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Problem Sheet — Fourier Series

Q1. Which of the following functions are even, odd or neither about x = 0? Of those which are periodic, find the

fundamental period.

(i) sin t — Odd function. Periodic with period 2π.

(ii) sin2 t — Even function. Periodic with period π.

(iii)
√
1− t2 (−1 ≤ t ≤ 1) — Even function. Not periodic because it is defined over a finite range. This

would still be true even if f(t) = cosπt.

(iv) te−t — Asymmetric function. Not periodic.

(v) e−t
2

— Even function. Not periodic.

(vi) te−t
2

— Odd function. Not periodic.

(vii) sin t+ sin 3t — Odd function. Periodic with period 2π.

(viii) sin t sin 3t — Even function. Periodic with period π. Using the appropriate multiple angle formulae,

the function is 1
2
(cos 2t− cos 4t).

(ix) sin t sin
√
2t — Even function. Not periodic. The two sines are periodic, but their periods are incom-

mensurate.

(x) f(t) = t+ 1 for −1 < t < 1, f(t) = f(t+ 2) — Asymmetric function. Periodic with period 2.

(xi) f(t) = t for 0 ≤ t ≤ 1, f(t) = 2 − t for 1 ≤ t ≤ 2, f(t) = f(t + 2) — Even function.

Periodic with period 2.

(xii) f(t) = 1 for 0 < t ≤ 1, f(t) = 2− t for 1 ≤ t < 2, f(t) = f(t+ 2) — Asymmetric function.

Periodic with period 2.

In the last three cases, it would be best to sketch the functions in order to determine their symmetries.

Q2. Find the Fourier Series representations of the following functions, bearing in mind that quicker results may be

obtained when symmetries are accounted for. In all cases try to predict in advance how fast the Fourier coefficients
decay by checking the continuity of each function before attempting to find the Fourier Series.

(a) f(t) = t2 −π ≤ t ≤ π with f(t) = f(t+ 2π).

(b) f(t) = t− t2 0 ≤ t ≤ 1 with f(t) = f(t+ 1).

(c) f(t) = π2t− t3 −π ≤ t ≤ π with f(t) = f(t+ 2π).

(d) f(t) = t− t3 −1 ≤ t ≤ 1 with f(t) = f(t+ 2).

(e) f(t) = cosαt −1 ≤ t ≤ 1 with f(t) = f(t+ 2).

(f) f(t) = coshαt −1 ≤ t ≤ 1 with f(t) = f(t+ 2).

(g) f(t) = 1 for 0 < t < 1, f(t) = −1 for 1 < t < 2, with f(t) = f(t+ 2).

(h) f(t) = 3t5 − 10t3 + 7t for −1 ≤ t ≤ 1 with f(t) = f(t+ 2).

(i) f(t) = | sin t|.
(j) f(t) = t2 for 0 < t < 1 with f(t) = f(t+ 1).

ANSWER: In a few cases I will fill in the details of the integration by parts. It is important to recall that the

Fourier Series consists of sines and cosines of (2πnt/T ) where T is the period. In each case we apply the standard

formula with the correct value of T .
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(a) This function is even and therefore Bn, the sine coefficients, are zero. The Fourier coefficients should decay like

1/n2 since f(t) is continuous but f ′(t) is not. This is because f(π) = f(−π) and f ′(−π) 6= f ′(π). The period is

2π and therefore we have sinnt and cosnt terms.

The value of A0 is given by

A0 =
2

2π

∫

π

−π

t2 dt by definition

=
1

π

∫

π

−π

t2 dt cancelling 2s

=
2

π

∫

π

0

t2 dt function is even

=
2π2

3
.

An =
2

2π

∫

π

−π

t2 cosnt dt by definition

=
1

π

∫

π

−π

t2 cosnt dt cancelling 2s

=
2

π

∫

π

0

t2 cosnt dt function is even

=
2

π

[

[t2]
[ sinnt

n

]

− [2t]
[− cosnt

n2

]

+ [2]
[− sinnt

n3

]

]π

0

by parts

=
4

πn2

[

t cosnt
]π

0
sines=0, simplifying

=
4

n2
(−1)n. cosnπ = (−1)n

Therefore the Fourier series is

f(t) =
π2

3
+ 4

∞
∑

n=1

(−1)n cosnt

n2
.

(b) Here T = 1 and we have sin 2πnt and cos 2πnt terms, in general. However, the function is even, and therefore we

will not have sine terms, i.e. Bn = 0. Finally, we expect the series to decay like 1/n2 because f(t) is continuoous,
but f ′(t) is not.

A0 = 2

∫ 1

0

(t− t2) dt = 1/3.

An = 2

∫ 1

0

(t− t2) cos 2πnt dt = − 1

n2π2
.

Therefore

f(t) =
1

6
−

∞
∑

n=1

cos 2πnt

n2π2
.

(c) This function is odd and therefore its Fourier series consists solely of sines. Its Fourier coefficients should decay
like 1/n3 because both f and f ′ are continuous but f ′′ is not. The period is 2π. Applying the formula we obtain

Bn =
2

2π

∫

π

−π

[π2t− t3] sinnt dt =
12(−1)n+1

n3
.
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Hence

f(t) =

∞
∑

n=1

12(−1)n+1

n3
sinnt.

Finally, just to note that somewhere in your analysis you’ll eventually get (− cosnπ) appearing. This is just the

same as −(−1)n or (−1)× (−1)n or (−1)n+1.

(d) This function is a scaled version of the last one. Again it is odd, but the period is now 2. We get

Bn =
2

2

∫ 1

−1

(t− t3) sinnπt dt =
12(−1)n+1

n3π3
.

Hence

f(t) =

∞
∑

n=1

12(−1)n+1

n3π3
sinnπt.

(e) In this case I have not specified the value of α, but f(t) is always even and continuous, although f ′(t) is not;

therefore the Fourier coefficients will decay like 1/n2.

A0 =

∫ 1

−1

cosαt dt = 2

∫ 1

0

cosαt dt =
2 sinα

α
.

Note that A0 = 2 when α = 0; this may be proved using either L’Hôpital’s rule, or by expanding sinα in a Taylor
series about α = 0.

An =

∫ 1

−1

cosαt cosnπt dt = 2

∫ 1

0

cosαt cosnπt dt using symmetry

=

∫ 1

0

[

cos(α+ nπ)t+ cos(α− nπ)t
]

dt using the appropriate multiple angle formula

=
[ sin(α+ nπ)

α+ nπ
+

sin(α− nπ)

α− nπ

]

=
[ sinα cos nπ

α+ nπ
+

sinα cos nπ

α− nπ

]

expanding again with sin nπ = 0

=
2α

α2 − n2π2
(−1)n sinα.

Hence we obtain

f(t) =
sinα

α
+

∞
∑

n=1

2(−1)nα sinα

α2 − n2π2
cosnπt.

I would like to draw your attention to some strange consequences of this Fourier series. When α is not an integer

multiple of π, then it is just an ordinary Fourier series. However, when α = mπ, where m is a positive integer,

then sinα = 0. This would normally mean that every term is zero, because each term in the series is proportional

to sinα. However, when n = m in the summation, we have a zero-divide-zero situation because the denominator

is also zero. Again, the use of L’Hôpital’s rule as α → mπ will yield Am = 1. Hence the Fourier series reduces
down to

f(t) = cosmπt

when α = mπ. Therefore the original function is its own 1-term Fourier series!

The other unusual situation is when α = 0. In this case every term in the summation is zero. The constant

reduces to precisely 1. Given that f(t) = cos 0 = 1, this means that we again obtain a 1-term Fourier series.



Fourier Series Problem Sheet Mathematics 2 ME10305 4

(f) The integrations in this case are a little more difficult than in case (e), because they involve integrations by parts.

The result is

f(t) =
sinhα

α
+

∞
∑

n=1

2(−1)nα sinhα cosnπt

α2 + n2π2
.

The only special case arises when α = 0, in which case f(t) = 1, and all the terms in the summation disappear.

But the degree of similarity between the present Fourier Series and that of Q2e is very strong.

(g) A quick sketch of this function shows that it is odd, and hence all the A coefficients are zero. It has period equal

to 2. It is also discontinuous, and therefore its Fourier coefficients will be proportional to 1/n. We have,

Bn =
2

2

∫ 2

0

f(t) sinnπt dt by definition

=

∫ 1

−1

f(t) sinnπt dt limits changed for convenience

— see a sketch

= 2

∫ 1

0

1 sinnπt dt using the even symmetry of the integrand

= 2
[

−cosnπt

nπ

]1

0

= − 2

nπ

[

cosnπt
]1

0

= − 2

nπ

[

cosnπ − 1
]

=

{

4/nπ

0

n odd

n even

Therefore we may write this series in the following way,

f(t) =

∞
∑

n=1

n odd

4

nπ
sinnπt.

An alternative way of doing this is the following,

f(t) =

∞
∑

m=0

4

(2m+ 1)π
sin(2m+ 1)πt.

Here, the factor (2m+ 1) picks out the odd integers.
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(h) f(t) is continuous because 3t5 − 10t3 + 7t = 0 at both t = −1 and t = 1.

f ′(t) is continuous because 15t4 − 30t2 + 7 = −8 at both t = −1 and t = 1 (and it is even!).

f ′′(t) is continuous because 60t3 − 60t = 0 at both t = −1 and t = 1.

f ′′′(t) is continuous because 180t2 − 60 = 120 at both t = −1 and t = 1 (and it is even).

f ′′′′(t) is discontinuous because 360t = ±360 at t = ±1.

When f(t) is discontinuous then the Fourier coefficients are ∝ 1/n.

When f(t) is continuous but f ′(t) is discontinuous then the Fourier coefficients are ∝ 1/n2.

When f(t) and f ′(t) are continuous but f ′′(t) is discontinuous then the Fourier coefficients are ∝ 1/n3.

When f(t), f ′(t) and f ′′(t) are continuous but f ′′′(t) is discontinuous then the Fourier coefficients are ∝ 1/n4.

When f(t), f ′(t), f ′′(t) and f ′′′(t) are continuous but f ′′′′(t) is discontinuous then the Fourier coefficients are

∝ 1/n5.

Hence the Fourier coefficients should decay like 1/n5 in this case. The detailed computation is:

Bn =

∫ 1

−1

f(t) sinnπt dt by definition, noting that f(t) is odd

= 2

∫ 1

0

(3t5 − 10t3 + 7t) sinnπt dt using symmetry

= 2

[

[

3t5 − 10t3 + 7t
][

−cosnπt

nπ

]

−
[

15t4 − 30t2 + 7
][

− sinnπt

n2π2

]

+
[

60t3 − 60t
][cosnπt

n3π3

]

−
[

180t2 − 60
][sinnπt

n4π4

]

+
[

360t
][− cosnπt

n5π5

]

−
[

360
][− sinnπt

n6π6

]

]1

0

= 2
[360(− cosnπ)

n5π5

]

=
720(−1)n+1

n5π5
.

thereby confirming the above qualitative result. Hence,

f(t) =

∞
∑

n=1

720(−1)n+1

n5π5
sinnπt.

(i) This is an interesting function. It has period π, and is even, although it looks at first glance as though it ought

to be odd! It is continuous, but its first derivative isn’t, and so the coefficients will decay as 1/n2.

We will take one period as being from t = 0 to t = π. In this range f(t) = sin t. Hence

A0 =
2

π

∫

π

0

sin t dt =
4

π
.

An =
2

π

∫

π

0

sin t cos 2nt dt

=
1

π

∫

π

0

[

sin(2n+ 1)t− sin(2n− 1)t
]

dt using multiple angle formulae

=
1

π

[cos(2n− 1)t

2n− 1
− cos(2n+ 1)t

2n+ 1

]π

0



Fourier Series Problem Sheet Mathematics 2 ME10305 6

=
1

π

[cos(2n− 1)π − 1

2n− 1
− cos(2n+ 1)π − 1

2n+ 1

]

=
1

π

[cos 2nπ cosπ − 1

2n− 1
− cos 2nπ cosπ − 1

2n+ 1

]

multiple angle formulae again

=
2

π

[ 1

2n+ 1
− 1

2n− 1

]

= − 4

π(4n2 − 1)
.

Therefore the Fourier series is,

f(t) =
2

π
− 4

π

∞
∑

n=1

cos 2nt

4n2 − 1
.

(j) This is the only function in this question which is neither even nor odd, and therefore its Fourier Series will have

both sines and cosines. The period is 1. The function is discontinuous and therefore the Fourier coefficients will

decay as 1/n. We get,

A0 = 2

∫ 1

0

t2 dt = 2/3,

An = 2

∫ 1

0

t2 cos 2πnt dt =
1

n2π2
,

Bn = 2

∫ 1

0

t2 sin 2πnt dt = − 1

nπ
.

Therefore the Fourier series is,

f(t) = 1/3 +

∞
∑

n=1

[cos 2πnt

n2π2
− sin 2πnt

nπ

]

.

Although the cosines decay as 1/n2, the sines decay as 1/n, which is slower, and which confirms our original
prediction.

Q3. The aim of this question is two-fold, to derive the formulae for the Fourier coefficients and to prove Parseval’s

theorem. For simplicity we will consider functions of period 2π. (This question is over and above what

would be expected in an exam question, but it is included to show where the formulae for the

Fourier coefficients come from.)

If m and n are nonzero integers, first show that

1

π

∫

π

−π

cosnt cosmtdt =

{

0

1

when n 6= m,

when n = m.

Do the same for the integral of the product of two sines. Finally, show that the integral of sinnt cosmt over the
same range is zero.

Hence use these results and the standard definition of the Fourier series,

f(t) = 1
2
A0 +

∞
∑

n=1

(An cosnt+Bn sinnt),

to find expressions for the Fourier coefficients.

For a function of period 2π, Parseval’s theorem is

1

π

∫

π

−π

[f(t)]2dt = 1
2
A2

0 +

∞
∑

n=1

[A2
n
+B2

n
];
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prove this using the results you have already derived. This result is related to the energy content of a periodic

signal.

ANSWER: We may evaluate the integral of the product of cosines by first using a multiple angle formula. We

have

cosnt cosmt = 1
2

[

cos(n+m)t+ cos(n−m)t
]

.

Given that we are integrating over a range of length 2π, it is clear that cos(n +m)t executes n +m full cosine

waves in that range, and therefore its integral must be zero. The same will be true for cos(n − m)t, but only
when n 6= m. When n = m, this cosine becomes precisely 1, and therefore

1

π

∫

π

−π

cosnt cosmtdt =
1

π

∫

π

−π

1/2 dt = 1.

Therefore we have proved the given result.

In similar fashion, we see that

sinnt sinmt = 1
2

[

− cos(n+m)t+ cos(n−m)t
]

,

and precisely the same arguments may be made. Therefore

1

π

∫

π

−π

sinnt sinmtdt =

{

0

1

when n 6= m,

when n = m.

For the third integral, namely,
1

π

∫

π

−π

sinnt cosmtdt,

we get,
sinnt cosmt = 1

2

[

sin(n+m)t+ sin(n−m)t
]

.

The integral from −π to +π of sin(n +m)t is also zero, but the corresponding integral of sin(n−m)t turns out

to be zero in all cases; the only possible special case, n = m, results in sin 0, which is zero. Therefore all cases

yield a zero integral.

We may now derive the Fourier coefficients quite easily. If we start with,

f(t) = 1
2
A0 +

∞
∑

n=1

(An cosnt+Bn sinnt), (∗)

and integrate it between −π and +π, all the sines and cosines integrate to zero. Therefore,

∫

π

−π

f(t) dt =

∫

π

−π

1
2
A0 dt = πA0 ⇒ A0 =

2

2π

∫

π

−π

f(t) dt.

If we now multiply Eq. (*) by cosmt and integrate it in like fashion, we get the following,

∫

π

−π

f(t) cosmtdt = 1
2

∫

π

−π

A0 cosmtdt+

∞
∑

n=1

[

∫

π

−π

An cosnt cosmtdt+

∫

π

−π

Bn sinnt cosmtdt
]

.

Using our previous results, the integrals involving A0 and Bn must be zero. Likewise all the integrals involving

An, except for the one when the summation index, n, takes the value m. Therefore the above equation reduces

immediately to,
∫

π

−π

f(t) cosmtdt = πAm.

Hence,

Am =
2

2π

∫

π

−π

f(t) cosmtdt.
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An almost identical argument leads to

Bm =
2

2π

∫

π

−π

f(t) sinmtdt.

Note: the constant outside of these latest integrals have been written in the way they have in order to reflect the

standard (2/period) coefficient in the general formula which was presented in the lectures.

Finally, Parseval’s theorem may by derived by first squaring both sides of Eq. (*). I’ll write it in this form:

[f(t)]2 =

[

1
2
A0 +

∞
∑

n=1

(An cosnt+Bn sinnt)

][

1
2
A0 +

∞
∑

m=1

(Am cosmt+Bm sinmt)

]

.

Now consider which terms out of the right hand side products will integrate from −π to +π and yield a nonzero

value. It will be those terms for which n = m. Therefore,

∫

π

−π

[f(t)]2 dt =

∫

π

−π

[

1
4
A2

0 +
1
2

(

A2
1 +A2

2 +A2
3 + · · ·

)

+ 1
2

(

B2
1 +B2

2 +B2
3 + · · ·

)]

.

All other possible integrands integrate to zero. Hence,
∫

π

−π

[f(t)]2 dt =
π

2
A2

0 + π
(

A2
1 +A2

2 +A2
3 + · · ·

)

+ π
(

B2
1 +B2

2 +B2
3 + · · ·

)

.

On dividing by π we obtain the desired result,

1

π

∫

π

−π

[f(t)]2dt = 1
2
A2

0 +

∞
∑

n=1

[A2
n
+B2

n
].

Q4. If g(t) = t2 in the range −π ≤ t ≤ π, and g(t) has a period equal to 2π, find its Fourier series. Hence find the

Particular Integral of the ordinary differential equation,

dy

dt
+ cy = g(t).

ANSWER: A quick sketch is enough to tell us that g(t) is even and therefore all the Bn coefficients are zero.

Given that the period is T = 2π, the general formula for the Fourier coefficients becomes,

An =
2

2π

∫

π

−π

f(t) cosnt dt (n = 0, 1, 2, · · · , )

or, given that f(t) is even, we may use symmetry to obtain the practically simpler formula:

An =
2

π

∫

π

0

f(t) cosnt dt (n = 0, 1, 2, · · · .)

Hence,

A0 =
2

π

∫

π

0

t2 dt =
2π2

3
,

and

An =
2

π

∫

π

0

t2 cosnt dt

=
2

π

[(

t2
)(sinnt

n

)

−
(

2t
)(

−cosnt

n2

)

+
(

2
)(

− sinnt

n3

)]π

0

=
4π cosnπ

πn2

=
4(−1)n

n2
.
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Hence we have,

g(t) =
π2

3
+

∞
∑

n=1

4(−1)n

n2
cosnt.

Therefore the equation which will be solved is

dy

dt
+ cy =

π2

3
+

∞
∑

n=1

4(−1)n

n2
cosnt. (1)

The Particular Integral corresponding to the constant term on the Right Hand Side of Eq. (1) is π2/3c.

Consider just one of the cosines on the RHS of (1); let

dy

dt
+ cy = An cosnt.

By setting ypi = C cosnt+D sinnt, we eventually find that C = Anc/(c
2 + n2) and D = Ann/(c

2 + n2) after a
lot of tedious algebra. Therefore the required full solution is,

y =
π2

3c
+

∞
∑

n=1

4(−1)n

n2(c2 + n2)

[

c cosnt+ n sinnt
]

.

Q5. Consider the response of the following undamped/zero resistance system to a rectified sine wave signal:

d2y

dt2
+K2y = | sin t|.

By sketching the signal confirm that its period is π and determine its Fourier series. Hence find the response y(t).

For which values of K is there resonance?

ANSWER: The term on the RHS of this equation appears in Q2i. It has a period equal to π and is even. The
Fourier series is

| sin t| = 2

π
− 4

π

∞
∑

n=1

cos 2nt

4n2 − 1
.

Therefore we are solving,

d2y

dt2
+K2y =

2

π
− 4

π

∞
∑

n=1

cos 2nt

4n2 − 1
.

That part of the Particular Integral which corresponds to the constant, 2/π, is 2/(K2π).

Given that the Particular Integral of
d2y

dt2
+K2y = A cos 2nt

is [A/(K2 − 4n2)] cos 2nt, then the solution we seek is,

y =
2

K2π
− 4

π

∞
∑

n=1

1

(K2 − 4n2)(4n2 − 1)
cos 2nt.

This solution is valid as long as K is not equal to an even number. Therefore resonance happens when K is equal
to an even number.
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Q6. Find the Fourier series of the response to the following damped system to the rectified sine wave:

y′′ + cy′ +K2y = | sin t|.

For which values of K is there resonance?

ANSWER: The algebra required for this problem is quite extensive. The solution is

y =
2

K2π
+

∞
∑

n=1

1

4n2 − 1

[ (K2 − 4n2) cos 2nt+ 2cn sin 2nt

(K2 − 4n2)2 + 4c2n2

]

.

Resonance does not occur when c 6= 0, although if K is an even number and c is very small then one of the terms

in the series (viz. the one corresponding to n = 1
2
K) will have a large amplitude.
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