DIGITAL COMMUNICATIONS

Lectures

Contact time: 2 x 1hr x 12= 24hrs
Tuesdays 10:15-11:05 (6E2.1)
Fridays 15:15-16:05 (6E2.1)

Lecturer

- Dr Robert J. Watson

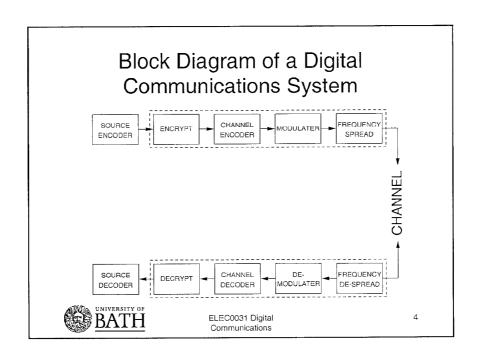
- e-mail: R.J.Watson@bath.ac.uk

Office: 2E2.28Tel: 6393

ELEC0031 Digital Communications

Recommended Textbooks

- There are zillions of texts available that cover the material in this course. The cheaper and better ones are:
- "Digital Communications: Fundamentals and Applications", Bernard Sklar, Prentice-Hall, 776pp, cost approx. £25
- "Digital Communications", Ian Glover and Peter Grant, Prentice-Hall, 734pp, cost approx £25


ELEC0031 Digital Communications

Textbooks (cont.)

- Sklar:
 - "Easy to read. Covers more than is in the syllabus, and is pitched at about the right sort of level. Covers convolutional coding and spread spectrum in more detail than G&G. Also covers encryption"
- Glover & Grant:
 - "Very readable, easy to understand. Covers more than the syllabus - useful for some 4th year options"
- I would strongly encourage you to purchase one of these books if possible.

ELEC0031 Digital Communications

Channel Encoder

- Provides protection again transmission errors by selectively inserting redundant data
- The source encoder usually removes redundant information. The channel encoder inserts redundant information in a very selective manner
- We will look at the role error error correction coding plays in digital communications systems

ELEC0031 Digital Communications

5

Modulator

- Converts digital data into a continuous waveform suitable for transmission over a channel (usually as a sinusoid)
- Information is transmitted over the channel by varying one (or more) of the following:
 - Frequency
 - Phase
 - Amplitude

ELEC0031 Digital

6

Examples of Modulation

ASK (Amplitude Shift Keying)

"1"= $A_0 \cos(2\pi f_c t)$

"0"= 0

• FSK (Frequency Shift Keying)

"1"= $A_0 \cos(2\pi f_1 t)$

"0"= $A_0 \cos(2\pi f_2 t)$

• PSK (Phase Shift Keying)

"1"= $A_0 \cos(2\pi f_c t)$

"0" = $A_0 \cos(2\pi f_c t + \pi)$

ELEC0031 Digital Communications 7

Notes on Modulation

- The choice of modulation greatly effects the system performance
- Modern communications theory views channel coding and modulation as a single operations. This results in so-called "trellis codes" which can yield incredible performance
- We will study the most common digital modulation techniques: QPSK, OQPSK, and MSK

ELEC0031 Digital

The Channel

- The channel carries the signal. Could be wire, free-space, magnetic disk system
- Real-world channels experience attenuation, noise (interference), fading
- Fading is particularly important in mobile and satellite communications
- In this course, we will assume a simple channel model - AWGN (additive white Gaussian noise)

ELEC0031 Digital

ç

What makes a good comms. system?

- Large data rate (bits/sec.)
- Small bandwidth (Hz)
- Small signal power (Watts, dBW or dBm)
- Low distortion (S/N, or BER)
- Low cost high complexity does not necessarily mean high cost
- In practical systems, as in every engineering design, there are trade-offs to be made in achieving these goals

ELEC0031 Digital Communications

Data rate vs. Bandwidth

- For a fixed S/N ratio, increased data rate means shorter data pulses - thus larger bandwidth
- This can't be avoided: Claude Shannon, 1948
- The ratio of the data rate to the bandwidth is the bandwidth efficiency, $\eta_{\scriptscriptstyle B}$
- We want a large bandwidth efficiency $\eta_{\scriptscriptstyle B}$

ELEC0031 Digital Communications 11

Fidelity vs. Signal Power

- One way to get an error free signal would be to use an enormous amount of power to blast over the noise!
- Some types of modulation achieve relative error free transmission at lower powers than others
- The energy efficiency is : $\eta_{\scriptscriptstyle E} = E_{\scriptscriptstyle b} \, / N_{\scriptscriptstyle 0} \big|_{P_{\scriptscriptstyle b}=10^{-6}}$
- We want a small $\eta_{\scriptscriptstyle E}$

ELEC0031 Digital Communications

Bandwidth efficiency vs. Energy efficiency

- It is possible for a system design to trade between bandwidth and energy efficiency
- Examples:
 - Binary modulation sends only a single bit per symbol
 m-ary modulation can send multiple bits, but is more susceptible to error
 - Error correction coding improves BER, but increases bandwidth
- This is a fundamental trade-off in digital communications

ELEC0031 Digital Communications

13

The master plan...

- Channel coding
 - Block codes
 - Convolution codes
- Digital modulation techniques
 - QPSK, OQPSK, MSK and FSK
- Spread spectrum techniques
 - FH and DS generation and detection
- Encryption and decryption

ELEC0031 Digital

Channel coding

- Used for improving the error performance (ie. lowering the BER) when the S/N ratio cannot be increased;
 - fixed signal power, e.g. satellite downlink
 - combat fading or jamming
- Channel coding adds redundancy to the encoded source data by inserting extra code digits in such a manner that the receiver can possibly detect and even correct errors introduced by the channel
- The resulting codes are usually (but not always) binary. We will only consider binary codes here.

ELEC0031 Digital Communications

15

Channel coding: classes of code

There are two basic classes of code

- Block codes: the sequence of message bits from the source is sub-divided into fixed length blocks. To these fixed length message block a number of parity of bits are added. The parity bits are derived from the message bits
- Convolutional codes: a sliding sequence of past message bits are used to generate the code.

Both systems are extensively used in data storage (CD) and communications systems (GSM)

ELEC0031 Digital Communications

Channel coding: to detect or correct?

- Both block and convolution codes can be used for FEC (forward-error-correction), but the widest application of block coding over band-limited channels has been in error detection
- If any error is detected in a received data block the transmitter is notified to repeat the data block - this is known as the ARQ (automatic request for retransmission) system. This scheme requires extra storage at the transmitter and importantly a return channel (albeit a slow narrow band one)
- Error *detection* schemes yield a lower overall probability of error than error *correction* schemes

ELEC0031 Digital Communications

17

Channel coding: data errors

- Data errors always likely when a digital message is transmitted or storage
 - Transmission systems: subject to noise due to external interfering signals and noise generated within the receiver
 - Signal distortion: reduces the noise margin at the detector which renders the data more susceptible to error
 - Digital storage: always prone to error since ultimately the data is stored in *analogue* form; as a charge pattern (DRAM) as a magnetic pattern on a storage modium (e.g. Hard disks) or as a change in polarization (e.g. MO disks)

ELEC0031 Digital Communications

Channel coding: error types

Errors can be classified into two types;

- Random errors: equal probability of error at all times.
 The probability of an error at a particular time is not influenced by the error history. That is to say the errors are independent
 - Random errors are associated with the presence of white noise this gives rise to the classic relationship between S/N ratio and the BER or P_b
 - For example; for binary PSK, the probability of a bit error is

$$P_b = Q \left[\sqrt{2 E_b / N_0} \right]$$

ELEC0031 Digital Communications

19

Channel coding: error types

- Burst errors: occur when the likelihood of error is greater at certain times than others
- · Common causes of burst errors:
 - Radio signal fading (multi-path, obstructions, rain)
 - Interference from large electrical machines, EMI
 - Lightning (electrical storms)
- The *bursty* channel is broadly described by a two-state model. In the burst state $P_b \rightarrow 0.5$ at other times (the non-burst period) P_b is low $< 10^{-3}$ (say). Transitions from one state to the other occur at random times.

ELEC0031 Digital Communications

Channel coding: error types

- The statistics of a channel consist of parameters like the time between bursts and burst length. Each of these parameters will have its own probability distribution
- In either state the transmission path will be described by its *random error performance*
- Special codes and procedures to deal with burst errors will be described later in the course ...

ELEC0031 Digital Communications