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Abstract. We obtain explicitly all solutions of the SU(∞) Toda field equation
with the property that the associated Einstein-Weyl space admits a 2-sphere
of divergence-free shear-free geodesic congruences. The solutions depend on an
arbitrary holomorphic function and give rise to new hyperKähler and selfdual
Einstein metrics with one dimensional isometry group. These metrics each admit
a compatible hypercomplex structure with respect to which the symmetries are
triholomorphic.

1. Introduction

LeBrun’s H-space construction [8] gives a method for constructing, at least in
principle, a selfdual Einstein manifold M of negative scalar curvature with a pre-
scribed conformal infinity given by an arbitrary real analytic conformal 3-manifold
B. The Einstein metric is defined initially on a punctured collar neighbourhood of
the conformal infinity, where it is uniquely determined by the conformal structure
on B, but it often extends analytically to a larger manifold.

In practice, however, this “filling in” construction is difficult to carry out directly,
except when B is conformally flat, when the Einstein metric is the hyperbolic
metric. Conformally flat 3-manifolds may be characterized as locally admitting
compatible Einstein metrics. A more general situation in which progress can be
made is the case that B admits a compatible Einstein-Weyl structure. Hitchin [6]
has shown that in this situation, the twistor space Z of M is the projectivized
cotangent bundle of the minitwistor space S of B, and consequently that there is a
conformal retraction of M onto B, i.e., a conformal submersion M → B inducing
the identity map of B at infinity. If one has enough information about B or its
minitwistor space, then one can hope to find M using this observation.

The first non-trivial examples of this construction were the Pedersen metrics on
the unit ball in R4 [11], where the conformal infinity is a Berger 3-sphere with
its standard Einstein-Weyl structure [7]. However, even in these examples, M is
constructed indirectly and shown to be the desired 4-metric using the uniqueness
clause of the LeBrun construction. In fact, after observing that the generator of
the principal symmetry of the Berger sphere induces a Killing field on M , Pedersen
applies the Jones-Tod construction [7] to see that the space of trajectories of this
Killing field also carries an Einstein-Weyl structure, which he identifies as the stan-
dard Einstein metric of the round 3-sphere. This information, and a little inspired
guesswork, is enough to find the Einstein metric on M explicitly, and it turns out
that on one side of the conformal infinity, it extends to a complete metric on a ball.
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The following diagram summarizes the construction.

(1.0)
M4

BS3
⊂

-ξ
�

S3

K-

Here we have labelled the submersions over BS3 (the Berger 3-sphere) and S3 (the
round 3-sphere) by vector fields tangent to the fibres: K is a Killing field and we
take ξ to be a unit vector field. These submersions are well-defined if M4 is the
punctured ball: on the entire ball ξ has a point singularity, at which K vanishes.

A Weyl structure may be specified by giving a choice of representative g for the
conformal metric and a 1-form ω which defines a connection on the line bundle L
of scalars of weight one (see below). On the Berger spheres, these are given by

g = dθ2 + sin2 θdφ2 + a2(dψ + cos θdφ)2 = σ 2
1 + σ 2

2 + a2σ 2
3

ω = b(dψ + cos θdφ) = bσ3,
(1.1)

where a and b are constants with b2 = a2(1−a2), and the σi are the usual invariant
1-forms on SU(2). The principal symmetry is generated by ∂/∂ψ.

The selfdual Einstein metrics of [11] are

gM =
1

(1− ρ2)2

[
1 +m2ρ2

1 +m2ρ4
dρ2 +

1
4
ρ2

(
(1 +m2ρ2)(σ 2

1 + σ 2
2 ) +

1 +m2ρ4

1 +m2ρ2
σ2

3

)]
.

The conformal structure extends to the conformal infinity at ρ = 1, which is the
Berger sphere with a2 = 1/(1 +m2), so that m2 = b2/a4.

Our aim in this paper is to generalize these metrics and the diagram (1.0) by
replacing S3 and BS3 with other Einstein-Weyl spaces. To do this, we want to
explain how the geometry of M4 restricts the possible geometries of the Einstein-
Weyl space M4/K generalizing S3. First of all, by the general theory of [13], since
M4 is an Einstein manifold with a Killing field K, the Einstein metric is conformal
to a scalar-flat Kähler metric. Now an Einstein-Weyl space arising as the quotient
of a scalar-flat Kähler metric by a Killing field is not arbitrary [9]: it admits a
shear-free twist-free geodesic congruence [12]. Let us pause to define these terms.

Definition 1.1. A Weyl space is a conformal manifold (Bn, c) equipped with a
torsion free connection D such that Dc = 0. (We view the conformal structure c
as a metric on TB with values in the real line bundle L2, where L−n = |ΛnT ∗B|.)
It is said to be Einstein-Weyl if the symmetric trace-free part of the Ricci tensor
of this connection vanishes.

A congruence on an oriented three-dimensional Weyl space B3 is (the foliation
generated by) a weightless unit vector field χ ∈ C∞(B,L−1 ⊗ TB), i.e., 〈χ, χ〉 = 1,
where the angle brackets denote the conformal metric. The congruence is shear-free
and geodesic if

Dχ = τ(id − χ⊗ χ) + κ ∗χ
and τ, κ are called the divergence and twist of χ. They are sections of L−1.

Our conventions mainly follow [2]. In particular we make free use of the isomor-
phism between Lw−k⊗ΛkTB and Lw+k⊗ΛkT ∗B given by the conformal structure,
and say that sections of these bundles have weight w ∈ R. The Hodge star opera-
tor is the isomorphism ∗ : Lw−k ⊗ΛkTB → Lw+n−k ⊗Λn−kT ∗B determined by the
orientation form ∗1 ∈ C∞(B,Ln ⊗ ΛnT ∗B). Thus ∗χ may be viewed as a section
of so(TB), the bundle of skew endomorphisms, using the conformal structure.
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Definition 1.2. We shall say an Einstein-Weyl 3-manifold is Toda if it admits a
shear-free geodesic congruence with vanishing twist (a “Toda congruence”), and
that it is hyperCR if it admits a shear-free geodesic congruence with vanishing
divergence.

The reason for this terminology is that if B is Toda, there is a distinguished
compatible metric, which we call the LeBrun-Ward gauge, such that the Weyl
structure may be written

g = eu(dx2 + dy2) + dz2

ω = −uzdz,
(1.2)

where u is a solution of the Toda field equation uxx + uyy + (eu)zz = 0 (see [14]).
Here ω is the connection 1-form of the covariant derivative on L given by the Weyl
connection, relative to the trivialization of L given by the choice of representative
metric. Hence Dg = −2ω ⊗ g. We used the same convention in (1.1).

On the other hand if B is hyperCR, then χ is not alone: in fact, if we view the
orientation form ∗1 ∈ C∞(B,L3 ⊗Λ3T ∗B) as a section of L⊗ T ∗B ⊗ so(TB) using
the conformal structure, then D−κ ∗1 is a flat metric connection on L−1⊗TB and
the parallel weightless unit vector fields give a 2-sphere of divergence-free shear-
free geodesic congruences. Each of these congruences defines a CR structure on
B, hence the terms hyperCR and hyperCR structure are introduced by analogy
with hypercomplex or hyperKähler. These Einstein-Weyl spaces were called special
in [3] and [4]. It was shown there that monopoles over hyperCR Einstein-Weyl
spaces define hypercomplex 4-manifolds by the construction of [7].

The round metric on S3, as an Einstein-Weyl structure, is both Toda and hy-
perCR. More precisely, it admits a Toda congruence on the complement of any
pair of antipodal points, and also two hyperCR structures. The Toda congruence
is given by the geodesics joining the antipodal points, while the congruences of the
two hyperCR structures are the left and right invariant congruences respectively.

Returning now to the Pedersen metric over S3, we see that not only is it confor-
mally scalar-flat Kähler, but also, since S3 is hyperCR, it admits two compatible
hypercomplex structures [4, 10]. We shall see later that these hypercomplex struc-
tures are also induced by a hyperCR structure on the Berger 3-sphere at infinity.

Therefore, in order to generalize the Pedersen metrics and diagram (1.0), one
approach is to look for Einstein-Weyl spaces, generalizing S3, which are both Toda
and hyperCR. Our first result is that all such spaces can be found.

Theorem 1.3. For any holomorphic function h on an open subset of S2, the
Einstein-Weyl space given by

g = (z + h)(z + h)gS2 + dz2

ω = − 2z + h+ h

(z + h)(z + h)
dz,

where gS2 is the spherical metric, is both Toda and hyperCR. Furthermore any
Toda Einstein-Weyl space admitting a hyperCR structure arises in this way, with
the exception of the Toda solutions given by a parallel congruence on flat space.

We prove this theorem in section 2. Then, in sections 3 and 4, we consider
monopoles over these hyperCR Toda spaces. In particular, over each such space,
we find an Einstein metric with symmetry and with a conformal infinity given by
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another Einstein-Weyl space from a class generalizing the Berger spheres. This will
give the desired generalization of diagram (1.0).

Acknowledgements. We would like to thank Ian Strachan for drawing our atten-
tion to the linearized solutions of the Toda equation given in section 3. Part of this
work was carried out while the first author was visiting Humboldt-Universität zu
Berlin and the second author was visiting the University of Adelaide. The authors
gratefully acknowledge support from SFB 288 and the Australian Research Council.
The diagrams were typeset with Paul Taylor’s commutative diagrams package.

2. The Toda solutions

In order to prove Theorem 1.3 we must find all solutions of the Toda field equation
admitting a hyperCR structure. As very few solutions of the Toda equation are
known, this is an interesting exercise in its own right. The condition that an
Einstein-Weyl space is hyperCR is equivalent [4] to the existence of a section κ of
L−1 with

κ2 =
1
6
scalD(2.1)

Dκ = −1
2
∗FD,(2.2)

where FD is the curvature of the Weyl connection on L. Our aim is to impose this
condition on the Toda field equation. We start with equation (2.2) which can be
written in a gauge as dκ−ωκ = −1

2∗dω. In the LeBrun-Ward gauge, this becomes

κxdx+ κydy + (κz + uzκ)dz = −1
2
uyzdx+

1
2
uxzdy.

We deduce from this the equations κx = −1
2uyz and κy = 1

2uxz, which have an
integrability condition:

uxxz = uxzx = 2κyx = 2κxy = −uyzy = −uyyz.

Therefore 0 = (uxx + uyy)z = −(eu)zzz and so we may write

eu = ef(x,y)
(
az2 + b(x, y)z + c(x, y)

)
.

The Toda field equation with this Ansatz can be solved explicitly as follows. We
compute:

uxx + uyy =

(
(bxx + byy)z + cxx + cyy

)
(az2 + bz + c)− (bxz + cx)2 − (byz + cy)2

(az2 + bz + c)2

+ fxx + fyy

(eu)zz = 2aef ,

which must sum to zero. We multiply through by (az2 + bz + c)2 and equate
coefficients of the resulting quartic in z. The leading term is a Liouville equation:

fxx + fyy + 2aef = 0.

The general solution of this Liouville equation may be written

ef(x,y) =
4|F ′(x+ iy)|2

(1 + a|F (x+ iy)|2)2
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in terms of an arbitrary nonconstant F , holomorphic in x+iy. The other coefficients
now give the following equations:

a(bxx + byy) = 0(2.3)

a(cxx + cyy) + b(bxx + byy) = b2x + b2y(2.4)

b(cxx + cyy) + c(bxx + byy) = 2(bxcx + bycy)(2.5)

c(cxx + cyy) = c2x + c2y.(2.6)

If a = 0 then equations (2.4) and (2.6) are solved by letting b = B|eφ|2, c = C|eψ|2
with B,C constant and φ, ψ holomorphic. Equation (2.5) now gives B = 0, C = 0
or |φ′ − ψ′| = 0 and so the functional dependence of b and c can be absorbed into
f and we have a separable solution for eu.

If a is not zero, then equations (2.3) and (2.6) give b = a(h+h), c = C|eψ|, with
C constant and h, ψ holomorphic. Equation (2.4) now gives aC|ψ′|2|eψ|2 = a2|h′|2
and so C/a is nonnegative. If C = 0 then h is constant and we have a separable
solution; otherwise, without loss of generality, we may take C = a and h = eψ + µ
where µ is a real constant. Finally, equation (2.5) reduces to µ|ψ′|2 = 0 and so
either µ = 0 or ψ is constant, the latter case again giving a separable solution.

The separable solutions are all known and the Einstein-Weyl structures are all
given by 3-metrics of constant curvature [13]: in our case the curvature must be
nonnegative in order to satisfy (2.1), and these solutions, generating the metrics of
R3 and S3, are the ones we are trying to generalize. The new solutions of the Toda
equation are:

eu =
4a(z + h)(z + h)|F ′|2

(1 + a|F |2)2
,

and positivity forces a > 0. We readily verify that equation (2.2) is now satisfied
with

κ =
i(h− h)

2(z + h)(z + h)
.

Furthermore, a computation shows that 1
6scalD = 1

2uzz+
1
4u

2
z, from which it follows

that (2.1) is also satisfied, and so the Einstein-Weyl space is indeed hyperCR. Since
F cannot be constant, we may use

√
aF as a holomorphic coordinate in place of

x+ iy and we easily obtain Theorem 1.3.

3. Scalar-flat Kähler metrics

In this section we study abelian monopoles over the hyperCR Toda spaces. On
any Toda space B, these are defined to be solutions of the equation

wxx + wyy + (euw)zz = 0.

LeBrun [9] shows that each solution of this equation generates a scalar-flat Kähler
metric with a Killing field, given explicitly by

gM = w eu(dx2 + dy2) + wdz2 + w−1(dt+ θ)2,

where θ is a 1-form on B with ∗(dw − ωw) = dθ.
Consequently we can construct a large family of scalar-flat Kähler metrics from

the Einstein-Weyl spaces of section 2. Since the Einstein-Weyl spaces are hyperCR,
these scalar-flat Kähler metrics admit compatible hypercomplex structures with
respect to which ∂/∂t is triholomorphic. For most choices of h, the hyperCR Toda
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spaces have no continuous symmetries, and so these scalar-flat Kähler spaces will
generically have only a one-dimensional symmetry group, generated by ∂/∂t.

In order to obtain explicit metrics, we still have a linear differential equation,
the monopole equation, to solve. Fortunately, there are some interesting solutions
available, given to us for free by the geometry. These solutions may be viewed
as arising from LeBrun’s observation [9] that the monopole equation above is the
linearized Toda equation, and so monopoles can be found by linearizing a family
of solutions of the Toda equation. In particular, the affine change (x, y, z) 7→
(ax, ay, az − b) induces a symmetry of the Toda equation. Linearizing a family
of solutions generated by this gauge transformation shows that for any a, b ∈ R,
a(1− 1

2zuz)+
1
2buz defines a monopole on any Toda Einstein-Weyl space [1, 5, 9, 13].

For our explicit solutions, these monopoles may also be obtained by linearizing
with respect to affine changes of the holomorphic function h. Ian Strachan (private
communication) has pointed out that by linearizing the solutions with respect to
arbitrary holomorphic changes of h, one sees, more generally, that

w =
f

2(z + h)
+

f

2(z + h)

is a monopole for any holomorphic function f (f = ah+ b being a special case). To
compute θ note that ∗(dw − ωw) = d(v dz) + 1

2(f + f)volS2 where

v =
if

2(z + h)
− if

2(z + h)
.

Hence one can write dt+ θ = β + v dz, where β is a 1-form independent of z such
that dβ = 1

2(f + f)volS2 , so that the scalar-flat Kähler metric is:

(3.1) gM = w (z + h)(z + h)gS2 + wdz2 + w−1(β + v dz)2.

For definiteness, one could take

β = dt+
i

1 + ζζ

(
f dζ

ζ
− f dζ

ζ

)
where ζ is a holomorphic coordinate on S2 with volS2 = 2i dζ ∧ dζ/(1 + ζζ)2.

These scalar-flat Kähler metrics will not be Einstein or conformally Einstein
in general. However, they do have the property that the lift of ∂/∂z given by
β(∂/∂z) = 0 defines a conformal submersion. To see this, write the conformal
structure on M as c = ε 2

0 + · · · + ε 2
3 , where ε0 and ε3 are the weightless unit 1-

forms corresponding to wdz and β+ v dz. Let ξ be the weightless unit 1-form dual
to ∂/∂z, so that

ξ =
wε0 + vε3√

w2 + v2
.

Now ε20 + ε23 − ξ2 = η2, where

η =
vε0 − wε3√

w2 + v2
=

wβ√
w2 + v2

.

Hence c− ξ2 may be represented by the metric

(w2 + v2)|z + h|2gS2 + β2 = |f |2gS2 + β2,

which is independent of z, so that ξ is a conformal submersion over this metric.
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The conformal structures |f |2gS2 + β2, depending on an arbitrary holomorphic
function f , arise elsewhere, namely in the classification of Einstein-Weyl spaces
admitting a “geodesic symmetry” (a conformal vector field preserving the Weyl
connection whose trajectories are geodesics of the Weyl connection).

Theorem 3.1. [2] The three dimensional Einstein-Weyl spaces with geodesic sym-
metry are either flat with translational symmetry or are given locally by:

g = |H|−2gS2 + β2

ω = i
2(H −H)β

dβ = 1
2(H +H)|H|−2volS2

where H is any nonvanishing holomorphic function on an open subset of S2. The
geodesic symmetry K is dual to β and the congruence K/|K| has divergence τ =
i
2(H − H)µ−1

g and twist κ = 1
4(H + H)µ−1

g . Furthermore, these spaces are all
hyperCR, the flat connection on L−1 ⊗ TB being D + κ ∗1.

Replacing H by 1/f we see that the scalar flat Kähler metrics of this section
fibre over the Einstein-Weyl spaces with geodesic symmetry. In the next section
we shall fill in these Einstein-Weyl spaces with Einstein metrics.

4. Selfdual Einstein metrics

In the previous section we noted in passing, that when f = ah+b, the monopoles
w = 1

2

(
f/(z + h) + f/(z + h)

)
may be identified with the geometrically significant

monopoles a(1− 1
2zuz)+ 1

2buz which are canonically defined on any Toda Einstein-
Weyl space. There is also a special monopole defined on any hyperCR space [3, 4],
namely w = κ, as one easily sees from equation (2.2). We note that for the hyperCR
Toda spaces, this monopole is obtained by setting f = i.

The significance of these monopoles is that they all give rise to Einstein metrics.

4.1. Scalar-flat Kähler metrics which are conformally hyperKähler.
By [3, 4], the hypercomplex structure we obtain from the κ monopole is conformally
hyperKähler, and the symmetry ∂/∂t is a triholomorphic homothetic vector field
of the hyperKähler metric. Hence when f = i, the scalar-flat Kähler metric (3.1) is
conformally Ricci-flat. The Einstein-Weyl space with geodesic symmetry obtained
from the conformal submersion ξ is R3 (with a radial symmetry).

4.2. HyperKähler metrics with compatible hypercomplex structures.
By [1, 5, 9], on any Toda space, the scalar-flat Kähler metric corresponding to the
monopole uz is in fact Ricci-flat and therefore hyperKähler: the symmetry ∂/∂t
is a Killing field of the hyperKähler metric, but is not triholomorphic unless the
Toda space is R3 (with a translational congruence). However, in the case of a hy-
perCR Toda space, this Ricci-flat metric admits another compatible hypercomplex
structure with respect to which the symmetry is triholomorphic, and so we have
nontrivial examples of selfdual spaces with two compatible hypercomplex struc-
tures. In summary, when f = 1, the scalar-flat Kähler metric (3.1) is hyperKähler
with a Killing field and an additional hypercomplex structure. The Einstein-Weyl
space with geodesic symmetry obtained from the conformal submersion ξ is S3

(with symmetry given by a Hopf fibration).
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4.3. Selfdual Einstein metrics with negative scalar curvature.
These are the most interesting examples for us as they generalize diagram (1.0).
The article [13] implies that, for any a, b ∈ R, the scalar-flat Kähler metric generated
by the monopole a(1− 1

2zuz)+ 1
2buz on any Toda space is conformal to an Einstein

metric with scalar curvature −3a, via the conformal factor 1/(az − b)2. For a = 0
these are the hyperKähler metrics discussed in 4.2 above, and for a 6= 0 we can set
b = 0 by translating the z coordinate. For our explicit solutions, this corresponds
to adding a real constant to h. Thus when f = h, i.e.,

w =
1
2(h+ h)z + hh

(z + h)(z + h)
,

the scalar-flat Kähler metric (3.1) is conformal to an Einstein metric with negative
scalar curvature, given explicitly by

1
z2

[
1
2(h+ h)z + hh

(z + h)(z + h)
dz2 +

(
1
2(h+ h)z + hh

)
gS2 +

(z + h)(z + h)
1
2(h+ h)z + hh

(dt+ θ)2
]
.

This has a conformal infinity at z = 0 with conformal metric |h|2gS2 + β2, where
dt+ θ = β − κz dz and so dβ = 1

2(h+ h)volS2 .
Hence we see that we have found the selfdual Einstein metrics M filling in every

Einstein-Weyl space admitting a geodesic symmetry.
We recover the Berger spheres by taking h to be constant. The form of the

Einstein metrics we have found is easily related to the Pedersen family by putting
h = 1 + im and setting z = (1− ρ2)/ρ2.

5. Additional remarks

We have shown that applying the LeBrun construction to an Einstein-Weyl space
with geodesic symmetry gives an Einstein metric with compatible hypercomplex
structure fibering over the general hyperCR Toda space.

The Einstein-Weyl spaces with geodesic symmetry are all hyperCR and this gives
an explanation for the hypercomplex structure coming with our Einstein metrics.
The twistor point of view gives a particularly quick way to see this: a hyperCR
structure on an Einstein-Weyl space B corresponds to a holomorphic map from its
minitwistor space S to CP 1. Composing this with the projection from PT ∗S to
S, we see that the twistor space Z of M has a holomorphic map to CP 1. Thus
applying the LeBrun construction to a hyperCR Einstein-Weyl space always gives
a hypercomplex Einstein space.

There are many more hyperCR spaces than the spaces with geodesic symmetry
arising here, but it will be much harder to fill them in explicitly, since the Einstein
metric may no longer have a symmetry, so that it is harder to find indirectly. It is
perhaps easier to ask how other Einstein-Weyl spaces with symmetry fill in. Indeed,
it may be that there are other hyperCR spaces with symmetry where the symmetry
is not geodesic, in which case we would obtain selfdual Einstein metrics with a
hypercomplex structure and a symmetry which is not triholomorphic. However,
even in this case, it is not clear how to solve the Toda equation.
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In summary, we note that we can generalize and augment diagram (1.0) as fol-
lows:

M4

B3
⊂

-ξ
�

B̃3

K-

S2
∂/∂z�K

-

For the lower part of the diagram, we use the fact that the Killing field K on M4

descends to the geodesic symmetry of B3, and ∂/∂z is a conformal submersion on
the hyperCR Toda space B̃3, since it is shear-free. The surface over which B3 and
B̃3 both fibre comes with a natural spherical metric and so it would seem that it
is the geometry of S2 which lies behind our constructions.
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