Each question carries 10 marks.
The examination consists of TEN questions.
All questions should be attempted.
The marks shown against each part of a question are for guidance only.
Candidates are permitted to use University-approved calculators.

ME10305 cont...

## Question 1.

(a) Write the following ordinary differential equation and its boundary conditions in first order form:

$$
\frac{d^{3} y}{d x^{3}}+y \frac{d^{2} y}{d x^{2}}+2 y \frac{d y}{d x}=1
$$

where the boundary conditions are that,

$$
y=\frac{d y}{d x}=0 \quad \text { at } \quad x=0 \quad \text { and } \quad y=1 \quad \text { at } \quad x=1 .
$$

Classify this equation and its boundary conditions with regard to its order, whether it is linear or nonlinear, and whether it is an initial value problem or a boundary value problem (giving reasons).
(b) Use the method of Integrating Factors to solve the equation,

$$
t \frac{d y}{d t}=y-t^{3} \quad \text { subject to } \quad y(1)=1
$$

(c) Use the technique of separation of variables to solve the equation,

$$
t \frac{d y}{d t}=y-t^{3} y \quad \text { subject to } \quad y(1)=1 .
$$

## Question 2.

The Laplace Transform of $f(t)$ is defined according to

$$
F(s)=\mathcal{L}[f(t)]=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

(a) Use the above definition to find the Laplace Transform of the function $e^{-a t}$. Hence write down $\mathcal{L}[1]$.
(b) Use the above definition of the Laplace Transform to find the transform of both $f^{\prime}(t)$ and $f^{\prime \prime}(t)$ in terms of $F(s), f(0)$ and $f^{\prime}(0)$.
(c) Hence solve the equation,

$$
y^{\prime \prime}+2 y^{\prime}=-2 e^{-t}
$$

subject to the initial conditions, $y(0)=0$ and $y^{\prime}(0)=0$.

## Question 3.

(a) Find the determinant of the matrix,

$$
A=\left(\begin{array}{cccc}
1 & 3 & -1 & 1 \\
2 & 0 & 1 & 3 \\
2 & 1 & -1 & 1 \\
2 & 4 & -2 & 2
\end{array}\right)
$$

(b) Use Gaussian Elimination to solve the following system of simultaneous equations:

$$
\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & 1 & -6 \\
-2 & 4 & 5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
3 \\
2 \\
7
\end{array}\right)
$$

[Note: Full marks will only be awarded for a correct answer which has used the Gaussian Elimination method in its precise form, i.e. where the matrix has been reduced to upper triangular form.]

## Question 4.

(a) The function, $f(t)$, has a period equal to $2 \pi$ and it is given by $f(t)=t^{2}$ within the range, $-\pi<t<\pi$. Sketch the function in the range $-3 \pi<t<3 \pi$ and find its Fourier series representation. (The definitions of the Fourier coefficients are given below.)
(b) Hence find the particular integral of the ordinary differential equation,

$$
\frac{d^{2} y}{d t^{2}}+\pi^{2} y=f(t)
$$

Clearly, $y(t)$ will be continuous at $t=\pi$, but how many of its derivatives will also be continuous at that point?

You may use the following definitions of the Fourier Coefficients,

$$
f(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left[A_{n} \cos n t+B_{n} \sin n t\right]
$$

where

$$
\begin{array}{ll}
A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t \quad n=0,1, \cdots, \infty \\
B_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t \quad n=1,2, \cdots, \infty
\end{array}
$$

## Question 5.

(a) The following data have been obtained from an experiment.

$$
\begin{array}{c|ccccc}
x_{i} & 0 & 1 & 2 & 3 & 4 \\
y_{i} & 1.10 & 0.62 & 0.41 & -0.10 & -0.35
\end{array}
$$

It is proposed to fit the curve, $y=a+b x$, to this data using the method of least squares. Develop the theory, and find the line of best fit.
(b) With a different group of $n$ data points (not provided here) it is proposed to fit $y=a \cos x+b \sin x$. Derive the theory which one would need to apply to determine $a$ and $b$.

## Question 6.

(a) It is intended to use an ad hoc iteration scheme to solve the following cubic equation, $x^{3}-7 x+6=0$. There are two possible ways that this may be done; write down both of these iteration schemes, and then find four iterations for each scheme beginning with $x_{0}=1.1$.
(b) For each scheme, analyze the approach to the root $x=1$ by setting $x_{n}=1+\epsilon_{n}$ in the respective formulae, where $\epsilon_{n}$ is very small, and by evaluating $x_{n+1}$. Comment on their convergence properties.

## Question 7.

Solve the ordinary differential equation,

$$
\frac{d^{2} y}{d t^{2}}+y=2 \cos t
$$

subject to the initial conditions

$$
y=0, \quad \frac{d y}{d t}=1 \quad \text { at } \quad t=0
$$

## Question 8.

The Laplace Transform is defined in Question 2.
For the present question you may assume the result, $\mathcal{L}[\cos a t]=s /\left(s^{2}+a^{2}\right)$. The convolution theorem states that,

$$
\mathcal{L}[f * g]=F(s) G(s) \quad \text { where } \quad \mathcal{L}[f]=F(s) \quad \text { and } \quad \mathcal{L}[g]=G(s),
$$

and where the convolution of $f$ and $g$ is defined as

$$
f * g=\int_{0}^{t} f(\tau) g(t-\tau) d \tau=\int_{0}^{t} f(t-\tau) g(\tau) d \tau
$$

(a) Given that $\mathcal{L}[f(t)]=F(s)$ and that $b>0$, find the Laplace Transform of the function $H(t-b) f(t-b)$ in terms of $F(s)$, where $H$ denotes the unit step function. Hence find the inverse transform of the function,

$$
e^{-b s} \frac{s}{s^{2}+a^{2}} .
$$

(b) Find the Laplace Transform of the unit impulse at $t=b$, namely, $\delta(t-b)$.
(c) Given the result of part (b), use the convolution theorem to find, by a different approach, the inverse transform of the function given in part (a).

## Question 9.

(a) Find all the eigenvalues of the matrix,

$$
\left(\begin{array}{lll}
1 & 2 & 0 \\
1 & 3 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

and determine their corresponding eigenvectors.
(b) Use the result of part (a) to write down the general solution of the following system of ordinary differential equations:

$$
\frac{d}{d t}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 0 \\
1 & 3 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
$$

The initial condition is $(x, y, z)=(2,3,1)$ at $t=0$; what is the final solution?

## Question 10.

In this question we shall be solving the following inhomogeneous system of ordinary differential equations in two different ways.

$$
\begin{gather*}
\frac{d y}{d t}-z=0  \tag{10.1}\\
\frac{d z}{d t}+2 z+y=e^{-t} . \tag{10.2}
\end{gather*}
$$

subject to $y(0)=z(0)=0$.
(a) The definition of the Laplace Transform is given in Q2. You may assume that $\mathcal{L}\left[y^{\prime}\right]=s Y(s)-y(0)$ when $\mathcal{L}[y]=Y(s)$. Also use the notation that $\mathcal{L}[z]=Z(s)$.

Find $\mathcal{L}\left[t^{2}\right]$ and prove the $s$-shift theorem, namely that $\mathcal{L}\left[e^{-a t} y(t)\right]=Y(s+a)$.
(b) Take the Laplace Transform of each of the above equations for $y$ and $z$, then eliminate $Z$ between the resulting algebraic equations for $Y$ and $Z$, and finally use part (a) to determine $y(t)$.
(c) Eliminate $z$ from between Eqs. (10.1) and (10.2) and thereby obtain a second order equation for $y$. Then use standard Complementary Function and Particular Integral techniques to solve for $y$ subject to the given initial conditions. Give an expression for $z$.

