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Integrable Lagrangians [ f (v, Usy, Usy ) dx1dzaodrs

Euler-Lagrange equation:

(fou, )ar + (fon, )zs + (fou, )as =0

Examples:

Dispersionless Kadomtsev-Petviashvili (dKP) equation
Upizs = Uz Uz, — Vzows = 07 f — Uz Uy — gvxl o v:z:2°

Boyer-Finley (BF) equation

v _ — 2 2 v



Three equivalent approaches to integrability

e The method of hydrodynamic reductions based on the requirement that the
equation possesses infinitely many multi-phase solutions of special type.

e The method of dispersionless Lax pairs based on the representation of the

equation as the compatibility condition of two Hamilton-Jacobi type equations.

e |ntegrability ‘on solutions’ based on the condition that the characteristic variety
of the equation defines a conformal structure which is Einstein-Weyl on every

solution.

All three approaches lead to the same set of integrability conditions for the
Lagrangian density f.



Hydrodynamic reductions: example of dKP

First-order form of dKP equation Vg, 5 — Vg, Vziz; — Vzozs = 0 (SEt U = Uy, ):
Upy, — Ully, — Wgy, =0, Uy, — Wy, = 0.

Look for N-phase solutions: u = u(R!, ..., R"), w = w(R!, ..., R"™) where

R, = \(R)R. .,

R,LCBQ — ILL,L (R)R;Lvl ‘
The substitution of u, w into the above first-order system implies
Oiw = 'Oy, N =u+ (u')?,

as well as the following equations for u(R) and p*(R) (Gibbons-Tsarev system):

0ju 0;u0;u
— Y, @Zau =2 .Z J 5 -
i — (- )

In involution! General solution depends on n arbitrary functions of one variable.
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Dispersionless Lax pairs: example of dKP

The dKP equation vy, z; — Uz, Vgyzy — Vzoz, = O possesses dispersionless Lax

representation (Zakharov):

1 1
SZCQ — 55%1 —|_ Ux]_, Sa’;?’ — §S§1 —|_/lesx1 —|_ ,UCL’Q'
In parametric form:
1, 1 3
Sajl =D, Sﬂ?g — 5]? + Vg ng — § + Uz P + Vg -

Observation Integrability by the method of hydrodynamic reductions is equivalent
to the existence of a dispersionless Lax representation (proved for broad classes of
integrable models).



Integrability via Einstein-Weyl geometry: example of dKP
Einstein-Weyl geometry is a triple (D, g, w) where ID is a symmetric connection, g
is a conformal structure and w is a covector such that

Drgi; = wrgij, Rejy = Ngij
Here R(Z-j) is the symmetrised Ricci tensor of D and A is some function (the first
set of equations defines ID uniquely, so it is sufficient to specify g and w only).
Every solution of the dKP equation vy, z, — Vg, Vgyzy — Vzoz, = O carries

Einstein-Weyl geometry (Dunajski, Mason, Tod):

g = 4dr1dxs — da:% + 4vm1d513§, W= —4vy;,,,dTs.

Observation Integrability by the method of hydrodynamic reductions is equivalent to
the Einstein-Weyl property of the characteristic conformal structure of the equation
(proved for broad classes of integrable models).



Integrability conditions

For a non-degenerate Lagrangian, the Euler-Lagrange equation is integrable (by
either of the techniques mentioned above) if and only if the Lagrangian density f
satisfies the relation

H
d*f = d3de + Zdet(dM).

Here d° f and d* f are the symmetric differentials of f while the Hessian H and

the 4 x 4 augmented Hessian matrix M are defined as

(0 £ fy f)

for  fyz  Jfes vy u

\ fo for fo fer )

Here (x,v, 2) = (Vg , Vs, , Uz, ). The non-degeneracy condition is equivalent to
H =£ 0. The system for f is in involution, and its solution space is 20-dimensional.



Lagrangian density [ = v, U, V.,

Euler-Lagrange equation:
Umgvxlmg + Ualgvmlxg + Umlvmgxg — O'

Parametric Lax representation:

Se P'(p) +A S P'(p) = A Sy
- =¢(p) + , — =)+ , = ¢(p),
T T R A TR
where (')? = 4p° + A? and ¢’ = —p (Weierstrass p and ¢ functions). Note the

algebraic identity

Sy Sa Ses  Sa, Sey Sz )\
Uy Ugs Vs Uzy Viy Vo )




Lagrangian densities f = v, vV, (v, )
Euler-Lagrange equation:

(szg(vxg,))gcl + (U:clg(vwg))m + (’Umvngl(vm))m = 0.
Integrability condition for g(z):
9" (5°9" —29(¢')*) = 9(d")*(d")* +299'9" 9" +8(¢')>9" —4°(¢"")* = 0.
G L(2, R)-invariance:

az+ 3
= d)g.
sy S (v2+0)g

z =

This invariance allows one to linearise the integrability condition for g(z).
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Auxiliary hypergeometric equation

Consider the auxiliary hypergeometric equation
2
u(l — w)hyy + (1 — 2u)hy — §h = 0,

parameters (1/3,2/3,1). The geometry behind this equation is a 1-parameter

family of genus 2 trigonal curves

r®=q(q—1)(q —u)’

supplied with the holomorphic differential w = dq/r. The corresponding periods,
b : :
h = fa w where a, b € {O, 1, 00, u} form a 2-dimensional vector space and

satisfy the above (Picard-Fuchs) hypergeometric equation.
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Generic solution ¢(z2)

The generic solution g(z) can be represented in either of the 3 equivalent forms:

1. Parametric form:

~ ha(u)
ho(u)’
where h; are 2 linearly independent solutions of the hypergeometric equation.

z g = ha(u)

G L(2, R)-invariance corresponds to the freedom in the choice of basis ;.

2. Theta representation:

g(Z) _ Z 627Ti(k2—|—kl—|—l2)z _ 1+6q+6q3—|—6q4+12q4+, q = 627”:2.
(k,1)eZ?

3. Power series:
L6k+1

where B} are certain integers.
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Lagrangian densities f = v, g(vy,, V)

Euler-Lagrange equation

(9)0y + (Vo190 + (V2190s,), = 0.

T3
Integrability conditions lead to an involutive system of 5 PDEs for g(y, 2) which are

invariant under the 10-dimensional symmetry group:

~ ll(y7 Z) ~ l2(y7 Z) ~
y = , 2= , §g=ag+ 5,
[y, 2) [y, 2)

where [, [1, [5 are arbitrary (inhomogeneous) linear forms. This invariance allows

one to linearise the integrability conditions for g(y, 2).
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Auxiliary hypergeometric system

Consider the auxiliary (Appell) hypergeometric system

1 hy, —h
hu Uy — = -1 ug,
172 3 U1 — u9
" _ h n Pus uz(u2 — 1) B Py ( 1 N 2 n 2 >
Ht 9uq(ug — 1) 3(ur —wug) ur(ug — 1) 3 Ul — Uy Ul up — 1/
. _ h n Py up(u; — 1) B Pos ( 1 n 2 n 2 )
vete ua(ug — 1)  3(u2 —u1) uz(ug — 1) 3 \us—ur wus wuzx—1/°

The geometry behind this system is the family of genus 3 Picard trigonal curves

r® =q(q—1)(g — u1)(qg — u2)

supplied with the holomorphic differential w = dq/’r. The corresponding periods,
b : :
h = fa w where a, b € {O, 1,00, uq, ug}, form a 3-dimensional vector space and

satisfy the above (Picard-Fuchs) hypergeometric system.
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Generic solution g(y, z)

The generic solution g(¥, z) can be represented in either of the 3 equivalent forms:

1. Parametric form:

_ hi(u1,uz) _ ho(u1,us2)
hs(uy,us)’ hs(ug,us)’

Ul(UQ-—-l)
u2(u1-—-1)

where h; are 3 linearly independent solutions of the hypergeometric system and
F' = [s(s —1)]72/3.

Y

= F(s), s =

2. Theta representation:

~

O((k+e)y) o2 2y, iy
i) =y+ 3 (E+e)y) omite+ririz)z  _ omifs
k + el
(k,1)eZ?\0

3. Power series:
6j+1 ,6k+1

Y
= E B,Bi.B; :
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Relation to Picard modular forms

The period map
hi(ug,us2) ~ ha(ug,ug)

y= y R ,
ha(u1, us2) hs(u1,ug)
was inverted by Picard (1883):

U1 =

where ¢, (y, z) € M3(I'[\/—3]) are single-valued modular forms on a
2-dimensional complex ball 2Rey + |z\2 < 0 with respect to the Picard modular

group I[v/=3] = {g € U(2, 1 Zp]) : g = 1(modv/=3)}, p = ™/,
Picard modular forms were extensively studied by Holzapfel, Feustel, Finis, Shiga,

Cléry and van der Geer.

16



Picard modular forms via theta functions

Explicitly, 0., (y, z) = 0> where theta functions 0, (1, z) are defined as

Z p TV ERDY (gy)e v <,
EELlp
here
o 1 zu? 1/6 2 o 1/6 2
Y(u)_zeﬁﬂ{l/(;](uv_p )7 k_ﬂ[l/(;}(ov_p )7

Here 1-functions with characteristics are defined as

19[%](2, 7_) _ Z eﬂiT(n—i—a) —|—27Ti(n—|—a)(z—i—b).
nel
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Differential dg via Picard modular forms

There is a simple expression of the differential dg is terms of v,

Jo— p192(P2 — p1)dpo + pop2(po — w2)dp1 + wop1(p1 — o)dp2
g - CQ
where ( € Sg(I'[v/—3], det) is a modular form defined as
¢ = pop1p2(p1 — ©0) (2 — ©o) (2 — o1).

Up to a constant factor, the differential dg coincides with the Eisenstein series E1,1

which was introduced in:

H. Shiga, On the representation of the Picard modular function by 0 constants. |, Il. Publ. Res. Inst.
Math. Sci. 24, no. 3 (1988) 311-360.

F. Cléry, G. van der Geer, Generators for modules of vector-valued Picard modular forms. Nagoya Math.
J. 212 (2013) 19-57.
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Generic Lagrangian densities f (le s Ugg s ng)

Euler-Lagrange equation:

(fou, )ar + (fon, )za + (fon, )as = 0.

Integrability conditions lead to a system of 15 PDEs for f(:l:, 1Y, z) which are

invariant under 20-dimensional symmetry group:

ll(ﬂj,y,Z) ~ ZQ(ZC,y,Z)

T =

. ZS(Zanaz) ]E: f
(w2~ oz | l@ye)

as well as obvious symmetries of the form

l(x,y,2)’ J

~

f=ef+ax+By+vyz+5,

where [, [1, [, [3 are arbitrary (inhomogeneous) linear forms. This invariance

allows one to linearise the integrability conditions for f(x, y, 2).
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Auxiliary hypergeometric system

Consider the auxiliary (Appell) hypergeometric system

B o LR = Ry
v 3 Uq —Uj ’
2 h 1 3 Uj(’LLj — 1)

9 uz(uz — ].) 3ui(ui — ].) Uj; — Ug

JFi

3
1 1 2 2
— (> + = 4+ ).
B(j;éiui_uj U4 ui—l

The geometry behind this system is the family of genus 4 Picard trigonal curves

r? = q(qg —1)(q — u1)(q — u2)(q — us)

supplied with the holomorphic differential w = dq/’r. The corresponding periods,

b : :
h= | wwherea,b € {0,1,00,ur,uz, us}, form a 4-dimensional vector space
and satisfy the above (Picard-Fuchs) hypergeometric system.
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Inhomogeneous hypergeometric extension

We will also need the inhomogeneous hypergeometric system

1 huy; — b, ug (up — 1) (u; — uy)
= - + €k 573 3
3 u; —uj U2/

huiuj

3
2 h 1 wi(u; — 1)
R, = —— — I hau. +
it 9u;(u; —1)  3ui(u; — 1) ; Uj — U I

3

_%(Z : +3-+ u¢2—1)h““

i U; — Uy U4

where €, is the totally antisymmetric tensor and
U = u1u2’LL3(u1 — 1)(UQ — 1)(’LL3 — 1)(’&1 — ’LLQ)(’LLQ — ’LL3)(’LL3 — ul).

The inhomogeneous system for h is in involution.
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Generic solution f(z,y, z)

The generic solution g(¥, z) can be represented in either of the 3 equivalent forms:

1. Parametric form:

hq ho hs F
=7 Y=3 2= 7, f - T
h4 hy h4 h4

where h;(u1, us, ugz) are 4 independent solutions of the hypergeometric

X

system and F'(u1, ug, ug) is a solution of the inhomogeneous system.

2. Theta representation:

flx,y,2) =xy + Z O((k + e(l]ix_zi(l()]; + el)y) 627m'(l<:2+kl+l2)z.

(k,1)€Z2\0

3. Power series:
26i+1 y6j+1 L6k+1

(6i +1)! (65 + 1)! (6k+1)!

f(xayaz) — Z BZBjBkB’L—I—]—i—k
@,J,k=>0

22



Theta functions 6 and integers 55,

We define
N v Wi—ﬂ'ii o i V3 _3/8 9/9
9(2) — 9/(0)6 V3 19(672)7 9/(0) T _(27'1')26 ® 3 / F(l/g) /
where

9T, 2) = Z ewi[(n—l—l/2)27—|—2(n—|—1/2)(z—|—1/2)]
ne
is the classical Jacobi theta function. The Taylor expansion of 0 about z = O is
é(Z) = Z b6n—|—1 Ot — 5 + b7 27 + ...
n=>0

where (_3)nr(1/3)18n B
(2m)67(6m + 1)!

b6n+1 —

Here B,, are integers.
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Concluding remarks

e There exists a whole variety of integrable Lagrangians whose densities f are
polynomial or can be expressed in terms of elementary functions. It would be
interesting to clarify how these (and similar) examples can be recovered as
degenerations of the ‘master-Lagrangian’, and to describe singular orbits of
lower dimension. This should be related to understanding
degenerations/compactifications of the moduli space of Picard curves.

e Although our parametric, theta and power series representations for integrable
densities possess straightforward generalisations to dimensions higher than 3,
the relation to integrable Lagrangians will be lost: one can show that in higher
dimensions every integrable first-order Lagrangian density f(vx) is necessarily
of the form f = L)

l(vz)
functions of the first-order derivatives. Thus, the occurence of modular forms is

where () and [ are arbitrary quadratic and linear

the essentially 3-dimensional phenomenon.
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