Integrable Lagrangians and Picard modular forms

E.V. Ferapontov
Department of Mathematical Sciences, Loughborough University, UK E.V.Ferapontov@lboro.ac.uk
Based on ongoing project with F. Cléry, A. Odesskii, and notes by D. Zagier

University of Bath, 5 March 2019

Plan:

- Integrable Lagrangians $\int f\left(v_{x_{1}}, v_{x_{2}}, v_{x_{3}}\right) d x_{1} d x_{2} d x_{3}$
- Integrability conditions
- Lagrangian density $f=v_{x_{1}} v_{x_{2}} v_{x_{3}}$
- Lagrangian densities $f=v_{x_{1}} v_{x_{2}} g\left(v_{x_{3}}\right)$
- Lagrangian densities $f=v_{x_{1}} g\left(v_{x_{2}}, v_{x_{3}}\right)$
- Generic Lagrangian densities $f\left(v_{x_{1}}, v_{x_{2}}, v_{x_{3}}\right)$
- Concluding remarks
E.V. Ferapontov, K.R. Khusnutdinova and S.P. Tsarev, On a class of three-dimensional integrable Lagrangians, Comm. Math. Phys. 261, N1 (2006) 225-243.
E.V. Ferapontov and A.V. Odesskii, Integrable Lagrangians and modular forms, J. Geom. Phys. 60, no. 6-8 (2010) 896-906.
D. Zagier, On a U(3,1)-automorphic form of Ferapontov-Odesskii, talk in Utrecht on 17 April 2009.

Integrable Lagrangians $\int f\left(v_{x_{1}}, v_{x_{2}}, v_{x_{3}}\right) d x_{1} d x_{2} d x_{3}$
Euler-Lagrange equation:

$$
\left(f_{v_{x_{1}}}\right)_{x_{1}}+\left(f_{v_{x_{2}}}\right)_{x_{2}}+\left(f_{v_{x_{3}}}\right)_{x_{3}}=0 .
$$

Examples:

Dispersionless Kadomtsev-Petviashvili (dKP) equation

$$
v_{x_{1} x_{3}}-v_{x_{1}} v_{x_{1} x_{1}}-v_{x_{2} x_{2}}=0, \quad f=v_{x_{1}} v_{x_{2}}-\frac{1}{3} v_{x_{1}}^{3}-v_{x_{2}}^{2} .
$$

Boyer-Finley (BF) equation

$$
v_{x_{1} x_{1}}+v_{x_{2} x_{2}}-e^{v_{x_{3}}} v_{x_{3} x_{3}}=0, \quad f=v_{x_{1}}^{2}+v_{x_{2}}^{2}-2 e^{v_{x_{3}}} .
$$

Three equivalent approaches to integrability

- The method of hydrodynamic reductions based on the requirement that the equation possesses infinitely many multi-phase solutions of special type.
- The method of dispersionless Lax pairs based on the representation of the equation as the compatibility condition of two Hamilton-Jacobi type equations.
- Integrability 'on solutions' based on the condition that the characteristic variety of the equation defines a conformal structure which is Einstein-Weyl on every solution.

All three approaches lead to the same set of integrability conditions for the Lagrangian density f.

Hydrodynamic reductions: example of dKP

First-order form of dKP equation $v_{x_{1} x_{3}}-v_{x_{1}} v_{x_{1} x_{1}}-v_{x_{2} x_{2}}=0\left(\right.$ set $\left.u=v_{x_{1}}\right)$:

$$
u_{x_{3}}-u u_{x_{1}}-w_{x_{2}}=0, \quad u_{x_{2}}-w_{x_{1}}=0
$$

Look for N-phase solutions: $u=u\left(R^{1}, \ldots, R^{n}\right), w=w\left(R^{1}, \ldots, R^{n}\right)$ where

$$
R_{x_{3}}^{i}=\lambda^{i}(R) R_{x_{1}}^{i}, \quad R_{x_{2}}^{i}=\mu^{i}(R) R_{x_{1}}^{i}
$$

The substitution of u, w into the above first-order system implies

$$
\partial_{i} w=\mu^{i} \partial_{i} u, \quad \lambda^{i}=u+\left(\mu^{i}\right)^{2}
$$

as well as the following equations for $u(R)$ and $\mu^{i}(R)$ (Gibbons-Tsarev system):

$$
\partial_{j} \mu^{i}=\frac{\partial_{j} u}{\mu^{j}-\mu^{i}}, \quad \partial_{i} \partial_{j} u=2 \frac{\partial_{i} u \partial_{j} u}{\left(\mu^{j}-\mu^{i}\right)^{2}} .
$$

In involution! General solution depends on n arbitrary functions of one variable.

Dispersionless Lax pairs: example of dKP

The dKP equation $v_{x_{1} x_{3}}-v_{x_{1}} v_{x_{1} x_{1}}-v_{x_{2} x_{2}}=0$ possesses dispersionless Lax representation (Zakharov):

$$
S_{x_{2}}=\frac{1}{2} S_{x_{1}}^{2}+v_{x_{1}}, \quad S_{x_{3}}=\frac{1}{3} S_{x_{1}}^{3}+v_{x_{1}} S_{x_{1}}+v_{x_{2}}
$$

In parametric form:

$$
S_{x_{1}}=p, \quad S_{x_{2}}=\frac{1}{2} p^{2}+v_{x_{1}}, \quad S_{x_{3}}=\frac{1}{3} p^{3}+v_{x_{1}} p+v_{x_{2}} .
$$

Observation Integrability by the method of hydrodynamic reductions is equivalent to the existence of a dispersionless Lax representation (proved for broad classes of integrable models).

Integrability via Einstein-Weyl geometry: example of dKP

Einstein-Weyl geometry is a triple (\mathbb{D}, g, ω) where \mathbb{D} is a symmetric connection, g is a conformal structure and ω is a covector such that

$$
\mathbb{D}_{k} g_{i j}=\omega_{k} g_{i j}, \quad R_{(i j)}=\Lambda g_{i j}
$$

Here $R_{(i j)}$ is the symmetrised Ricci tensor of \mathbb{D} and Λ is some function (the first set of equations defines \mathbb{D} uniquely, so it is sufficient to specify g and ω only).

Every solution of the dKP equation $v_{x_{1} x_{3}}-v_{x_{1}} v_{x_{1} x_{1}}-v_{x_{2} x_{2}}=0$ carries Einstein-Weyl geometry (Dunajski, Mason, Tod):

$$
g=4 d x_{1} d x_{3}-d x_{2}^{2}+4 v_{x_{1}} d x_{3}^{2}, \quad \omega=-4 v_{x_{1} x_{1}} d x_{3} .
$$

Observation Integrability by the method of hydrodynamic reductions is equivalent to the Einstein-Weyl property of the characteristic conformal structure of the equation (proved for broad classes of integrable models).

Integrability conditions

For a non-degenerate Lagrangian, the Euler-Lagrange equation is integrable (by either of the techniques mentioned above) if and only if the Lagrangian density f satisfies the relation

$$
d^{4} f=d^{3} f \frac{d H}{H}+\frac{3}{H} \operatorname{det}(d M)
$$

Here $d^{3} f$ and $d^{4} f$ are the symmetric differentials of f while the Hessian H and the 4×4 augmented Hessian matrix M are defined as

$$
H=\operatorname{det}\left(\begin{array}{ccc}
f_{x x} & f_{x y} & f_{x z} \\
f_{x y} & f_{y y} & f_{y z} \\
f_{x z} & f_{y z} & f_{z z}
\end{array}\right), \quad M=\left(\begin{array}{cccc}
0 & f_{x} & f_{y} & f_{z} \\
f_{x} & f_{x x} & f_{x y} & f_{x z} \\
f_{y} & f_{x y} & f_{y y} & f_{y z} \\
f_{z} & f_{x z} & f_{y z} & f_{z z}
\end{array}\right)
$$

Here $(x, y, z)=\left(v_{x_{1}}, v_{x_{2}}, v_{x_{3}}\right)$. The non-degeneracy condition is equivalent to $H \neq 0$. The system for f is in involution, and its solution space is 20-dimensional.

Lagrangian density $f=v_{x_{1}} v_{x_{2}} v_{x_{3}}$
Euler-Lagrange equation:

$$
v_{x_{3}} v_{x_{1} x_{2}}+v_{x_{2}} v_{x_{1} x_{3}}+v_{x_{1}} v_{x_{2} x_{3}}=0 .
$$

Parametric Lax representation:

$$
\frac{S_{x_{1}}}{v_{x_{1}}}=\zeta(p)+\frac{\wp^{\prime}(p)+\lambda}{2 \wp(p)}, \quad \frac{S_{x_{2}}}{v_{x_{2}}}=\zeta(p)+\frac{\wp^{\prime}(p)-\lambda}{2 \wp(p)}, \quad \frac{S_{x_{3}}}{v_{x_{3}}}=\zeta(p),
$$

where $\left(\wp^{\prime}\right)^{2}=4 \wp^{3}+\lambda^{2}$ and $\zeta^{\prime}=-\wp$ (Weierstrass \wp and ζ functions). Note the algebraic identity

$$
\left(\frac{S_{x_{1}}}{v_{x_{1}}}-\frac{S_{x_{3}}}{v_{x_{3}}}\right)\left(\frac{S_{x_{3}}}{v_{x_{3}}}-\frac{S_{x_{2}}}{v_{x_{2}}}\right)\left(\frac{S_{x_{2}}}{v_{x_{2}}}-\frac{S_{x_{1}}}{v_{x_{1}}}\right)=\lambda .
$$

Lagrangian densities $f=v_{x_{1}} v_{x_{2}} g\left(v_{x_{3}}\right)$

Euler-Lagrange equation:

$$
\left(v_{x_{2}} g\left(v_{x_{3}}\right)\right)_{x_{1}}+\left(v_{x_{1}} g\left(v_{x_{3}}\right)\right)_{x_{2}}+\left(v_{x_{1}} v_{x_{2}} g^{\prime}\left(v_{x_{3}}\right)\right)_{x_{3}}=0 .
$$

Integrability condition for $g(z)$:
$g^{\prime \prime \prime \prime}\left(g^{2} g^{\prime \prime}-2 g\left(g^{\prime}\right)^{2}\right)-9\left(g^{\prime}\right)^{2}\left(g^{\prime \prime}\right)^{2}+2 g g^{\prime} g^{\prime \prime} g^{\prime \prime \prime}+8\left(g^{\prime}\right)^{3} g^{\prime \prime \prime}-g^{2}\left(g^{\prime \prime \prime}\right)^{2}=0$.
$G L(2, \mathbb{R})$-invariance:

$$
\tilde{z}=\frac{\alpha z+\beta}{\gamma z+\delta}, \quad \tilde{g}=(\gamma z+\delta) g
$$

This invariance allows one to linearise the integrability condition for $g(z)$.

Auxiliary hypergeometric equation

Consider the auxiliary hypergeometric equation

$$
u(1-u) h_{u u}+(1-2 u) h_{u}-\frac{2}{9} h=0
$$

parameters $(1 / 3,2 / 3,1)$. The geometry behind this equation is a 1 -parameter family of genus 2 trigonal curves

$$
r^{3}=q(q-1)(q-u)^{2}
$$

supplied with the holomorphic differential $\omega=d q / r$. The corresponding periods, $h=\int_{a}^{b} \omega$ where $a, b \in\{0,1, \infty, u\}$, form a 2-dimensional vector space and satisfy the above (Picard-Fuchs) hypergeometric equation.

Generic solution $g(z)$

The generic solution $g(z)$ can be represented in either of the 3 equivalent forms:

1. Parametric form:

$$
z=\frac{h_{1}(u)}{h_{2}(u)}, \quad g=h_{2}(u)
$$

where h_{i} are 2 linearly independent solutions of the hypergeometric equation. $G L(2, \mathbb{R})$-invariance corresponds to the freedom in the choice of basis h_{i}.
2. Theta representation:

$$
g(z)=\sum_{(k, l) \in \mathbb{Z}^{2}} e^{2 \pi i\left(k^{2}+k l+l^{2}\right) z}=1+6 q+6 q^{3}+6 q^{4}+12 q^{4}+\ldots, \quad q=e^{2 \pi i z} .
$$

3. Power series:

$$
g(z)=\sum_{k \geq 0} B_{k}^{2} \frac{z^{6 k+1}}{(6 k+1)!}
$$

where B_{k} are certain integers.

Lagrangian densities $f=v_{x_{1}} g\left(v_{x_{2}}, v_{x_{3}}\right)$

Euler-Lagrange equation

$$
(g)_{x_{1}}+\left(v_{x_{1}} g_{v_{x_{2}}}\right)_{x_{2}}+\left(v_{x_{1}} g_{v_{x_{3}}}\right)_{x_{3}}=0
$$

Integrability conditions lead to an involutive system of 5 PDEs for $g(y, z)$ which are invariant under the 10-dimensional symmetry group:

$$
\tilde{y}=\frac{l_{1}(y, z)}{l(y, z)}, \quad \tilde{z}=\frac{l_{2}(y, z)}{l(y, z)}, \quad \tilde{g}=\alpha g+\beta
$$

where l, l_{1}, l_{2} are arbitrary (inhomogeneous) linear forms. This invariance allows one to linearise the integrability conditions for $g(y, z)$.

Auxiliary hypergeometric system

Consider the auxiliary (Appell) hypergeometric system

$$
\begin{gathered}
h_{u_{1} u_{2}}=\frac{1}{3} \frac{h_{u_{1}}-h_{u_{2}}}{u_{1}-u_{2}} \\
h_{u_{1} u_{1}}=-\frac{h}{9 u_{1}\left(u_{1}-1\right)}+\frac{h_{u_{2}}}{3\left(u_{1}-u_{2}\right)} \frac{u_{2}\left(u_{2}-1\right)}{u_{1}\left(u_{1}-1\right)}-\frac{h_{u_{1}}}{3}\left(\frac{1}{u_{1}-u_{2}}+\frac{2}{u_{1}}+\frac{2}{u_{1}-1}\right), \\
h_{u_{2} u_{2}}=-\frac{h}{9 u_{2}\left(u_{2}-1\right)}+\frac{h_{u_{1}}}{3\left(u_{2}-u_{1}\right)} \frac{u_{1}\left(u_{1}-1\right)}{u_{2}\left(u_{2}-1\right)}-\frac{h_{u_{2}}}{3}\left(\frac{1}{u_{2}-u_{1}}+\frac{2}{u_{2}}+\frac{2}{u_{2}-1}\right) .
\end{gathered}
$$

The geometry behind this system is the family of genus 3 Picard trigonal curves

$$
r^{3}=q(q-1)\left(q-u_{1}\right)\left(q-u_{2}\right)
$$

supplied with the holomorphic differential $\omega=d q / r$. The corresponding periods, $h=\int_{a}^{b} \omega$ where $a, b \in\left\{0,1, \infty, u_{1}, u_{2}\right\}$, form a 3-dimensional vector space and satisfy the above (Picard-Fuchs) hypergeometric system.

Generic solution $g(y, z)$

The generic solution $g(y, z)$ can be represented in either of the 3 equivalent forms:

1. Parametric form:

$$
y=\frac{h_{1}\left(u_{1}, u_{2}\right)}{h_{3}\left(u_{1}, u_{2}\right)}, \quad z=\frac{h_{2}\left(u_{1}, u_{2}\right)}{h_{3}\left(u_{1}, u_{2}\right)}, \quad g=F(s), s=\frac{u_{1}\left(u_{2}-1\right)}{u_{2}\left(u_{1}-1\right)}
$$

where h_{i} are 3 linearly independent solutions of the hypergeometric system and $F^{\prime}=[s(s-1)]^{-2 / 3}$.
2. Theta representation:

$$
g(y, z)=y+\sum_{(k, l) \in \mathbb{Z}^{2} \backslash 0} \frac{\tilde{\theta}((k+\epsilon l) y)}{k+\epsilon l} e^{2 \pi i\left(k^{2}+k l+l^{2}\right) z}, \quad \epsilon=e^{\pi i / 3}
$$

3. Power series:

$$
g(y, z)=\sum_{j, k \geq 0} B_{j} B_{k} B_{j+k} \frac{y^{6 j+1}}{(6 j+1)!} \frac{z^{6 k+1}}{(6 k+1)!}
$$

Relation to Picard modular forms

The period map

$$
y=\frac{h_{1}\left(u_{1}, u_{2}\right)}{h_{3}\left(u_{1}, u_{2}\right)}, \quad z=\frac{h_{2}\left(u_{1}, u_{2}\right)}{h_{3}\left(u_{1}, u_{2}\right)}
$$

was inverted by Picard (1883):

$$
u_{1}=\frac{\varphi_{1}(y, z)}{\varphi_{0}(y, z)}, u_{2}=\frac{\varphi_{2}(y, z)}{\varphi_{0}(y, z)}
$$

where $\varphi_{\nu}(y, z) \in M_{3}(\Gamma[\sqrt{-3}])$ are single-valued modular forms on a 2-dimensional complex ball $2 \operatorname{Re} y+|z|^{2}<0$ with respect to the Picard modular group $\Gamma[\sqrt{-3}]=\{g \in U(2,1 ; \mathbb{Z}[\rho]): g \equiv 1(\bmod \sqrt{-3})\}, \rho=e^{2 \pi i / 3}$. Picard modular forms were extensively studied by Holzapfel, Feustel, Finis, Shiga, Cléry and van der Geer.

Picard modular forms via theta functions

Explicitly, $\varphi_{\nu}(y, z)=\theta_{\nu}^{3}$ where theta functions $\theta_{\nu}(y, z)$ are defined as

$$
\theta_{\nu}(y, z)=\sum_{\xi \in \mathbb{Z}[\rho]} \rho^{-\nu(\xi+\bar{\xi})} Y(\xi y) e^{\frac{2 \pi z}{\sqrt{3}} \xi \bar{\xi}}
$$

here

$$
Y(u)=\frac{1}{k} e^{\frac{\pi u^{2}}{\sqrt{3}}} \vartheta\left[\begin{array}{l}
1 / 6 \\
1 / 6
\end{array}\right]\left(u,-\rho^{2}\right), \quad k=\vartheta\left[\begin{array}{l}
1 / 6 \\
1 / 6
\end{array}\right]\left(0,-\rho^{2}\right),
$$

Here ϑ-functions with characteristics are defined as

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \tau)=\sum_{n \in \mathbb{Z}} e^{\pi i \tau(n+a)^{2}+2 \pi i(n+a)(z+b)}
$$

Differential $d g$ via Picard modular forms

There is a simple expression of the differential $d g$ is terms of φ_{ν} :

$$
d g=\frac{\varphi_{1} \varphi_{2}\left(\varphi_{2}-\varphi_{1}\right) d \varphi_{0}+\varphi_{0} \varphi_{2}\left(\varphi_{0}-\varphi_{2}\right) d \varphi_{1}+\varphi_{0} \varphi_{1}\left(\varphi_{1}-\varphi_{0}\right) d \varphi_{2}}{\zeta^{2}}
$$

where $\zeta \in S_{6}(\Gamma[\sqrt{-3}]$, det $)$ is a modular form defined as

$$
\zeta^{3}=\varphi_{0} \varphi_{1} \varphi_{2}\left(\varphi_{1}-\varphi_{0}\right)\left(\varphi_{2}-\varphi_{0}\right)\left(\varphi_{2}-\varphi_{1}\right)
$$

Up to a constant factor, the differential $d g$ coincides with the Eisenstein series $E_{1,1}$ which was introduced in:
H. Shiga, On the representation of the Picard modular function by θ constants. I, II. Publ. Res. Inst.

Math. Sci. 24, no. 3 (1988) 311-360.
F. Cléry, G. van der Geer, Generators for modules of vector-valued Picard modular forms. Nagoya Math.
J. 212 (2013) 19-57.

Generic Lagrangian densities $f\left(v_{x_{1}}, v_{x_{2}}, v_{x_{3}}\right)$

Euler-Lagrange equation:

$$
\left(f_{v_{x_{1}}}\right)_{x_{1}}+\left(f_{v_{x_{2}}}\right)_{x_{2}}+\left(f_{v_{x_{3}}}\right)_{x_{3}}=0 .
$$

Integrability conditions lead to a system of 15 PDEs for $f(x, y, z)$ which are invariant under 20 -dimensional symmetry group:

$$
\tilde{x}=\frac{l_{1}(x, y, z)}{l(x, y, z)}, \quad \tilde{y}=\frac{l_{2}(x, y, z)}{l(x, y, z)}, \quad \tilde{z}=\frac{l_{3}(x, y, z)}{l(x, y, z)}, \quad \tilde{f}=\frac{f}{l(x, y, z)},
$$

as well as obvious symmetries of the form

$$
\tilde{f}=\epsilon f+\alpha x+\beta y+\gamma z+\delta,
$$

where l, l_{1}, l_{2}, l_{3} are arbitrary (inhomogeneous) linear forms. This invariance allows one to linearise the integrability conditions for $f(x, y, z)$.

Auxiliary hypergeometric system

Consider the auxiliary (Appell) hypergeometric system

$$
\begin{gathered}
h_{u_{i} u_{j}}=\frac{1}{3} \frac{h_{u_{i}}-h_{u_{j}}}{u_{i}-u_{j}} \\
h_{u_{i} u_{i}}=-\frac{2}{9} \frac{h}{u_{i}\left(u_{i}-1\right)}-\frac{1}{3 u_{i}\left(u_{i}-1\right)} \sum_{j \neq i}^{3} \frac{u_{j}\left(u_{j}-1\right)}{u_{j}-u_{i}} h_{u_{j}}+ \\
-\frac{1}{3}\left(\sum_{j \neq i}^{3} \frac{1}{u_{i}-u_{j}}+\frac{2}{u_{i}}+\frac{2}{u_{i}-1}\right) .
\end{gathered}
$$

The geometry behind this system is the family of genus 4 Picard trigonal curves

$$
r^{3}=q(q-1)\left(q-u_{1}\right)\left(q-u_{2}\right)\left(q-u_{3}\right)
$$

supplied with the holomorphic differential $\omega=d q / r$. The corresponding periods, $h=\int_{a}^{b} \omega$ where $a, b \in\left\{0,1, \infty, u_{1}, u_{2}, u_{3}\right\}$, form a 4-dimensional vector space and satisfy the above (Picard-Fuchs) hypergeometric system.

Inhomogeneous hypergeometric extension

We will also need the inhomogeneous hypergeometric system

$$
\begin{gathered}
h_{u_{i} u_{j}}=\frac{1}{3} \frac{h_{u_{i}}-h_{u_{j}}}{u_{i}-u_{j}}+\epsilon_{i j k} \frac{u_{k}\left(u_{k}-1\right)\left(u_{i}-u_{j}\right)}{U^{2 / 3}} \\
h_{u_{i} u_{i}}=-\frac{2}{9} \frac{h}{u_{i}\left(u_{i}-1\right)}-\frac{1}{3 u_{i}\left(u_{i}-1\right)} \sum_{j \neq i}^{3} \frac{u_{j}\left(u_{j}-1\right)}{u_{j}-u_{i}} h_{u_{j}}+ \\
-\frac{1}{3}\left(\sum_{j \neq i}^{3} \frac{1}{u_{i}-u_{j}}+\frac{2}{u_{i}}+\frac{2}{u_{i}-1}\right) h_{u_{i}}
\end{gathered}
$$

where $\epsilon_{i j k}$ is the totally antisymmetric tensor and

$$
U=u_{1} u_{2} u_{3}\left(u_{1}-1\right)\left(u_{2}-1\right)\left(u_{3}-1\right)\left(u_{1}-u_{2}\right)\left(u_{2}-u_{3}\right)\left(u_{3}-u_{1}\right) .
$$

The inhomogeneous system for h is in involution.

Generic solution $f(x, y, z)$

The generic solution $g(y, z)$ can be represented in either of the 3 equivalent forms:

1. Parametric form:

$$
x=\frac{h_{1}}{h_{4}}, \quad y=\frac{h_{2}}{h_{4}}, \quad z=\frac{h_{3}}{h_{4}}, \quad f=\frac{F}{h_{4}}
$$

where $h_{i}\left(u_{1}, u_{2}, u_{3}\right)$ are 4 independent solutions of the hypergeometric system and $F\left(u_{1}, u_{2}, u_{3}\right)$ is a solution of the inhomogeneous system.
2. Theta representation:

$$
f(x, y, z)=x y+\sum_{(k, l) \in \mathbb{Z}^{2} \backslash 0} \frac{\tilde{\theta}((k+\epsilon l) x) \tilde{\theta}((k+\epsilon l) y)}{(k+\epsilon l)^{2}} e^{2 \pi i\left(k^{2}+k l+l^{2}\right) z}
$$

3. Power series:

$$
f(x, y, z)=\sum_{i, j, k \geq 0} B_{i} B_{j} B_{k} B_{i+j+k} \frac{x^{6 i+1}}{(6 i+1)!} \frac{y^{6 j+1}}{(6 j+1)!} \frac{z^{6 k+1}}{(6 k+1)!}
$$

Theta functions $\tilde{\theta}$ and integers B_{n}

We define

$$
\tilde{\theta}(z)=\frac{i}{\theta^{\prime}(0)} e^{\pi \frac{z^{2}}{\sqrt{3}}-\pi i \frac{\epsilon}{4}} \vartheta(\epsilon, z), \quad \theta^{\prime}(0)=-\frac{i}{(2 \pi)^{2}} e^{\frac{\pi \sqrt{3}}{8}} 3^{3 / 8} \Gamma(1 / 3)^{9 / 2}
$$

where

$$
\vartheta(\tau, z)=\sum_{n \in \mathbb{Z}} e^{\pi i\left[(n+1 / 2)^{2} \tau+2(n+1 / 2)(z+1 / 2)\right]}
$$

is the classical Jacobi theta function. The Taylor expansion of $\tilde{\theta}$ about $z=0$ is

$$
\tilde{\theta}(z)=\sum_{n \geqslant 0} b_{6 n+1} z^{6 n+1}=z+b_{7} z^{7}+\ldots
$$

where

$$
b_{6 n+1}=\frac{(-3)^{n} \Gamma(1 / 3)^{18 n} B_{n}}{(2 \pi)^{6 n}(6 n+1)!}
$$

Here B_{n} are integers.

Concluding remarks

- There exists a whole variety of integrable Lagrangians whose densities f are polynomial or can be expressed in terms of elementary functions. It would be interesting to clarify how these (and similar) examples can be recovered as degenerations of the 'master-Lagrangian', and to describe singular orbits of lower dimension. This should be related to understanding degenerations/compactifications of the moduli space of Picard curves.
- Although our parametric, theta and power series representations for integrable densities possess straightforward generalisations to dimensions higher than 3 , the relation to integrable Lagrangians will be lost: one can show that in higher dimensions every integrable first-order Lagrangian density $f\left(v_{x}\right)$ is necessarily of the form $f=\frac{Q\left(v_{x}\right)}{l\left(v_{x}\right)}$ where Q and l are arbitrary quadratic and linear functions of the first-order derivatives. Thus, the occurence of modular forms is the essentially 3 -dimensional phenomenon.

