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Problem Sheet 2 (supplementary) — ODE solutions

This problem sheet contains questions all of which are over and above what is required in the exams. You may

therefore treat this sheet as purely optional. Nevertheless, everything that is given here may be completed using
what has been taught in Maths 1 and Maths 2, with a few hints and nudges along the way.

Q1. One notation for dy/dt which is sometimes used in textbooks and research papers is Dy. In essence, d/dt and

D are directly equivalent to one another and are simply alternative ways of writing down the same thing. Given
this, one may try to determine the inverse of D in the following way. Given that

dy

dt
= f(t) ⇒ y = c+

∫

f(t) dt,

then we may define D−1 as follows,

Dy = f ⇒ y =
1

D
f(t) = c+

∫

f(t) dt.

In other words, D−1 is equivalent to an indefinite integral plus an arbitrary constant.

(a) Now consider the differential equation, (D+a)y = f(t). Rewrite this in the usual way (i.e. dy/dt+ay = f(t)) and
use the integrating factor approach to find y, not forgetting the arbitrary constant. When this is done, identify

which part of your solution forms the Complementary function and which the Particular Integral. What you have

written is then the equivalent of

y =
1

D + a
f(t),

and it defines the meaning of (D + a)−1.

ANS. The integrating factor is exp[
∫

a dt] which is eat. Therefore

dy

dt
+ ay = f(t) becomes eat

(dy

dt
+ ay

)

= eatf(t) ⇒
d

dt

(

eaty
)

= eatf(t).

The left hand side of this latest equation is an exact differential, and therefore we may integrate to obtain,

eaty = c+

∫

eatf(t) dt ⇒ y = c e−at + e−at

∫

eatf(t) dt.

Clearly, the first part of the solution is the Complementary Function, while the one involving the integral is the

Particular Integral. Therefore,
1

D + a
f(t) = c e−at + e−at

∫

eatf(t) dt.

(b) Let us extend the result of Q1a to the following differential equation,

d2y

dt2
+ (a+ b)

dy

dt
+ aby = f(t).

This may also be written as

D2y + (a+ b)Dy + aby = f(t), or (D + a)(D + b)y = f(t).
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If we now set z = (D + b)y then (D + a)z = f(t).

First solve (D+ a)z = f(t) for z by applying the result of Q1a directly. Then solve (D+ b)y = z to find y. Keep

your wits about you on this one — the final answer will involve a double integral.

ANS. First we solve (D + a)z = f using the result of Q1a. We have,

z = c1 e
−at + e−at

∫

eatf(t) dt. (1)

Now we solve for (D + b)y = z. We have,

y = c2 e
−bt + e−bt

∫

ebtz(t) dt. (2)

Now we shall substitute the expression for z given in (1) into the solution for y in equation (2):

y = c2 e
−bt + e−bt

∫

ebt
[

c1 e
−at + e−at

∫

eatf(t) dt
]

dt

= c2 e
−bt + c1e

−bt

∫

e(b−a)t dt+ e−bt

∫

e(b−a)t
[

∫

eatf(t) dt
]

dt

= c2 e
−bt + c1e

−bt
[e(b−a)t

b− a

]

+ e−bt

∫

e(b−a)t
[

∫

eatf(t) dt
]

dt

= c2 e
−bt + c∗1e

−at + e−bt

∫

e(b−a)t
[

∫

eatf(t) dt
]

dt, (3)

where c∗1 is a redefined arbitrary constant, Here, the terms involving c1 and c2, the arbitrary constants, form the
Complementary Function, and the term with the integrals is the Particular Integral. This expression is correct

for any choice of the constants, a and b, but only if they are different.

(c) Now we will modify slightly the answer given in Q1b for the case when a = b, which (in the terminology of the

lectures) is a repeated-λ case. You should find that some integrals will simplify slightly.

ANS. This is not simply a case of replacing b by a in Equation (3), above. Rather, we need to rework the analysis which

leads to (3), as follows.

y = c2 e
−at + e−at

∫

eat
[

c1 e
−at + e−at

∫

eatf(t) dt
]

dt

= c2 e
−bt + c1

∫

1 dt+ e−at

∫

[

∫

eatf(t) dt
]

dt

= c2 e
−at + c1te

−at + e−at

∫

[

∫

eatf(t) dt
]

dt. (4)

(d) Apply the formula found in Q1b to solve the two equations,

(a) y′′ + 3y′ + 2y = et and (b) y′′ + 3y′ + 2y = e−t.
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ANS. For both equations we may use a = 1 and b = 2. For both equations we obtain Complementary functions of the

form, Ae−2t and Be−t, where I have reverted to the notation used in the lectures for the arbitrary constants.

For the Particular Integral for the first equation we have,

ypi = e−2t

∫

et
[

∫

et × et dt
]

dt subst. into (3)

= e−2t

∫

et
[

∫

e2t dt
]

dt on mutiplying

= e−2t

∫

et
[

1
2e

2t
]

dt on integrating

= 1
2e

−2t

∫

e3t dt on multiplying

= 1
2e

−2t × 1
3e

3t on integrating

= 1
6e

t.

Hence the case (a) solution is,

y = Ae−2t +Be−t + 1
6e

t.

For case (b) we have,

ypi = e−2t

∫

et
[

∫

et × e−t dt
]

dt subst. into (3)

= e−2t

∫

et
[

∫

1 dt
]

dt

= e−2t

∫

et t dt

= e−2t
[

(t− 1)et
]

= (t− 1)e−t.

If we had solved this equation using the standard CF/PI approach, then the PI would have been just te−t, and
this would also have been true if we had used a = 2 and b = 1 above. The extra −e−t may be swallowed up in

the CF, given that part of the CF is Be−t where B is arbitrary.

(e) Suppose that we are solving a third order ODE with f(t) on the right hand side. If it can be written in the form,

(D + a)(D + b)(D + c)y = f(t),

and given the form of the answer Q1b, can you guess what the solution is?

ANS. The solution is,

y = c1e
−at + c2e

−bt + c3e
−ct + e−ct

∫

e(c−b)t
[

∫

e(b−a)t
[

∫

eatf(t) dt
]

dt
]

dt.
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Q2. The aim for this question is to solve y′ + ay = 1 subject to y(0) = 0 using Taylor’s series. First, write down a

general expression for the Taylor’s series about t = 0 for the function y(t) — this is not the solution because we

don’t yet know the value of all of the derivatives of y at t = 0. However, we may substitute the initial value of y
into the governing equation to find y′(0). Now differentiate the governing equation once; this will allow us to find

y′′(0). Differentate again and hence find y′′′(0). The pattern should now be clear. Hence write down the Taylor’s

series of the solution. Can you identify it?

ANS. The required Taylor’s series is

y(t) = y(0) +
y′(0)

1
t+

y′′(0)

2!
t2 +

y′′′(0)

3!
t3 + · · · .

Successive derivatives of the governing equation, y′ + ay = 1, are,

y′′ + ay′ = 0, y′′′ + ay′′ = 0, y(4) + ay′′′ = 0, y(5) + ay(4) = 0, · · · .

If y(0) = 0, then the ODE gives us that y′(0) = 1.

The derivative of the ODE now tells us that y′′(0) = −ay′(0) = −a.

The next derivative yields y′′′(0) = +a2 and so on with −a3 and +a4 for the next two derivatives at t = 0. Hence
the solution may be written as,

y = t−
at2

2!
+

a2t3

3!
−

a3t4

4!
+

a4t5

5!
+ · · · .

We know that

e−at = 1− at+
a2t2

2!
−

a3t3

3!
+

a4t4

4!
+ · · · ,

and therefore our Taylor’s series solution represents,

y =
1− e−at

a
.

Q3. This question was devised while I was watching the film, Gravity, en route to India, with only a thin skin of

aluminium between me and a quarter of an atmosphere of air at −50◦C and 500mph six miles above the ground.

I am not sure that I like disaster movies while flying! Suppose that Sandra Bullock and George Clooney are
stranded in space, 20m apart and stationary relative to each another, i.e. 10m from their centre of gravity (I am

assuming that they have the same mass!). How long will it take for gravitational attraction to cause the couple

get close enough together that they may grasp each other’s hand? So if x(t) is the distance of one of them from

their mutual centre of gravity, how long will it take to reduce x = 10 to x = 0.5 as gravitational attraction draws

them together? (Of course, this is being typeset on Valentine’s day.) The governing equation is

m1
d2x

dt2
= −

m1m2G

x2
,

where m1 = m2 = 60kg are their masses, and G = 6.67408× 10−11Nm2kg−2 is the gravitational constant. This

is a nonlinear second order equation!

(a) Nothing in our lectures hints about how to solve this! However, d2x/dt2 is the same as dv/dt where v = dx/dt.

Use the chain rule to show that
dv

dt
= v

dv

dx
.
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Use this substitution to solve for v in terms of x. Apply the initial condition, namely that at t = 0, x = x0 and

v = 0 (we’ll keep the initial separation general for now) For convenience, use λ2 = Gm2 in your workings.

ANS. First of all, I have not said anything about what x represents. The given equation, should one look it up on

Wikipedia for example, will state that x is the distance of one mass from the other, and therefore we need to be

a little careful at the outset to define x correctly. Perhaps the easiest way to do this is to let George and Sandra

be at the two locations x = y and x = −y so that x = 0 represents their combined centre of gravity and, given

the ‘fact’ that they have the same mass, it is also the point to which they will converge eventually. This means
that their separation will be 2x, and it is this distance which we need to use in the law of graviational attraction.

From the point of view of the person whose mass is m1, the equation of motion is

m1
d2x

dt2
= −

m1m2G

(2x)2
,

where x is the distance from the origin.

We know that
d2x

dt2
=

d

dt

(dx

dt

)

=
dv

dt
,

and we wish to change the t-derivative to an x-derivative. The chain rule gives us,

dv

dt
=

dv

dx
×

dx

dt
= v

dv

dx
.

Hence the governing equation becomes,

v
d2v

dx2
= −

m2G

4x2
,

which is of variables-separable form, and where I have cancelled the m1 coefficients on both sides. So we need to

solve,

v
d2v

dx2
= −

λ2

4x2
.

On separating the variables we have,

v dv = −
λ2

4x2
dx,

which, upon integration yields,

1
2v

2 =
λ2

4x
+ c.

When t = 0 we have x = x0 = 10 and v = 0, and therefore c = −λ2/4x0. Therefore the solution so far is,

v2 =
λ2

2

(1

x
−

1

x0

)

,

and hence

v = −
λ
√
2

(1

x
−

1

x0

)1/2

.

When taking the square roots, the negative sign has been taken because x will decrease in time and hence v < 0.

(b) Now that we have v in terms of x, it is possible to solve this by first using the substitution, x = x0 cos
2 θ, to

obtain an equation for θ in terms of t. This equation may be solved to find t in terms of θ. Don’t let this worry

you, for the whole point is that you need to find the time corresponding to a given distance. Now use x0 = 10
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and let x = 0.5 (it’s probably best to find the corresponding value of θ here); what is the time? So how many

days does it take for them to be reunited? (Cue suitable violin music...)

ANS. Now we revert to x, and therefore we have,

dx

dt
= −

λ
√
2

( 1

x
−

1

x0

)1/2

. (1)

Following the hint, we will change variable from x to θ using x = x0 cos
2 θ. So

dx

dt
= −2x0 sin θ cos θ

dθ

dt
.

Hence the equation becomes,

−2x0 sin θ cos θ
dθ

dt
= −

λ
√
2x0

[ 1

cos2 θ
− 1

]1/2

= −
λ

√
2x0

[1− cos2 θ

cos2 θ

]1/2

= −
λ

√
2x0

sin θ

cos θ
.

Therefore the equation may be tidied up to give,

cos2 θ
dθ

dt
=

λ

2
√
2x

3/2
0

,

or, even better,

1
2 (1 + cos 2θ)

dθ

dt
=

λ

2
√
2x

3/2
0

.

This is another separation-of-variables equation, and we may integrate to get,

1
2

(

θ + 1
2 sin 2θ

)

=
λ

2
√
2x

3/2
0

t+ c.

The initial condition is that, at t = 0 we have x = x0 and hence cos θ = 1 or θ = 0. Therefore c = 0. Therefore

we may now write the final solution (in terms of θ) as

t = 2
( x3

0

2Gm2

)1/2(

θ + 1
2 sin 2θ

)

.

Although we cannot rearrange this equation to get θ (and hence x) in terms of t, it doesn’t matter here, for we

need to find t when x = 0.5. This translates into when cos2 θ = 0.5/10, i.e. θ = 1.34528 radians. Hence

t = 2× 1.563228×
( 1000

2× 60× 6.67408× 10−11

)1/2

= 1 194 755s.

This is just under 12 days and 19 hours. At that point in time their relative speed would be about 0.123mm/s

(using Eq. (1)), or just over the width of the human hair per second, so it would be a very gentle meeting of
fingertips. Nice.

However, given that the human body can survive at most only three days without food and water, this tale has

a very sad ending....no violin music....not that it can be heard in space....

If this had been a purely theoretical problem involving point masses instead of film stars, then the point masses

would have collided only about 89 minutes later, when θ = 1
2π and at an infinite velocity!
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Q4. The Cauchy-Euler equation is a different class of linear ODE, and technically it is known as an equi-dimensional

equation. The most general second order version is

x2 d
2y

dx2
+ ax

dy

dx
+ by = 0.

There are two ways of solving this equation, the first being to let y = xn (and then one will eventually be led

to an indicial/auxiliary/characteristic equation for n) while the second is to change variables from x to ξ using

x = eξ. Try to solve the equation

x2 d
2y

dx2
+ 4x

dy

dx
+ 2y = 0

using each of these two methods. [Note, when attempting the second, we are changing from dy/dx to dy/dξ, and
the chain rule will need to be used. Take care with the transformation of the second derivative — the product

rule will be needed!]

Suppose now that we wish to solve

x2 d
2y

dx2
+ 5x

dy

dx
+ 4y = 0.

The first method given above leads to a repeated value of n and then it isn’t obvious how to proceed in this

context. So adopt the second method, solve the equation, and this will show how one may proceed when using
the otherwise quicker and simpler first method.

Ans. For x2y′′ + 4xy′ + 2y = 0, we let y = xn. This yields,

x2
[

n(n− 1)xn−2
]

+ 4x
[

nxn−1
]

+ 2xn = 0

[

(n2 − n) + 4n+ 2
]

xn = 0.

This shows why the given substitution works: the only function which, when it is differentiated m times and then

is multiplied by xm, gives the same function is a power of x. The indicial equation for n is now

n2 + 3n+ 2 = 0,

and we find that n = −1,−2. Hence the solution follows in the same way as we have for constant-coefficient
equations:

y = Ax−1 +Bx−2. (4)

NOTE: we will meet these in Modelling Techhniques 2 in semester 2 of year 2.

Alternatively, if we substitute x = eξ, then we need to change from x-derivatives to ξ-derivatives. Therefore,

dy

dx
=

dy

dξ

dξ

dx
= e−ξ dy

dξ
.

This is more easily dealt with if we multiply both sides (i.e. leftmost and rightmost) by eξ (i.e. x). We get,

x
dy

dx
=

dy

dξ
,

which is very useful. For the second derivatives, note first that,

d2y

dξ2
=

d

dξ

(dy

dξ

)

= x
d

dx

(

x
dy

dx

)

= x2 d
2y

dx2
+ x

dy

dx
.



Problem Sheet 2 (supplementary) Mathematics 2 ME10305 8

Hence,

x2 d
2y

dx2
=

d2y

dξ2
−

dy

dξ
.

Therefore the given equation transforms as follows,

(d2y

dξ2
−

dy

dξ

)

+ 4
dy

dξ
+ 2y = 0,

and hence
d2y

dξ2
+ 3

dy

dξ
+ 2y = 0.

Therefore our substitution transforms a Cauchy-Euler equation into a constant-coefficient equation. Also nice,

and also extremely useful as we will see. The solution of this latest equation is,

y = Ae−ξ +Be−2ξ,

which is identical to equation (4), above.

When we consider the final equation in the question, x2y′′ + 5xy′ + 4y = 0, the y = xn trial solutions yields the

repeated pair, n = −2,−2. Therefore let us see what the coordinate transformation gives us. Using the above

results we obtain,
d2y

dξ2
+ 4

dy

dξ
+ 4y = 0.

Letting y = eλξ also yields λ = −2,−2, and therefore the solution is

y = (A+Bξ)e−2ξ.

When we revert to x, this becomes,

y = (A+ B ln x)x−2.

This gives us the clue for how one progresses quickly when repeated roots of the indicial equation are encountered
when solving a Cauchy-Euler equation.

D.A.S.R. 15/02/2017


