Transformation of Equational Theories and the Separation Problem of Bounded Arithmetic

David R. Sherratt

January 20, 2016
Outline

Motivation

Aims and Objectives
 Background
 Task

Achievements
 Results
 Next Steps
Motivation

- Polynomial Hierarchy
- Bounded Arithmetic

 Bounded Arithmetic Hierarchy

 Separation Problem

- Consistency Statements

 Gödel’s Second Incompleteness Theorem
Aims and Objectives
Background

Theorem (Beckmann (2002))
A pure equational theory whose underlying language is for arithmetic, and inference rules are from equational logic, and whose axioms are based just on recursive axioms; can have its consistency proven in S^1_2.

Theorem (Buss and Ignjatovič (1995))
The equational theory with language L_e, axioms $BASIC_e$, proof system PK and allows inequalities and propositional connectives cannot have its consistency proven in S^1_2.
Task

Find a translation from Buss and Ignjatovič’s result into a pure equational setting and prove that S^1_2 cannot prove the consistency of the translated equivalent theory.

Translation is a mapping from boolean formulas to terms with range $\{0, 1\}$.

Translation must be a good translation - have the consistency property and the provability property.

Translation should be formalizable in S^1_2.
Achievements
Results

- Show that S_2^1 cannot prove the consistency of PET - a pure equation theory of Buss and Ignjatovič's result.

- PET - L_p, PI (Symmetry, transitivity, reflexivity, function compatibility), reason in equations, and axioms $BASIC_t$, $BASIC_g$, $BASIC_a$.

- Reminder: Beckmann's result - Any L of arithmetic, rules of equational logic, reasons in equations, and axioms that recursively define the function symbols in the language.
Next Steps

• Replace *function compatibility* with *substitution* in our result.

• Make the set of axioms finite in our result ($BASIC_g$).

• What axioms can be added to Beckmann’s result and preserve the provability of the consistency.
References

Questions?