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The purpose of sharing in the A-calculus is to have better control over duplication. Sharing is
the use of a single representation for multiple instances of a common subterm. During evaluation,
instead of duplicating a term, we can share it. This allows us to evaluate all the copies of the
subterm simultaneously, by evaluating their shared representation [5]. Sharing is implemented
using various techniques, including let-expressions in term calculi. In the atomic A-calculus [2],
sharing is expressed as u[yz, ..., yn ¢ t] where ¢ is being shared in u, and the variables y; through
Yn in u represent the shared instances of ¢.

With sharing, duplication can be delayed until the point where the instances of a shared
function are applied to distinct arguments. Since a function is destroyed upon evaluation, at
this point duplication becomes necessary. The question is then how much do we duplicate: do
we need to copy the whole term or can parts remain shared? With simple sharing mechanisms
such as the above, the maximum that can remain shared upon duplication are the mazimal free
subexpressions (MFS) of a term (the largest subterms that, if they contain a variable z, they
also contain its binder Az). A formalism that duplicates all but the maximal free subexpressions
of a term is called fully lazy.

Atomic A-calculus achieves full laziness by effectively integrating the duplication process with
MFS-extraction. MFS-extraction is obtained through the duplication process which is atomic.
At any point, a shared term is either a MFS where it is permuted so it is not duplicated but
shared, or it is not a MFS in which case we begin duplicating.

Atomic A-calculus extends A-calculus with explicit sharing and a distributor construct [2]. The
introduction of the distributor allows us to duplicate terms atomically and refine the computation
of terms into smaller steps. The distributor works directly on the A-abstractions Az.t. The
calculus uses the distributor to duplicate the body ¢ n times into the tuple (t1,..,t,) while
maintaining one copy of the constructor to obtain Az.{(t1,..,%,), and then to distribute to obtain
n copies of Ax.t. Atomic A-calculus duplicates terms via sharing reductions:
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The calculus is a Curry-Howard interpretation of a deep inference [1] proof system for intu-
itionistic logic. The distribution rule enables the atomicity property in deep inference: it allows a
contraction on an implication to be reduced locally i.e. without duplicating the whole subproof.
This property is what allows the introduction of the distributor in term calculus, a computational
interpretation of the distribution rule (a combination of the medial rule and the co-contraction
rule).
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A natural intuitive graphical interpretation of atomic A-calculus is used for illustration pur-
poses, but they have interesting similarities with sharing graphs [3]. Sharing graphs implement
A-expression reduction that avoid any copying that could later cause duplication of work, an
optimal [4] algorithm for A-calculus reduction. This is achieved through graph reduction tech-
niques. However, there are significant differences between the two. The calculus is fully lazy but
not, optimal like sharing graphs, however the calculus has global typing unlike sharing graphs
which have only local typing.

The aims of my research is to make precise the connection between the atomic A-calculus
and sharing graphs. We wish to make the intuitive graphs used to illustrate atomic A-calculus
more precise, formally connecting the atomic A-calculus and sharing graphs. To achieve this
one would have to refine the control mechanisms for the atomic A-calculus i.e. explore efficient
control mechanisms for a graph-based version of the atomic A-calculus. This will allow us to
compare more directly the control mechanisms of the calculus and sharing graphs: to characterize
the distinction and similarities with the formal graphical illustration of atomic A-calculus and
sharing graphs, and to explore the area between full laziness and optimality.
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