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Matrices Sheet 1 — Multiplication.

The aim of this problem sheet is to get used to performing matrix multiplication and to know what
compatibility with respect to multiplication means. There are also some properties which involve
matrix transposes which are useful to know, and also the concepts of commutivity and distributivity.

Q1. The matrices, A, B, C and D, are defined as follows,

A =





1 2
−1 1
3 5



 , B =

(

1 1 −1
2 −1 2

)

, C =

(

2 −1
−1 2

)

, D =





2 1 0
1 2 1
0 1 2



 .

Classify all these matrices in terms of numbers of rows and columns. Now make a list of which
pairs may be multiplied together (i.e. are compatible with respect to multiplication) — for example,
both AB and BA belong to this list. Now find all the permissible products of two matrices.

Q2. Having now determined AB, where A and B are as given in Q1, write down (AB)T , the transpose
of AB. Now calculate BTAT . Is (AB)T = BTAT ? Is it obvious whether this last answer is true in
general?

Q3. The matrix A is defined by

A =





2 1 2
0 3 −3
1 2 −1



 .

Find AT . Now form the sums A+AT and A−AT . What do you notice about these new matrices?
Find the products AAT and ATA. What do you conclude from these results?

Q4. We have seen that matrix multiplication, where the matrices are compatible, yields AB 6= BA in
general, i.e. matrix multiplication is non-commutative. But I would like you to show that matrix
multiplication is associative, that is, A(BC) = (AB)C, where the term in brackets is computed
first. Check one specific case:

A =

(

2 1
1 2

)

B =

(

1 −1
1 1

)

C =

(

1 2
3 4

)

.

Now check the general case for 2× 2 matrices:

A =

(

a11 a12
a21 a22

)

B =

(

b11 b12
b21 b22

)

C =

(

c11 c12
c21 c22

)

.

Try to think of a way of generalising this result to any three square matrices, and then to any set
of compatible matrices.

Q5. Not really part of the syllabus, but I needed something to fill the gap at the bottom of this page!
If you have two tridiagonal matrices which are compatible with respect to multiplication and are
subsequently multiplied together, then is there is a general statement that can be made about the
pattern of the components in that product?
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Q6. Rotation matrices are important for many applications and are especially so in robotics. I am not
going to teach this formally, but I would like to introduce them and to play around with them a
little.

We may define the following three rotation matrices:

Rx(α) =





1 0 0
0 cosα − sinα
0 sinα cosα



 (Rotation by an angle α about the x-axis.)

Ry(β) =





cos β 0 sinβ
0 1 0

− sin β 0 cosβ



 (Rotation by an angle β about the y-axis.)

Rz(γ) =





cos γ − sin γ 0
sin γ cos γ 0
0 0 1



 (Rotation by an angle γ about the z-axis.)

Therefore if the position vector of a point is r, and if that point is rotated by an angle, α, about
the x-axis, then the new location of the point is given by the matrix/vector product, Rx(α) r. If
this new point is subsequently rotated by γ about the z-axis, then its new location is given by,
Rz(γ)Rx(α) r.

Thus a rotation about the x-axis followed by a rotation about the z-axis is Rz(γ)Rx(α), where the
rotation matrices only appear to have been written down in the wrong order!

(i) Perhaps it is not surprising that the inverse matrix of Rx(α) is Rx(−α), given what this notation
means. Check that Rx(α)Rx(−α) = I, the 3× 3 identity matrix.

(ii) Find both Rz(γ)Rx(α) and Rx(α)Rz(γ). Are they equal? What is the implication of this general
result? What about when α = γ = 1

4
π? What about when α = γ = 1

2
π?

(iii) If you really have time spare, then you could try the following. A point suffers the grave indignity of
the following sequence of rotations: Rx(α) then Rz(γ) then Rx(−α) then Rz(−γ). This expresses
a possibly naive thought that an arbitrarily chosen point will return to where it started after this
sequence; do you think that it will? If not, what are the correct third and fourth rotations to cause
the point to return?

Q7. A question for interest, perhaps. Fermat’s last theorem is well-known: when a, b, c and n take
positive integer values, the equation an + bn = cn has solutions only when n = 2. However, a
Michael Penn youtube video alerted me to the fact that this theorem doesn’t apply when a, b and
c are matrices! So here’s a straightforward exercise in matrix multiplication to check if Prof. Penn
is correct:

(

1 3
0 1

)3

+

(

−1 0
1 −1

)3

=

(

0 3
1 0

)3

.
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