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Fig. 4. Photographs of water drops of various sizes falling at their terminal
velocities in air. From left to right, the equivolumetric sphere radius: 4.00,
3.675, 2.90, 2.65, 1.725, and 1.35 mm. (After Pruppacher and Beard [24].
Reprinted with permission from the Royal Meteorological Society, UK.)
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Fig. 32. Frequency characteristics of rain attenuation at rain temperature of
20°C, for the LP (solid curves) and MP (dashed curves) drop-size distribu-
tions. (After Bdgers and Olsen {159})
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TABLE 1
Rain climatic zones

Rainfall intensity exceeded (mm/h) (Reference to Figs. I to 3)

Percentage

of time A B C D E F G H J K L M N P Q
(%)
1.0 <01 05 07 2.1 06 17 3 2 8 15 2 4 5 12 24
0.3 0.8 2 28 45 24 45 7 4 13 42 7 11 15 34 49
0.1 2 3 5 8 6 8 12 10 20 12 15 22 35 65 72
0.03 S 6 9 13 12 15 20 18 28 23 33 40 65 | 105 96
0.01 8 12 15 19 22 28 30 32 35 42 60 63 95 | 145 | 115
0.003 14 21 26 29 4] 54 45 55 45 70 105 95 | 140 | 200 | 142
0.001 22 32 42 42 70 78 65 83 55 100 150 | 120 | 180 | 250 | 170




