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Matrices Sheet 1 — multiplication.

Q1. The matrices, A, B, C and D, are defined as follows,

A =





1 2
−1 1
3 5



 , B =

(

1 1 −1
2 −1 2

)

, C =

(

2 −1
−1 2

)

, D =





2 1 0
1 2 1
0 1 2



 .

Classify all these matrices in terms of numbers of rows and columns. Now make a list of which pairs may
be multiplied together (i.e. are compatible with respect to multiplication) — for example, both AB and BA
belong to this list. Now find all the permissible products of two matrices.

ANSWER: The matrices are classified as follows:

A is 3× 2, B is 2× 3, C is 2× 2, D is 3× 3.

Given that we may only multiply matrices which are n1 × n2 and n3 × n4, in that order, when n2 = n3, i.e.
the number of columns of the first matrix is equal to the number of rows of the second matrix, we have the
following Table of possibilities:

AA — BA 2× 2 CA — DA 3× 2
AB 3× 3 BB — CB 2× 3 DB —
AC 3× 2 BC — CC 2× 2 DC —
AD — BD 2× 3 CD — DD 3× 3

The required products are

AB =





5 −1 3
1 −2 3
13 −2 7



 AC =





0 3
−3 3
1 7



 DA =





1 5
2 9
5 11



 DD =





5 4 1
4 6 4
1 4 5





BA =

(

−3 −2
9 13

)

BD =

(

3 2 −1
3 2 3

)

CB =

(

0 3 −4
3 −3 5

)

CC =

(

5 −4
−4 5

)

Q2. Having now determined AB, where A and B are as given in Q1, write down (AB)T , the transpose of AB.
Now calculate BTAT . Is (AB)T = BTAT ? Is it obvious whether this last answer is true in general?

ANSWER: Given the above, we have,

(AB)T =





5 1 13
−1 −2 −2
3 3 7





We also have

BTAT =





1 2
1 −1
−1 2





(

1 −1 3
2 1 5

)

=





5 1 13
−1 −2 −2
3 3 7



 .
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Hence (AB)T = BTAT in this case. However, when is multiplying out the rows and columns for both AB
and BTAT it should have been quite clear that the same numbers were involved each time.

It is possible to show this in general in the following way, although it is a little mind-mangling. If I define
aij to be entry of A which is in row i and column j, then the (i, j)–entry of C = AB is given by,

cij =

N
∑

k=1

aikbkj ,

where N is the number of columns in A and the number of rows in B. Now we need to check out what
happens if we set D = BTAT . First, it should be clear that if the (i, j)–entry in A is aij , then the (i, j) entry
in AT is aji, because the rows and columns have been interchanged. Hence the (i, j)–entry in D = BTAT is
given by,

dij =

N
∑

k=1

bkiajk = cji.

That was the mind-mangling bit — think about it! Hence C = DT and so (AB)T = BTAT in general.

Q3. The matrix A is defined by

A =





2 1 2
0 3 −3
1 2 −1



 .

Find AT . Now form the sums A + AT and A − AT . What do you notice about these new matrices? Find
the products AAT and ATA. What do you conclude from these results?

ANSWER: The transpose of A is given by

AT =





2 0 1
1 3 2
2 −3 −1



 .

Hence,

A+AT =





4 1 3
1 6 −1
3 −1 −2



 , A−AT =





0 1 1
−1 0 −5
−1 5 0



 .

Hence A + AT is a symmetric matrix, and A − AT is antisymmetric (not asymmetric). Note that an
antisymmetric matrix always has zeroes on the leading diagonal.

We also get,

AAT =





9 −3 2
−3 18 9
2 9 6



 , ATA =





5 4 3
4 13 −9
3 −9 14



 .

Therefore these products are both symmetric matrices. However, AAT 6= ATA.

Q4. We have seen that matrix multiplication, where the matrices are compatible, yields AB 6= BA in general,
i.e. matrix multiplication is non-commutative. But I would like you to show that matrix multiplication is
associative, that is, A(BC) = (AB)C, where the term in brackets is computed first. Check one specific case:

A =

(

2 1
1 2

)

B =

(

1 −1
1 1

)

C =

(

1 2
3 4

)

.
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Now check the general case for 2× 2 matrices:

A =

(

a11 a12
a21 a22

)

B =

(

b11 b12
b21 b22

)

C =

(

c11 c12
c21 c22

)

.

Try to think of a way of generalising this result to any three square matrices, and then to any set of compatible
matrices.

ANSWER: For the matrices given we do find that A(BC) = (AB)C =

(

0 2
6 10

)

. For the general case

we also find that associativity is satisfied. We obtain

A(BC) = (AB)C =
(

a11b11c11 + a12b21c11 + a11b12c21 + a12b22c21 a11b11c12 + a12b21c12 + a11b12c22 + a12b22c22
a21b11c11 + a22b21c11 + a21b12c21 + a22b22c21 a21b11c12 + a22b21c12 + a21b12c22 + a22b22c22

)

.

The important thing to note about further generalisation is that the subscripts in each product of a, b and c
in ABC follow a pattern. The first subscript of a and the second of c in each term gives where that product
is situated in ABC. The other subscripts run through all the possible combinations allowable. So, if A, B
and C were n× n matrices, we would have

ABC =











∑n

i=1

∑n

j=1
a1ibijcj1

∑n

i=1

∑n

j=1
a1ibijcj2 · · ·

∑n

i=1

∑n

j=1
a1ibijcjn

∑n

i=1

∑n

j=1
a2ibijcj1

∑n

i=1

∑n

j=1
a2ibijcj2 · · ·

∑n

i=1

∑n

j=1
a2ibijcjn

...
...

. . .
...

∑n

i=1

∑n

j=1
anibijcj1

∑n

i=1

∑n

j=1
anibijcj2 · · ·

∑n

i=1

∑n

j=1
anibijcjn











.

Likewise, if A is n×m, B is m× p and C is p× q, we have

ABC =











∑m

i=1

∑p

j=1
a1ibijcj1

∑m

i=1

∑p

j=1
a1ibijcj2 · · ·

∑m

i=1

∑p

j=1
a1ibijcjq

∑m

i=1

∑p

j=1
a2ibijcj1

∑m

i=1

∑p

j=1
a2ibijcj2 · · ·

∑m

i=1

∑p

j=1
a2ibijcjq

...
...

. . .
...

∑m

i=1

∑p

j=1
anibijcj1

∑m

i=1

∑p

j=1
anibijcj2 · · ·

∑m

i=1

∑p

j=1
anibijcjq











.

It is important to note that the general part of this question is beyond the remit of the course,
and is not an aspect which will be examined.

Q5. Not really part of the syllabus, but I needed something to fill the gap at the bottom of this page! If one has
two tridiagonal matrices which are compatible with respect to multiplication and are subsequently multiplied
together, then is there is a general statement that can be made about the pattern of the components in that
product?

ANSWER: Tridiagonal matrices are always square in shape, and therefore a compatible pair must be
identical in shape. In the following I shall represent the general case using a pair of 6× 6 general tridiagonal
matrices:















• • · · · ·

• • • · · ·

· • • • · ·

· · • • • ·

· · · • • •

· · · · • •















×















◦ ◦ · · · ·

◦ ◦ ◦ · · ·

· ◦ ◦ ◦ · ·

· · ◦ ◦ ◦ ·

· · · ◦ ◦ ◦

· · · · ◦ ◦















=















2 2 1 0 0 0
2 3 2 1 0 0
1 2 3 2 1 0
0 1 2 3 2 1
0 0 1 2 3 2
0 0 0 1 2 2















.

In the above, dots represent zeros in the matrices which are being multiplied while the bullets and circles
represent quantities that are very likely to be nonzero. The entries in the final matrix gives the count for
how many bullet/circle multiplications are involved for each entry. It is clear that the pattern of nonzero
entries is pentadiagonal. Hopefully it is quite clear that the same will be true for larger tridiagonal matrices.



Matrices Problem Sheet 1 ME10305 Mathematics 2 Page 4 of 3

Q6. Rotation matrices are important for many applications and are especially so in robotics. I am not going to
teach this formally, but I would like to introduce them and to play around with them a little.

We may define the following three rotation matrices:

Rx(α) =





1 0 0
0 cosα − sinα
0 sinα cosα



 (Rotation by an angle α about the x-axis.)

Ry(β) =





cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ



 (Rotation by an angle β about the y-axis.)

Rz(γ) =





cos γ − sin γ 0
sin γ cos γ 0
0 0 1



 (Rotation by an angle γ about the z-axis.)

Therefore if the position vector of a point is r, and if that point is rotated by an angle, α, about the x-axis,
then the new location of the point is given by the matrix/vector product, Rx(α) r. If this new point is
subsequently rotated by γ about the z-axis, then its new location is given by, Rz(γ)Rx(α) r.

Thus a rotation about the x-axis followed by a rotation about the z-axis is Rz(γ)Rx(α), where the rotation
matrices only appear to have been written down in the wrong order!

(i) Perhaps it is not surprising that the inverse matrix of Rx(α) is Rx(−α), given what this notation means.
Check the Rx(α)Rx(−α) = I, the 3× 3 identity matrix.

(ii) Find both Rz(γ)Rx(α) and Rx(α)Rz(γ). Are they equal? What is the implication of this general result?
What about when α = γ = 1

4
π? What about when α = γ = 1

2
π?

(iii) If you really have time spare, then you could try the following. A point suffers the grave indignity of the
following sequence of rotations: Rx(α) then Rz(γ) then Rx(−α) then Rz(−γ). This expresses a possibly
naive thought that an arbitrarily chosen point will return to where it started after this sequence; do you
think that it will? If not, what are the correct third and fourth rotations to cause the point to return?

ANSWER: (i) Given that Rx(α) is the rotation by an angle, α, about the x-axis, and that Rx(−α) is a
rotation by an angle, −α, then the latter merely undoes what the former did. Given that these are matrices,
then they are mutual inverses. But we can check this using matrix multiplication:

Rx(−α)Rx(α) =





1 0 0
0 cosα sinα
0 − sinα cosα









1 0 0
0 cosα − sinα
0 sinα cosα



 =





1 0 0
0 1 0
0 0 1



 .

(ii) The products are as follows,

Rz(γ)Rx(α) =





cos γ − sin γ 0
sin γ cos γ 0
0 0 1









1 0 0
0 cosα − sinα
0 sinα cosα



 =





cos γ −cosα sin γ sinα sin γ
sin γ cosα cos γ −sinα cos γ
0 sinα cosα





and

Rx(α)Rz(γ) =





1 0 0
0 cosα − sinα
0 sinα cosα









cos γ − sin γ 0
sin γ cos γ 0
0 0 1



 =





cos γ −sin γ 0
cosα sin γ cosα cos γ −sinα
sinα sin γ sinα cos γ cosα



 .

These are definitely two different matrices, although the respective terms on the main diagonal are identical.
The practical implication is that one must specify the order in which two rotations are declared.
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When α = γ = 1

4
π, then,

Rz(γ)Rx(α) =







1
√

2
− 1

2

1

2

1
√

2

1

2
− 1

2

0 1
√

2

1
√

2






and Rx(α)Rz(γ) =







1
√

2
− 1

√

2
0

1

2

1

2
− 1

√

2

1

2

1

2

1
√

2






.

So this isn’t a special case.

When α = γ = 1

2
π, then,

Rz(γ)Rx(α) =





0 0 1
1 0 0
0 1 0



 and Rx(α)Rz(γ) =





0 −1 0
0 0 −1
1 0 0



 .

These matrices merely alter the coordinates, e.g.





0 0 1
1 0 0
0 1 0









a

b

c



 =





c

a

b



 .

(iii) The suggested sequence of four successive rotations will not return the point to where it started.

Rz(−γ)Rx(−α)Rz(γ)Rx(α) r 6= r.

The first two rotations are,
Rz(γ)Rx(α),

and the the sole way of getting an arbitrary point back to where it started is to unravel the rotations, first
by undoing the z-rotation using Rz(−γ), and then undoing the x-rotation using Rx(−α). Hence,

Rx(−α)Rz(−γ)Rz(γ)Rx(α) r = r.

Q7. A question for interest, perhaps. Fermat’s last theorem is well-known: when a, b, c and n take positive
integer values, the equation an + bn = cn has solutions only when n = 2. However, a Michael Penn youtube
video alerted me to the fact that this theorem doesn’t apply when a, b and c are matrices! So here’s a
straightforward exercise in matrix multiplication to check if Prof. Penn is correct:

(

1 3
0 1

)3

+

(

−1 0
1 −1

)3

=

(

0 3
1 0

)3

.

ANSWER: Yes, the multiplications work! We have,

A3 =

(

1 9
0 1

)

B3 =

(

−1 0
3 −1

)

C3 =

(

0 9
3 0

)

.

D.A.S.R. 25/02/2022


