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SYNOPSIS A method of using steady state engine data to predict transient behaviour has been developed and applied to a
1.8l DI TCi passenger car engine.  The empirical model uses emissions data obtained from a steady state engine test facility to
predict values under real running conditions.  Current work is aimed at validating predictions against transient experimental
data.

NOTATION
˝
AFR Air -fuel ratio
˝
BSFC Brake specific fuel consumption
˝
EPIC Electronically Programmed Injection 

Control
˝
CO Carbon monoxide
˝
CTXE Continuously variable transaxle under 

electronic control
˝
CVT Continuously variable transmission
DI Direct injection
HC Hydrocarbons
MLP Multi-layer perceptron
NOx Oxides of nitrogen
TCi Turbocharged and intercooled
a Activation of a synapse
w Weight of a synapse
φ Bias of a neuron

1 INTRODUCTION

The environmental impact of passenger cars is a major
problem which is being addressed with increasing urgency

in Europe.  In particular the contribution to atmospheric
pollution from the motor car emphasises the need to reduce
vehicle emissions.  The passenger car of the future must aim
to have an exhaust virtually free of toxic substances but
must also have significantly improved overall fuel economy
in order to limit the production of carbon dioxide.

Improvements can undoubtedly still be made to engine
design (1,2) but this is not the only approach.  Considerable
additional benefit can be obtained by the adoption of an
engine control strategy such that the required output power
is always produced in the most advantageous region of the
torque - speed map.  This requires the use of a continuously
variable transmission to decouple the fixed relationship
which otherwise exists between vehicle and engine speed
with a stepped ratio transmission.  Good drivability
characteristics must be retained if a project of this nature is
to be successful.

One of the major components in work of this type is clearly
an accurate transient engine model.  A comprehensive
model is required for the drive cycle simulation work.  The
model is also required to supply data to the driveline
controller, both during simulation and in the vehicle.  A
model has been developed to meet this requirement for an
integrated driveline control project running at the
University.



The project includes experimental and computer simulation
studies used to develop the necessary control algorithms.
Reduced order models are used to investigate the relative
performance of candidate control strategies by simulation.
Selected control methods are then tested experimentally in
the laboratory to determine the emission and fuel economy
improvements.  The modified system is also installed in a
vehicle for the conventional ECE15 drive cycle test and
assessment of drivability.

1.1 HARDWARE

The chosen prime mover is an experimental Ford 1.8DI TCi
Diesel.  This engine has significant fuel economy
advantages over the IDI generation of engines.  It is
equipped with exhaust gas recirculation for improvement of
NOx emissions.

The fuel injection equipment is the Lucas EPIC system (3).
It consists of an electronic engine management module
controlling a high pressure rotary pump for small high
speed DI diesel engines. The controller also schedules the
EGR valve opening. The system is currently fitted to the
turbocharged 2.5DI installed in Ford Transit vans.
The exhaust gasses are treated using a Johnson Matthey
oxidation catalyst.  This will reduce hydrocarbon (HC),
carbon monoxide (CO) and particulate emissions but not the
oxides of nitrogen.

Data has been collected using a steady state rig at Bath.
The rig has closed loop control of all important variables.
Data collection is computer controlled, including the
emissions levels.

2 SYSTEM MODEL

2.1 MODELLING STRATEGY

The system is modelled using the Bathfp simulation
software developed at the University (4).  System
components are represented by icons linked to FORTRAN
or C code.  A simulation is then built up using the icons as
building blocks to construct the complete system.
Interfaces between components are standardised for
compatibility.  The code behind the icons is linked
automatically by the software to form a system model.  This
can then be used interactively and the results presented
graphically.  As users develop applications they may need
to write their own models of new components.  This is
facilitated by a series of utilities which allow the generation
of icons and code.  Component models can range from a
simple empirical or instantaneous model to a highly
complex dynamic distributed parameter model.  The new
components can be integrated easily with existing
structures.

The complete vehicle system is built up in this way.
Emissions and dynamic performance can be predicted
during transient manoeuvres such as the ECE drive cycle.
A block diagram of the simulation is shown in Figure 1.
Controller development will concentrate on optimal control

techniques to obtain a balance between particulates,
hyrocarbons, oxides of nitrogen (NOx) and fuel economy
whilst maintaining good drivability characteristics.

2.2 ENGINE MODEL REQUIREMENT

For both simulation and control the model needs to be
accurate during transients.  In addition, for control purposes
the engine model must be very fast running in order to give
a real time update of the ideal operating point.   It is
possible that the engine model used in the simulation study
will be more complex and thus slower running than the on
board model.  Speed of running is still an issue, however, if
drive cycle simulation is to be possible within a realistic
time scale.

For simulation the model will be fed information from other
models in the system and used to predict the performance of
the vehicle and emissions data.  This will enable competing
strategies to be evaluated.

Fig. 1 Schematic of Bathfp models

Another instance of the model, resident in the on board
controller, will enable an ideal operating point to be
predicted in real time during normal vehicle operation. The
accelerator pedal input is treated as a power demand by the



controller.  The model is then used to give the controller
enough knowledge of the engine to decide on an optimum
operating point.  This could be accomplished by running a
series of points through the model, all with the same
nominal power output at the wheels.  The transmission
efficiency varies non linearly with speed and load.  This
must be taken into account when a required engine power is
calculated.  A weighted sum of the various emissions and
BSFCs will enable the best operating point for the power
demand to be determined.  This point will be continuously
updated according to driver demands and engine conditions.
The driver demand can then be implemented in the most
advantageous manner by the controller.

The weightings used to establish the relative importance of
the different emissions may be varied to tune the system.  In
this instance the use of a catalyst to help with the HCs will
enable more effort to go into avoiding NOx production.
There is scope for varying the weights according to
operating conditions.  For example, HCs may be more
important during the initial portion of the ECE15 test where
the catalyst will not be operational.

3 ENGINE MODEL ASSUMPTIONS

To ensure fast run times and sufficient accuracy an
empirical model has been used.  A model which can use
data generated using steady state rigs is clearly an
advantage.  This makes the task of gathering and validating
the data much simpler.  A primary requirement of the
model, however, is that it be accurate during transients,
since in reality most driving is transient.  Some care is
therefore necessary in the model structure.

The products of combustion can be predicted by looking at
experimental data from a steady state test.  A simple
technique would be to determine operating speed and torque
and interpolate emissions data from an engine map.  There
are, however, problems with this approach.  In a
turbocharged Diesel engine the air-fuel ratio can vary
greatly from the design point during transients.
Temperature and other variables have a similarly dramatic
effect.  A more complex approach is required.

The solution chosen is to define more fully the operating
point of the engine.  Speed and load are only two factors.
Air fuel ratio, charge temperature, water temperature,
injection timing  and exhaust gas recirculation fraction are
all important variables.  This list is not complete, but the
major factors affecting performance are defined.

The engine is still regarded as a quasi steady state device.
Each combustion event is treated as though it were one of a
uniform series, with the engine running in the steady state.
Now, however, the operating point is defined by a series of
arguments rather than just a pair.

The major requirement for any successful empirical model
is a large data set fully describing the engine operating
envelope.  Increasing the number of inputs to the model to
better identify the operating point demands a significantly

increased volume of data.  Each of the new inputs must be
varied in isolation experimentally to study the resulting
change in engine performance.

4 DATA COLLECTION AND MANIPULATION

The model for this project uses performance and emissions
data obtained from the steady state engine test facility at
Bath.  All the input parameters detailed above are recorded,
with the corresponding outputs - torque, air flow, exhaust
temperature, smoke, unburnt hydrocarbons, oxides of
nitrogen, particulate matter and exhaust pressure.

Initially a data set was generated by the conventional
mapping procedure for the design operating conditions.
This was supplemented with data from a number of 'off
design' operating points.  Each of the engine parameters
mentioned above, such as air/fuel ratio, were artificially
held to values not normally observed during steady state
running.  All other inputs were held as close as possible to
their nominal values.  The points were designed to span the
range of conditions expected during transients.

The data set generated by this means is extensive, and time
consuming to collect.  In this project an engine and a
suitable rig were available.  If this were not the case, or if
the off design points were unattainable in the steady state an
alternative source of data would be required.  One such
source would be an analytical model of the engine such as
SPICE II (5).  This would involve substantial computing
effort, and would need to be carefully validated.  If this
were accomplished the theoretical model could be used to
generate data instead of a rig.  The run times for this work
would no doubt be great, but as it would be an off line
operation this does not present a major obstacle.  The
subsequent steps would be identical.

4.1 DATA MANIPULATION

Once data has been gathered the requirement is for an
interpolation technique which can readily cope with the
large multi input, multi output data set in a rapid and
accurate manner.  Several techniques are possible.
Conventional linear interpolation could be used.  Surfaces
could be fitted to the data.  Another tool widely used for
such tasks is the artificial Neural network (6,7).

4.2 NEURAL NETWORKS

A neural network is a structure consisting of a large number
of very simple units which combine to represent any given
relationship of inputs and outputs.  The name originates
from the biological structures which inspired them.

The structure of a typical network is shown in Figure 2.
Various forms are possible.  The design used here is termed
a multi layer perceptron (MLP).  This is a common device
for representing non linear continuous functions.  It consists
of three groups of nodes or neurons, the input layer, one or
more hidden layers and an output layer.  Each layer is fully
interconnected to the next via a series of connections, called



synapses.  The number of hidden layers and the number of
neurons in each is optional.  Generally, accuracy will
increase with the complexity of the network until an
optimum is reached.  Thereafter accuracy will diminish.
The aim is to obtain the required accuracy with the most
simple (and therefore quickest) network possible.  There is
one input neuron for each input parameter, which is
presented to the neuron as a floating point number scaled
from 0 to 1.  These values pass via the synapses to the first
hidden layer where the data is processed.  Figure 3
represents one of these hidden layer neurons.

Fig 2 Schematic of a typical neural network

Each input signal is multiplied by its own weighting factor
(w).  The sum of these weighted inputs is then added to a
bias factor (φ).  This has the effect of increasing or reducing
the importance of the neuron to the network as a whole.
The resultant sum is used in a non linear activation function
(commonly a sigmoidal curve) to arrive at a single output
value.  This process is repeated at each subsequent hidden
layer.  The output neurons collect signals from the last
hidden layer and present a value between 0 and 1.

Fig 3 Hidden layer neuron

To make a network represent a real system the weights and
biases are optimised by an iterative training process.  The
training data is presented many times and the network
parameters incremented until the output values converge to
be the same as the desired output with an acceptably small
error.  There are a number of algorithms available to do
this.  The technique used here is called Stochastic Back
Propagation which is commonly used for modelling
applications.

The resulting structure can predict the outcome to scenarios
it has not previously encountered.  Like any interpolation
technique it is more accurate when interpolating,
extrapolation should be avoided. Accuracy is also enhanced

by increasing the amount of data presented.  If highly non
linear behaviour is being modelled there must be enough
data to define the relationship adequately.  Once trained the
network is treated as a black box.  Input values are
presented and the outputs are collected.  A network can
represent a huge volume of data in only a few lines of code
and runs very quickly once trained.

Many commercial software packages are available to
facilitate the design and training process.  For this project a
package which runs in a user friendly multi tasking
environment (Windows 3.1) was chosen (8).  Once the
network is trained the values which define it are frozen and
can be written to a text file.  This enables the network to be
implemented as a simple subroutine in a C or FORTRAN
program running under any operating system or hardware.
For this project the finished network is run within the
Bathfp UNIX based system for the simulation and as a C
program in a DOS environment for the vehicle controller.

5 ENGINE SIMULATION NETWORK

The topography of the network used for the engine model is
shown in Figure 4.  There is one input neuron for each of
the important variables describing the operating point.  One
hidden layer is used.  There are eight outputs.

Fig 4 Neural network representation of engine

When using the trained network for simulation inputs such
as boost pressure and coolant temperature are predicted by
other analytically based models.  These are linked within
the Bathfp environment.  A supervisory controller supplies a
torque demand to the fuel pump model.  This model has
been developed jointly with Lucas and is based on the EPIC
software used in the vehicle. The fuel pump model
calculates the injection timing and fuel delivery to achieve
the required torque.  Fuelling will not change
instantaneously, there are filters in the model to smooth the
effects of a rapid change in demand.  This enhances
drivability by avoiding  the driveline oscillations which are
possible due to the very fast response of a diesel engine to a
step change in fuelling.  Fuelling is also limited by the boost
pressure to prevent excess smoke during the initial period of



acceleration before the turbocharger is up to speed.  The
transient torque prediction from the network will thus be
significantly different from the demanded torque during
rapid transients.  The network prediction of torque is used
to calculate the vehicle acceleration.  Smoke, hydrocarbons,
oxides of nitrogen and  particulates are predicted as raw
concentrations and combined with flow rates in a separate
routine to arrive at mass flows.  Exhaust temperature and
pressure are used to predict turbocharger performance and
catalyst temperature.
When used as an on board operating point predictor the
network will take some inputs from transducers on the
engine.  Others such as power requirement are taken from
the driveline control routine.  Instantaneous fuelling data
will be supplied by the EPIC system.

6 VALIDATION

A number of techniques can be used to validate the network
in the steady state.  Figure 5 shows an example of the
training data used displayed as a map of (a) raw
hydrocarbons and (b) NOx against speed and fuel demand.
Fuel demand is expressed in terms of the decimal value
assigned to the fuel pump displacement within the EPIC
system.  The value of 200 represents maximum torque,
idling is achieved with a demand of around 40.
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Fig 5 Experimental training data for neural networks

Figure 6 is the result when an early network was used to
map the HC (Fig 6a) and NOx (Fig 6b) output of the engine
at the design condition.  This should be similar to the steady
state maps used to train it (Fig 5).  The obvious differences
are due to poor convergence of the network.  The network
was not sufficiently complex to fully describe the system.

A new network was developed with more hidden layer
neurons.  The level of complexity for the best convergence
was determined experimentally.  Figure 7 shows the results
of the same test using the new network.  The output is a lot
more realistic than from the simpler network when
compared to the training data.  The prediction of NOx (Fig
7(b)) is better than that for hydrocarbons (Fig 7(a)).  This is
likely to be due to the experimental data for hydrocarbons
being more noisy.  The network tends to give a smoother
output than linear interpolation, which may be of benefit in
some circumstances.

This network was then used to predict the HC and NOx
emissions at a water temperature of 25oC (Figure 8).  The
results are considerably different, as one would expect.
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Fig 6 Output from an early network showing poor

correlation with experimental data



Tests have been run at a constant speed and fuelling whilst
one input parameter at a time is varied to investigate trends.
Figure 9 shows the resulting variation in output if boost
pressure is varied whilst all other parameters are constant.
This test is perhaps a little artificial, but it allows the trends
within the network to be investigated.  The output values
are very smooth across the range of conditions.  This is one
of the characteristics of the network.
The real test of the model is to verify its accuracy in the
transient mode.  For this purpose good quality transient
experimental data is required.  Data will be gathered on a
transient rig being developed to perform drive cycle
simulation.  This rig is fully instrumented including torque
and speed measurements on both input and output sides of
the transmission and variables associated with the
transmission, engine and catalyst.  Horiba emissions
equipment has been installed.
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Fig 7 Output from a later network showing better training.

For an initial evaluation SPICE II has been used to simulate
a step change in fuelling.  The results are used as inputs to
the network.  Figure 10 shows some network input data
generated by SPICE II.  This data was used to evaluate two
network designs.  The resulting outputs are shown in Figure
11.  The results shown as a solid line are from a network
trained using both the design point data and the off design
data discussed earlier.  The dotted traces are the outputs
from a network trained only on the design point data.  It can
be seen that the response of the first network to changes in

AFR is much greater for the predictions of particulates ,
smoke and hydrocarbons.  Since the second network has no
experience of operation with varying AFR the results are
likely to be very poor during periods of low boost pressure
during transients.  This demonstrates the necessity of an
extensive data set and a multi input model.
Any discrepancies in the results using the fully trained

network will probably be due to -

a. Insufficient training data in the area of operation.
Basically a lack of definition in the network training
set.  This may include areas of extrapolation if the
operating envelope was not properly defined, as in
Figure 11.
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Fig 8 Network output at 25oC water temperature

b. Inadequate complexity.  A variable not considered may
be having a large effect.  Examples of these factors may
be fuel density or the history of the engine over the last
few minutes.  Currently history is partly represented by
water and charge temperature inputs to the network.
Effects such as short lived temperature gradients across
the cylinder wall, for instance, are less easy to
represent.  Extra inputs can be added to the network to
counter such errors.  Large amounts of data gathered
during steady state testing are not being used currently
due to the desire to make the model as simple as
possible.



c. Averaging effects.  The structure of a network tends to
damp out the effects of noise.  This may be an
advantage, for instance, when data is erratic or noisy.

It could also hide some real effects and care needs to be
exercised.

˝
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Fig 9 Effect of varying boost pressure whilst holding other inputs constant
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Fig 11 Transient response to a step input in pedal demand - network trained on design point data only

7 CONCLUSIONS AND FURTHER WORK
˝

˝
At present the network is giving a good representation of
the data it was trained on.  This allows it to be used with
some confidence as a fast, efficient interpolation routine.
Initial work using transient inputs appears encouraging.
Further work needs to be done to establish the accuracy of
the model during transients.  When experimental data
becomes available from the chassis dynamometer the engine
model will be tested thoroughly and refined as necessary.
This is likely to involve supplementing further the data used
to train the neural network.  Areas of engine operation
important during transient operation will be highlighted.
These areas may be influenced by the control strategy
chosen for handling transients.  It is also possible that more
input variables are necessary to fully define the operating
point.  This step will be taken only if necessary as the
network will run marginally slower as a result.
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