Department of Mechanical Engineering, University of Bath Mathematics 2 ME10305 Sheet 0

The following rather interesting pieces of mathematics were found in this year's Maths 1 examination scripts. The nature of the errors varies substantially from the trivial to the utterly appalling. Determine what the examinees did incorrectly in each case.

Q1. $\frac{d \ln |3 t|}{d t}=\frac{3}{t}$
Answer: Given that $\ln |3 t|=\ln 3|t|=\ln 3+\ln |t|$, and noting that $\ln 3$ is a constant, the derivative of $\ln |3 t|$ is $1 / t$.
Q2. $\ln |3 t| \Rightarrow \frac{3}{3 t}$
Answer: Prior to the exams I was asked if I wished for students to simplify fractions. My answer was in the negative, but this is an example which could easily have been done. I didn't remove marks but I tutted a bit.

Q3. $\int \cos ^{2} \theta d \theta=\sin ^{2} \theta$
Answer: This is a standard category of error where two different operations yield different results depending the order in which they are applied. Here, it has been assumed that the integral of a square is the same as the square of the integral. No, that's wrong.

Q4. $\int \cos ^{2} \theta d \theta=\frac{1}{3} \cos ^{3} \theta$
Answer: This appear to mimic the fact that the integral of θ^{2} is $\frac{1}{3} \theta^{3}$. Not good.
Q5. $\int \cos ^{2} \theta d \theta=\frac{1}{3} \sin ^{3} \theta$
Answer: This is a bit like the previous one except that cosine has been integrated to become a sine. Not at all good.
Q6. $\int \cos ^{2} \theta d \theta=\frac{1}{2} \cos ^{2} \theta^{2}$
Answer: So it's integrating "inside the cosine squared" - no such thing - but the $\frac{1}{2}$ is then taken outside of the cosine squared. Very strange. That was a bad day in the office.

Q7. $\int \cos ^{2} \theta d \theta=\frac{1}{3} \cos ^{3} \theta \sin \theta$
Answer: This is an integral version of the chain rule. Yes, think about that! Very very dodgy.
Q8. $x^{2}=3 x \Rightarrow x=3$
Answer: This type of error happened a lot when finding critical points. In this case the intermediate step was to cancel x on both sides. Often this is perfectly valid, but in the context of critical points it is tantamount to throwing away information, the information being that $x=0$ is also a root. The next step should have been a rearrangment followed by a factorisation: $x(x-3)=0$.

Q9. assymtote at $x=0$
Answer: Spelling mistake. Should be asymptotic. I had very very few of these this year.
Q10. Three saddles found - no max or min. Must be another point.
Answer: There is no error here. Rather, this is an example of student who knows instinctively that it is impossible to have a surface where all three critical points are saddles. There must be at least one maximum or minimum somewhere. I was very pleased and impressed to see that on a script.

Q11. $z=13 e^{j(\theta+2 \pi n)}$ with $\theta=67.38^{\circ}$
Answer: Here θ is in degrees but $2 \pi n$ is in radians. Generally these cannot be mixed. More pertinently, all angles must be in radians when dealing with complex exponentials.

Q12. Sorry for drawing in pen, I forgot I had my pencil with me.
Answer: Again, there was nothing wrong with this, apart from using a comma instead of a semi-colon. I was astonished to have been apologised to while the student was in the middle of writing an exam script with all the stress and tension that is involved. I just wanted to say thanks for the courtesy, and also for not using a 2 H .

Q13. $\int_{0}^{2} r^{3} d r=\left[3 r^{2}\right]_{0}^{2}$
Answer: Oops, wrong direction. You've differentiated. I had depressingly many of those.
Q14. $|-x|<1 \Rightarrow x<-1$ so there's an infinite radius of convergence
Answer: The error is in not realising that $|-x|$ is the same as $|x|$. Then we would have concluded that $|x|<1$, and hence the series has a unit radius of convergence.

Q15. It is a maxima at $t=1$. The critical point is a minima.
Answer: You've used the plural form of the words. These should be maximum and minimum. It is a good job that this happened on an anonymous exam script rather than during your talk to your boss and the international partners when on industrial placement.

Q16. $\underline{\mathrm{r}} \cdot \underline{\mathrm{b}}-\underline{\mathrm{a}}=\cdots$
Answer: A case where the absence of a pair of brackets makes the mathematical expression to be incorrect. Here we have a scalar with a vector being subtracted from it. That is not possible. The correct form should have been $\underline{\mathrm{r}} \cdot(\underline{\mathrm{b}}-\underline{\mathrm{a}})=\cdots$.
Q17. $2\left(\cos \frac{\pi}{6}+j \sin \frac{\pi}{6}\right)=0.0350+j 3.190 \times 10^{-4}$
Answer: It took me a while to work this one out. I reckon that the student didn't recall the facts that the cosine and sine of $\pi / 6$ are $\sqrt{3} / 2$ and $1 / 2$, otherwise this answer couldn't have happened. I also reckon that the student had a calculator which was set in degrees, not radians, and that they didn't know how to change that calculator setting. The appropriate conversion factor is $\pi / 180$. But instead of multiplying the angles by that factor and then taking the cosine and sine, the cosine and sine were taken first (using $\pi / 6$ degrees) and the answers multiplied afterwards by the factor.

Q18. $e^{x} \sum_{n=0}^{\infty}=\frac{x^{n}}{n!}$
Answer: Looks like gibberish, but the summation sign and the equals sign need to be swapped.
Q19. Using intergration by parts
Answer: Spelling. Integration.
Q20. $I=\int_{0}^{1} x^{2} \ln x d x$. Let $x=e^{-y} \quad \Longrightarrow I=-\int_{e^{-1}}^{1} y e^{-3 y} d y$
Answer: Many did this. Strictly, when $x=1$ we need $y=0$ and when $x=0$ we have $y=\infty$. So that second integral should be from $+\infty$ to 0 . I reckon that the transforming of the limits of integration was sort of done the other way around. The following is complete rubbish, but it's the only explanation that I can think of. When $y=0$ then $x=1$ and when $y=1$ then $x=e^{-1}$. Eeeek!
Q21. $\int_{0}^{1} x^{3}\left[1+9 x^{4}\right]^{1 / 2} d x=\int_{0}^{1} x^{3}\left[1+3 x^{2}\right] d x$
Answer: This error is the same as saying that $\left(a^{2}+b^{2}\right)^{1 / 2}=a+b$.
Q22. It is a stationary maximum.
Answer: No, it's just a maximum.
Q23. $72 \lambda=36 \Rightarrow \lambda=\frac{72}{36}=2$
Answer: I have committed this sin many times too. So easy to do it....
Q24. Let $x=e^{-y}$ in x^{2}. Hence $e^{(-y)^{2}}$ or $e^{-y^{2}}$
Answer: Somehow this seems a million miles from $e^{x} \times e^{x}=e^{x+x}=e^{2 x}$, but one does need to be careful when manipulating exponents.

Q25. $z(x, y)=x y(y+x-3) \Longrightarrow z(x)=y^{2}+2 x y-3 y$ and $z(y)=x^{2}+2 x y-3 x$
Answer: Someone (no, about four or five) invented this notation. These should take one of the standard forms, either z_{x} and z_{y}, or $\partial z / \partial x$ and $\partial z / \partial y$.

Q26. $\frac{x^{2}-2 x y-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{(x-y)^{2}}{\left(x^{2}+y^{2}\right)^{2}}$
Answer: Another oops moment.
Q27. Let $t=x$
Answer: I did have a student ask me if he could do this in the exam because he found it easier to differentiate with respect to x than with respect to t. I did say that this was ok but the ultimate aim should be to be able to do these things independently of the variable names. Why did I go soft on this? It reminded me of an exercise that I had to do for my A-level music teacher, which was to harmonise a short melody in $\mathrm{C} \sharp$ minor in the style of a Bach chorale. I couldn't think easily in that key, but I could do so in D minor. So I transposed the melody up a semitone, applied my all skills with a vengeance and, once satisfied, transposed it all back to the original key. Not ideal, and I certainly didn't tell the teacher, but I've never needed to harmonise in the style of Bach since I left school. It's an anecdote and an allegory.

Q28. $\int \frac{1}{x^{2}} d x=\ln \left|x^{2}\right|$
Answer: No, no, definitely not. No.
Q29. Find $r=2 e^{j \pi / 6}$. Let $z=a+b j$ Hence $r=2$. So $\sqrt{a^{2}+b^{2}}=2$. Also $\arg (z)=\frac{1}{6} \pi$. So $\tan \frac{1}{6} \pi=b / a=1 / \sqrt{3} \Longrightarrow a=$ $\sqrt{3} b \quad \ldots \ldots . \quad a=\sqrt{3}$ and $b=1$.

Answer: I get a dozen of these every year. It is correct, but it takes a page to do. One then has to solve a quadratic for either b^{2} or a^{2} and so on. On the other hand, $2\left(\cos \frac{1}{6} \pi+j \sin \frac{1}{6} \pi\right)$ can be evaluated in just one line.

