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ABSTRACT 
This paper presents a computationally efficient 

molinn estimation technique based on image sampling 
which determines the dominant motion between pairs 
of images. The technique is suitcd to low complexity, 
low bit rate multimedia applications, where the 
objective is to achieve good fidelity wilhout the 
overhead o i  full  motion compensation. This can he 
achieved if the dominant motion is a combination of 
translation, rotation and zoom, which can be described 
by a similarity transformation. The method adopts a 
new approach to determining the model parameters, 
based on gcneraling ii list 01' parameter estimates from 
pairs of block motion vectors and selecling the mean uf 
those estimates cluse lo the median. The method gives 
a good sub-pixel dominant motion estimate by 
sampling as little as  1/20"' of the image area. itesults 
show the method to be accurate and robust, with low 
coinpulational rcquiremcnts. 

1. INTRODUCTION 
Motion estimation is an important component of 

video codecs, as it greatly reduces the inherent spatial 
redundancy within video sequences. However, it also 
accounts for a large proportion of the computalional 
effort. l o  estimate the inolion of pixels between pairs 
of images block matching algorithms (BMA) are 
regularly used, a typical cxamplc being the Exhaustive 
Search Algorilhm (ESA) ol'ten employed by MPEG-11. 
Many researchers havc propixed and developed 
algorithms to achieve bcller accuracy, efficiency and 
robustness [I-51. A common approach is to search in ii 

coarse to fine pattern or to employ decimation 
techniques. However, the saving i n  computation is 
often at the cxpcnse of accuracy. This problem has 
been overcome by the successive elimiiiation algorithm 
(SEA) of Li and Salari [61, that produces identical 
results to the ESA with gently reduced computation, 
and is the method used in this research, However. 
block-based iiiolion estimation slill remains a 
signiiicant computational expense and is sensitive to 
noise. A further disadvantage of a block-bascd 
approach is [hat the motion vectors constitute a 
significant proportion of the bandwidth, particularly at 
low bit rates. This is one reason why standard systems 
such as MPEG I1 or E1263 use larger block sizes. 

In typical multimedia video sequences, inany image 
blocks share a common motion, as scenes are often of 
low complexily. IT more than half the pixels in a frame 
can be regarded as belonging to one object, we dcfiirc 
the motion of this object as the dominant motion. This 
definition places no further restrictions on the dominant 
object type; it can he a large forcgriiund object, h e  
itnage background, or even I'ragmentcd. A model of the 
dominant motion represents an efficient motiim coding 
scheme fix low complcxity applications such a s  those 
found in multimedia and has become a Sociis Tor 
research during rccent years /7-9 I. hi- internet video 
broadcast, a limited motion compensation scheme of 
lhis type offers a fidclity enhancement without the 
iwerhead of iull motiun estimation. 

The use of a motion model can lead til more 
acciiratc computation 01' motion fields 1101 mil reduces 
the prublem of motion estimation to that of 
determining the model parameters. One of the 
attrt~~tioiis OS this approach Sor video codcc 
applications is that the model parameters use a very 
smell bandwidth comparcd with thai of a full block- 
based motion field. 

The paper is organized a s  follows. The motion 
model and new algorithm arc described in Section 2 
and in Section 3 the optimal block size for the new 
method is detcrmined. Seclion 4 presents experimental 
results and conclusions arc drawn in Section 5 .  

2. MOTION MODEL AND ALGORITHM 
DESCRIPTION 

For many multimedia applications, the dominant 
motion can be described by a similarity transform thal 
has only 4 parameters. As shearing is relalively lare i n  
most video sequences its exclusion does inot 
compromise the generality of the model. The similarity 
inodel relates corresponding points in  the source ( x , y )  
and object (11,v) images by 

For motion estimation Llie parameters U ,  b,  c and (1 
are unknown and must hc inrerrcd Srom image pairs 
using correspondent points and a inatrix inverse 
operation. When errors in lhc matching process are 
anticipated, an over-determined set of cqulitions can be 
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used to approximate the parameters. The conventional 
approach is to use a least-squares technique, perhaps 
with regularization, to solve the matrix inverse. 
However, for real-time motion estimation applications 
this has the disadvantages of being computationally 
expensive and sensitive to outliers. 

A new method for estimating the model parameters 
is presented that, instead of combining all matching 
blocks in one least-squares procedure, takes them in 
pairs to produce a series of estimates for the 
parameters. Equation ( I )  has four unknowns and thus 
can be solved using two image points, {(xl ,y lJ ,  (x2,yZJ) 
and their correspondences ( (ul ,vI) ,  ( ~ 2 ~ ~ 2 ) ) .  
Substituting these into (1) and eliminating c and d gives 

(x, -x, ) ( y 2  - Y ,  J a u2 - U ,  (2) 
c I Y 2  - Y ,  i I X ,  - ,Y2 , IL l=  [ U *  - U , ]  

which can be easily solved either directly or, for 
example, by Gaussian elimination. Thus each pair of 
matched points produces an estimate of a and 6, but 
with a high risk of error. The problem now is to 
determine accurate values from the list of estimates. 

As the dominant motion is the motion of the 
majority of the blocks, many of the estimates should be 
of similar parameter values. Therefore the most 
common value of the estimates should he that of the 
dominant motion. This suggests that a histogram-type 
approach can be used, with the dominant motion 
parameters corresponding to the mode. However, 
selecting the accumulator bin size for a histogram is not 
trivial, a problem exacerbated when the number of 
estimates is small compared with the numbers of bins 
and a high resolution estimate is required. This has 
motivated a new approach to parameter estimation, 
using Order Statistics. 

Figure 1 shows a typical sorted list of estimates 
from an actual image pair for the parameter a. For this 
example 20% of the 1024 blocks in a test image were 
sampled, giving 102 estimates. Presented in this format, 
the modal value occurs at the flattest section of the 
graph, as this is produced by a significant number of 
estimates with very similar values. The flat region is 

0.151 I 

Fig. 1: Ranked list of estimates for the parameter a 

Step 1 Tile the reference frame into non-overlapping 
blocks. 
While (Proportion of blocks selected <desired 
proportion) 

Step 2 Select blocks from the source image and 
use SEA algorithm to find matching blocks 
Step 3 Find estimates for parameters a and 6 
using Equation (2) and place them in a sorted 
lists. 

End 
Step 4 The mean of the estimates within rtO.1 
standard deviations of the median provides values for 
n and 6. 
Step 5 For each block, substitute the calculated values 
for a and 6 into Equation (1) and solve to give 
estimates for the translational motion components c 
and d. Again, place the estimates in a sorted list. 
Step 6 Find the mean of the estimates within iO.l 
standard deviations for c and d. 

Fig. 2: Algorithm for model parameter estimation. 

approximately 24 estimates wide. Those estimates on 
either side of the flat region result from incorrect or 
inaccurate motion estimates, and from blocks not 
belonging to the dominant object. It should be noted 
that the distribution of these outliers is reasonably 
symmetric around the central flat region. The mean of 
the estimates within the flat region offer a suitable value 
for the parameter a and this is implemented in practice 
by averaging those estimates within f O . l  standard 
deviations of the median value. This approach is used 
to find values for U and 6, which are substituted into (1) 
to produce a list of estimates for c and d, from which 
values can be found using the same method. The 
method is easily combined with a block sampling 
scheme and a pseudo-algorithm is given in Figure 2. 

3. BLOCK SIZE SELECTION 
Step 2 of the algorithm described in Figure 2 uses 

block comparisons to find matching blocks. This is 
performed using the SEA algorithm and the mean 
absolute deviation (MAD) is the matching metric. 
However, the question of block size still has to be 
addressed. It can be seen from Figure I that there must 
be sufficient values in the flat region of the list for the 
parameter selection routine to be successful. The 
number of blocks that must be sampled to achieve this 
is proportional to the probability of finding pairs of 
good matches and the size of the dominant object. 

Therefore the smaller the block size, the less the 
computation that is required to generate the list of 
estimates. Furthermore, small blocks have less 
likelihood of containing points from more than one 
object. Opposing this, the probability of achieving a 
good match decreases with smaller block sizes. 

To investigate this effect a test set of image pairs 
with known inter-image transformation parameters were 
generated from the Y component of the CCITT test 

454 



Raw Motion Estimates Motion model 

Translation 

Rolalim 0.94 0.29 

Block Slze 

Fig. 3: RMS vector errors of raw motion vector 
estimates versus block size. 

image Gold Hill. The test set consisted of pure 
translation, rotation and zoom and a combination of the 
three, termed complex motion, that consisted of a 
combination the pure motions: 4.5 pixel horizontal and 
vertical shift, a zoom of 1.035 and finally a 3" rotation. 

The reference coordinate for the transformation was 
the image center and the image size was 256x256 for 
all cases. For each test image pair the SEA was 
repeatedly applied, varying the block size between 2 
and 32 pixels. The search range was set to +8 pixels for 
the pure motion test images and 216 pixels for the 
complex motion pair. Figure 3 presents the RMS vector 
error between the raw motion estimates from matching 
the all blocks in the test images, using a range of block 
sizes between 2x2 and 32x32 pixels. It can be seen that 
the overall error for all test images is at a lowest within 
the range of 8 to I6 pixels and therefore the minimum 
of this (8x8) was selected for the block size. 

4. EXPERIMENTAL RESULTS 
The new algorithm was applied to the test image 

set. In all cases 20% of the image blocks were sampled, 
the block size was 8x8 and the search range was as 
above. To quantify the performance of the algorithm, 
the results achieved are compared with those of the raw 
motion estimates and those produced by performing a 
least-squares fi t  on the raw estimates. In addition, the 
known inter-frame transformation parameters are used 
to provide a set of standard results (the "right answer") 
which can be directly compared with the model results. 

Figure 4 (a) presents the motion vectors produced 
for the complex motion test image set. The raw block 
motion estimates (top left) are irregular and 
inconsistent. Both the motion model and least-squares 
fi t  exhibit a smooth field but by comparison with the 
right answer (bottom right) it can be seen that the 
motion model result is closer to that of the actual flow. 

This is confirmed by considering the vector error at 
each point. The vector error is the difference between 
the detected and the true motion vectors, given by 

Fit 

I .22 
1.51 
0.71 

Rlqht answer Leastsquares Fit 

(a) 
Raw Motion Estimates Motion Model Least-sauares Fit 

(b) 
Pig. 4: Experiment results for complex motion (a) 

motion fields and (b) vector errors 

and shown in Figure 4(b). The errors for the motion 
model and least-squares fit are much lower that of the 
block matching estimates. However, the sensitivity of 
the least-squares technique to outliers can be seen i n  
the residual error values. The motion model techniques 
clearly has the lowest overall error and this is 
confirmed by Figure 5 which gives the average vector 
error for pure translation, rotation, zoom, and the 
complex motion of Figure 4(b). For all cases the 
motion model has produced the lowest error, with 
vdues ranging from a half to a sixth of the least- 
squares result. 

The performance of the motion method in the 

II I t S W  I Motion I Least-Squares 

2.49 I 0.33 I 2.41 
Table 1: Average RMS vector errors for all test images 
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Fig. 5: RMS vector error in presence of noise for 
complex motion test image set 

presence of noise is assessed by adding Gaussian noise 
with zero mean and standard deviation 1.0 to the test 
image set, to a predetermined level of Power Signal to 
Noise Ratio (PSNR). The result for complex motion is 
shown in Figure 5. Again the motion model produces 
the lowest error; this was also the case for the pure 
translation, rotation and zoom test images. 

Finally the performance in relation to the proportion 
of the image of the image that is siimpled is 
investigated. Figure 6 shows the results for the complex 
motion test images. Between 16 and 200 of the 1024 
8x8 blocks were sampled. Below 16 the vector error 
rapidly increased. For all cases the model method 
produces a lower error than the other techniques. In 
practice, high quality results can safely be achieved 
with as little as 48 blocks, less than 5% of the image. 

5. CONCLUSIONS 
A new low complexity limited motion estimation 

algorithm has been described, based on image 
sampling. The underlying model for our algorithm is 
the similarity transform, which only requires 4 model 
parameters to specify the flow vectors and is well 
suited to multimedia applications. 

The conventional approach to estimating the 
parameter values uses motion vectors and a least- 
squares technique. This is both computationally 
expensive and sensitive to outliers. Instead of 
combining all vectors in one estimate, our method 
generates ti list of estimates from pairs of matching 
blocks. The mean of those estimates close to the 
median is then selected as the parameter value. This is 
a robust nonlinear technique that produces accurate 
results with reduced computation. The approach can be 
used for many practical multimedia applications and 
has the potential for extension to multiple objects. We 
have evaluated the method and found it to be accurate 
and efficient for determining the dominant motion 
using as little as 5% of the image area 

Our group have recently developed a two layer 
video codec that demonstrated lOdB improvement over 
so-called Motion JPEG [ 111 for fixed cameras and no 

Number of Blocks 

Fig. 6: RMS vector error versus number of 
blocks sampled for complex motion test images 

motion compensation. The technique presented here 
will further improve this system, with significantly 
lower computation than occurs in block based motion 
compensated video systems such as MPEG-I1 or H263. 
We also plan to extend the technique to allow the 
extraction of multiple video objects. 
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