 1 0
1 1 −2 | 0 0 1

]

−→

[

1 1 1 | 1 0 0
0 −2 −1 | −1 1 0
0 0 −3 | −1 0 1

]

R1

R2 − R1

R3 − R1

Fortuitously, the act of making the terms that are in the 1st column and below the main diagonal equal to
zero has also made it upper triangular. If we now find the vector solutions corresponding to each right hand
side in turn (see the lecture notes) using back-substitution, then we eventually obtain,

A−1 = 1

6





2 3 1
2 −3 1
2 0 −2



 .

As already mentioned, for this particular matrix, it was somewhat unusual that the elimination of the terms,
a21 and a31, also gave a32 = 0. This saved some time but isn’t to be expected in general.

For the remaining cases I won’t give workings, for this takes up a lot of space, and indeed there are a few
slightly different ways of doing the elimination.

B =





1 3 −1
0 4 −1
1 1 1



 ⇒ B−1 =





5/6 −2/3 1/6
−1/6 1/3 1/6
−2/3 1/3 2/3





In this case the b21 was already zero.

C =





2 1 1
1 2 1
1 1 2



 ⇒ C−1 = 1

4





3 −1 −1
−1 3 −1
−1 −1 3





The matrix, C, is symmetric, and so is its inverse.
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D =







2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2






⇒ D−1 = 1

5







4 3 2 1
3 6 4 2
2 4 6 3
1 2 3 4







Again a symmetric matrix has a symmetric inverse. However, D is tridiagonal, but clearly its inverse is fully
populated. The form of the inverse hints at some sort of pattern, so I thought that I would try the following:























2 −1 . . . . . .
−1 2 −1 . . . . .
. −1 2 −1 . . . .
. . −1 2 −1 . . .
. . . −1 2 −1 . .
. . . . −1 2 −1 .
. . . . . −1 2 −1
. . . . . . −1 2























−1

= 1

9























8 7 6 5 4 3 2 1
7 14 12 10 8 6 4 2
6 12 18 15 12 9 6 3
5 10 15 20 16 12 8 4
4 8 12 16 20 15 10 5
3 6 9 12 15 18 12 6
2 4 6 8 10 12 14 7
1 2 3 4 5 6 7 8























So yes, there is definitely a pattern which will allow us to predict the inverse of similarly-constructed larger
matrices. These two tridiagonal matrices are also symmetric about the other diagonal, i.e. top left to bottom
right, and the inverses also bear that extra symmetry.

E =





0 1 2
−1 0 3
−2 −3 0





This matrix, which is antisymmetric, does not have an inverse. Its determinant is zero, and therefore
Cramer’s rule (which we would apply if we had a set of equations to solve involving E) gives solutions with
a zero denominator. Looking forward to the eigenvalue section of this topic, a zero determinant also means
that at least one of the eigenvalues is zero.

F =





1/2 1/3 1/4
1/3 1/4 1/5
1/4 1/5 1/6



 ⇒ F−1 =





72 −240 180
−240 900 −720
180 −720 600





These are particularly large entries in the inverse. If we interpret the rows of F as being the normal directions
of three planes, then it is clear that these three planes are close to being parallel. This suggests that the
determinant of the matrix will be very small (I can say that because, should two of these planes be parallel,
then the determinant will be zero). It turns out to be 1/43200.

D.A.S.R. 18/02/2021


