
Wavenumber-explicit bounds in time-harmonic acoustic

scattering

E. A. Spence∗

June 9, 2014

Abstract

We prove wavenumber-explicit bounds on the Dirichlet-to-Neumann map for the Helmholtz
equation in the exterior of a bounded obstacle when one of the following three conditions
holds: (i) the exterior of the obstacle is smooth and nontrapping, (ii) the obstacle is a non-
trapping polygon, (iii) the obstacle is star-shaped and Lipschitz. We prove bounds on the
Neumann-to-Dirichlet map when one of conditions (i) and (ii) hold. We also prove bounds on
the solutions of the interior and exterior impedance problems when the obstacle is a general
Lipschitz domain. These bounds are the sharpest yet obtained (for their respective problems)
in terms of their dependence on the wavenumber. One motivation for proving these collection
of bounds is that they can then be used to prove wavenumber-explicit bounds on the inverses
of the standard second-kind integral operators used to solve the exterior Dirichlet, Neumann,
and impedance problems for the Helmholtz equation.

Keywords: Helmholtz equation, Dirichlet-to-Neumann, Neumann-to-Dirichlet, impedance
boundary condition, wavenumber-explicit, semiclassical, boundary integral operator.

1 Introduction

Proving bounds on solutions of the Helmholtz equation

∆u+ k2u = −f (1.1)

(where f is a given function and k > 0 is the wavenumber) is a classic problem. When a Helmholtz
boundary value problem (BVP) has a unique solution, the solution can be bounded in terms of the
data using Fredholm theory, since the variational, or weak, formulations of Helmholtz BVPs satisfy
G̊arding inequalities. The resulting bounds, however, are not explicit in the wavenumber k.

Obtaining k-explicit bounds on the Helmholtz equation has a long history, and we discuss some
of this previous work in detail below. We mention at this stage the fundamental k-explicit bounds
of Morawetz [44] and Vainberg [58] on the inverse of the Helmholtz operator in exterior domains
that are nontrapping. The former bounds rely on certain identities for solutions of the Helmholtz
equation, and the latter bounds are proved using much more general arguments that exploit the fact
that the Helmholtz equation arises by taking the Fourier transform in time of the wave equation
and then use the propagation of singularities results of Melrose and Sjöstrand [36], [37]. Since the
inverse of the Helmholtz operator is the resolvent of the Laplacian, these bounds are often called
resolvent estimates.

Given this area’s long history, one might think that there are no more outstanding problems
to solve. However, there has been a revival of interest in k-explicit bounds on solutions of the
Helmholtz equation, largely motivated by the current interest in the k-explicit numerical analysis
of wave propagation problems (see, e.g., the recent review articles [11], [16], [17], [18]), and this
renewed interest has highlighted that several fundamental problems remain open.

In particular,
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(a) although the classic resolvent estimates of Morawetz and Vainberg in exterior nontrapping
domains are sharp in their k-dependence, there do not yet exist sharp bounds on the Dirichlet-
to-Neumann (DtN) and Neumann-to-Dirichlet (NtD) maps in these domains;

(b) there are relatively few bounds available for exterior problems in nonsmooth domains (mainly
because the propagation of singularities on these domains is highly nontrivial);

(c) there do not yet exist sharp bounds on the solution of the interior impedance problem posed
in a general Lipschitz domain.

Regarding (a): although the classic resolvent estimates can be converted into bounds on the DtN
and NtD maps (and this was done recently by Lakshtanov and Vainberg in [28]), the bounds
obtained so far via this method appear not to be sharp in their k-dependence (and we prove this in
this paper). Although these DtN and NtD bounds are of interest in their own right, they play an
essential role in bounding the inverses of the integral operators used to solve the exterior Dirichlet
and Neumann problems (see §1.3).

Regarding (b): the resolvent estimates obtained by Morawetz in smooth domains can be extended
to hold in nonsmooth star-shaped domains, since these estimates rely on identities that hold in
Lipschitz domains (see §3.1 and [12, Lemma 3.8] for more details). The more general arguments of
Vainberg rely on results about propagation of singularities, and the relevant results for nonsmooth
domains have only recently been obtained (see [40], [39], [59], [38], [8] and §3.1).

Regarding (c): many investigations of numerical methods for solving the Helmholtz equation
begin by considering the Helmholtz equation in a bounded domain (to avoid the complications
associated with imposing the radiation condition numerically). To obtain a BVP that is well-posed
for every k > 0, an impedance boundary condition

∂u

∂n
− iηu = g (1.2)

is applied, where g is a given function and η is a real constant. Because this interior impedance
problem is used as a model problem for numerical analysis of the Helmholtz equation, several
authors over the years have obtained bounds on the solution in terms of the data that are explicit
in k and η [20], [33], [15], [18] (with [24], [7], and [30] considering closely-related Helmholtz BVPs
and [25], [41] considering the analogous BVP for the time-harmonic Maxwell equations). However,
there do not yet exist sharp bounds (in terms of k- and η-dependence) on the solution of this BVP
posed in a general Lipschitz domain.

Aside from its use as a model problem for numerical analysis, the interior impedance problem
plays a fundamental role in the conditioning of the integral operators that are used to solve exterior
problems. Indeed, to bound the inverses of the integral operators used to solve the exterior Dirichlet,
Neumann, and impedance problems, one needs not only bounds on the exterior DtN, NtD, and
impedance-to-Dirichlet maps but also a bound on the interior impedance problem. (If the reader is
not familiar with boundary integral equations then this may appear strange, however each of the
integral operators for the three exterior problems can also be used to solve the interior impedance
problem. Therefore it is natural that the norms of the inverses of the integral operators should
depend on both the exterior and the interior problems.)

In this paper we do the following:

1. We prove bounds on the exterior DtN map, which are sharper in their k-dependence than
any previously-obtained bounds, when one of the following three conditions holds:

(i) the exterior of the obstacle is a C∞ nontrapping domain in 2- or 3-d,

(ii) the obstacle is a nontrapping polygon (in 2-d),

(iii) the obstacle is a star-shaped, Lipschitz domain in 2- or 3-d.

We also prove bounds on the exterior NtD map in cases (i) and (ii), with the bounds for case
(ii) being the first bounds on the NtD map for nonsmooth domains. (These DtN and NtD
bounds therefore partially address the open problems (a) and (b) above.)
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2. We prove bounds on the interior impedance problem in a general Lipschitz domain that are
sharper in their k- and η-dependence than any previously-obtained bounds (thus partially
addressing the open problem (c) above). This method of proof also yields bounds on the
exterior impedance problem.

Regarding 1: For the class of domains in (i), Lakshtanov and Vainberg [28] recently obtained DtN
and NtD bounds in the trace spaces using the classic resolvent estimates. We use the same idea,
but we sharpen the DtN bound in the trace spaces by a factor of k3/2 and also prove DtN and NtD
bounds when ∂u/∂n ∈ L2(Γ) and u ∈ H1(Γ), where Γ denotes the boundary of the obstacle, (this
case is particularly important for the applications of these bounds to integral equations; see §1.3).
For the class of domains in (ii), we obtain the DtN and NtD bounds from the resolvent estimates
in these domains recently obtained by Baskin and Wunsch [8] using results about the propagation
of singularities in this type of domain. For the class of domains in (iii), a resolvent estimate for
the Dirichlet problem was obtained by Chandler-Wilde and Monk in [12], essentially using the
identities of Morawetz (see the discussion in §3.1). The same argument used to prove bounds on
the DtN map for the class of domains (ii) can then be used to prove bounds on the DtN map for
the class (iii). By considering the specific cases of the circle and sphere and using results about the
asymptotics of Bessel and Hankel functions, we are able to determine exactly how far from being
sharp (in terms of k-dependence) the bounds for the classes of domains (i) and (iii) are.

Regarding 2: the impedance boundary condition is somewhat different from the Dirichlet and
Neumann boundary conditions in that, for the time-dependent problem, it means that energy is
either emitted or absorbed by the boundary (depending on the sign of η) and thus is not conserved
as in the Dirichlet and Neumann cases 1; this means that the concepts of trapping and nontrapping
have no meaning under impedance boundary conditions. A key feature of the interior impedance
problem when f in (1.1) equals zero is that the Cauchy data of the solution can be bounded in
terms of g in (1.2) using Green’s first identity. Since Green’s integral representation gives the
solution in the domain in terms of its Cauchy data on the boundary, k-explicit bounds on the norms
of the integral operators can then be used to bound the solution in the domain by g. Similar ideas
can be used to bound the solution when f 6= 0, with these arguments dating back to at least [20]
(although these authors only considered the case when the domain is a square or cube). We use
these ideas again here, with the main new ingredient being sharper bounds on the norms of the
integral operators. These new bounds are obtained using the classic free resolvent estimates, and
result in sharper bounds on the solution. With some small modifications, this argument also yields
a bound on the solution of the exterior impedance problem. Despite this BVP perhaps being less
interesting than the others discussed so far, we also present the bound obtained on its solution.

Although the two parts of the paper (1 and 2 above) consider different problems, they are linked
both by the methods they employ (with Vainberg’s resolvent estimates and identities related to
those of Morawetz playing key roles) and by the fact that the bounds in 1 and 2 together are then
sufficient to obtain k-explicit bounds on the inverses of the standard second-kind boundary integral
operators used to solve the exterior Dirichlet, Neumann, and impedance problems (we illustrate
this for the case of the Dirichlet problem in §1.3).

1.1 Statement of the main results

Let Ω− ⊂ Rd, d = 2, 3, be a bounded, Lipschitz open set with boundary Γ := ∂Ω−, such that the
open complement Ω+ := Rd \ Ω− is connected. Let γ± denote the trace operators from Ω± to
Γ, let ∂±n denote the normal derivative trace operators, and let ∇Γ denote the surface gradient
operator on Γ. (For precise definitions of these operators, see §2. Note that we will also call γ±u
the Dirichlet traces of u and ∂±n u the Neumann traces.) Let BR := {x : |x| < R}.

This paper contains four theorems (Theorems 1.4, 1.5, 1.6, and 1.8). The first two concern the
DtN and NtD maps for the Helmholtz equation in Ω+ under geometric restrictions explained in the
next three definitions.

1Indeed, adopting the convention for “outgoing” in the radiation condition (1.4) and letting U(x, t) be the solution
of the wave equation corresponding to u(x; k), we find that, if η = ±k, then the impedance boundary condition (1.2)
corresponds to the boundary condition ∂U/∂n± ∂U/∂t = eg, under which energy is absorbed or emitted, respectively,
by the boundary (assuming that the normal vector points outwards from the domain of propagation).

3



Definition 1.1 (Nontrapping) We say that Ω+ ⊂ Rd, d = 2, 3 is nontrapping if Γ is C∞ and,
given R > supx∈Ω− |x|, there exists a T (R) <∞ such that all the billiard trajectories that start in
Ω+ ∩BR at time zero leave Ω+ ∩BR by time T (R).

Definition 1.2 (Nontrapping polygon) If Ω− ⊂ R2 is a polygon we say that it is a nontrapping
polygon if (i) no three vertices are colinear, and (ii), given R > supx∈Ω− |x|, there exists a T (R) <∞
such that all the billiard trajectories that start in Ω+ ∩BR at time zero and miss the vertices leave
Ω+ ∩BR by time T (R). (For a more precise statement of (ii) see [8, §5].)

Definition 1.3 (Star-shaped) Let Ω− ⊂ Rd, d = 2, 3, be a bounded, Lipschitz open set.
(i) we say that Ω− is star-shaped if x · n(x) ≥ 0 for every x ∈ Γ for which n(x) is defined.
(ii) we say that Ω− is star-shaped with respect to a ball if there exists a constant c > 0 such that
x · n(x) ≥ c for every x ∈ Γ for which n(x) is defined.

Theorem 1.4 (Bounds on the DtN map for the Helmholtz equation in exterior domains)
Let d = 2 or 3. Let u ∈ H1

loc(Ω+) satisfy the Helmholtz equation

∆u+ k2u = 0 in Ω+, (1.3)

and the Sommerfeld radiation condition

∂u

∂r
− iku = o

(
1

r(d−1)/2

)
(1.4)

as r := |x| → ∞, uniformly in x̂ := x/r. If either Ω+ is nontrapping (in the sense Definition 1.1)
or Ω− is a nontrapping polygon (in the sense of Definition 1.2) or Ω− is Lipschitz and star-shaped
(in the sense of Definition 1.3(i)), then, given k0 > 0,∥∥∂+

n u
∥∥
H−1/2(Γ)

. k3/2 ‖γ+u‖H1/2(Γ) , (1.5)

for all k ≥ k0. Furthermore, if γ+u ∈ H1(Γ) then ∂+
n u ∈ L2(Γ) and, given k0 > 0,∥∥∂+

n u
∥∥
L2(Γ)

. k3/2 ‖γ+u‖H1(Γ) and (1.6)∥∥∂+
n u
∥∥
L2(Γ)

. k
(
‖∇Γ(γ+u)‖L2(Γ) + k ‖γ+u‖L2(Γ)

)
(1.7)

for all k ≥ k0.

How sharp are these bounds? By considering the specific examples of Γ the unit circle (in
2-d) and the unit sphere (in 3-d), we show that the bound (1.5) is at most k1/2 away from being
sharp (i.e. for the circle and sphere there exist solutions of the Helmholtz equation satisfying the
Sommerfeld radiation condition such that ‖∂+

n u‖H−1/2(Γ) & k‖γ+u‖H1/2(Γ) ), the bound (1.6) is at
most k1/2 away from being sharp, and the bound (1.7) is at most k away; see Lemma 3.10 for the
details.

Theorem 1.5 (Bounds on the NtD map for the Helmholtz equation in exterior domains)
Let d = 2 or 3. Let u ∈ H1

loc(Ω+) satisfy the Helmholtz equation (1.3) and the Sommerfeld radiation
condition (1.4). If either Ω+ is nontrapping (in the sense Definition 1.1) or Ω− is a nontrapping
polygon (in the sense of Definition 1.2), then, given k0 > 0,

‖γ+u‖H1/2(Γ) . k
∥∥∂+

n u
∥∥
H−1/2(Γ)

, (1.8)

for all k ≥ k0. Furthermore, if ∂+
n u ∈ L2(Γ) then γ+u ∈ H1(Γ) and, given k0 > 0,(

‖∇Γ(γ+u)‖L2(Γ) + k ‖γ+u‖L2(Γ)

)
. k

∥∥∂+
n u
∥∥
L2(Γ)

(1.9)

for all k ≥ k0.
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By again considering the specific examples of Γ the unit circle and sphere, we show that
the bound (1.8) is at most k2/3 away from being sharp (i.e. for the circle and sphere there
exist solutions of the Helmholtz equation satisfying the Sommerfeld radiation condition such that
‖γ+u‖H1/2(Γ) & k1/3‖∂+

n u‖H−1/2(Γ)), and the bound (1.9) is at most k2/3 away from being sharp.

The third theorem concerns the interior impedance problem for Ω− a general bounded Lipschitz
domain (where the use the word domain to mean a connected open set).

Theorem 1.6 (Bounds on the solution to the interior impedance problem) Let Ω− be a
bounded Lipschitz domain in 2- or 3-d. Given f ∈ L2(Ω−), g ∈ L2(Γ), and η ∈ R \ {0}, let
u ∈ H1(Ω−) be the solution to the interior impedance problem

∆u+ k2u = −f in Ω− and ∂−n u− iηγ−u = g on Γ. (1.10)

Then, given k0 > 0,

‖∇u‖L2(Ω−) + k ‖u‖L2(Ω−) . k1/2

(
1 +

k

|η|

)[
‖g‖L2(Γ) + k1/2

(
1 +
|η|
k

)
‖f‖L2(Ω−)

]
(1.11)

for all k ≥ k0 (where the omitted constant is independent of both k and η). In particular, if |η| ∼ k
then

‖∇u‖L2(Ω−) + k ‖u‖L2(Ω−) . k1/2 ‖g‖L2(Γ) + k ‖f‖L2(Ω−) . (1.12)

Furthermore, if Γ is piecewise smooth, then the k1/2 at the front of the left-hand side of (1.11) can
be replaced by k1/4, and thus if |η| ∼ k then

‖∇u‖L2(Ω−) + k ‖u‖L2(Ω−) . k1/4 ‖g‖L2(Γ) + k3/4 ‖f‖L2(Ω−) . (1.13)

In Lemma 4.10 we investigate the sharpness of (1.12) and (1.13) (for simplicity we restrict
attention to the case |η| = k, but the methods we use are applicable for general η). We show that
the factor in front of ‖g‖L2(Γ) in (1.12) is at most k away from being sharp and the factor in front
of ‖f‖L2(Ω−) in (1.12) is k away from being sharp. Analogously, the factors in front of ‖g‖L2(Γ) and
‖f‖L2(Ω−) in (1.13) are both k3/4 away from being sharp.

Theorem 1.6 can be used to prove a bound on the solution of the interior impedance problem
with minimal smoothness requirements on the data, and this gives a bound on the inf-sup constant
of the corresponding variational formulation.

Corollary 1.7 (Corollary to Theorem 1.6) Given k0 > 0, the solution of the interior impedance
problem with f ∈ (H1(Ω−))′, g ∈ H−1/2(Γ), satisfies

‖∇u‖L2(Ω−) + k ‖u‖L2(Ω−) . k2

(
1 +

k

|η|

)(
1 +
|η|
k

)[
‖g‖H−1/2(Γ) + ‖f‖(H1(Ω−))′

]
(1.14)

for all k ≥ k0. Therefore, in the case |η| ∼ k, the sesquilinear form of the variational formulation
of the interior impedance problem, a(·, ·) defined by (4.2) below, satisfies

inf
06=u∈H1(Ω−)

sup
06=v∈H1(Ω−)

|a(u, v)|
‖u‖1,k,Ω− ‖v‖1,k,Ω−

&
1
k2
, (1.15)

where ‖u‖1,k,Ω− := ‖∇u‖L2(Ω−) + k‖u‖L2(Ω−). If Γ is piecewise smooth, then the factor of k2 both
on the right-hand side of (1.14) and in the denominator of the right-hand side of (1.15) can be
changed to k7/4.

The final theorem concerns the exterior impedance problem for Ω− a general Lipschitz domain.

Theorem 1.8 (Bounds on the solution to the exterior impedance problem) Let Ω− be a
bounded Lipschitz domain in 2- or 3-d. Given f ∈ L2(Ω+) with compact support, g ∈ L2(Γ), and
η > 0, let u ∈ H1

loc(Ω+) be the solution to the exterior impedance problem

∆u+ k2u = −f in Ω+ and ∂+
n u+ iηγ+u = g on Γ, (1.16)
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satisfying the Sommerfeld radiation condition (1.4). Then, for any R > supx∈Ω− |x|, the bound
(1.11) holds with the left-hand side replaced by

‖∇u‖L2(ΩR) + k ‖u‖L2(ΩR) ,

where ΩR := Ω+ ∩ {|x| < R}, and with ‖f‖L2(Ω−) replaced by ‖f‖L2(Ω+). Furthermore, if Γ is
piecewise smooth, then the factor of k1/2 on the right-hand side of this bound can be replaced by
k1/4.

Recall that, while the interior impedance problem has a unique solution for all η ∈ R \ {0}, the
exterior impedance problem needs η in the boundary condition in (1.16) to be greater than zero for
the solution to be unique (and so this restriction is in the statement of the Theorem); see, e.g., [13,
Theorem 3.37], [11, Lemma 2.8].

Regarding sharpness: as in the case of the interior problem, the argument in the proof of Lemma
4.10 shows that the factor in front of ‖g‖L2(Γ) in the analogue of (1.12) is at most k away from
being sharp, and the factor in front of ‖f‖L2(Ω+) is k away from being sharp. A corollary analogous
to Corollary 1.7 holds for the exterior impedance problem, but we omit the details.

1.2 Comparison of the main results to similar existing results

Bounds on the DtN and NtD maps (Theorems 1.4 and 1.5).
In this discussion we omit results about the high-frequency asymptotics of the solution of the
Helmholtz equation in Ω+. There has been vast amounts of research on constructing these
asymptotics and justifying them rigorously; for introductions to this work see, e.g., [4], [5], [11, §3]
and the references therein.

Instead, we focus on results that specifically bound either the DtN or the NtD map (such as
Theorems 1.4 and 1.5). To the author’s knowledge, there exist four such results. The first of these
was obtained by Morawetz and Ludwig in [45]. They proved that if Ω− is smooth and star-shaped
with respect to a ball (in the sense of Definition 1.3(ii)) then, given k0 > 0,∥∥∂+

n u
∥∥
L2(Γ)

. ‖∇Γ(γ+u)‖L2(Γ) + k ‖γ+u‖L2(Γ) (1.17)

for all k ≥ k0. This result was obtained using the identity for solutions of the Helmholtz equation
that arises by multiplying the PDE by Mu, where

Mu = x · ∇u− ikr +
(d− 1)

2
u (1.18)

(for a discussion of why this is possible, see the review [11, §5.3.1]). With some additional technical
work this method can be applied when Ω− is a Lipschitz, star-shaped domain, and thus the bound
(1.17) also holds in this case (see Remark 3.8 for more details).

The second result is a bound on the NtD map obtained by Babich in [3]. Babich proved that if
Ω− is a smooth, convex, 2-d domain with strictly positive curvature then

‖γ+u‖L∞(Γ) .
1

k1/2

∥∥∂+
n u
∥∥
L∞(Γ)

(1.19)

for all k > 0. This result was obtained using a method introduced by Ursell in [56] (and then also
used in, e.g., [2], [21], [57]). The method approximates the Neumann Green’s function for Ω+ with
source at x0 ∈ Γ with the Neumann Green’s function for the exterior of the osculating circle at x0.
This approximate Green’s function is then used to formulate an integral equation for the solution
of the Neumann problem in Ω+. Since the Green’s function for the circle is known explicitly, the
bound (1.19) can then be obtained from the integral equation.

The third and fourth results are the following bounds on the DtN and NtD map for nontrapping
domains (in the sense of Definition 1.1) obtained by Lakshtanov and Vainberg in [28, Theorem 1]:
given k0 > 0,∥∥∂+

n u
∥∥
H−1/2(Γ)

. k3 ‖γ+u‖H1/2(Γ) and ‖γ+u‖H1/2(Γ) . k
∥∥∂+

n u
∥∥
H−1/2(Γ)

(1.20)
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for all k ≥ k0. As discussed above, these bounds were obtained using the resolvent estimate for this
class of domains obtained by Vainberg in [58] (and we use essentially the same method in §3 to
prove the bounds in Theorems 1.4 and 1.5).

We now compare these four previous results with the bounds in Theorems 1.4 and 1.5. The
Morawetz–Ludwig DtN bound (1.17) is sharper in its k-dependence than the bound on the DtN
map (1.7), although (1.7) holds for a wider range of geometries than (1.17). Note that the specific
examples of the circle and sphere, analysed in Lemma 3.12, show that the Morawetz–Ludwig bound
(1.17) is sharp in its k-dependence.

The DtN bound in the trace spaces (1.5) is sharper than that of Lakshtanov and Vainberg in
(1.20), but the NtD bound in the trace spaces (1.8) is the same as that of Lakshtanov and Vainberg
in (1.20) (although both (1.5) and (1.8) hold for a wider range of geometries than the bounds
in (1.20)). We note that the investigation in [28] was not focused on obtaining the best possible
bounds on the DtN and NtD maps, since the powers of k in the bounds (1.20) were sufficient for
proving the main results of [28] (sharp bounds on the total cross-sections of scattered waves when
either Ω+ is nontrapping or Ω− is a general Lipschitz domain).

The Babich bound (1.19) cannot immediately be compared to the NtD bounds (1.8) and (1.9),
since the spaces in which the bounds are proved are different. Nevertheless, the particular examples
of the circle and sphere show that the Babich bound is at most k1/6 away from being sharp (see
Remark 3.13), and the NtD bounds (1.8) and (1.9) are both at most k2/3 away from being sharp.

Before leaving this discussion on bounds on the DtN and NtD maps, we note that if the
domain is trapping then one cannot expect bounds such as those above to hold. For example, if
Ω+ is a 2-d domain with an elliptical cavity, in the sense that Ω+ contains the ellipse {(x1, x2) :
(x1/a1)2 + (x2/a2)2 < 1} with a1 > a2 > 0 and Γ coincides with the boundary of the ellipse in
neighbourhoods of (0,±a2), then there exist wavenumbers 0 < k1 < k2 < . . . with km → ∞ as
m→∞, corresponding solutions of the Helmholtz equation that satisfy the Sommerfeld radiation
condition um, and a constant γ > 0 such that

∥∥∂+
n um

∥∥
L2(Γ)

& eγkm

(
‖∇Γ(γ+um)‖L2(Γ) + km ‖γ+um‖L2(Γ)

)
for all m ≥ 1 (this can be proved using techniques similar to those in [9, Theorem 2.8]; see also the
discussion in [11, §5.6.1]).

Bounds on the interior and exterior impedance problems (Theorems 1.6 and 1.8). For
simplicity we consider the case that |η| = k. Some of the previous results that we now discuss only
considered this case, although the methods used to prove these results also work for general η.

If Ω− is a 2- or 3-d Lipschitz domain that is star-shaped with respect to a ball (in the sense of
Definition 1.3(ii)) then the identity resulting from the multiplier

Mu = x · ∇u+
(d− 1)

2
u (1.21)

can be used to prove that, given k0 > 0,

‖∇u‖L2(Ω−) + k ‖u‖L2(Ω−) . ‖g‖L2(Γ) + ‖f‖L2(Ω−) (1.22)

for all k ≥ k0. This was done when Γ is piecewise smooth in 2-d by Melenk [33, Proposition
8.1.4] and in 3-d by Cummings and Feng [15, Theorem 1]. The arguments outlined in Remark 3.8
can then be used to establish the bound when Γ is Lipschitz (similar to the situation with the
Morawetz–Ludwig DtN bound discussed above). Lemma 4.10 shows that, at least when g = 0, the
bound (1.22) is sharp in its k-dependence.

The argument involving Green’s integral representation and k-explicit bounds on integral
operators that we discussed above was used by Feng and Sheen to prove that if Ω− is square or
cube and g = 0 then, given k0 > 0,

‖∇u‖L2(Ω−) + k ‖u‖L2(Ω−) . k2 ‖f‖L2(Ω−) (1.23)
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for all k ≥ k0 [20, Theorems 3.6 and 4.7]; the same argument can be used to establish the bound
when Ω− is a general Lipschitz domain. This argument was used independently by Esterhazy and
Melenk to prove that, with Ω− a general 2- or 3-d Lipschitz domain, given k0 > 0,

‖∇u‖L2(Ω−) + k ‖u‖L2(Ω−) . k2 ‖g‖L2(Γ) + k5/2 ‖f‖L2(Ω−) (1.24)

for all k ≥ k0 [18, Theorem 2.4].
Looking at these previous results, we see that the bound (1.12) of Theorem 1.6 is the sharpest

yet obtained in the case that Ω− is a general Lipschitz domain, but the k-dependence is still
worse than that in the bound (1.22) for domains that are star-shaped with respect to a ball. The
bound (1.13) improves the k-dependence in the case when Γ is piecewise smooth, but this improved
dependence is still not as good as that in the star-shaped case.

To the author’s knowledge, there are currently no bounds for the exterior impedance problem
stated in the literature (although, as we see in this paper, the method used to prove the interior
bounds (1.11), (1.23), and (1.24) can easily be adapted to prove exterior bounds).

1.3 Conditioning of boundary integral operators

As discussed above, one application of the bounds of Theorems 1.4, 1.5, 1.6, and 1.8 is in proving
bounds on the inverses of boundary integral operators (which can then be used in conjunction with
bounds on the norms of these operators to prove bounds on their condition numbers). We illustrate
this for the standard second-kind integral operator used to solve the exterior Dirichlet problem.

When u is the solution to the exterior Dirichlet problem for the Helmholtz equation, the
Neumann trace of u, ∂+

n u, satisfies the integral equation

A′k,η(∂+
n u) = f (1.25)

on Γ, where the integral operator A′k,η is the so-called combined-potential or combined-field integral
operator (defined by (1.30) below) and f is given in terms of the known Dirichlet data γ+u.

We now briefly derive the integral equation (1.25); for simplicity we do not consider the general
exterior Dirichlet problem, only the sound-soft scattering problem (i.e. the problem in which the
Dirichlet data is the restriction of, e.g., a plane wave to Γ). The reason we do this is that the
right-hand side f of (1.25) takes a particularly simple form in this case; for the details of the general
case see [11, Equations 2.68 and 2.69]).

Definition 1.9 (Sound-soft scattering problem) Given k > 0 and an incident plane wave
uI(x) = exp(ikx · â) for some â ∈ Rd with |â| = 1, find uS ∈ C2(Ω+) ∩H1

loc(Ω+) such that the
total field u := uI + uS satisfies

∆u+ k2u = 0 in Ω+, γ+u = 0 on Γ,

and uS satisfies the Sommerfeld radiation condition (1.4) (i.e. (1.4) holds with u replaced by uS).

Using (i) the fact that uI is a solution of the Helmholtz equation in Ω− and (ii) Green’s integral
representation for uS , one can show that

u(x) = uI(x)−
∫

Γ

Φk(x,y)∂+
n u(y) ds(y), x ∈ Ω+ (1.26)

(see, e.g., [11, Theorem 2.43]), where Φk(x,y) is the fundamental solution of the Helmholtz equation
given by

Φk(x,y) =
i
4
H

(1)
0

(
k|x− y|

)
, d = 2, Φk(x,y) =

eik|x−y|

4π|x− y|
, d = 3. (1.27)

Taking the Dirichlet and Neumann traces of (1.26) on Γ and using the jump relations for the
single-layer potential (given in (5.1) below), one obtains two integral equations for the unknown
Neumann boundary value ∂+

n u:

Sk∂
+
n u = γ+u

I ,

(
1
2
I +D′k

)
∂+
n u = ∂+

n u
I , (1.28)
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where the integral operators Sk and D′k, the single-layer operator and the adjoint-double-layer
operator respectively, are defined for ψ ∈ L2(Γ) by

Skψ(x) :=
∫

Γ

Φk(x,y)ψ(y) ds(y), D′kψ(x) :=
∫

Γ

∂Φk(x,y)
∂n(x)

ψ(y) ds(y), x ∈ Γ (1.29)

(when Γ is Lipschitz, the integral defining D′k is understood as a Cauchy principal value integral;
see, e.g., [11, §2.3]).

Both integral equations in (1.28) fail to be uniquely solvable for certain values of k (for the first
equation in (1.28) these are the k such that k2 is a Dirichlet eigenvalue of the Laplacian in Ω−,
and for the second equation in (1.28) these are the k such that k2 is a Neumann eigenvalue). The
standard way to resolve this difficulty is to take a linear combination of the two equations, which
yields the integral equation (1.25), where

A′k,η :=
1
2
I +D′k − iηSk, (1.30)

the so-called coupling parameter η ∈ R \ {0} 2, and

f(x) := ∂+
n u

I(x)− iηγ+u
I(x), x ∈ Γ. (1.31)

The integral equation (1.25) is usually considered as an equation in the space L2(Γ), since A′k,η
is a bounded and invertible operator on L2(Γ) (when η ∈ R \ {0}) [11, Theorem 2.27], and both
∂+
n u and f ∈ L2(Γ) in the case of plane-wave or point-source scattering [11, Theorems 2.12 and

2.46].
Although integral equations such as (1.25) have long been used to solve scattering problems,

little has been known about how quantities of interest (such as the norms of the operators) depend
on k and η until recently. It turns out that bounds on the norm of A′k,η that are explicit in k and η
can be obtained using standard techniques for bounding norms of integral operators [11, §5.5], [53,
§1.2, §1.4]. However, to obtain bounds on (A′k,η)−1 that are explicit in k and η one must use results
about the exterior DtN map and the interior impedance-to-Dirichlet map. Indeed, the following
lemma is implicit in [12, Proof of Lemma 4.5] and [11, Theorem 2.33], and proved explicitly in §5.

Lemma 1.10 (Bounding the inverse of the combined potential operator) Let u+ satisfy
∆u+ + k2u+ = 0 in Ω+, the Sommerfeld radiation condition (1.4), and let γ+u+ ∈ H1(Γ). Let u−
be the solution of the interior impedance problem (1.10) with f = 0, g ∈ L2(Γ), and η ∈ R \ {0}. If
α, β, and δ are such that, given k0 > 0,∥∥∂+

n u+

∥∥
L2(Γ)

. α ‖∇Γ(γ+u+)‖L2(Γ) + βk ‖γ+u+‖L2(Γ) (1.32)

and
‖∇Γ(γ−u−)‖L2(Γ) . δ ‖g‖L2(Γ) , (1.33)

for all k ≥ k0, then ∥∥(A′k,η)−1
∥∥
L2(Γ)→L2(Γ)

.

(
1 + αδ + β

k

|η|

)
(1.34)

for all k ≥ k0 and η ∈ R \ {0}.

This lemma implies that if one can bound both the exterior DtN map and the interior impedance-to-
Dirichlet map then one can bound (A′k,η)−1. Similarly, if one can bound the exterior NtD map and
the interior impedance-to-Dirichlet map then one can bound the inverse of the standard second-kind
boundary integral operator used to solve the exterior Neumann problem, and if one can bound
both the exterior and interior impedance-to-Dirichlet maps then one can bound the inverse of the

2 Although denoting the coupling parameter η might appear to be a notational clash with the η in the impedance
boundary condition (1.2), the adjoint of the integral operator A′

k,η can be used to solve the interior impedance

problem, and in this case the coupling parameter equals the η in the impedance boundary condition; see [11, Theorem
2.30]. This relationship between the coupling parameter and the η in the impedance boundary condition can also be
seen in Lemma 1.10 below.
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standard second-kind boundary integral operator used to solve the exterior impedance problem; see
[11, Theorem 2.33].

If Ω− is a 2- or 3-d Lipschitz domain that is star-shaped with respect to a ball (in the sense of
Definition 1.3(ii)), then the Morawetz–Ludwig DtN bound (1.17) implies that (1.32) holds with
α and β ∼ 1. Furthermore, the bound on the interior impedance problem (1.22) for this class of
domains can be used to show that (1.33) holds with δ ∼ 1 + k/|η| (see Remark 4.8). Lemma 1.10
then implies that ∥∥(A′k,η)−1

∥∥
L2(Γ)→L2(Γ)

. 1 +
k

|η|
, (1.35)

when Ω− is a 2- or 3-d Lipschitz domain that is star-shaped with respect to a ball; this result was
first proved in [12, Theorem 4.3].

Using the bounds of Theorems 1.4 and 1.6 in Lemma 1.10 we obtain the following theorem.

Theorem 1.11 (Bound on (A′k,η)−1 for smooth nontrapping domains and nontrapping
polygons) If either Ω+ ⊂ Rd, d = 2, 3, is nontrapping (in the sense of Definition 1.1) or Ω− is a
nontrapping polygon (in the sense of Definition 1.2) then, given k0 > 0,

∥∥(A′k,η)−1
∥∥
L2(Γ)→L2(Γ)

. k5/4

(
1 +

k3/4

|η|

)
(1.36)

for all k ≥ k0 and η ∈ R \ {0}.

Proof. The bound (1.7) implies that (1.32) holds with α and β ∼ k. Corollary 4.7 shows that
the analogue of the bound (1.11) when Γ is piecewise smooth implies that (1.33) holds with
δ ∼ k1/4(1 + k3/4/|η|). The bound (1.36) then follows from Lemma 1.10.

The numerical experiments in [10] indicate that the bound (1.36) is not sharp in its k-dependence,
since they show that ‖(A′k,η)−1‖L2(Γ)→L2(Γ) is bounded independently of k when Ω− is a particular
nontrapping and non-star-shaped polygon and η = k (see [10, Figure 5.9]). This lack of sharpness
is to be expected, since both the bounds used to obtain (1.36), namely (1.7) and (1.11), are not
sharp.

Despite its lack of sharpness, the bound (1.36) is sufficient for the following numerical analysis
application: Löhndorf and Melenk have recently performed a k-explicit convergence analysis of the
Galerkin method applied to the integral equation (1.25) using piecewise-polynomial subspaces (the
so-called hp-boundary-element method) [31], [34]. An underlying assumption in this analysis is that,
when |η| ∼ k, ‖(A′k,η)−1‖L2(Γ)→L2(Γ) . ka for some a > 0. This assumption was known to hold for
Lipschitz star-shaped domains via the bound (1.35), and Theorem 1.11 now establishes that this
assumption holds for nontrapping domains in 2- or 3-d, and for nontrapping polygons.

1.4 Outline of paper

In Section 2 we establish some notation and collect some basic results that are used throughout
the paper. In Section 3 we prove Theorems 1.4 and 1.5 (the bounds on the DtN and NtD maps).
In Section 4 we prove Theorems 1.6 and 1.8 (the bounds on the interior and exterior impedance
problems). In Section 5 we prove Lemma 1.10.

2 Notation and basic results

We use the notation a . b to mean a ≤ Cb for some constant C that is independent of k, η, and
any other parameters of interest (usually these will be explicitly stated). a & b means b . a. If
a . b and b . a we write a ∼ b.

Let Ω− ⊂ Rd, d = 2, 3, be a bounded, Lipschitz open set with boundary Γ := ∂Ω−, such that
the open complement Ω+ := Rd \Ω− is connected. Let n denote the outward-pointing, unit, normal
vector to Ω−. Let BR := {x : |x| < R}, let ΓR := {x : |x| = R}, and let ΩR := Ω+ ∩BR.

We denote the interior and exterior traces by γ∓, so that, for 1/2 < s < 3/2, γ− : Hs(Ω−)→
Hs−1/2(Γ) and γ+ : Hs

loc(Ω+)→ Hs−1/2(Γ). We have the bound

‖γ−u‖Hs−1/2(Γ) . ‖u‖Hs(Ω−) for 1/2 < s < 3/2 (2.1)
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[14, Lemma 3.6], [32, Theorem 3.38], and the multiplicative trace inequality

‖γ−u‖2L2(Γ) . ‖u‖L2(Ω−) ‖u‖H1(Ω−) (2.2)

[22, Theorem 1.5.1.10, last formula on Page 41]. If χ ∈ C∞comp(Rd) and χ = 1 in a neighbourhood
of Γ then γ±(χu) = γ±(u) for all u ∈ Hs

loc(Ω+) with 1/2 < s < 3/2 [51, Remark 2.6.10]. Therefore,
if u ∈ Hs

loc(Ω+) and 1/2 < s < 3/2, then

‖γ+u‖Hs−1/2(Γ) . ‖χu‖Hs(Ω+) , (2.3)

and if u ∈ H1
loc(Ω+) then

‖γ+u‖2L2(Γ) . ‖χu‖L2(Ω+) ‖χu‖H1(Ω+) . (2.4)

Denote the surface gradient on Γ by ∇Γ; see, e.g., [11, Equation A.14] for the definition of this
operator in terms of a parametrisation of the boundary. Recall that ∇Γ is a bounded operator from
H1(Γ) to (L2(Γ))d and, furthermore, if f ∈ H1(Γ) then

‖f‖H1(Γ) ∼ ‖∇Γf‖L2(Γ) + ‖f‖L2(Γ) . (2.5)

The space H1(Ω−,∆) is defined to be equal to {u : u ∈ H1(Ω−),∆u ∈ L2(Ω−)} and H1
loc(Ω+,∆) :=

{u : u ∈ H1
loc(Ω+),∆u ∈ L2

loc(Ω+)}.
Let ∂±n denote the normal-derivative traces on Ω± (recalling our convention that the normal

vector points out of Ω−). Recall that if u ∈ H2(Ω−) then ∂−n u := n·γ−(∇u), and for u ∈ H1(Ω−,∆),
∂−n u is defined so that Green’s first identity holds (see, e.g., [11, Equation A.29]).

Lemma 2.1 (Green’s first identity) With D a Lipschitz domain, if u ∈ H1(D,∆) and v ∈
H1(D) then

〈∂nu, γv〉∂D =
∫
D

(
∇u · ∇v + v∆u

)
dx (2.6)

where 〈·, ·〉∂D denotes the duality pairing between H−1/2(∂D) and H1/2(∂D).

Whenever we say that u satisfies ∆u + k2u = −f (for a given f) we always mean that this
equation is satisfied in a distributional sense. Note that interior regularity of the Laplacian then
implies that u is C∞ outside the support of f and away from the boundary (see, e.g., [32, Theorem
4.16], [19, §6.3.1]). Therefore, if the PDE is posed in Ω+ and f has compact support, the Sommerfeld
radiation condition (1.4) can legitimately be imposed.

Later in the paper, we consider the modified Helmholtz equation ∆v − λ2v = 0 in Ω+ for λ > 0,
with the condition that v is bounded at infinity. Interior regularity of the Laplacian, separation of
variables, and asymptotics of modified Bessel functions then imply that v(x) ∼ exp (−λr)r−(d−1)/2

as r := |x| → ∞, and thus both v and ∇v are in L2(Ω+).
We repeatedly use the inequality√√√√ n∑

j=1

a2
j ≤

n∑
j=1

aj .

√√√√ n∑
j=1

a2
j for aj ≥ 0,

as well as the inequality

2ab ≤ εa2 +
b2

ε
for a, b, and ε > 0 (2.7)

(following [19] we refer to (2.7) as the Cauchy inequality).
We show in the next lemma that the H1-norm of a solution of the Helmholtz equation in Ω+

can be bounded by the L2-norms of the solution and the data. Variants of this lemma can be found
in [44, Lemma 1] and [9, Proof of Theorem 2.8].
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Lemma 2.2 (Bounding the H1 norm via the L2 norm and the data) Given k > 0 and f ∈
L2(Ω+) with compact support, let u ∈ H1

loc(Ω+,∆) be a solution of the Helmholtz equation
∆u+ k2u = −f in Ω+.
(a) If either γ+u = 0 or ∂+

n u = 0 then for any R > supx∈Ω− |x|, given k0 > 0,

‖∇u‖L2(ΩR) . k ‖u‖L2(ΩR+1) + k−1 ‖f‖L2(Ω+) (2.8)

for all k ≥ k0.
(b) If ∂+

n u + iηγ+u = g on Γ, where g ∈ L2(Γ) and η ∈ R, then, for any R > supx∈Ω− |x|, given
k0 > 0,

‖∇u‖L2(ΩR) . k ‖u‖L2(ΩR+1) + k−1 ‖f‖L2(Ω+) + k−1/2 ‖g‖L2(Γ) (2.9)

for all k ≥ k0.

Proof. (a) Let F ∈ C1[0, R+ 1] be such that (i) F = 1 on [0, R], (ii) 0 ≤ F (s) ≤ 1 for s ∈ [R,R+ 1],
(iii) F (R+ 1) = 0, and (iv) there exists an M > 0 such that (F ′(s))2/F (s) ≤M for s ∈ [0, R+ 1]
(this last condition can be achieved by requiring that F vanishes quadratically at R + 1). Let
χ(x) := F (|x|). Then χu ∈ H1(ΩR+1) with γ(χu) = 0 on ΓR+1 and γ+(χu) = γ+u. Applying
Green’s identity (2.6) in ΩR+1 with v = χu we obtain∫

ΩR+1

χ|∇u|2dx =
∫

ΩR+1

(
k2χ|u|2 − u∇u · ∇χ+ χuf

)
dx, (2.10)

where we have used the facts that both 〈∂+
n u, γ+u〉Γ and 〈∂nu, γ(χu)〉ΓR+1 are zero.

Using the Cauchy inequality (2.7) we have∣∣∣∣∣
∫

ΩR+1

u∇u · ∇χdx

∣∣∣∣∣ ≤
∫

ΩR+1

χ1/2|u||∇u| |∇χ|
χ1/2

dx ≤ ε

2

∫
ΩR+1

χ|∇u|2 dx +
1
2ε

∫
ΩR+1

|u|2 |∇χ|
2

χ
dx

(2.11)
and ∣∣∣∣∣

∫
ΩR+1

χuf dx

∣∣∣∣∣ ≤ δ

2

∫
ΩR+1

χ|u|2 dx +
1
2δ

∫
ΩR+1

χ|f |2 dx (2.12)

for any ε and δ > 0. Choosing ε = 1 and δ = k2 and using (2.11) and (2.12) in (2.10), we obtain

1
2

∫
ΩR+1

χ|∇u|2 dx ≤ 3k2

2

∫
ΩR+1

χ|u|2 dx +
1
2

∫
ΩR+1

|u|2 |∇χ|
2

χ
dx +

1
2k2

∫
ΩR+1

χ|f |2 dx. (2.13)

Since χ ≥ 0 on ΩR+1 and χ = 1 on ΩR, the left-hand side of (2.13) is ≥ ‖∇u‖2L2(ΩR) /2. Condition
(iv) above on the function F implies that |∇χ|2/χ is bounded on ΩR+1. Using this fact in the
right-hand side of (2.13), along with the fact that χ ≤ 1 on ΩR+1, we obtain the result (2.8).
(b) This is very similar to the proof of (a), with the only differences being (i) one takes the real
part of the analogue of (2.10) (to eliminate a term involving ‖γ+u‖2L2(Γ)), (ii) at the end one uses
the multiplicative trace (2.4) and Cauchy (2.7) inequalities to obtain

k ‖γ+u‖2L2(Γ) .

(
ε+

k2

ε

)
‖u‖2L2(ΩR) + ε ‖∇u‖2L2(ΩR) ,

and then one must choose ε sufficiently small when using this inequality to obtain the result (2.9).

We now prove an interpolation result that allows us to “move” bounds on the DtN and NtD
maps between Sobolev spaces. To state this result, we denote the DtN map in Ω+ by P+

DtN and the
NtD map by P+

NtD (following the notation in [11, §2.7]). P+
DtN is defined as a map from H1/2(Γ)

to H−1/2(Γ) by standard results about the solvability of the exterior Dirichlet problem and the
definition of the normal derivative. A result of Nečas [47, §5.1.2 and §5.2.1], [32, Theorem 4.24]
(discussed in more detail in §3.3 below) implies that P+

DtN can be extended to a map from H1(Γ) to
L2(Γ), and then a representation of P+

DtN in terms of boundary-integral operators means that P+
DtN

can be extended to a map from Hs+1/2(Γ) to Hs−1/2(Γ) for |s| ≤ 1/2 (see [11, Theorem 2.31]).
Analogous arguments show that P+

NtD can be extended to a map from Hs−1/2(Γ) to Hs+1/2(Γ) for
|s| ≤ 1/2.
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Lemma 2.3 With Ω+, P+
DtN , and P+

NtD defined above,∥∥P+
DtN

∥∥
L2(Γ)→H−1(Γ)

=
∥∥P+

DtN

∥∥
H1(Γ)→L2(Γ)

, (2.14)∥∥P+
DtN

∥∥
H1/2(Γ)→H−1/2(Γ)

≤
∥∥P+

DtN

∥∥
H1(Γ)→L2(Γ)

, (2.15)

and analogously, ∥∥P+
NtD

∥∥
H−1(Γ)→L2(Γ)

=
∥∥P+

NtD

∥∥
L2(Γ)→H1(Γ)

, (2.16)∥∥P+
NtD

∥∥
H−1/2(Γ)→H1/2(Γ)

≤
∥∥P+

NtD

∥∥
L2(Γ)→H1(Γ)

. (2.17)

Proof of Lemma 2.3. By interpolation, the bound (2.15) follows from the bound (2.14), and
similarly (2.17) follows from (2.16); see, e.g., [32, Theorems B.2 and B.11]. We now prove (2.14);
the proof of (2.16) is very similar. To prove (2.14), first note that, for φ ∈ L2(Γ),

∥∥P+
DtNφ

∥∥
H−1(Γ)

= sup
ψ∈H1(Γ)\{0}

∣∣〈P+
DtNφ, ψ〉Γ

∣∣
‖ψ‖H1(Γ)

, (2.18)

where, in this proof, 〈·, ·〉Γ denotes the real duality pairing between H−s(Γ) and Hs(Γ) for |s| ≤ 1
(i.e. 〈φ, ψ〉Γ =

∫
Γ
φψ ds when φ, ψ ∈ L2(Γ)).

Using the radiation condition (1.4) and Green’s second identity (which can be obtained from
two copies of Green’s first identity (2.6) with the roles of u and v interchanged in the second one),
one can show that

〈P+
DtNψ, φ〉Γ = 〈P+

DtNφ, ψ〉Γ (2.19)

for φ ∈ H1/2(Γ) and ψ ∈ H1/2(Γ) (note that the fact that 〈·, ·〉Γ is the real duality pairing is
crucial; see [54, Lemma 4.10]). By the density of H1/2(Γ) in L2(Γ), (2.19) holds for φ ∈ L2(Γ) and
ψ ∈ H1(Γ). Therefore, (2.18) and (2.19) imply that, for φ ∈ L2(Γ),

∥∥P+
DtNφ

∥∥
H−1(Γ)

= sup
ψ∈H1(Γ)\{0}

∣∣〈P+
DtNψ, φ〉Γ

∣∣
‖ψ‖H1(Γ)

≤
∥∥P+

DtN

∥∥
H1(Γ)→L2(Γ)

‖φ‖L2(Γ) ,

and thus
∥∥P+

DtN

∥∥
L2(Γ)→H−1(Γ)

≤
∥∥P+

DtN

∥∥
H1(Γ)→L2(Γ)

. A similar argument shows the reverse
inequality, and thus we have proved (2.14).

3 Exterior DtN and NtD bounds for Helmholtz (Theorems
1.4 and 1.5)

Overview of the proofs of Theorems 1.4 and 1.5 Following [28], we reduce the problem of
bounding the DtN and NtD maps for solutions of ∆u+ k2u = 0 in Ω+ to

1. bounding the solution of ∆u+ k2u = −f in Ω+ with zero Dirichlet or Neumann boundary
conditions, and

2. bounding solutions of ∆v − λ2v = 0 in Ω+ in terms of their Dirichlet and Neumann traces.

The bounds for the first task are given by the resolvent estimates summarised in §3.1. The bounds
for the second task are given in §3.2.

For the bounds on the DtN and NtD maps when γ+u ∈ H1(Γ) and ∂+
n u ∈ L2(Γ) we need to use

bounds originally proven by Nečas on the solutions of 2nd order strongly elliptic systems. Proofs of
these bounds in the general case can be found in [47, §5.1.2 and §5.2.1] and [32, Theorem 4.24]. We
prove them for the Helmholtz equation in §3.3, however, since we need to keep track of how the
constants depend on k (and this is not done in [47, §5] and [32, Theorem 4.24]).
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3.1 Summary of resolvent estimates

The following resolvent estimates are key components in the proofs of Theorems 1.4 and 1.5.

Theorem 3.1 (Resolvent estimates) Let f ∈ L2(Ω+) have compact support, and let u ∈
H1

loc(Ω+) be a solution to the Helmholtz equation ∆u+k2u = −f in Ω+ that satisfies the Sommerfeld
radiation condition (1.4). If either

(a) Ω+ is a 2- or 3-d nontrapping domain (in the sense of Definition 1.1) and one of γ+u and
∂+
n u equals zero, or

(b) Ω− is a nontrapping polygon (in the sense of Definition 1.2) and one of γ+u and ∂+
n u equals

zero, or

(c) Ω− is a 2- or 3-d Lipschitz domain that is star-shaped (in the sense of Definition 1.3(i)) and
γ+u = 0,

then, given k0 > 0 and R > supx∈Ω− |x|,

‖∇u‖L2(ΩR) + k ‖u‖L2(ΩR) . ‖f‖L2(Ω+) (3.1)

for all k ≥ k0 (where the omitted constant depends on k0 and R).

References for the proof of Theorem 3.1.
(a) The bound (3.1) was proved in [58, Theorem 7] under a condition [58, Condition D′] about

the propagation of singularities that was later proved to hold when Ω+ is nontrapping in [36], [37].
(Note that for these geometries we also have that u ∈ H2(ΩR), and then ‖u‖H2(ΩR) . k ‖f‖L2(Ω+)

by, e.g., combining the bound (3.1) with [22, Theorem 2.3.3.2].) The bound (3.1) in the case of
zero Dirichlet boundary conditions was also proved in [44, Theorem I.2D] (using the vector field
constructed in [46, §4]) when Ω+ is a 2-d nontrapping domain and the curvature of Γ does not
change sign infinitely often.

(b) The bound (3.1) was proved when Ω− is a nontrapping polygon in [8, Corollary 3] using
Vainberg’s argument and the propagation of singularities results in [40]. (Note that [8, Corollary 3]
proves that k‖u‖L2(ΩR) . ‖f‖L2(Ω+), but then the bound (3.1) follows by using Part (a) of Lemma
2.2.)

(c) The bound (3.1) was proved when Ω− is a star-shaped Lipschitz domain in 2- or 3-d in
[12, Lemma 3.5]. (Actually [12, Lemma 3.5] only proved the result for C∞ star-shaped domains,
but the density result in [42, Appendix A] means that the proof works for Lipschitz star-shaped
domains; see Remark (3.8)). To obtain this result, Chandler-Wilde and Monk used the identity
that arises from the multiplier (1.21), and then used a certain inequality [12, Lemma 2.1] (proved
using the asymptotics of Bessel and Hankel functions) to deal with the contribution from infinity;
in [55, Lemma 2.4] it is shown that this inequality can also be proved using the identity arising
from Morawetz–Ludwig multiplier (1.18). We note that, using a limiting argument, the bound (3.1)
was then established for star-shaped domains with no assumption on the smoothness of Γ, only the
assumption that if x ∈ Ω+ then sx ∈ Ω+ for every s > 1 [12, Lemma 3.8] (and thus this second
result contains the result for Lipschitz star-shaped domains as a special case). For our DtN and
NtD bounds we need Γ to be Lipschitz (so that ∂+

n u is well-defined) and thus we cannot use this
more general result.

Remark 3.2 (Bounds on the inf-sup constant) It is a standard result that, given a variational
problem, a bound on the solution in terms of the data is equivalent to a lower bound on the inf-sup
constant; see, e.g., [51, Theorem 2.1.44] or [26, Theorem 2.15 and Remark 2.20]. Therefore, a
corollary of Theorem 3.1 is that, under the geometric conditions in the theorem, the inf-sup constants
of the standard variational formulations of the exterior Dirichlet and Neumann problems are & 1/k.
(The standard variational formulation of the Dirichlet problem is given by, e.g., [12, Equations
3.3 and 3.4] or [48, Equation 2.6.146], and the standard variational formulation of the Neumann
problem is given by, e.g., [48, Equation 2.6.147] or [26, Equation 3.1.5]). The proof of this result
for the Dirichlet problem is given in [12, Lemmas 3.3 and 3.4]; the proof for the Neumann problem
is identical.
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3.2 Bounds on the solutions of the modified Helmholtz equation

Lemma 3.3 (Bounds on the solutions of modified Helmholtz in terms of their Dirichlet
and Neumann traces) Let Ω± be as in §2. If v ∈ H1

loc(Ω+) satisfies ∆v − λ2v = 0 then, given
λ0 > 0,

‖∇v‖L2(Ω+) + λ ‖v‖L2(Ω+) . λ1/2 ‖γ+v‖H1/2(Γ) (3.2)

for all λ ≥ λ0. Furthermore, if ∂+
n v ∈ L2(Γ) then, given λ0 > 0,

‖∇v‖L2(Ω+) + λ ‖v‖L2(Ω+) . λ−1/2
∥∥∂+

n v
∥∥
L2(Γ)

(3.3)

for all λ ≥ λ0.

Proof of (3.3) and references for the proof of (3.2). The bound (3.2) is proved in [6, Proposition
1] (see also [52, Proposition 2.5.1]).

The inequality (3.3) can be proved using Green’s first identity (2.6) as follows. Since v and ∇v
are in L2(Ω+) we can apply Green’s first identity (2.6) in Ω+, and this yields∫

Ω+

(
|∇v|2 + λ2|v|2

)
dx = −〈∂+

n v, γ+v〉Γ.

If ∂+
n v ∈ L2(Γ) then

‖∇v‖2L2(Ω+) + λ2 ‖v‖2L2(Ω+) ≤
∥∥∂+

n v
∥∥
L2(Γ)

‖γ+v‖L2(Γ) . (3.4)

The multiplicative trace inequality (2.4) and Cauchy’s inequality (2.7) imply that

‖γ+v‖2L2(Γ) . λ−1
(
‖∇v‖2L2(Ω+) + λ2‖v‖2L2(Ω+)

)
(3.5)

and then using (3.5) in the right-hand side of (3.4) we obtain (3.3).

Remark 3.4 (Sharpness of the bounds in Lemma 3.3) The bounds (3.2) and (3.3) are sharp
in their λ-dependence in both 2- and 3-d.

Indeed, when Ω− is the unit ball there exists a v(1) ∈ H1(Ω+) satisfying ∆v(1) − λ2v(1) = 0 and∥∥∂+
n v

(1)
∥∥
Hs(Γ)

∼ λ
∥∥γ+v

(1)
∥∥
Ht(Γ)

(3.6)

for any s and t (this can be shown using almost identical arguments to those in Lemma 3.12).
Using the definition of the normal derivative, one can show that the bound (3.2) implies the bound∥∥∂+

n v
∥∥
H−1/2(Γ)

. λ ‖γ+v‖H1/2(Γ) ; (3.7)

see [29, Lemma 15] and [52, Proposition 2.5.2]. The asymptotics (3.6) then show that (3.7) is sharp,
and thus so is (3.2). Finally, using (3.5) we see that (3.3) implies that λ‖γ+v‖L2(Γ) . ‖∂+

n v‖L2(Γ),
and thus the asymptotics (3.6) show that (3.3) is sharp.

3.3 DtN and NtD bounds modulo terms in the domain

In this section we prove the k-explicit version of Nečas’ result [47, §5.1.2 and §5.2.1], [32, Theorem
4.24] applied to solutions of ∆u + k2u = −f in Ω+, i.e. bounds on the DtN and NtD maps in
H1(Γ)–L2(Γ) with the H1-norm of u in Ω+ and the L2-norm of f in Ω+ appearing on the right-hand
sides.

Lemma 3.5 (DtN and NtD bounds in H1(Γ)–L2(Γ) modulo terms in the domain) Let Ω±
be as in §2. Given f ∈ L2(Ω+) with compact support, let u ∈ H1

loc(Ω+,∆) be a solution to
∆u+ k2u = −f , and let R > supx∈Ω− |x|.

(i) If γ+u ∈ H1(Γ) then ∂+
n u ∈ L2(Γ) and∥∥∂+

n u
∥∥2

L2(Γ)
. ‖∇Γ(γ+u)‖2L2(Γ) + ‖∇u‖2L2(ΩR) + k2 ‖u‖2L2(ΩR) + ‖f‖2L2(Ω+) . (3.8)

(ii) If ∂+
n u ∈ L2(Γ) then γ+u ∈ H1(Γ) and

‖∇Γ(γ+u)‖2L2(Γ) .
∥∥∂+

n u
∥∥2

L2(Γ)
+ k2 ‖γ+u‖2L2(Γ) + ‖∇u‖2L2(ΩR) + k2 ‖u‖2L2(ΩR) + ‖f‖2L2(Ω+) . (3.9)
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To prove Lemma 3.5 we use a Rellich-type identity and its integrated form (Lemmas 3.6 and 3.7
respectively).

Lemma 3.6 (A Rellich-type identity) Let v be a complex-valued C2 function on some set
D ⊂ Rd, let Lv := ∆v + k2v, and let Z ∈ (C1(D))d be real-valued. Then, with the summation
convention,

2<
(
Z · ∇vLv

)
= ∇·

[
2<
(
Z · ∇v∇v

)
+(k2|v|2−|∇v|2)Z

]
+(∇·Z)

(
|∇v|2−k2|v|2

)
−2<

(
∂jZi∂iv∂jv

)
.

(3.10)

Proof. Expand the divergence on the right-hand side (see, e.g., [55, Lemma 2.1] for more details).

Identities of the form MvLv where Mv is a derivative of v are associated with the name of
Rellich due to Rellich’s introduction of the multiplier Mv = x · ∇v in [50]. Multipliers consisting
of linear combinations of derivatives of v and v itself were introduced by Morawetz for the wave
equation in [43] and the Helmholtz equation in [45], [44] (see [55, Remark 2.7] for more bibliographic
details).

Lemma 3.7 (Integrated version of the Rellich-type identity) For D a Lipschitz domain,
define the space V by

V :=
{
v : v ∈ H1(D), ∆v ∈ L2(D), γv ∈ H1(∂D), ∂nv ∈ L2(∂D)

}
. (3.11)

If Z ∈ (C1(D))d is real-valued and v ∈ V then∫
D

(
2<
(
Z · ∇vLv

)
− (∇ · Z)

(
|∇v|2 − k2|v|2

)
+ 2<

(
∂iZj∂iv∂jv

))
dx

=
∫
∂D

[
2<
(
Z · ∇v ∂nv

)
+
(
k2|γv|2 − |∇v|2

)
(Z · n)

]
ds, (3.12)

where the expression ∇v in the integral on ∂D is understood as ∇Γ(γv) + n∂nv, and n is the
outward-pointing, unit, normal vector to D.

Proof. This is a consequence of the divergence theorem applied to the identity (3.10). The divergence
theorem

∫
D
∇ · F dx =

∫
∂D

F · n ds is valid when Ω is Lipschitz and F ∈ (C1(D))d [32, Theorem
3.34]. In [42, Appendix A] it is proved that D(D) := {U |D : U ∈ C∞(Rd)} is dense in V , and thus
(3.12) holds for any v ∈ V .

Proof of Lemma 3.5. The fact that γ+u ∈ H1(Γ) implies that ∂+
n u ∈ L2(Γ), and vice versa, was

proved by Nečas in [47, §5.1.2 and §5.2.1] (see also [32, Theorem 4.24]) using the identity (3.10).
Instead of repeating Nečas’ proof keeping track of the dependence on k, we use his regularity result
to justify applying the integrated identity (3.12) in Ω+.

If R > supx∈Ω− |x| then u ∈ VR, where the space VR is defined by (3.11) with D replaced by
ΩR. Indeed, (i) u ∈ H1

loc(Ω+,∆) implies that u ∈ H1(VR,∆), (ii) if γ+u ∈ H1(Γ) then ∂+
n u ∈ L2(Γ)

by Nečas’ regularity result and vice versa, and (iii) interior H2-regularity of the Laplacian (see, e.g.,
[19, §6.3.1, Theorem 1] or [32, Theorem 4.16]) implies that γu ∈ H1(ΓR) and ∂u/∂n ∈ L2(ΓR).

Since u ∈ VR, the identity (3.12) holds with D replaced by ΩR, v replaced by u, and Z any
real-valued, C1 vector field, i.e.∫

Γ∪ΓR

(Z · n)
(∣∣∂+

n u
∣∣2 + k2|γ+u|2 − |∇Γ(γ+u)|2

)
+ 2<

(
Z · ∇Γ(γ+u)∂+

n u
)

ds

+
∫

ΩR

2<
(
Z · ∇u f

)
+ (∇ · Z)

(
|∇u|2 − k2|u|2

)
− 2<(∂iZj∂iu∂ju) dx = 0. (3.13)

We now choose Z to be such that a) there exists a c > 0 such that ess infx∈Γ Z(x) · n(x) ≥ c, and
b) supp(Z) ⊂ BR (and thus Z = 0 on ΓR); such a Z exists by, e.g., [22, Lemma 1.5.1.9].
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Rearranging the identity (3.13) and then using the facts a) and b) above along with the
Cauchy-Schwarz inequality, we obtain that∥∥∂+

n u
∥∥2

L2(Γ)
. ‖∇Γ(γ+u)‖2L2(Γ) + ‖∇Γ(γ+u)‖L2(Γ)

∥∥∂+
n u
∥∥
L2(Γ)

+ ‖∇u‖L2(ΩR) ‖f‖L2(ΩR) + ‖∇u‖2L2(ΩR) + k2 ‖u‖2L2(ΩR) .

Using the Cauchy inequality (2.7) on the second and third terms on the right hand side, we obtain
the DtN bound (3.8). The NtD bound (3.9) follows from the identity (3.13) in a similar way.

Remark 3.8 (Bounds in Lipschitz star-shaped domains) The density result in [42, Appendix
A] that was used in the proof of Lemma 3.7 shows that the identities arising from the multipliers
(1.18) and (1.21) hold when the domains are Lipschitz. Therefore, the DtN bound (1.17) obtained by
Morawetz and Ludwig in [45] and the bound on the interior impedance problem (1.22) obtained by
Melenk in [33, Prop. 8.1.4] and Cummings and Feng in [15, Theorem 1] hold when Ω− is Lipschitz
and star-shaped with respect to a ball (in the sense of Definition 1.3(ii)).

3.4 Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4. Let a be such that a > supx∈Ω− |x| and let ζ ∈ C∞(Ω+) be such that

ζ(x) = 0 for |x| > a+ 1 and ζ(x) = 1 for |x| < a.

We consider γ+u as known and define v ∈ H1(Ω+) as the solution of

∆v − λ2v = 0 in Ω+ and γ+v = γ+u on Γ,

with v(x)→ 0 as r →∞. Given v, we define h ∈ L2(Ω+) by

h := −(k2 + λ2)ζv − v∆ζ − 2∇ζ · ∇v (3.14)

(note that since ζ has compact support, so does h), and we then define w ∈ H1
loc(Ω+) as the solution

of
∆w + k2w = h in Ω+ and γ+w = 0 on Γ,

satisfying the Sommerfeld radiation condition (1.4).
The whole point of these definitions is that ũ := ζv + w is then a solution of the homogeneous

Helmholtz equation satisfying the Sommerfeld radiation condition, and, furthermore, γ+ũ = γ+u.
By uniqueness, ũ = u, and thus we have expressed u in terms of a solution of the inhomogeneous
Helmholtz equation with zero Dirichlet trace, i.e. w, and a solution of the homogeneous modified
Helmholtz equation with non-zero Dirichlet trace, i.e. v (this result can therefore be understood as
a kind of “gluing” theorem).

Using the triangle inequality and the resolvent estimate (3.1) we have that, given k0 > 0,

‖∇u‖L2(ΩR) + k ‖u‖L2(ΩR) . ‖∇v‖L2(ΩR) + k ‖v‖L2(ΩR) + ‖h‖L2(ΩR) ,

for all k ≥ k0. The definition of h, (3.14), implies that

‖h‖L2(Ω+) . ‖∇v‖L2(Ω+) + (k2 + λ2) ‖v‖L2(Ω+) , (3.15)

and thus
‖∇u‖L2(ΩR) + k ‖u‖L2(ΩR) . ‖∇v‖L2(ΩR) + (k2 + λ2) ‖v‖L2(ΩR) . (3.16)

Using the bound on the modified Helmholtz equation (3.2) and the fact that γ+v = γ+u, we have

‖∇u‖L2(ΩR) + k ‖u‖L2(ΩR) . λ1/2

(
1 +

k2 + λ2

λ

)
‖γ+u‖H1/2(Γ) . (3.17)

Choosing λ = k minimises the power of k in the factor in front of ‖γ+u‖H1/2(Γ); thus we obtain

‖∇u‖L2(ΩR) + k ‖u‖L2(ΩR) . k3/2 ‖γ+u‖H1/2(Γ) . (3.18)
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We now use Lemma 3.5 (the k-explicit version of Nečas’ result) to obtain the bounds from
H1(Γ) to L2(Γ) (1.6) and (1.7), and we then use the interpolation result (2.15) from Lemma 2.3 to
obtain the bound (1.5) from (1.6). Indeed, the bounds (3.8) and (3.18) imply that∥∥∂+

n u
∥∥2

L2(Γ)
. ‖∇Γ(γ+u)‖2L2(Γ) + k2 ‖γ+u‖2L2(Γ) + k3 ‖γ+u‖2H1/2(Γ) . (3.19)

If we use in (3.19) the fact that ‖γ+u‖H1/2(Γ) . ‖γ+u‖H1(Γ) we obtain the bound (1.6). Alternatively,
the interpolation result

‖γ+u‖2H1/2(Γ) . ‖γ+u‖L2(Γ) ‖γ+u‖H1(Γ) ,

[32, Lemma B.1 and Theorem B.11], the norm equivalence (2.5), and the Cauchy inequality (2.7)
imply that

‖γ+u‖2H1/2(Γ) .
1
k

(
1
ε
‖∇Γ(γ+u)‖2L2(Γ) +

(
εk2 +

1
ε

)
‖γ+u‖2L2(Γ)

)
(3.20)

for any ε > 0. Using (3.20) in (3.19) yields

∥∥∂+
n u
∥∥2

L2(Γ)
. ‖∇Γ(γ+u)‖2L2(Γ)+k

2 ‖γ+u‖2L2(Γ)+k
2

(
1
ε
‖∇Γ(γ+u)‖2L2(Γ) +

(
εk2 +

1
ε

)
‖γ+u‖2L2(Γ)

)
.

(3.21)
We now aim to make the right-hand side of (3.21) a multiple of the weighted-H1(Γ) norm squared.
The choice ε = 1 minimises the power of k in front of the weighted norm, and thus (3.21) becomes
the result (1.7).

Proof of Theorem 1.5. Our goal is again to define v and w so that u = ζv + w, but this time ∂+
n u

is considered as known. We therefore define v ∈ H1(Ω+) as the solution of

∆v − λ2v = 0 in Ω+ and ∂+
n v = ∂+

n u on Γ,

with v(x)→ 0 as r →∞. Given v, we define h again by (3.14), and w ∈ H1
loc(Ω+) as the solution

of
∆w + k2w = h in Ω+ and ∂+

n w = 0 on Γ,

satisfying the Sommerfeld radiation condition.
By using the bound on h (3.15) and the resolvent estimate (3.1), we again have that (3.16)

holds.
Using the bound on v (3.3) in (3.16), we obtain

‖∇u‖L2(ΩR) + k ‖u‖L2(ΩR) .
1

λ1/2

(
1 +

k2 + λ2

λ

)∥∥∂+
n u
∥∥
L2(Γ)

.

When λ = k this bound becomes

‖∇u‖L2(ΩR) + k ‖u‖L2(ΩR) . k1/2
∥∥∂+

n u
∥∥
L2(Γ)

, (3.22)

and then the multiplicative trace inequality (2.4) and the Cauchy inequality (2.7) imply that

k2 ‖γ+u‖2L2(Γ) . k
(
‖∇u‖2L2(ΩR) + k2 ‖u‖2L2(ΩR)

)
. k2

∥∥∂+
n u
∥∥2

L2(Γ)
. (3.23)

Using the bounds (3.22) and (3.23) in (3.9) (the k-explicit version of Nečas’ result) we obtain the
bound (1.9). This bound implies that ‖γ+u‖H1(Γ) . k‖∂+

n u‖L2(Γ), and then the interpolation result
(2.17) from Lemma 2.3 implies the bound (1.8).

Remark 3.9 (The difference between the argument here and the argument in [28]) As
discussed in §1, the paper [28] proves the bounds (1.20) on the DtN and NtD maps in the trace
spaces when Ω+ is nontrapping (in the sense of Definition 1.1). The main differences between
our argument for these spaces and theirs are the following: (i) We use sharper bounds on the
solution of the modified Helmholtz equation with Dirichlet boundary conditions ( (3.2) instead of the
bound ‖∇v‖L2(Ω+) + λ‖v‖L2(Ω+) . λ‖γ+v‖H1/2(Γ)). (ii) We use the Nečas result (3.8) to bound
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‖∂+
n u‖L2(Γ), and then use interpolation to bound ‖∂+

n u‖H−1/2(Γ), whereas [28] effectively use the
fact that ∥∥∂+

n u
∥∥
H−1/2(Γ)

≤
∥∥∂+

n u
∥∥
L2(Γ)

. ‖u‖H2(ΩR) (3.24)

and then use the resolvent estimate on the H2-norm (we say “effectively” because [28] bounds
‖∂+
n u‖H−1/2(Γ) by bounding ‖∂+

n v‖H−1/2(Γ) and ‖∂+
n w‖H−1/2(Γ), and the inequalities (3.24) are used

to obtain a bound on ‖∂+
n w‖H−1/2(Γ)).

3.5 How sharp are the DtN and NtD bounds?

This section is devoted to proving the following lemma.

Lemma 3.10 (Sharpness of the DtN and NtD maps) Let d = 2 or 3. If the bounds on the
DtN map ∥∥∂+

n u
∥∥
H−1/2(Γ)

. A ‖γ+u‖H1/2(Γ) ,∥∥∂+
n u
∥∥
L2(Γ)

. B ‖γ+u‖H1(Γ) , and∥∥∂+
n u
∥∥
L2(Γ)

. C ‖∇Γ(γ+u)‖L2(Γ) +Dk ‖γ+u‖L2(Γ) (3.25)

hold for all nontrapping domains (in the sense of Definition 1.1) or for all Lipschitz domains that
are star-shaped (in the sense of Definition 1.3(i)), then

A & k, B & k, C & 1, D & 1.

If the bounds on the NtD map

‖γ+u‖H1/2(Γ) . E
∥∥∂+

n u
∥∥
H−1/2(Γ)

and (
‖∇Γ(γ+u)‖L2(Γ) + k ‖γ+u‖L2(Γ)

)
. F

∥∥∂+
n u
∥∥
L2(Γ)

hold for all nontrapping domains (in the sense of Definition 1.1), or for all Lipschitz domains that
are star-shaped (in the sense of Definition 1.3(i)), then

E & k1/3 and F & k1/3.

Corollary 3.11 The bound on the DtN map from H1(Γ) to L2(Γ) for 2- and 3-d Ω− that are
Lipschitz and star-shaped with respect to a ball given by Morawetz and Ludwig in [45] (i.e. (3.25)
with C ∼ 1, D ∼ 1) is sharp.

Lemma 3.10 is proved by considering the specific case of Ω− the unit ball. (Note that in this
section we use the notation that a� b if a/b→ 0 as k →∞, and a� b if b� a.)

Lemma 3.12 If Ω− = B1 (the unit ball) in 2- or 3-d then there exists a u(1) ∈ H1
loc(Ω+) that has

∂+
n u

(1) ∈ L2(Γ) and satisfies ∆u(1) + k2u(1) = 0, the Sommerfeld radiation condition (1.4), and the
asymptotics ∥∥∂+

n u
(1)
∥∥
H−1/2(Γ)

∼ k
∥∥γ+u

(1)
∥∥
H1/2(Γ)

, (3.26)∥∥∂+
n u

(1)
∥∥
L2(Γ)

∼ k
∥∥γ+u

(1)
∥∥
H1(Γ)

, (3.27)∥∥∂+
n u

(1)
∥∥
L2(Γ)

∼ k
∥∥γ+u

(1)
∥∥
L2(Γ)

and
∥∥∇Γ(γ+u

(1))
∥∥
L2(Γ)

= 0, (3.28)

as k →∞.
Furthermore, given any increasing function of k, D̃(k), there exists a u(2) ∈ H1

loc(Ω+) that has
∂+
n u

(2) ∈ L2(Γ) and satisfies ∆u(2) + k2u(2) = 0, the Sommerfeld radiation condition (1.4), and the
asymptotics∥∥∂+

n u
(2)
∥∥
L2(Γ)

∼
∥∥∇Γ(γ+u

(2))
∥∥
L2(Γ)

, and
∥∥∇Γ(γ+u

(2))
∥∥
L2(Γ)

� D̃(k)k
∥∥γ+u

(2)
∥∥
L2(Γ)

(3.29)
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as k →∞.
Finally there exists a u(3) ∈ H1

loc(Ω+) that has ∂+
n u

(3) ∈ L2(Γ) and satisfies ∆u(2) + k2u(2) = 0,
the Sommerfeld radiation condition (1.4), and the asymptotics∥∥γ+u

(3)
∥∥
H1/2(Γ)

∼ k1/3
∥∥∂+

n u
(3)
∥∥
H−1/2(Γ)

, (3.30)∥∥∇Γ(γ+u
(3))
∥∥
L2(Γ)

+ k
∥∥γ+u

(3)
∥∥
L2(Γ)

∼ k1/3
∥∥∂+

n u
(3)
∥∥
L2(Γ)

(3.31)

as k →∞.

Proof of Lemma 3.10 using Lemma 3.12. The asymptotics (3.26) imply that A & k, the asymptotics
(3.27) imply that B & k, and the asymptotics (3.28) imply that D & 1. The asymptotics (3.29)
then imply that C & 1. Note that, for this last implication, the arbitrary increasing function D̃(k) is
needed in (3.29) since, although (3.28) implies that D in (3.25) must be & 1, we cannot rule out the
possibility that D grows with k. The second bound in (3.29) ensures that C‖∇Γ(γ+u

(2))‖L2(Γ) is
the dominant term on the right-hand side of (3.25), regardless of any potential growth in D. Finally,
the asymptotics (3.30) imply that E & k1/3, and the asymptotics (3.31) imply that F & k1/3.

Proof of Lemma 3.12. We first consider the 2-d case. The functions um defined by

um(r, θ) :=
H

(1)
m (kr)

H
(1)
m (k)

eimθ, m ∈ Z,

are in H1
loc(Ω+) and satisfy ∆um + k2um = 0, the Sommerfeld radiation condition, and ∂+

n um ∈
L2(Γ). Furthermore, γ+um(θ) = exp (imθ) and

∂+
n um(θ) =

∂um
∂r

(1, θ) = k
H

(1)′

m (k)

H
(1)
m (k)

eimθ.

Define the Fourier transform of a function f : [0, 2π] → C by f̂(n) :=
∫ 2π

0
exp (−inθ)f(θ) dθ. We

then have that ̂um(1, θ)(n) = 2π δnm, and the definition of Sobolev spaces on Γ in terms of the
Fourier transform implies that ‖γ+um‖2Hs(Γ) ∼ (1 +m2)s, ‖∇Γ(γ+um)‖2L2(Γ) ∼ m

2, and

∥∥∂+
n um

∥∥2

Hs(Γ)
∼ k2 N

2
m(k)

M2
m(k)

(1 +m2)s,

where
Nm(k) :=

∣∣∣H(1)′

m (k)
∣∣∣ , Mm(k) :=

∣∣∣H(1)
m (k)

∣∣∣ ,
and ∼ is meant as in §2 but with the omitted constant independent of k and m. As k →∞ with m
fixed, Nm(k) ∼Mm(k) [1, Equations 9.2.28 and 9.2.30]. Therefore, the bounds (3.26)-(3.28) hold
with u(1) := u0.

To prove that there exists a u(2) satisfying (3.29), first note that ‖∇Γ(γ+um)‖L2(Γ) ∼ m and
‖γ+um‖L2(Γ) ∼ k. Therefore, to prove that (3.29) holds we need to show that, given any D̃(k),
there exists an m (as a function of k) such that

m� D̃(k)k2 and k2 N
2
m(k)

M2
m(k)

∼ m2 as k →∞. (3.32)

We now use the uniform asymptotic expansions of H(1)
ν (νz) and H

(1)′

ν (νz) as ν →∞ (uniform
for all z ∈ (0,∞)), aiming to ultimately let ν = m and z = k/m. The condition that m� D̃(k)k2

as k →∞ for some increasing function D̃(k) certainly implies that m� k as k →∞. Therefore,
when looking at H(1)

ν (νz) and H
(1)′

ν (νz), we are interested in the case that z → 0.
Using the uniform asymptotic expansions of H(1)

ν (νz) and H(1)′

ν (νz) given by, e.g., [1, Equations
9.3.37 and 9.3.45] or [49, Equations 10.20.6 and 10.20.9], we find that

N2
ν (νz)

M2
ν (νz)

∼
(

1− z2

ζz2

) ∣∣∣Ai(α)
ν4/3 C0(ζ) + e2πi/3 Ai′(α)

ν2/3

∣∣∣2∣∣∣Ai(α)
ν1/3 + e2πi/3 Ai′(α)

ν5/3 B0(ζ)
∣∣∣2 as ν →∞, uniformly for z ∈ (0,∞),
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where α := exp (2πi/3)ν2/3ζ,

2
3
ζ3/2 := log

(
1 +
√

1− z2

z

)
−
√

1− z2,

C0(ζ) is a function that ∼ ζ1/2 when z → 0 and ν →∞, and B0(ζ) is a function that ∼ −ζ−1/2

when z → 0 and ν → ∞. Since ζ and ν are both real, α ∈ exp (2πi/3)R. If z → 0 then
ζ(z) ∼ [log(1/z)]2/3, and then α→∞ as ν →∞ and z → 0. The asymptotics of Ai(α) and Ai′(α)
are then given by

Ai(α) ∼ e−β

2
√
πα1/4

and Ai′(α) ∼ −α1/2 Ai(α) as α→∞,

where β := 2α3/2/3 [49, Equations 9.7.5 and 9.7.6]. Using these asymptotics, and the fact that
exp (2πi/3)α1/2 = −ν1/3ζ1/2, we find that

N2
ν (νz)

M2
ν (νz)

∼
(

1− z2

ζz2

) ∣∣∣∣C0(ζ) + νζ1/2

ν + ζ1/2B0(ζ)

∣∣∣∣2 . (3.33)

Using the facts that ζ →∞, C0(ζ) ∼ ζ1/2, and B0(ζ) ∼ −ζ−1/2 as ν →∞ and z → 0, we have that

N2
ν (νz)

M2
ν (νz)

∼ 1
z2

as ν →∞ and z → 0. If we let ν = m and z = k/m, then this implies that

k2 N
2
m(k)

M2
m(k)

∼ m2

as k → ∞ and m → ∞ with m � k. Therefore, given any increasing function of k, D̃(k), if we
choose m to be a function of k such that m� D̃(k)k2 and let u(2) := um, then the asymptotics
(3.32) (and thus also the asymptotics (3.29)) hold.

Finally, we let u(3) := uk. The definition of um above implies that

‖γ+um‖H1/2(Γ)∥∥∂+
n um

∥∥
H−1/2(Γ)

∼ Mm(k)
Nm(k)

(1 +m2)1/2

k
. (3.34)

The asymptotics
Nk(k) ∼ k−2/3 and Mk(k) ∼ k−1/3 (3.35)

[1, Equations 9.3.31–9.3.34], [49, Equations 10.19.9 and 10.19.13] then imply (3.30). Similarly, the
asymptotics (3.35) also imply (3.31).

In the 3-d case the argument proceeds almost exactly as before with

ul,m(r, θ, φ) :=
h

(1)
l (kr)

h
(1)
l (k)

Yl,m(θ, φ), l ∈ Z+, m = −l, . . . , l,

where Yl,m(θ, φ) are the spherical harmonics defined by [49, Equation 14.30.1] (note that l now plays
the role that m played in the 2-d case). The asymptotics (3.26)-(3.28) are satisfied if u(1) := u0,0, the
asymptotics (3.29) are satisfied if u(2) := ul,0 and l is taken to be � D̃(k)k2, and the asymptotics
(3.30) and (3.31) are satisfied with u(3) := uk,0.

Remark 3.13 (How sharp is Babich’s bound on the NtD map?) We have ‖γ+um‖L∞(Γ) =
1 and ‖∂+

n um‖L∞(Γ) = kNm(k)/Mm(k). If m = k then this last quantity ∼ k2/3 as k → ∞, and
therefore the bound (1.19) on the NtD map is therefore at most k1/6 away from being sharp.
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4 Bounds on the interior and exterior impedance problems

In this section we prove Theorems 1.6 and 1.8. We go through the argument for Theorem 1.6
(which concerns the interior problem) in §4.1-§4.2, and then outline the necessary modifications to
prove Theorem 1.8 (which concerns the exterior problem) in §4.3.

We begin by defining precisely what we mean when we say that a function u satisfies the interior
impedance problem.

Definition 4.1 (Interior impedance problem) Given a bounded Lipschitz domain Ω− ⊂ Rd,
d = 2, 3, with boundary Γ, functions f ∈ (H1(Ω−))′ and g ∈ H−1/2(Γ), and η ∈ R \ {0}, we say
that u ∈ H1(Ω−) satisfies the interior impedance problem if

a(u, v) = F (v) for all v ∈ H1(Ω−), (4.1)

where

a(u, v) :=
∫

Ω−

(∇u ·∇v−k2uv) dx− iη
∫

Γ

γ−u γ−v ds and F (v) := 〈f, v〉Ω−+ 〈g, γ−v〉Γ, (4.2)

where 〈·, ·〉Ω− and 〈·, ·〉Γ denote the duality pairings on Ω− and Γ respectively.

Therefore, the condition that u satisfies the PDE and boundary conditions (1.10) in Theorem 1.6 is
to be understood as u satisfying the variational problem (4.1).

Green’s first identity can be used to show that if η ∈ R then the solution to the interior
impedance problem is unique; see, e.g. [18, Example 2.1]. The sesquilinear form a(·, ·) satisfies
a G̊arding inequality, and then Fredholm theory gives existence of a solution to the variational
problem (4.1); see, e.g., [51, Theorem 2.1.60], [32, Theorem 2.34].

To prove Theorem 1.6 we use the argument that Esterhazy and Melenk used to prove the bound
(1.24) (which is closely related to the argument that Feng and Sheen used to prove the bound (1.23)
– see Remark 4.9). This argument consists of the following two steps.

Step 1. Bound the solution of the interior impedance problem with f = 0 in terms of g. To do this,
use Green’s integral representation and bounds on the integral operators to bound u in terms
of its Cauchy data (∂−n u and γ−u), and then bound the Cauchy data by g using Green’s first
identity.

Step 2. Convert the inhomogeneous problem (i.e., with f 6= 0) into a homogenous one by using
the Newtonian potential. Then use bounds on the Newtonian potential (also known as free
resolvent estimates) along with the bounds obtained in Step 1 to obtain a bound on the
solution of the interior impedance problem with f 6= 0.

Our improved bounds in Theorem 1.6 are the result of improved layer-potential bounds in Step
1. For completeness we also give the (short) argument in Step 2, although it is identical to that
appearing in [18, §2.1]. Before we present these arguments, we sketch a proof of Corollary 1.7.

References for the proof of Corollary 1.7. The argument that shows that the bound (1.11) can
be used to prove the bound (1.14) can be found in, e.g., [18, Theorem 2.5] or [12, Text between
Lemmas 3.3 and 3.4]. The result (1.15) about the inf-sup constant then follows from, e.g., [51,
Theorem 2.1.44].

4.1 Bounds on the problem with f = 0 (Step 1)

We begin by recalling the fairly well-known result that the Cauchy data of the solution to the
interior impedance problem with f = 0 can be bounded in terms of the impedance data g. (This is
given in [12, Equations 4.26 and 4.27] and [18, Lemma 2.2].)

Lemma 4.2 If u ∈ H1(Ω−) satisfies the interior impedance problem of Definition 4.1 with f = 0
and g ∈ L2(Γ), then∥∥∂−n u∥∥L2(Γ)

≤ ‖g‖L2(Γ) and ‖γ−u‖L2(Γ) ≤
1
|η|
‖g‖L2(Γ) . (4.3)
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Proof. Since u ∈ H1(Ω−,∆) we can apply Green’s first identity (2.6) in Ω− with v = u and take
the imaginary part to obtain

=
∫

Γ

γ−u ∂
−
n uds = 0. (4.4)

Using the impedance boundary condition (which holds as an equation in L2(Γ) as a consequence of
the variational problem (4.1) and the definition of the normal derivative) to express ∂−n u in (4.4) in
terms of γ−u and g yields

η ‖γ−u‖2L2(Γ) + =
∫

Γ

γ−u g ds = 0. (4.5)

Then, using the Cauchy-Schwarz inequality on the second term in (4.5), we obtain the second
bound in (4.3). Similarly, using the impedance boundary condition to express γ−u in (4.4) in terms
of ∂−n u and g and then using the Cauchy-Schwarz inequality yields the first bound in (4.3).

We now recall some facts about layer potentials. For φ ∈ L2(Γ), the single- and double-layer
potentials are defined by

Skφ(x) :=
∫

Γ

Φk(x,y)φ(y)ds(y), Dkφ(x) :=
∫

Γ

∂Φk(x,y)
∂n(y)

φ(y)ds(y), x ∈ Rd \ Γ, (4.6)

where Φk(x,y) is defined by (1.27).
If χ ∈ C∞comp(Rd), |s| ≤ 1/2, and k ≥ 0, then

χSk : Hs−1/2(Γ)→ Hs+1(Rd) and χDk : Hs+1/2(Γ)→ Hs+1(Ω±).

For |s| < 1/2 these mapping properties can be obtained from Green’s integral representation and
mapping properties of the Newtonian potential; see [14, Theorem 1], [51, Theorem 3.1.16], or [32,
Theorems 6.11 and 6.12]. To establish the properties in the limit cases of s = ±1/2, one needs the
harmonic analysis results summarised in, e.g., [11, Theorems 2.15 and 2.16] (note that the mapping
properties for |s| < 1/2 can be obtained from those for s = ±1/2 by interpolation).

Lemma 4.3 (Bounds on the single- and double-layer potentials for Lipschitz Γ) Let d =
2 or 3. With Sk and Dk defined by (4.6), if χ ∈ C∞comp(Rd), then, given k0 > 0,

‖χSk‖L2(Γ)→L2(Rd) . k−1/2 and ‖χDk‖L2(Γ)→L2(Rd) . k1/2, (4.7)

for all k > k0.

Whilst this paper was being written, Han and Tacy [23] also investigated the wavenumber-
dependence of the norms of the single- and double-layer potentials. By using results about
quasimodes and their restrictions to the boundary, Han and Tacy proved sharper bounds than
those in Lemma 4.3 in the case that Γ is piecewise smooth.

Lemma 4.4 (Bounds on the single- and double-layer potentials for piecewise smooth
Γ [23, Theorems 1.1 and 1.4]) Assume that Γ is piecewise smooth. With Sk and Dk defined by
(4.6), if χ ∈ C∞comp(Rd), then, given k0 > 0,

‖χSk‖L2(Γ)→L2(Rd) . k−3/4 and ‖χDk‖L2(Γ)→L2(Rd) . 1, (4.8)

for all k > k0.

Note that the bound on Sk in (4.8) is sharp if Γ contains a flat piece (in either 2- or 3-d) [23,
§4.1], and the the bound on Dk is sharp if Ω− is a 2-d ball [23, §4.2].

Remark 4.5 (Comparison of the bounds in Lemma 4.3 with previously obtained bounds)
In [20, Theorem 3.4, Lemma 3.5, and Theorem 4.5] Feng and Sheen prove that

‖χSk‖L2(Γ)→L2(Rd) . 1 and ‖χDk‖L2(Γ)→L2(Rd) . 1 + k, (4.9)
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for all k > 0. These bounds are then used to prove the bound on the interior impedance problem
(1.23). A consequence of [34, Theorems 4.1 and 4.2] is that, given k0 > 0,

‖χSk‖H−1(Γ)→L2(Rd) . k, and ‖χDk‖L2(Γ)→L2(Rd) . k, (4.10)

for all k ≥ k0, and these are the bounds that Esterhazy and Melenk used to obtain (1.24). We note
that, firstly, this involves using the generous estimate that ‖χSk‖L2(Γ)→L2(Rd) ≤ ‖χSk‖H−1(Γ)→L2(Rd)

and, secondly, that the novel decompositions introduced in [34] that (4.10) are consequences of are
not designed to produce sharp norm bounds, but instead split these operators into parts with finite
regularity but k-independent norm bounds and parts that are strongly smoothing with k-explicit
bounds for their derivatives (with these properties then key in the analysis of the hp boundary
element method in [31]).

Proof of Lemma 4.3. The idea of the proof is to obtain the bounds on Sk and Dk in (4.7) by using,
firstly, the definition of these operators in terms of the Newtonian potential and, secondly, bounds
on the Newtonian potential (the so-called free resolvent estimates). We begin by recalling some
facts about the Newtonian potential and these estimates.

Given f ∈ L2(Rd) with compact support, let Nkf be the Newtonian potential of f defined by

Nkf(x) :=
∫

Rd

Φk(x,y) f(y) dy, x ∈ Rd. (4.11)

If χ1 and χ2 are both in C∞comp(Rd) then, χ1Nkχ2 : Hs(Rd) → Hs+2(Rd) for any s ∈ R [32,
Theorem 6.1]. We have that (∆ + k2)Nk(f) = −f [32, Theorems 6.1 and 9.4] and Nkf satisfies the
Sommerfeld radiation condition (1.4). Furthermore, for any R > 0 and k0 > 0,

k−1 ‖Nkf‖H2(ΩR) + ‖Nkf‖H1(ΩR) + k ‖Nkf‖L2(ΩR) . ‖f‖L2(Rd) (4.12)

for all k ≥ k0, where the omitted constant depends only on R and k0. This bound is known as the
free resolvent estimate (“free” in the sense that, compared to the resolvent estimate in Theorem 3.1,
there is no obstacle) and was proved by Vainberg in [58, Theorems 3 and 4] (for some discussion on
the appearances of this type of estimate in the literature, see [11, Remark 5.9]).

The adjoint of Nk, N ′k, is defined by

N ′kf(x) :=
∫

Rd

Φk(y,x) f(y) dy, x ∈ Rd.

We have that N ′kf = Nkf̄ , and so the estimate (4.12) holds also for N ′k.
The definitions of the single- and double-layer potentials (4.6) imply that, for ψ ∈ L2(Γ) and

f ∈ C∞comp(Rd), (
Skψ, f

)
Rd =

(
ψ, γN ′kf

)
Γ

and
(
Dkψ, f

)
Rd =

(
ψ, ∂nN ′kf

)
Γ
, (4.13)

where (·, ·)Rd denotes the L2-inner product on Rd, and (·, ·)Γ denotes the L2-inner product on Γ;
see [32, Page 202], [51, Definition 3.1.5]. (Note that the Dirichlet and Neumann traces in (4.13) can
be taken to be those from either the interior or the exterior. This is because N ′kf and its derivative
are continuous across Γ due to the mapping properties of N ′k and the fact that f ∈ C∞comp(Rd).)

Using the first equation in (4.13), the Cauchy-Schwarz inequality, and the multiplicative trace
inequality (2.2), we obtain that, with ψ ∈ L2(Γ) and χ and f ∈ C∞comp(Rd),∣∣(χSkψ, f)Rd

∣∣ ≤ ‖ψ‖L2(Γ) ‖γN
′
kf‖L2(Γ) . ‖ψ‖L2(Γ)

(
‖N ′kf‖L2(ΩR) ‖N

′
kf‖H1(ΩR)

)1/2

for any R > supx∈Ω− |x|. Using the resolvent estimate (4.12) this last inequality becomes∣∣(χSkψ, f)Rd

∣∣ . k−1/2 ‖ψ‖L2(Γ) ‖f‖L2(Rd) . (4.14)

The inequality (4.14) holds for all f ∈ C∞comp(Rd), and thus for all f ∈ L2(Rd) by the density of
C∞comp(Rd) in L2(Rd). Therefore we have that

‖χSkψ‖L2(Rd) = sup
f∈L2(Rd),f 6=0

∣∣(χSkψ, f)Rd

∣∣
‖f‖L2(Rd)

.
1

k1/2
‖ψ‖L2(Γ) ,
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and the bound on ‖χSk‖L2(Γ)→L2(Rd) in (4.7) follows.
Similarly, with ψ ∈ L2(Γ) and χ and f ∈ C∞comp(Rd),∣∣(χDkψ, f)Rd

∣∣ ≤ ‖ψ‖L2(Γ) ‖∂nN
′
kf‖L2(Γ) . (4.15)

Since N ′kf ∈ H2(Rd) we have ∂nN ′kf = n · γ∇(N ′kf), and then the multiplicative trace inequality
(2.2) implies that

‖∂nN ′kf‖L2(Γ) .
(
‖N ′kf‖H1(ΩR) ‖N

′
kf‖H2(ΩR)

)1/2

(4.16)

for any R > supx∈Ω− |x|. Using (4.16) and the resolvent estimate (4.12) in (4.15) we obtain that∣∣(χDkψ, f)Rd

∣∣ . k1/2 ‖ψ‖L2(Γ) ‖f‖L2(Rd) ,

and then the bound on ‖χDk‖L2(Γ)→L2(Rd) in (4.7) follows.
To prove the following lemma, we first use Green’s integral representation and the bounds on

the layer potentials given by (4.7) and (4.8) to bound the solution of the homogeneous Helmholtz
equation in terms of its Cauchy data. We then use Lemma 4.2 to bound the Cauchy data by
‖g‖L2(Γ).

Lemma 4.6 Let u ∈ H1(Ω−) be the solution of the interior impedance problem of Definition 4.1
with f = 0 and g ∈ L2(Γ). Then, given k0 > 0,

‖∇u‖L2(Ω−) + k ‖u‖L2(Ω−) . k1/2

(
1 +

k

|η|

)
‖g‖L2(Γ) (4.17)

for all k ≥ k0. Furthermore, if Γ is piecewise smooth, then, given k0 > 0,

‖∇u‖L2(Ω−) + k ‖u‖L2(Ω−) .

(
k1/4 +

k

|η|

)
‖g‖L2(Γ) (4.18)

for all k ≥ k0.

Proof. Green’s integral representation implies that u = Sk∂−n u − Dkγ−u [32, Theorem 7.5], and
then the bounds (4.7) on Sk and Dk imply that, given k0 > 0,

‖u‖L2(Ω−) . k−1/2
(∥∥∂−n u∥∥L2(Γ)

+ k ‖γ−u‖L2(Γ)

)
, (4.19)

for all k ≥ k0. The bounds (4.3) on the Cauchy data then imply that

‖u‖L2(Ω−) . k−1/2

(
1 +

k

|η|

)
‖g‖L2(Γ) , (4.20)

which is the bound on ‖u‖L2(Ω−) in (4.17).
To obtain the bound on ‖∇u‖L2(Ω−) in (4.17), we apply Green’s first identity (2.6) in Ω− with

v = u, and use the impedance boundary condition to obtain

‖∇u‖2L2(Ω−) − k
2 ‖u‖2L2(Ω−) = iη ‖γ−u‖2L2(Γ) +

∫
Γ

g γ−uds.

Taking the real part of this equation, using the Cauchy-Schwarz inequality, and then using the
second bound in (4.3), we obtain that

‖∇u‖2L2(Ω−) . k2 ‖u‖2L2(Ω−) +
1
|η|
‖g‖2L2(Γ) .

Using the bound (4.20) in the term involving ‖u‖L2(Ω−), we obtain the bound on ‖∇u‖L2(Ω−) in
(4.17) and hence the result (4.17) itself. The improved result (4.18) when Γ is piecewise smooth
follows in a similar way by using the bounds (4.8) instead of (4.7).
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Corollary 4.7 If u satisfies the interior impedance problem of Definition 4.1 with f = 0 and
g ∈ L2(Γ) then, given k0 > 0,

‖∇Γ(γ−u)‖L2(Γ) . k1/2

(
1 +

k

|η|

)
‖g‖L2(Γ) (4.21)

for all k ≥ k0. Furthermore, if Γ is piecewise smooth, then, given k0 > 0,

‖∇Γ(γ−u)‖L2(Γ) .

(
k1/4 +

k

|η|

)
‖g‖L2(Γ) (4.22)

for all k ≥ k0.

Proof. Repeating in the argument in the Proof of Lemma 3.5 for Ω− instead of Ω+, we obtain the
bound

‖∇Γ(γ−u)‖2L2(Γ) .
∥∥∂−n u∥∥2

L2(Γ)
+ k2 ‖γ−u‖2L2(Γ) + ‖∇u‖2L2(Ω−) + k2 ‖u‖2L2(Ω−) (4.23)

(recalling that f = 0). The result (4.21) follows from (4.23) using the bounds on ‖∂−n u‖L2(Γ) and
‖γ−u‖L2(Γ) in (4.3) and the bounds on ‖∇u‖L2(Ω−) and ‖u‖L2(Ω−) in (4.17). The result (4.22)
follows in a similar way by using the bound (4.18) instead of (4.17).

Remark 4.8 If u satisfies the interior impedance problem with f = 0 and g ∈ L2(Γ) and Ω− is
star-shaped with respect to a ball (in the sense of Definition 1.3(ii)) then, given k0 > 0,

‖∇Γ(γ−u)‖L2(Γ) .

(
1 +

k

|η|

)
‖g‖L2(Γ) (4.24)

for all k ≥ k0. (Note that our bound for general Lipschitz Ω−, (4.21), is a factor of k1/2 worse.)
The bound (4.24) can be proved in one of two ways. The first consists of using the bound on

the solution in the domain (1.22) and the bounds on the Cauchy data (4.3) in the bound (4.23).
The second consists of using the fact that, under the star-shapedness assumption, integrating the
identity arising from the multiplier (1.21) over Ω− shows that, given k0 > 0,

‖∇Γ(γ−u)‖L2(Γ) .
∥∥∂−n u∥∥L2(Γ)

+ k ‖γ−u‖L2(Γ)

for all k ≥ k0, and then (4.24) follows by using the bounds (4.3). The bound (4.24) was proved in
[12, Proof of Lemma 4.5, Equation 4.28] via the second method.

4.2 Bounds on the problem with non-zero f (Step 2)

Proof of Theorem 1.6 using Lemma 4.6. The strategy is to reduce the problem with f 6= 0 into a
problem with f = 0, and then use Lemma 4.6.

Given f ∈ L2(Ω−), let u0 := Nkf . The bound (4.12) then holds for u0, with the norms on the
left-hand side all on Ω−. If g̃ := g − (∂−n u0 − iηγ−u0) then we have that ũ := u− u0 satisfies

∆ũ+ k2ũ = 0 in Ω− and ∂−n ũ− iηγ−ũ = g̃ on Γ.

Using the triangle inequality, the bound (4.17) for ũ, and the resolvent estimate (4.12) for u0, we
obtain that

‖∇u‖L2(Ω−) + k ‖u‖L2(Ω−) . k1/2

(
1 +

k

|η|

)
‖g̃‖L2(Γ) + ‖f‖L2(Ω−) . (4.25)

Therefore, we only need to bound ‖g̃‖L2(Γ) in terms of ‖g‖L2(Γ) and ‖f‖L2(Ω−). The definition of g̃
implies that

‖g̃‖L2(Γ) ≤ ‖g‖L2(Γ) +
∥∥∂−n u0

∥∥
L2(Γ)

+ |η| ‖γ−u0‖L2(Γ) .

Since u0 ∈ H2(Ω−) we have that ∂−n u = n · γ(∇u0), and then using the multiplicative trace
inequality (2.2) and the resolvent estimate (4.12) we have

‖g̃‖L2(Γ) . ‖g‖L2(Γ) +
(
‖u0‖H1(Ω−) ‖u0‖H2(Ω−)

)1/2

+ |η|
(
‖u0‖L2(Ω−) ‖u0‖H1(Ω−)

)1/2
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. ‖g‖L2(Γ) + k1/2

(
1 +
|η|
k

)
‖f‖L2(Ω−) .

Using this last bound in (4.25) yields the result (1.11). The improved result for piecewise smooth Γ
comes from using the bound (4.18) instead of (4.17) at the beginning of the proof (to obtain an
improved factor in front of ‖g̃‖L2(Γ) in (4.25)).

Remark 4.9 (Why not just do everything from Green’s integral representation with
f 6= 0?) To prove Theorem 1.6 we first proved bounds on the interior impedance problem with f = 0
using Green’s integral representation (resulting in the bound (4.17)), and then used bounds on the
Newtonian potential, Nk, to prove bounds on the interior impedance problem with f 6= 0.

Alternatively, we could start from Green’s integral representation with f 6= 0,

u = Sk∂−n u−Dkγ−u+Nkf,

and then use the bounds on Sk, Dk, and Nk given by (4.7) and (4.12), along with the impedance
boundary condition, to obtain

‖u‖L2(Ω−) . k1/2

(
1 +
|η|
k

)
‖γ−u‖L2(Γ) +

1
k1/2

‖g‖L2(Γ) +
1
k
‖f‖L2(Ω−) . (4.26)

The argument involving Green’s first identity that led to the bounds (4.33) for the problem with
f = 0 can be used to prove that

|η|
2
‖γ−u‖2L2(Γ) ≤

1
2ε
‖f‖2L2(Ω−) +

ε

2
‖u‖2L2(Ω−) +

1
2|η|
‖g‖2L2(Γ) , (4.27)

for any ε > 0 and then this bound can be used in (4.26) to prove a bound on u in terms of g and f
(this is exactly the method used in [20] with the bounds on Sk and Dk (4.9) used instead of (4.7)
and the weaker bound ‖Nkf‖L2(Ω−) . ‖f‖L2(Ω−) used instead of (4.12)).

When |η| & k this method results in a bound identical in its k- and η-dependence to (1.11).
When |η| � k this method yields a bound that is weaker than (1.11) in its k- and η-dependence.

Lemma 4.10 (Sharpness of the interior impedance bounds) If the bound on the solution
of the interior impedance problem with f ∈ L2(Ω−), g ∈ L2(Γ), and η = ±k

‖∇u‖L2(Ω−) + k ‖u‖L2(Ω−) . A ‖g‖L2(Γ) +B ‖f‖L2(Ω−) (4.28)

holds whenever Ω− is a bounded Lipschitz domain in 2- or 3-d, then

A & k−1/2 and B & 1.

Lemma 4.10 is proved by combining the following two lemmas.

Lemma 4.11 If Ω− = B1 (the unit ball) in 2- or 3-d then there exists a u(1) ∈ H1(Ω−) that has
∂−n u

(1) ∈ L2(Γ) and satisfies ∆u(1) + k2u(1) = 0 and the asymptotics∥∥∂−n u(1) ± ik γ−u(1)
∥∥
L2(Γ)

∼ k
∥∥γ−u(1)

∥∥
L2(Γ)

as k →∞. (4.29)

Lemma 4.12 If Ω− is any bounded, Lipschitz domain, then there exists a f̃ ∈ L2(Ω−) such that,
if u is the solution of the interior impedance problem of Definition 4.1 with g = 0 and f = f̃ , there
exists a k0 > 0 such that

k ‖u‖L2(Ω−) &
∥∥f̃∥∥

L2(Ω−)
(4.30)

for all k ≥ k0.

Proof of Lemma 4.10 using Lemmas 4.11 and 4.12. The bound B & 1 follows immediately from
the bound (4.30) in Lemma 4.12. To prove the bound A & k−1/2, we consider the function u(1) of
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Lemma 4.11 and use the multiplicative trace inequality (2.2), the Cauchy inequality (2.7), and the
bound (4.28) to obtain that

k1/2
∥∥γ−u(1)

∥∥
L2(Γ)

. A
∥∥∂−n u(1) ± ik γ−u(1)

∥∥
L2(Γ)

. (4.31)

Using the asymptotics (4.29) in (4.31), we obtain that A & k−1/2.

Proof of Lemma 4.11. We first consider the 2-d case. The functions um defined by

um(r, θ) := Jm(kr) eimθ, m ∈ Z.

are in H1(Ω−), satisfy ∆um + k2um = 0, and have ∂+
n um ∈ L2(Γ). Furthermore, ‖γ−um‖L2(Γ) ∼

|Jm(k)| and ∥∥∂−n um ± ik γ−um
∥∥
L2(Γ)

∼ k
√(

J ′m(k)
)2 +

(
Jm(k)

)2
as k → ∞. When m is fixed, |J ′m(k)| ∼ |Jm(k)| [1, Equations 9.2.5 and 9.2.11], [49, Equations
10.17.3 and 10.17.9], and thus if u(1) := um for any (fixed) m ∈ Z then the asymptotics (4.29) hold.

In the 3-d case, the argument proceeds almost exactly as before with

ul,m(r, θ, φ) := jl(kr)Yl,m(θ, φ), l ∈ Z+, m = −l, . . . , l.

We find that the asymptotics (4.29) are satisfied if u(1) := ul,0 for any (fixed) l ∈ Z+.

Proof of Lemma 4.12. Given Ω−, choose a w ∈ C∞comp(Ω−) and define f̃ by

f̃(x) := −eikx1

(
∆w(x) + 2ik

∂w

∂x1
(x)
)
.

This definition implies that ũ(x) := eikx1w(x) satisfies ∆ũ+ k2ũ = −f̃ in Ω−. Since ũ has compact
support, ∂−n ũ− iηγ−ũ = 0 on Γ. Therefore, by uniqueness, the solution of the interior impedance
problem, u, equals ũ. The definition of f̃ implies that∥∥f̃∥∥

L2(Ω−)
. ‖∆w‖L2(Ω−) + k

∥∥∥∥ ∂w∂x1

∥∥∥∥
L2(Ω−)

;

since both ‖∆w‖L2(Ω−) and ‖∂w/∂x1‖L2(Ω−) are . ‖w‖L2(Ω−), and ‖u‖L2(Ω−) = ‖w‖L2(Ω−), the
bound (4.30) holds.

The construction in Lemma 4.12 was used in [12, Lemma 3.10] to essentially prove that the
resolvent estimate (3.1) under zero Dirichlet boundary conditions is sharp. We say “essentially”
because actually [12, Lemma 3.10] proves that the bound α & 1/k is sharp, where α is the inf-sup
constant of the standard variational formulation of the exterior Dirichlet problem. However, since
a lower bound on the inf-sup constant is equivalent to a resolvent estimate (see Remark 3.2) [12,
Lemma 3.10] proves that the resolvent estimate for the exterior Dirichlet problem is sharp. Note
that the argument as written in Lemma 4.12 can be easily modified to apply to the exterior Dirichlet,
Neumann, or impedance problems (since any function in C∞comp(Ω+) satisfies the radiation condition
(1.4)).

4.3 Modifications needed to prove the bound on the exterior problem

As in the interior case, we begin by defining precisely what we mean when we say that u satisfies
the exterior impedance problem.

Definition 4.13 (Exterior impedance problem) Given a bounded Lipschitz domain Ω− ⊂ Rd,
d = 2, 3, with boundary Γ, functions f ∈ (H1(Ω+))′ and g ∈ H−1/2(Γ), and η ∈ R \ {0}, fix
R > supx∈Ω− |x| such that suppf ⊂ BR. Let ΩR := Ω+ ∩ BR and let ΓR := ∂BR. We then say
that u ∈ H1(ΩR) satisfies the exterior impedance problem if

a(u, v) = F (v) for all v ∈ H1(ΩR), (4.32)
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where
a(u, v) :=

∫
ΩR

(∇u · ∇v − k2uv) dx− iη
∫

Γ

γ+u γ+v ds−
〈
TR(γu), γv

〉
ΓR
,

and
F (v) := 〈f, v〉Ω− − 〈g, γ+v〉Γ,

where 〈·, ·〉Ω− , 〈·, ·〉Γ, and 〈·, ·〉ΓR
denote the duality pairings on Ω−, Γ, and ΓR respectively, and

TR is the Dirichlet-to-Neumann operator on ΓR (see, e.g., [12, Equations 3.5 and 3.6], [48, §2.6.3],
or [35, Equations 3.7 and 3.10] for the definition of TR).

Given a u ∈ H1(ΩR) satisfying the exterior impedance problem of Definition 4.13, this u has
a natural extension to a function in H1

loc(Ω+). Indeed, with ΩRc := Rd \ ΩR and hR := γu on
ΓR, we extend u by setting u|ΩR

c to be the solution of the Dirichlet problem for the homogeneous
Helmholtz equation in ΩRc satisfying the Sommerfeld radiation condition (1.4), with Dirichlet data
on ΓR equal to hR. Using the variational problem (4.32), one can show that the Neumann traces on
either side of ΓR of the extended function are equal. The fact that both the Dirichlet and Neumann
traces are continuous across ΓR then implies that the extended function satisfies the homogeneous
Helmholtz equation in a neighbourhood of ΓR (recalling that suppf ⊂ BR) and thus is C∞ in this
neighbourhood.

Using this extension one can prove that the solution to the variational problem (4.32) is
unique (see, e.g., [13, Theorem 3.37], [11, Lemma 2.8]). The fact that <(−〈TRφ, φ〉ΓR

) ≥ 0 for all
φ ∈ H1/2(ΓR) [48, Theorem 2.6.4] means that, just as in the interior case, a(·, ·) satisfies a G̊arding
inequality, and then Fredholm theory gives existence of a solution to the variational problem (4.32).

To prove Theorem 1.8 we need the following lemma, which is the exterior analogue of Lemma
4.2 above. This result effectively appears in [27, Theorem 1].

Lemma 4.14 If u ∈ H1(ΩR) satisfies the exterior impedance problem of Definition 4.13 with f = 0
and g ∈ L2(Γ), then∥∥∂+

n u
∥∥
L2(Γ)

≤ ‖g‖L2(Γ) and ‖γ+u‖L2(Γ) ≤
1
η
‖g‖L2(Γ) . (4.33)

Proof. We extend u to ΩRc as described above. Since u ∈ H1
loc(Ω+,∆) we can apply Green’s first

identity (2.6) with v = u in ΩR′ for any R′ > supx∈Ω− |x| and take the imaginary part to obtain

=
∫

Γ

γ+u ∂
+
n uds = =

∫
ΓR′

γu
∂u

∂r
ds (4.34)

(remembering that n points into Ω+). Using the fact that u satisfies the radiation condition, one
can show that the right-hand side of (4.34) tends to k ‖F‖2L2(Sd−1) as R′ →∞, where Sd−1 is the
unit sphere in Rd and F is the far-field pattern of u (see, e.g., [11, Lemmas 2.5 and 2.6]); therefore

=
∫

Γ

γ+u ∂
+
n uds ≥ 0. (4.35)

Using the impedance boundary condition to express ∂+
n u in (4.35) in terms of γ+u and g yields

−η ‖γ+u‖2L2(Γ) + =
∫

Γ

γ+u g ds ≥ 0,

and then using the Cauchy-Schwarz inequality on the second term gives us the second bound in
(4.33). Similarly, using the impedance boundary condition to express γ+u in (4.35) in terms of ∂+

n u
and g, and then using the Cauchy-Schwarz inequality, we obtain the first bound in (4.33).

Proof of Theorem 1.8. As with the interior problem, we first consider the case f = 0. If u is
the solution to the exterior impedance problem with f = 0 then Green’s integral representation,
u = −Sk∂+

n u + Dkγ+u, holds; see, e.g. [32, Theorems 7.5 and 9.6]. Similar to the case of the
interior problem, the bounds on the single- and double-layer potentials (4.7) then give

‖u‖L2(ΩR) . k−1/2
(∥∥∂+

n u
∥∥
L2(Γ)

+ k ‖γ+u‖L2(Γ)

)
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for any R > supx∈Ω− |x|. (Note that, just as in the interior case, the bounds (4.8) can be used
instead of (4.7) when Γ is piecewise smooth.) The bounds on the Cauchy data given by (4.33) then
imply that

‖u‖L2(ΩR) . k−1/2

(
1 +

k

|η|

)
‖g‖L2(Γ) ,

and using Part (b) of Lemma 2.2 gives the bound on ‖∇u‖L2(ΩR). Therefore, the bound (4.17)
holds with the norms on the left-hand side changed to be on L2(ΩR). The case when f 6= 0 follows
in exactly the same way as for the interior problem, but now with every norm being in ΩR.

5 Proof of the bound on ‖(A′k,η)−1‖L2(Γ)→L2(Γ), Lemma 1.10

We now show how bounds on the exterior DtN and interior impedance-to-Dirichlet maps can be
used to bound ‖(A′k,η)−1‖L2(Γ)→L2(Γ) (where A′k,η is the combined-field integral equation used to
solve the exterior Dirichlet problem; see §1.3).

Proof of Lemma 1.10. Since A′k,η is a bounded and invertible operator on L2(Γ) when η ∈ R \ {0}
[11, Theorem 2.27], if we can show that ‖φ‖L2(Γ) ≤ C‖A′k,ηφ‖L2(Γ) for all φ ∈ L2(Γ), then
‖(A′k,η)−1‖L2(Γ)→L2(Γ) ≤ C.

Given φ ∈ L2(Γ), let u := Skφ, where the single-layer potential, Sk, is defined by

Skφ(x) :=
∫

Γ

Φk(x,y)φ(y) ds(y), x ∈ Γ.

The reason we do this is that the integral equation (1.25) arises from Green’s integral representation
(1.26), in which the solution of the BVP is expressed (modulo the known term uI) as a single-layer
potential with an unknown density. We also let g := A′k,ηφ, so that (with this notation) we need to
bound φ in terms of g.

Now, u is a solution of the Helmholtz equation in Ω+ and Ω−, and satisfies the Sommerfeld
radiation condition in Ω+ [11, Theorem 2.14]. The jump relations for the single-layer potential are
that

γ±Skφ = Skφ and ∂±n Skφ =
(
∓1

2
I +D′k

)
φ (5.1)

[32, Chapter 7], where the operators Sk and D′k are defined by (1.29). The jump relations (5.1)
and the definition of A′k,η (1.30) imply that

∂−n u− iηγ−u = g, (5.2)
γ+u = γ−u (and thus ∇Γ(γ+u) = ∇Γ(γ−u)), and (5.3)

φ = ∂−n u− ∂+
n u. (5.4)

By (5.2), u satisfies the interior impedance problem with data g ∈ L2(Γ). By (5.3), u satisfies the
exterior Dirichlet problem with data given by the solution of the interior impedance problem. Given
bounds on the solutions of the interior impedance and exterior Dirichlet problems, we can then use
(5.4) to bound φ. Indeed, using (5.4), Lemma 4.2, and the DtN bound (1.32), we obtain that

‖φ‖L2(Γ) ≤
∥∥∂−n u∥∥L2(Γ)

+
∥∥∂+

n u
∥∥
L2(Γ)

.

(
1 + β

k

|η|

)
‖g‖L2(Γ) + α ‖∇Γ(γ+u)‖L2(Γ) .

Then, using (5.3) and the impedance-to-Dirichlet bound (1.33) we find that

‖φ‖L2(Γ) .

(
1 + β

k

|η|
+ αδ

)
‖g‖L2(Γ) ,

which implies (1.34).
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