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Abstract: A new nonlinear technique for filtering motion fields and other multivariate data is
introduced. The method is developed from mathematical morphological area openings and uses a
vector to scalar transform, in which each vector is replaced by the sum of the distances to its
connected neighbours, to control the growth of extrema regions. As the filter either perfectly
preserves or completely removes image components, it is able to remove noise without altering
significant features. In addition, at larger area sizes a meaningful interpretation of the underlying
structure is achieved. Results show that the vector area morphology sieve performs well in
comparison to the widely used vector median filter.

1 Introduction

Nonlinear filters have long been established as a popular
class of methods for many digital imaging applications.
Arguably the most widely used nonlinear technique is the
median filter, mainly due to its ability to remove noise
without excessive edge smoothing or generating any values
not present in the original image. Many of the techniques
that have been developed for scalar-valued images can also
be applied to multivariate or vector data such as that found
in motion fields, colour images and multi- and hyper-
spectral images. However, the extension of nonlinear
methods to multivariate data is not straightforward. For
example, applying a median filter to each component of an
RGB image can produce vectors that were not present in the
original image and edge jitter. These problems are over-
come with the development of the vector median (VM) filter
for multivariate signals [1] that has been used in application
areas such as colour image processing and motion field
regularisation [2, 3]. Unfortunately the VM filter also has
the same lack of controllability as the scalar median filter,
the only tuning parameter being the mask size. A finer
degree of control is provided by the weighted vector median
(WVM) filter developed by Viero et al. [4] which operates
in a similar manner to the weighted median (WM) filter.
This adds an additional degree of control but requires a
suitable mechanism for determining the weights.

Another disadvantage of the median filter is that it is not
idempotent unless the input is a root signal which results
after n=2 repeated applications, where n is the filter length.
Alternatively, the property of idempotency is exhibited by
another class of nonlinear operators, namely mathematical
morphology (MM) openings and closings. This is one of the
many reasons underpinning the widespread popularity of
MM for noise reduction, shape and multi-scale analysis,

edge detection and many other applications for processing
and analysing binary and greyscale images.

The extension of MM operations to colour image
processing is proposed in [5]. To perform the morphological
operations each multivariate value is reduced to a scalar
using a distance metric, resulting in a reduced ordering. This
approach relies on the use of a structuring element, the
shape and size of which influences the output image.
Further, to successfully remove noise it is necessary to apply
multiple operators consisting of different structuring
elements for both the opening and closing stages, selecting
the maximum and minimum outputs, respectively.

For single-valued images the need for multiple structur-
ing elements is overcome with the development of
connected set granulometries [6–9]. Of these, area openings
and closings [7, 8], later generalised as attribute openings
[10], have proved a useful tool for image analysis and
classification [11], and provide a fine degree of control over
the filtering action [12]. Compared with traditional
morphological openings, area openings have the advantage
of not being based on a fixed structuring element. Instead,
they remove all maxima connected components of an image
with an area less than the area limit � and have been shown
to be equivalent to a maximum of openings with all possible
connected structuring elements with � elements. Greyscale
area openings remove all light structures up to the area limit,
and area closings operate in a similar manner on dark
structures. Successive applications of increasing scale area
openings and closings gives rise to morphological area
sieves that have the advantage of being able to use area or
any other attribute to control the sieving action [10]. At each
sieve scale the image has extrema regions that are flat zones
at least equal to the current area size, with other image
components completely preserved. The extension of area
morphology to vector images therefore has the potential for
providing a finer degree of control over filter action than the
VM filter without the requirement for multiple structuring
elements of existing morphological methods for vector
images.

This paper describes a new approach for applying an area
sieve to vector images. The filtering action is controlled by a
transform in which each vector is replaced by the sum of the
distances to its connected neighbours. This is more powerful
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than the distance transform of [5] where the Euclidean norm
of each pixel is the metric used for the reduced ordering as it
takes into account both the magnitude and direction of the
multivariate values. In the transformed image the vector
extrema can be identified as those positions with a sum of
distances greater than any in a local neighbour, defined
using local 4 of 8 nearest neighbour connectivity. This
contrasts with the definition of the vector median, which is
the vector whose sum of distances is the minimum in the
local neighbourhood. Once identified, those extrema regions
that are smaller than the current sieve size � are replaced by
the closest vector from the connected neighbourhood,
creating flat zones in the multivariate image.

2 Vector median filtering

The VM filter exhibits the same desirable properties of the
scalar median filter but also suffers from some of its
drawbacks, in particular the relatively coarse degree of
control provided by the selection of mask size and shape.

Given a set of N vectors V the vector median~xxVM 2 V is
defined by

X

~xxi2V
k~xxVM �~xxikp �

X

~xxi2V
k~xxj �~xxikp 8j 2 V ð1Þ

where the norm k�kp defines the metric used to convert from
a vector to a scalar value. In practice the city-block distance
or the Euclidian distance is used, for p ¼ 1 or 2,
respectively.

Direct calculation of (1) requires the distance between all
possible vector pairs to be computed, which is too
computationally expensive for most practical applications.
To reduce the complexity, a faster running algorithm
based on the samples entering and leaving the window
at each location can be used. An alternative strategy is
the development of fast algorithms for minimising (1).
The latter approach has been used for both the 1-norm [13]
and the squared Euclidean norm. A thorough review of
the computational performance of fast algorithms is given
in [14]. To date, no fast calculation has been found for
the Euclidean norm, which is the best performing
metric. Instead, effort has been put into the development of
an efficient pseudo-norm with only slightly reduced
performance [15].

The only free parameter available for tuning the VM is
the mask size. A finer degree of control is achieved by the
WVM filter, generalised from the scalar case in [4] and
extended to real-valued weights by Alparone et al. [3].
Given a set of weights wi; i ¼ 1; 2; . . . ;N; the WVM ~xxWVM

is defined by
X

~xxi2V
wik~xxWVM �~xxikp �

X

~xxi2V
wik~xxj �~xxikp 8j 2 V ð2Þ

An alternative derivation of the weights for use as a motion
field post-filter within a video codec is given by a ratio of
displaced frame difference values in [16]. The application
area for this latter scheme is the integration of motion field
post-processing within an H.263 video codec. However, to
achieve any overall coding gains a conditional decision on
whether to retain the original vector or replace with a
filtered vector is required.

3 Vector area morphology

Area morphology belongs to the attribute-based class of
operators. Unlike basic morphological operators, area
morphology does not require a fixed structuring element.

Instead, it adapts to the contents of the image using an
attribute, for example area, contrast or complexity, to
control which image components are removed. A greyscale
area open (AO) is given by

�lðXÞ ¼ _
B2Al

ðX � BÞ ð3Þ

where A� is the set of connected subsets whose area is ��.
For this function to be an area opening, it must also satisfy
the increasing criteria:

X 
 Y ) CðXÞ 
 CðYÞ ð4Þ

An area open sieve given by

AO�ðXÞ ¼ �lð�l�1ð. . . ð�2ð�1ðXÞÞÞÞÞ ð5Þ

successively increases the sieve scale to remove connected
maxima of increasing area, producing a size or granulo-
metry distribution, and creating flat zones in the filtered
image.

As only regional maxima are affected by an area opening,
pixels that do belong to maxima need not be processed. This
fact is used by Vincent to develop an algorithm for the
efficient computation of area openings [7], which can easily
be modified to the area sieve form, as shown in Fig. 1. This
implementation provides the starting point for the develop-
ment of the VAM algorithm. For a recent review of this and
other attribute openings and closings implementations
see [17].

The aim of VAM is identical to that of the scalar case: to
remove extrema regions less than a given area size, the
difference being that the components removed and flat zones
created consist of vectors. In area morphology the greyscale
intensity value is used as the criteria to determine regional
minima and maxima. As there is no natural mechanism for
ordering multivariate data the local extrema are not well
defined. The standard approach is marginal ordering, also

Fig. 1 Area open sieve algorithm

Fig. 2 Example motion field
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Fig. 3 Vector to scalar transform process

a Original motion field (see Fig. 5a for vector representation)
b Vector to scalar transform of a using (7) with 8 nearest neighbour connectivity and p ¼ 1
c Flat zones
d Modified transform values
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known as component-wise filtering, in which the morpho-
logical filter is applied to each individual channel. When the
channels are correlated, for example in the case of colour
images, the decision to remove or enhance components in
each channel is taken on an individual basis, and this can
result in edge jitter [1].

The approach adopted here is to use a scalar image derived
from the original vector data to control the filtering of the
original vector data. A similar approach is proposed by
Comer and Delp for noise reduction in colour images using
the Euclidean norm as the metric to produce the scalar image
[5]. The shortcomings of using the Euclidean norm as the
metric for each pixel can be illustrated by a simple example –
see Fig. 2. The vector with the greatest magnitude and
therefore the largest Euclidean norm can clearly be identified
(centre left). However, on inspection of the vector set the
vector in the centre clearly stands out as its direction is

Fig. 5 Vector area sieve results

a Original motion field
b Sieve result for l ¼ 2
c l ¼ 3
d l ¼ 4

Fig. 4 VAM sieve algorithm

Fig. 6 Original image and flat zones from VAM sieve for l ¼ 17
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markedly different from the others; this vector is a natural
outlier and can therefore be considered the local extremum.

In (1) the vector median is defined as the vector that has
the minimum distance to all other vectors in the set. In this
spirit, the vector extremum~vvVE can be defined as the vector
that is furthest from its neighbours, given by

X

~xxi2V
k~xxVE �~xxikp �

X

~xxi2V
k~xxj �~xxikp 8j 2 V ð6Þ

For VAM, the right hand side of (6) can be used as a
distance transform d½~xxi� that maps each ~xxi to a scalar by
replacing each vector by the sum of the distances to its
connected neighbours. Thus,

d½~xxi� ¼
X

~xxj2N i

k~xxj �~xxikp ð7Þ

where N i is the set of connected neighbours of ~xxi:
Although (7) provides an attractive mechanism for

identifying natural outliers it does have some disadvantages.

One of these disadvantages results from the transform being
a many-to-many mapping: different vectors can have the
same transform values and identical vectors can have
different transform values. This contrasts with the transform
of [5], which is a many-to-one-mapping. Scalar area
openings work by processing (enlarging) those flat zones
that are regional maxima. To ensure that each flat zone in
d½~xxi� is treated as a single entity, all vectors belonging to a
flat zone are assigned the mean value of the zone. This
process is illustrated in Fig. 3. Fig. 3a is a motion field
produced by a rate constrained video codec from two frames
of the well known foreman sequence. The vector to scalar
transform of the field produced by (7) is shown in Fig. 3b
and its flat zones in Fig. 3c. Finally, the modified transform
values are given in Fig. 3d.

Once this transform has been performed, regional
extrema can be identified in the same manner as for scalar
area morphology. The extrema regions consist of local
maxima or minima vectors as both of these will give rise to
peaks in the distance transform surface. Therefore, unlike

Fig. 7 Vector area sieve results for (in raster order) area ¼ 1, 2, 3, 4, 5 and 6
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scalar area morphology, which requires both opening and
closings, VAM only requires area openings.

The next step of the area sieve algorithm in Fig. 1 is to
assign the pixels in each maxima to the greyscale values of
the neighbour that is closest to it. The analogue in VAM is to
replace those vectors that constitute regional maxima in
d½~xxi� by the closest vectors from the connected neighbour-
hood of the maxima, determined by a norm such as the
Euclidean distance. This is easily achieved in practice as the
neighbours of each regional maximum are held in a list for
computational purposes [7, 17]. However, vector replace-
ment will also alter the d½~xxi� value of the regional maxima’s
neighbours. As a consequence, after updating d½~xxi�; two
checks need to be performed: firstly, to determine if each
region is still a maximum and, secondly, whether any new
maxima have been created. For the second check the only
positions that need to be tested are those whose d½~xxi� value
has changed and their neighbours. These are the neighbours
of the original regional maxima and the neighbours of the
neighbours. The possibility of creating new maxima with

increasing scale is a property that has been found elsewhere
[18]. At each scale the area of any newly created maxima is
increased until it either meets the current area limit or the
region is no longer a maximum.

The algorithm for a VAM sieve, incorporating the above
considerations, is given in Fig. 4. To illustrate its operation
it has been applied to the motion field of Fig. 3a, and the
results are presented in Fig. 5. As can be seen, as the scale
increases maxima regions are removed and replaced with
the most similar vector from the regions’ neighbours,
creating flat zones equal to the current area size l.

4 Experimental results and discussion

To illustrate the effectiveness of the VAM sieve for motion
field smoothing and interpretation it is applied to a motion
field produced by two frames from towards the end of the
‘Coastguard’ sequence. The first of the frames is shown in
Fig. 6. Block matching was used to generate a motion field
with a block size of 8 � 8 and a search range was

Fig. 8 Vector area sieve results for (in raster order) area ¼ 7, 8, 12, 17, 64 and 72
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^16 pixels, to a 1
2

pixel resolution. The original motion field
and the VAM sieve results for each area size that removed a
component from the motion field are shown in Figs. 7 and 8.
Some structure is discernible in the original motion field but
it is corrupted by many noisy vectors. As the sieve scale
increases, successively larger flat zones that constitute
regional maxima are removed. At a scale of 4 the motion
field is ‘cleaned’ and provides a de-noised interpretation of
the original field that is both smooth and consistent. Note
that as a VAM sieve either completely removes or
completely preserves structures the larger scale boundaries
are not adversely affected by the filtering. This contrasts
with vector median filtering (see Fig. 9), where the removal
of noise also modifies the boundaries present in the motion
field, thus changing the shape of objects undergoing a
common motion.

As the scale increases, the VAM sieve provides a more
meaningful motion field interpretation, with each flat zone
corresponding to a region of uniform motion in the original
field. Successively larger components are removed up until
scale s ¼ 72; when the whole image is assigned the vector
(4, 0), which gives the global motion. At an area size of
l ¼ 17; seven vectors are present and the flat zones for each
are shown in comparison with the original image in Fig. 6.
The boat in the centre of the image is clearly defined and has
a motion vector of (1.5, 0). The vector median filter with
increasing mask size (see Fig. 9) completely fails to achieve
this interpretation.

These results show that the VAM sieve performs well
at motion field smoothing and interpretation. There are
two main factors behind its success. The first of these is
the use of the connected neighbours for each vector
to generate the scalar surface from the vector values.

This contrasts with the use of a vector norm which, as a
magnitude operation, essentially discards any information
on directional information. Secondly, the area opening
filter structure provides a much finer degree of control
over the filter action. The difficulties in extending the
area opening approach to multivariate data are success-
fully overcome, as detailed in the algorithm description,
to give a consistent vector image interpretation. The
results presented compare very favourably with those of
VM filtering.

Although the work presented here is for motion fields, the
techniques are also applicable to multivariate data of any
size and/or any number of dimensions, for example colour
images and multi-spectral imagery. In addition, just as with
scalar area and closings, the use of other attributes to control
the filter action is possible.
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