
Parallel Sparse Matrix Vector Product
with OpenMP for SMP in Code Saturne

V. Szeremi1, L. Anton1,2, C. Moulinec1, C. Evangelinos3, Y. Fournier4

1STFC Daresbury, 2Cray UK, 3IBM Research US, 4EDF R&D France

3

Higher-order DG methods and finite element software for modern architectures

Bath 31 May - 2 Jun

Cray EMEA

● EMEA headquarters in Bristol

● Applications & systems support

● R&D interconnect fabric design

● Cray EMEA Research Lab (CERL)

● Cray aims to generate HPC & DA

technology in Europe

● CERL participates to exascale

research initiatives: EPiGRAM,

CRESTA

2

Cray EMEA Research Lab (CERL)

Performs research and development in strategic areas that strengthen
Cray’s leadership in high-performance computing and data analytics,
and which deepen Cray’s involvement in the scientific and technical
communities of EMEA
● Director: Adrian Tate
● Activity themes:

● Hardware and software co-design

● Advanced workloads

● Configurations

● Advanced software

● Interface for European development programs
● http://www.cray.com/company/collaboration/organizations-initiatives/cray-

emea-research-lab

3

http://www.cray.com/company/collaboration/organizations-initiatives/cray-emea-research-lab

Code Saturne (http://code-saturne.org)

● open-source CFD code
● 2D,3D flows, steady or unsteady, laminar or turbulent, incompressible

or weakly dilatable, isothermal or not, scalar transport,…

● Physical models modules: gas, coal, heavy fuel combustion, particle
tracking, etc,

● mainly developed by EDF (France)

● Fortran, C, Python, ~350k lines of code

● fully validated production versions with long-term support
released every two years

● Part of restricted PRACE Unified European Applications
benchmark Suite (UEABS, http://www.prace-ri.eu/ueabs/)

4

Motivation

● In general, optimisation of scientific apps is periodically required
in order to take advantage of the evolving hardware architectures
● multi/many cores (+GPUs)

● hyperthreads

● Vector processing

● Cache layout

● interconnect

● I/O

● Specifically, the CS project was defined to explore ways to
improve the OpenMP scaling
● CS run time in incompressible flow simulations is dominated by the pressure

solver
● sparse matrix vector product

5

Native OpenMP: BQG vs Intel

6

Sparse Matrix Vector product in Code Saturne

Code_Saturne formats for sparse matrix storage and

associated MV product algorithms:

● Native – using Code_Saturne native sparse matrix storage

format

● Native OpenMP – multiple groups, with threads having

non-overlapping regions within a group

● CSR – compressed sparse row; rows divided between

threads

● MSR – modified compressed

7

Native MV (symmetric)

for (face_id = 0; face_id < ms->n_faces; face_id++) {

ii = face_cel_p[2*face_id] -1;

jj = face_cel_p[2*face_id + 1] -1;

y[ii] += xa[face_id] * x[jj];

y[jj] += xa[face_id] * x[ii];

}

8

Native OpenMP MV

for (g_id = 0; g_id < n_groups; g_id++) {
pragma omp parallel for private(face_id, ii, jj)
for (t_id = 0; t_id < n_threads; t_id++) {
for (face_id = group_index[(t_id*n_groups + g_id)*2];
face_id < group_index[(t_id*n_groups + g_id)*2 + 1];
face_id++) {
ii = face_cel_p[2*face_id] -1;
jj = face_cel_p[2*face_id + 1] -1;
y[ii] += xa[face_id] * x[jj];
y[jj] += xa[face_id] * x[ii];

}
}

}

9

Native OpenMP: time tracing

● Extrae/Paraver trace of native sparse matrix vector

● product used within PCG showing synchronisation

● Top: executed function; Middle: useful work; Bottom: OpenMP loop

10

Blocked Native Algorithm

● faces are grouped into blocks:
● Each block is guaranteed to update cells in selected cell index range

● Can be parallelized with OpenMP
● synchronization free

● better cache utilisation

● different block types to handle:
● diagonal: y[ii] and y[jj]
● off-diagonal: either y[ii] or y[jj]

● however: additional work with increasing number of blocks
● corresponding matrix vector product alogrithms are integrated

into Code_Saturne, including the autotuning framework
● algorithmic variations for better load balance

11

Blocked Native Code

pragma omp parallel private (ii, jj, faceid)

{

int ith = omp_get_threadnum() ;

int jb,fs,fe, fst ,fet ;

for (jb =0; jb < nthreads ; ++jb){

fs = ms−>th_blk[ith][jb].s;

fe = ms−>th_blk[ith][jb].s +
ms−>th_blk[ith][jb].n;

if (jb == ith){

for (face_id = fs ; face_id < fe;
face_id++){

ii = face_cel_p [2 * face_id] −1;

jj = face_cel_p [2 * face_id + 1] −1;

y[ii] += xa [face_id] * x[jj] ;

y[jj] += xa [face_id] * x[ii] ;

}

}

else{

….

for (g_id = 0; g_id < n_groups; g_id++) {

pragma omp parallel for
private(face_id, ii, jj)

for (t_id = 0; t_id < n_threads;
t_id++) {

for (face_id =
group_index[(t_id*n_groups + g_id)*2];

face_id <
group_index[(t_id*n_groups + g_id)*2 +
1];

face_id++) {

ii = face_cel_p[2*face_id] -1;

jj = face_cel_p[2*face_id + 1] -1;

y[ii] += xa[face_id] * x[jj];

y[jj] += xa[face_id] * x[ii];

}

}

}

12

Blocked Native Code (cont’d)

if (jb > ith){

for (face_id = fs; face_id < fe;
face_id++) {

ii = face_cel_p[2*face_id] -1;

jj = face_cel_p[2*face_id + 1] -1;

y[ii] += xa2[face_id] * x[jj];

}

}

else{

for (face_id = fs; face_id < fe;
face_id++) {

ii = face_cel_p[2*face_id] -1;

jj = face_cel_p[2*face_id + 1] -1;

y[jj] += xa2[face_id] * x[ii];

…

13

Blocked native: Variations

● Blocked – split faces into blocks, each thread works on a separate
range in the y vector; diagonal blocks and off-diagonal blocks

● SECO / PACO – serial / parallel setting of coefficients
● BAL / UNB – setting blocks boundaries so that: number of rows are

equally distributed (UNB) or number of faces are equally distributed
(BAL)

● INCDIAG – include diagonal handling and zeroing of y in the
processing of the diagonal blocks

● EXHA – exclude halo region in the y vector calculation
● MULTIBLOCKS fixed block size: 1k, 2k, etc. - dynamic scheduled

OpenMP loop for load balance
● MULTIBLOCKS fixed number of blocks: 2TT, 3TT - blocks split

between static and dynamic scheduled OpenMP loop for load balance

14

Qualitative Comparison

15

Test setup

● cavity test case

● laminar lid-driven cavity flow

● tetrahedral cells

● number of cells: 145k, 500k, 1800k, (13M)

● time taken from autotuning framework

16

Test Setup (cont’d)

● Blue Joule

● Blue Gene/Q, 1x 16-core 1.60 GHz A2 PowerPC

● Blue Wonder

● iDataPlex, 2x 8-core 2.6 GHz Intel Xeon (Sandybridge)

● Phase 2 Wonder

● NextScale, 2x 12-core 2.7 GHz Intel Xeon E5-2697 v2 (Ivybridge)

● ARCHER

● Cray XC30, 2x 12-core 2.7 GHz Intel Xeon E5-2697 v2(Ivybridge)

17

Results: Blue Joule, cavity test, 500k

18

Results: Ivybridge cavity test, 500K

19

Results: IvyBridge, cavity test 1800k

20

Result: MPI+OpenMP, cavity 450k (ARCHER)

21

Conclusions

● we propose a blocked native storage and matrix vector
product implementation
● synchronisation free

● Imporves load balancing & cache

● Good performance on BGQ and Intel processors

● algorithm variations for improved load balance
● Performance depends on CPU architecture and mesh size

● implemented in Code_Saturne, including autotuning
framework
● tests on cavity case using autotuning framework

22

Acknowledgements

23

References

● Y. Fournier, J. Bonelle, C. Moulinec, Z. Shang, A.G. Sunderland, J.C. Uribe,
“Optimizing Code_Saturne computations on Petascale systems”, Computers &
Fluids, 45, 103-108, 2011.

● A. Alvermann, A. Basermann, H. Fehske, M. Galgon, G. Hager, M. Kreutzer, L.
Krämer, B. Lang, A. Pieper, M. Röhrig-Zöllner, F. Shahzad, J. Thies, and

● G. Wellein, “ESSEX: Equipping Sparse Solvers for Exascale”. To be published in: L.
Lopes (ed.), Proc. Euro-Par 2014 Workshops, LNCS vol. 8805, 8806, Springer,
2014.

● R. Aubry, G. Houzeaux, M. Vázquez, J. M. Cela, “Some useful strategies for
unstructured edge-based solvers on shared memory machines”, International
Journal for Numerical Methods in Engineering, 85, 537-561, 2011.

● V. Kale, W. D. Gropp, “Load balancing for regular meshes on SMPs with MPI”,
EuroMPI ’10, 2010.

24

Legal Disclaimer

25

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property

rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and

other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal

codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.

products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and

URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,

ECOPHLEX, LIBSCI, NODEKARE, REVEAL,THREADSTORM. The following system family marks, and associated model number marks,

are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from

LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the

property of their respective owners.

Q&A

Lucian Anton lanton@cray.com

