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Integrable Lagrangians
∫
f(vx1 , vx2 , vx3) dx1dx2dx3

Euler-Lagrange equation:

(fvx1 )x1 + (fvx2 )x2 + (fvx3 )x3 = 0.

Examples:

Dispersionless Kadomtsev-Petviashvili (dKP) equation

vx1x3 − vx1vx1x1 − vx2x2 = 0, f = vx1vx2 −
1

3
v3
x1
− v2

x2
.

Boyer-Finley (BF) equation

vx1x1
+ vx2x2

− evx3 vx3x3
= 0, f = v2

x1
+ v2

x2
− 2evx3 .
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Three equivalent approaches to integrability

• The method of hydrodynamic reductions based on the requirement that the

equation possesses infinitely many multi-phase solutions of special type.

• The method of dispersionless Lax pairs based on the representation of the

equation as the compatibility condition of two Hamilton-Jacobi type equations.

• Integrability ‘on solutions’ based on the condition that the characteristic variety

of the equation defines a conformal structure which is Einstein-Weyl on every

solution.

All three approaches lead to the same set of integrability conditions for the

Lagrangian density f .
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Hydrodynamic reductions: example of dKP

First-order form of dKP equation vx1x3
− vx1

vx1x1
− vx2x2

= 0 (set u = vx1
):

ux3
− uux1

− wx2
= 0, ux2

− wx1
= 0.

Look for N -phase solutions: u = u(R1, ..., Rn), w = w(R1, ..., Rn) where

Rix3
= λi(R)Rix1

, Rix2
= µi(R)Rix1

.

The substitution of u,w into the above first-order system implies

∂iw = µi∂iu, λi = u+ (µi)2,

as well as the following equations for u(R) and µi(R) (Gibbons-Tsarev system):

∂jµ
i =

∂ju

µj − µi
, ∂i∂ju = 2

∂iu∂ju

(µj − µi)2
.

In involution! General solution depends on n arbitrary functions of one variable.
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Dispersionless Lax pairs: example of dKP

The dKP equation vx1x3 − vx1vx1x1 − vx2x2 = 0 possesses dispersionless Lax

representation (Zakharov):

Sx2
=

1

2
S2
x1

+ vx1
, Sx3

=
1

3
S3
x1

+ vx1
Sx1

+ vx2
.

In parametric form:

Sx1
= p, Sx2

=
1

2
p2 + vx1

, Sx3
=

1

3
p3 + vx1

p+ vx2
.

Observation Integrability by the method of hydrodynamic reductions is equivalent

to the existence of a dispersionless Lax representation (proved for broad classes of

integrable models).
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Integrability via Einstein-Weyl geometry: example of dKP

Einstein-Weyl geometry is a triple (D, g, ω) where D is a symmetric connection, g

is a conformal structure and ω is a covector such that

Dkgij = ωkgij , R(ij) = Λgij .

Here R(ij) is the symmetrised Ricci tensor of D and Λ is some function (the first

set of equations defines D uniquely, so it is sufficient to specify g and ω only).

Every solution of the dKP equation vx1x3 − vx1vx1x1 − vx2x2 = 0 carries

Einstein-Weyl geometry (Dunajski, Mason, Tod):

g = 4dx1dx3 − dx2
2 + 4vx1dx

2
3, ω = −4vx1x1dx3.

Observation Integrability by the method of hydrodynamic reductions is equivalent to

the Einstein-Weyl property of the characteristic conformal structure of the equation

(proved for broad classes of integrable models).
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Integrability conditions

For a non-degenerate Lagrangian, the Euler-Lagrange equation is integrable (by

either of the techniques mentioned above) if and only if the Lagrangian density f

satisfies the relation

d4f = d3f
dH

H
+

3

H
det(dM).

Here d3f and d4f are the symmetric differentials of f while the Hessian H and

the 4× 4 augmented Hessian matrix M are defined as

H = det


fxx fxy fxz

fxy fyy fyz

fxz fyz fzz

 , M =


0 fx fy fz

fx fxx fxy fxz

fy fxy fyy fyz

fz fxz fyz fzz

 .

Here (x, y, z) = (vx1 , vx2 , vx3). The non-degeneracy condition is equivalent to

H 6= 0. The system for f is in involution, and its solution space is 20-dimensional.
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Lagrangian density f = vx1vx2vx3

Euler-Lagrange equation:

vx3
vx1x2

+ vx2
vx1x3

+ vx1
vx2x3

= 0.

Parametric Lax representation:

Sx1

vx1

= ζ(p) +
℘′(p) + λ

2℘(p)
,
Sx2

vx2

= ζ(p) +
℘′(p)− λ

2℘(p)
,
Sx3

vx3

= ζ(p),

where (℘′)2 = 4℘3 + λ2 and ζ ′ = −℘ (Weierstrass ℘ and ζ functions). Note the

algebraic identity(
Sx1

vx1

− Sx3

vx3

)(
Sx3

vx3

− Sx2

vx2

)(
Sx2

vx2

− Sx1

vx1

)
= λ.
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Lagrangian densities f = vx1vx2g(vx3)

Euler-Lagrange equation:

(vx2g(vx3))x1
+ (vx1g(vx3))x2

+ (vx1vx2g
′(vx3))x3

= 0.

Integrability condition for g(z):

g′′′′(g2g′′−2g(g′)2)−9(g′)2(g′′)2 +2gg′g′′g′′′+8(g′)3g′′′−g2(g′′′)2 = 0.

GL(2,R)-invariance:

z̃ =
αz + β

γz + δ
, g̃ = (γz + δ)g.

This invariance allows one to linearise the integrability condition for g(z).
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Auxiliary hypergeometric equation

Consider the auxiliary hypergeometric equation

u(1− u)huu + (1− 2u)hu −
2

9
h = 0,

parameters (1/3, 2/3, 1). The geometry behind this equation is a 1-parameter

family of genus 2 trigonal curves

r3 = q(q − 1)(q − u)2

supplied with the holomorphic differential ω = dq/r. The corresponding periods,

h =
∫ b
a
ω where a, b ∈ {0, 1,∞, u}, form a 2-dimensional vector space and

satisfy the above (Picard-Fuchs) hypergeometric equation.
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Generic solution g(z)

The generic solution g(z) can be represented in either of the 3 equivalent forms:

1. Parametric form:

z =
h1(u)

h2(u)
, g = h2(u)

where hi are 2 linearly independent solutions of the hypergeometric equation.

GL(2,R)-invariance corresponds to the freedom in the choice of basis hi.

2. Theta representation:

g(z) =
∑

(k,l)∈Z2

e2πi(k2+kl+l2)z = 1+6q+6q3+6q4+12q4+..., q = e2πiz.

3. Power series:

g(z) =
∑
k≥0

B2
k

z6k+1

(6k + 1)!

where Bk are certain integers.
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Lagrangian densities f = vx1g(vx2 , vx3)

Euler-Lagrange equation

(g)x1
+
(
vx1

gvx2
)
x2

+
(
vx1gvx3

)
x3

= 0.

Integrability conditions lead to an involutive system of 5 PDEs for g(y, z) which are

invariant under the 10-dimensional symmetry group:

ỹ =
l1(y, z)

l(y, z)
, z̃ =

l2(y, z)

l(y, z)
, g̃ = αg + β,

where l, l1, l2 are arbitrary (inhomogeneous) linear forms. This invariance allows

one to linearise the integrability conditions for g(y, z).
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Auxiliary hypergeometric system

Consider the auxiliary (Appell) hypergeometric system

hu1u2 =
1

3

hu1 − hu2

u1 − u2
,

hu1u1 = −
h

9u1(u1 − 1)
+

hu2

3(u1 − u2)

u2(u2 − 1)

u1(u1 − 1)
−
hu1

3

(
1

u1 − u2
+

2

u1
+

2

u1 − 1

)
,

hu2u2 = −
h

9u2(u2 − 1)
+

hu1

3(u2 − u1)

u1(u1 − 1)

u2(u2 − 1)
−
hu2

3

(
1

u2 − u1
+

2

u2
+

2

u2 − 1

)
.

The geometry behind this system is the family of genus 3 Picard trigonal curves

r3 = q(q − 1)(q − u1)(q − u2)

supplied with the holomorphic differential ω = dq/r. The corresponding periods,

h =
∫ b
a
ω where a, b ∈ {0, 1,∞, u1, u2}, form a 3-dimensional vector space and

satisfy the above (Picard-Fuchs) hypergeometric system.
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Generic solution g(y, z)

The generic solution g(y, z) can be represented in either of the 3 equivalent forms:

1. Parametric form:

y =
h1(u1, u2)

h3(u1, u2)
, z =

h2(u1, u2)

h3(u1, u2)
, g = F (s), s =

u1(u2 − 1)

u2(u1 − 1)

where hi are 3 linearly independent solutions of the hypergeometric system and

F ′ = [s(s− 1)]−2/3.

2. Theta representation:

g(y, z) = y +
∑

(k,l)∈Z2\0

θ̃((k + εl)y)

k + εl
e2πi(k2+kl+l2)z, ε = eπi/3.

3. Power series:

g(y, z) =
∑
j,k≥0

BjBkBj+k
y6j+1

(6j + 1)!

z6k+1

(6k + 1)!
.
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Relation to Picard modular forms

The period map

y =
h1(u1, u2)

h3(u1, u2)
, z =

h2(u1, u2)

h3(u1, u2)
,

was inverted by Picard (1883):

u1 =
ϕ1(y, z)

ϕ0(y, z)
, u2 =

ϕ2(y, z)

ϕ0(y, z)
,

where ϕν(y, z) ∈M3(Γ[
√
−3]) are single-valued modular forms on a

2-dimensional complex ball 2Rey + |z|2 < 0 with respect to the Picard modular

group Γ[
√
−3] = {g ∈ U(2, 1;Z[ρ]) : g ≡ 1(mod

√
−3)}, ρ = e2πi/3.

Picard modular forms were extensively studied by Holzapfel, Feustel, Finis, Shiga,

Cléry and van der Geer.
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Picard modular forms via theta functions

Explicitly, ϕν(y, z) = θ3
ν where theta functions θν(y, z) are defined as

θν(y, z) =
∑
ξ∈Z[ρ]

ρ−ν(ξ+ξ̄)Y (ξy)e
2πz√

3
ξξ̄
,

here

Y (u) =
1

k
e
πu2√

3 ϑ
[

1/6
1/6

]
(u,−ρ2), k = ϑ

[
1/6
1/6

]
(0,−ρ2),

Here ϑ-functions with characteristics are defined as

ϑ[ ab ](z, τ) =
∑
n∈Z

eπiτ(n+a)2+2πi(n+a)(z+b).
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Differential dg via Picard modular forms

There is a simple expression of the differential dg is terms of ϕν :

dg =
ϕ1ϕ2(ϕ2 − ϕ1)dϕ0 + ϕ0ϕ2(ϕ0 − ϕ2)dϕ1 + ϕ0ϕ1(ϕ1 − ϕ0)dϕ2

ζ2

where ζ ∈ S6(Γ[
√
−3],det) is a modular form defined as

ζ3 = ϕ0ϕ1ϕ2(ϕ1 − ϕ0)(ϕ2 − ϕ0)(ϕ2 − ϕ1).

Up to a constant factor, the differential dg coincides with the Eisenstein series E1,1

which was introduced in:

H. Shiga, On the representation of the Picard modular function by θ constants. I, II. Publ. Res. Inst.

Math. Sci. 24, no. 3 (1988) 311-360.

F. Cléry, G. van der Geer, Generators for modules of vector-valued Picard modular forms. Nagoya Math.

J. 212 (2013) 19-57.
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Generic Lagrangian densities f(vx1 , vx2 , vx3)

Euler-Lagrange equation:

(fvx1 )x1
+ (fvx2 )x2

+ (fvx3 )x3
= 0.

Integrability conditions lead to a system of 15 PDEs for f(x, y, z) which are

invariant under 20-dimensional symmetry group:

x̃ =
l1(x, y, z)

l(x, y, z)
, ỹ =

l2(x, y, z)

l(x, y, z)
, z̃ =

l3(x, y, z)

l(x, y, z)
, f̃ =

f

l(x, y, z)
,

as well as obvious symmetries of the form

f̃ = εf + αx+ βy + γz + δ,

where l, l1, l2, l3 are arbitrary (inhomogeneous) linear forms. This invariance

allows one to linearise the integrability conditions for f(x, y, z).
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Auxiliary hypergeometric system

Consider the auxiliary (Appell) hypergeometric system

huiuj =
1

3

hui − huj

ui − uj
,

huiui = −
2

9

h

ui(ui − 1)
−

1

3ui(ui − 1)

3∑
j 6=i

uj(uj − 1)

uj − ui
huj+

−
1

3

( 3∑
j 6=i

1

ui − uj
+

2

ui
+

2

ui − 1

)
.

The geometry behind this system is the family of genus 4 Picard trigonal curves

r3 = q(q − 1)(q − u1)(q − u2)(q − u3)

supplied with the holomorphic differential ω = dq/r. The corresponding periods,

h =
∫ b
a
ω where a, b ∈ {0, 1,∞, u1, u2, u3}, form a 4-dimensional vector space

and satisfy the above (Picard-Fuchs) hypergeometric system.
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Inhomogeneous hypergeometric extension

We will also need the inhomogeneous hypergeometric system

huiuj =
1

3

hui − huj

ui − uj
+ εijk

uk(uk − 1)(ui − uj)

U2/3
,

huiui = −
2

9

h

ui(ui − 1)
−

1

3ui(ui − 1)

3∑
j 6=i

uj(uj − 1)

uj − ui
huj+

−
1

3

( 3∑
j 6=i

1

ui − uj
+

2

ui
+

2

ui − 1

)
hui ,

where εijk is the totally antisymmetric tensor and

U = u1u2u3(u1 − 1)(u2 − 1)(u3 − 1)(u1 − u2)(u2 − u3)(u3 − u1).

The inhomogeneous system for h is in involution.
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Generic solution f(x, y, z)

The generic solution g(y, z) can be represented in either of the 3 equivalent forms:

1. Parametric form:

x =
h1

h4
, y =

h2

h4
, z =

h3

h4
, f =

F

h4

where hi(u1, u2, u3) are 4 independent solutions of the hypergeometric

system and F (u1, u2, u3) is a solution of the inhomogeneous system.

2. Theta representation:

f(x, y, z) = xy +
∑

(k,l)∈Z2\0

θ̃((k + εl)x)θ̃((k + εl)y)

(k + εl)2
e2πi(k2+kl+l2)z.

3. Power series:

f(x, y, z) =
∑

i,j,k≥0

BiBjBkBi+j+k
x6i+1

(6i+ 1)!

y6j+1

(6j + 1)!

z6k+1

(6k + 1)!
.
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Theta functions θ̃ and integers Bn

We define

θ̃(z) =
i

θ′(0)
e
π z

2
√

3
−πi ε4ϑ(ε, z), θ′(0) = − i

(2π)2
e
π
√

3
8 33/8Γ(1/3)9/2

where

ϑ(τ, z) =
∑
n∈Z

eπi[(n+1/2)2τ+2(n+1/2)(z+1/2)]

is the classical Jacobi theta function. The Taylor expansion of θ̃ about z = 0 is

θ̃(z) =
∑
n>0

b6n+1 z
6n+1 = z + b7 z

7 + . . .

where

b6n+1 =
(−3)nΓ(1/3)18nBn

(2π)6n(6n+ 1)!
.

Here Bn are integers.
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Concluding remarks

• There exists a whole variety of integrable Lagrangians whose densities f are

polynomial or can be expressed in terms of elementary functions. It would be

interesting to clarify how these (and similar) examples can be recovered as

degenerations of the ‘master-Lagrangian’, and to describe singular orbits of

lower dimension. This should be related to understanding

degenerations/compactifications of the moduli space of Picard curves.

• Although our parametric, theta and power series representations for integrable

densities possess straightforward generalisations to dimensions higher than 3,

the relation to integrable Lagrangians will be lost: one can show that in higher

dimensions every integrable first-order Lagrangian density f(vx) is necessarily

of the form f = Q(vx)
l(vx) where Q and l are arbitrary quadratic and linear

functions of the first-order derivatives. Thus, the occurence of modular forms is

the essentially 3-dimensional phenomenon.
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