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Cray EMEA

● EMEA headquarters in Bristol

● Applications & systems support

● R&D interconnect fabric design

● Cray EMEA Research Lab (CERL)

● Cray aims to generate HPC & DA 

technology in Europe

● CERL participates to exascale

research initiatives: EPiGRAM, 

CRESTA 
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Cray EMEA Research Lab (CERL)

Performs research and development in strategic areas that strengthen 
Cray’s leadership in high-performance computing and data analytics, 
and which deepen Cray’s involvement in the scientific and technical 
communities of EMEA
● Director: Adrian Tate
● Activity themes:

● Hardware and software co-design

● Advanced workloads

● Configurations

● Advanced software

● Interface for European development programs
● http://www.cray.com/company/collaboration/organizations-initiatives/cray-

emea-research-lab
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Code Saturne (http://code-saturne.org)

● open-source CFD code
● 2D,3D flows, steady or unsteady, laminar or turbulent, incompressible 

or weakly dilatable, isothermal or not, scalar transport,…

● Physical models modules: gas, coal, heavy fuel combustion, particle 
tracking, etc,

● mainly developed by EDF (France)

● Fortran, C, Python, ~350k lines of code

● fully validated production versions with long-term support 
released every two years

● Part of restricted PRACE Unified European Applications 
benchmark Suite (UEABS, http://www.prace-ri.eu/ueabs/) 
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Motivation

● In general, optimisation of scientific apps is periodically required 
in order to take advantage of the evolving hardware architectures
● multi/many cores (+GPUs)

● hyperthreads

● Vector processing

● Cache layout

● interconnect

● I/O

● Specifically, the CS project was defined to explore ways to 
improve the OpenMP scaling
● CS run time in incompressible flow simulations is dominated by the pressure 

solver
● sparse matrix vector product
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Native OpenMP: BQG vs Intel
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Sparse Matrix Vector product in Code Saturne

Code_Saturne formats for sparse matrix storage and 

associated MV product algorithms:

● Native – using Code_Saturne native sparse matrix storage 

format

● Native OpenMP – multiple groups, with threads having 

non-overlapping regions within a group

● CSR – compressed sparse row; rows divided between 

threads

● MSR – modified compressed
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Native MV (symmetric)

for (face_id = 0; face_id < ms->n_faces; face_id++) {

ii = face_cel_p[2*face_id] -1;

jj = face_cel_p[2*face_id + 1] -1;

y[ii] += xa[face_id] * x[jj];

y[jj] += xa[face_id] * x[ii];

}
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Native OpenMP MV

for (g_id = 0; g_id < n_groups; g_id++) {
# pragma omp parallel for private(face_id, ii, jj)
for (t_id = 0; t_id < n_threads; t_id++) {
for (face_id = group_index[(t_id*n_groups + g_id)*2];
face_id < group_index[(t_id*n_groups + g_id)*2 + 1];
face_id++) {
ii = face_cel_p[2*face_id] -1;
jj = face_cel_p[2*face_id + 1] -1;
y[ii] += xa[face_id] * x[jj];
y[jj] += xa[face_id] * x[ii];

}
}

}
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Native OpenMP: time tracing

● Extrae/Paraver trace of native sparse matrix vector

● product used within PCG showing synchronisation

● Top: executed function; Middle: useful work; Bottom: OpenMP loop
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Blocked Native Algorithm

● faces are grouped into blocks:
● Each block is guaranteed to update cells in selected cell index range

● Can be parallelized with OpenMP
● synchronization free

● better cache utilisation

● different block types to handle:
● diagonal: y[ii] and y[jj]
● off-diagonal: either y[ii] or y[jj]

● however: additional work with increasing number of blocks
● corresponding matrix vector product alogrithms are integrated 

into Code_Saturne, including the autotuning framework
● algorithmic variations for better load balance
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Blocked Native Code

# pragma omp parallel private ( ii, jj, faceid )

{

int ith = omp_get_threadnum( ) ;

int jb,fs,fe, fst ,fet ;

for ( jb =0; jb < nthreads ; ++jb ){

fs = ms−>th_blk[ith][jb].s;

fe = ms−>th_blk[ith][jb].s + 
ms−>th_blk[ith][jb].n;

if ( jb == ith){

for (face_id = fs ; face_id < fe;     
face_id++){

ii = face_cel_p [2 * face_id ] −1;

jj = face_cel_p [2 * face_id + 1] −1;

y[ii] += xa [face_id ] * x[jj] ;

y[jj] += xa [face_id ] * x[ii] ;

}

}

else{

….

for (g_id = 0; g_id < n_groups; g_id++) {

# pragma omp parallel for 
private(face_id, ii, jj)

for (t_id = 0; t_id < n_threads; 
t_id++) {

for (face_id = 
group_index[(t_id*n_groups + g_id)*2];

face_id < 
group_index[(t_id*n_groups + g_id)*2 + 
1];

face_id++) {

ii = face_cel_p[2*face_id] -1;

jj = face_cel_p[2*face_id + 1] -1;

y[ii] += xa[face_id] * x[jj];

y[jj] += xa[face_id] * x[ii];

}

}

}
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Blocked Native Code (cont’d)

if ( jb > ith){

for (face_id = fs; face_id < fe; 
face_id++) {

ii = face_cel_p[2*face_id] -1;

jj = face_cel_p[2*face_id + 1] -1;

y[ii] += xa2[face_id] * x[jj];

}

}

else{

for ( face_id = fs; face_id < fe; 
face_id++) {

ii = face_cel_p[2*face_id] -1;

jj = face_cel_p[2*face_id + 1] -1;

y[jj] += xa2[face_id] * x[ii];

…
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Blocked native: Variations

● Blocked – split faces into blocks, each thread works on a separate 
range in the y vector; diagonal blocks and off-diagonal blocks

● SECO / PACO – serial / parallel setting of coefficients
● BAL / UNB – setting blocks boundaries so that: number of rows are 

equally distributed (UNB) or number of faces are equally distributed 
(BAL)

● INCDIAG – include diagonal handling and zeroing of y in the 
processing of the diagonal blocks

● EXHA – exclude halo region in the y vector calculation
● MULTIBLOCKS fixed block size: 1k, 2k, etc. - dynamic scheduled 

OpenMP loop for load balance
● MULTIBLOCKS fixed number of blocks: 2TT, 3TT - blocks split 

between static and dynamic scheduled OpenMP loop for load balance
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Qualitative Comparison
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Test setup

● cavity test case

● laminar lid-driven cavity flow

● tetrahedral cells

● number of cells: 145k, 500k, 1800k, (13M)

● time taken from autotuning framework
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Test Setup (cont’d)

● Blue Joule

● Blue Gene/Q, 1x 16-core 1.60 GHz A2 PowerPC

● Blue Wonder

● iDataPlex, 2x 8-core 2.6 GHz Intel Xeon (Sandybridge)

● Phase 2 Wonder

● NextScale, 2x 12-core 2.7 GHz Intel Xeon E5-2697 v2 (Ivybridge)

● ARCHER

● Cray XC30, 2x 12-core 2.7 GHz Intel Xeon E5-2697 v2(Ivybridge)
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Results: Blue Joule, cavity test, 500k
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Results: Ivybridge cavity test, 500K
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Results: IvyBridge, cavity test 1800k
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Result: MPI+OpenMP, cavity 450k (ARCHER)
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Conclusions

● we propose a blocked native storage and matrix vector 
product implementation
● synchronisation free

● Imporves load balancing & cache

● Good performance on BGQ and Intel processors

● algorithm variations for improved load balance
● Performance depends on CPU architecture and mesh size 

● implemented in Code_Saturne, including autotuning
framework
● tests on cavity case using autotuning framework
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