
STABILITY AND EXTREMAL METRICS
ON TORIC AND PROJECTIVE BUNDLES

VESTISLAV APOSTOLOV, DAVID M. J. CALDERBANK, PAUL GAUDUCHON,
AND CHRISTINA W. TØNNESEN-FRIEDMAN

Abstract. This survey on extremal Kähler metrics is a synthesis of several
recent works—of G. Székelyhidi [39, 40], of Ross–Thomas [35, 36], and of our-
selves [5, 6, 7]—but embedded in a new framework for studying extremal Kähler
metrics on toric bundles following Donaldson [13] and Szekelyhidi [40]. These
works build on ideas Donaldson, Tian, and many others concerning stability
conditions for the existence of extremal Kähler metrics. In particular, we study
notions of relative slope stability and relative uniform stability and present ex-
amples which suggest that these notions are closely related to the existence of
extremal Kähler metrics.
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1. K-stability for extremal Kähler metrics

1.1. Introduction to stability. For a Hodge manifold (M,Ω), the existence of a
CSC Kähler metric in Ω is conjectured to be equivalent to a notion of stability [9, 12,
13, 34, 41] for the polarized projective variety (M,L), where L is a line bundle on M
with c1(L) = Ω/2π. This conjecture is drawn from a detailed formal picture which
makes clear an analogy with the well-established relation between the polystability
of vector bundles and the existence of Einstein–Hermitian connections.

At present the most promising candidate for the conjectured stability criterion
is ‘K-polystability’, in the form given by Donaldson [13], following Tian [41]: a
polarized projective variety (M,L) is K-polystable if any ‘test configuration’ for
(M,L) has nonpositive Futaki invariant with equality iff the test configuration is a
product. We shall explain this definition shortly. We also discuss an idea of Ross
and Thomas [35, 36], who focus on test configurations arising as ‘deformations to the
normal cone’ of subschemes of (M,L), leading to a notion of ‘slope’ K-polystability
analogous to the slope polystability of vector bundles.

(Note that some authors use the term K-stable rather than K-polystable, but the
latter term agrees better with pre-existing notions of stability.)

G. Székelyhidi [39] has extended the theory of K-polystability to cover extremal
Kähler metrics, not just CSC Kähler metrics. We explain his ideas here.

1.2. Finite dimensional motivation. Let (X,L,Ω) be a polarized Kähler man-
ifold with a hermitian metric on L with curvature −iΩ (thus c1(L) = Ω/2π).
Suppose a compact connected group G acts holomorphically on X and there is a
momentum map µ : X → g∗ for the action (i.e., d〈µ, ξ〉 = −Ω(Kξ, ·), where Kξ is
the vector field on X corresponding to ξ ∈ g, the Lie algebra of G). There is a lift
of the action to L generated by K̃ξ + 〈µ, ξ〉K for each ξ ∈ g, where 〈µ, ξ〉 is pulled
back to L, K̃ξ is the horizontal lift, and K generates the standard U(1) action on
L. The action of g on X and L extends to an action of the complexification gc and
we assume this integrates to an action of a complex Lie group Gc.

By a well-known result of Kempf–Ness and Kirwan, for any x ∈ X, there exists
g ∈ Gc such that µ(g ·x) = 0 if and only if for some (hence any) nonzero lift x̃ of x to
L∗, the orbit Gc · x̃ = 0 is closed (and then any nonzero lift will have this property).
Such points x are said to be polystable. If Xps denotes the set of polystable points
in X, we then have an equality between Xps/Gc, the polystable quotient of X by
Gc, and the symplectic quotient X//G = µ−1(0)/G.
Gc · x̃ is closed if and only if α(C×) · x̃ is closed for any one parameter subgroup

α : C× ↪→ Gc. This leads to the Hilbert–Mumford criterion for polystability: x is
said to be semistable if for any one parameter subgroup α : C× ↪→ Gc, the linear
action of C× on L∗x0

has nonpositive weight wx0(α) ≤ 0, where x0 = limλ→0 α(λ) ·x
is the limit point; x is then polystable if it is semistable and wx0(α) = 0 only
when x0 = x; finally x is stable if it is polystable and has zero dimensional isotropy
subgroup.

Suppose now that the Lie algebra g is equipped with a G-invariant inner product
〈, 〉. In this situation G. Székelyhidi [39] shows that stability conditions can detect
not only the Gc orbit of µ−1(0), which (assuming it is nonempty) is the set of
absolute minima of ||µ||2, but also the Gc orbit of the set of critical points of ||µ||2.
For this note that the weight wx of the linear action of the isotropy algebra gx on
L∗x is given by wx = 〈βx, ·〉 : gx → C× for some βx ∈ gx, which is the orthogonal
projection of µ(x) onto gx. We refer to βx (or rather the induced vector field on
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X) as the extremal vector field: for in the infinite dimensional setting it agrees with
the extremal vector field of Futaki and Mabuchi up to a normalization convention.

Clearly x is a critical point of ||µ||2 if and only if βx is in gx. Using this,
Székelyhidi shows that x is in the Gc orbit of a critical point of ||µ||2 if and only
if it is polystable relative to the extremal vector field, i.e., for the action of the
subgroup of Gc whose Lie algebra is the subspace β⊥x of the centralizer of βx. The
Hilbert–Mumford criterion may then be modified as follows: the modified weight
wx0(α) − 〈α, βx〉wx0(βx)/〈βx, βx〉 of the limit point x0 should be nonpositive for
any one parameter subgroup α of the centralizer of βx, with equality if and only if
x0 = x.

1.3. The infinite dimensional analogue. The finite dimensional picture de-
scribed in the previous subsection will now be applied formally to an infinite di-
mensional setting in which X is the space of compatible complex structures on a
compact symplectic manifold (M,ω) with H1(M) = 0. The space X has a natural
Kähler metric with respect to which the group G of symplectomorphisms of M acts
holomorphically with a momentum map µ : X → C∞0 (M,R) given by the scalar
curvature of the corresponding Kähler metric on M , modified by a constant in or-
der to lie in g∗ ∼= g = C∞0 (M,R), the functions with total integral zero, which is the
Lie algebra of the symplectomorphism group equipped with the L2-inner product.
A quick way to see this is to observe that the Mabuchi K-energy of M is a Kähler
potential for the metric on X: the gradient on X of the Mabuchi K-energy is the
scalar curvature [20].

There is no group whose Lie algebra is the complexification gc, but one can
still consider the foliation of X given by the vector fields induced by gc. The
complex structures in a given leaf are all biholomorphic by a diffeomorphism in the
connected component of the identity, and pulling back the symplectic form ω by
these biholomorphisms, we may identify the leaf with the set of all Kähler metrics
in a fixed Kähler class, compatible with a fixed complex structure on M . Hence the
problem of finding a critical point of ||µ||2 in a fixed Gc-orbit reduces to the search
for extremal Kähler metrics, since these are the critical points for the L2-norm
of the scalar curvature for metrics in a fixed Kähler class on a complex manifold
(M,J). In particular if the momentum map vanishes on a given leaf, there should
be a CSC Kähler metric in the corresponding Kähler class. By analogy with the
finite dimensional setting, the existence of CSC or extremal Kähler metrics in a
given Kähler class should be equivalent to a suitable stability condition.

In order to make precise this infinite dimensional analogue, we formalize what
is meant by the orbit of a 1-parameter subgroup in terms of ‘test configurations’
and give a Hilbert–Mumford formulation of stability in terms of the weight of limit
points. This is what we do next.

1.4. Test configurations. Let (M,Ω) be a Hodge manifold, viewed as a polarized
projective variety with respect to a line bundle L with c1(L) = Ω/2π. Let G
be a maximal torus in H0(M) and χ be the (Futaki–Mabuchi) extremal vector
field of (M,L,G). In [39], Székelyhidi makes the following definition, following
Donaldson [13].

Definition 1. A test configuration for (M,L, χ) is a polarized scheme (X, E) over
C together with

• a flat proper morphism p : X → C such that the fibre (Xt = p−1(t), E|Xt
) is

isomorphic to (M,L) for t 6= 0;
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• an extension, also denoted χ, of the extremal vector field on Xt for t 6= 0, to all
of X;
• a C× action α preserving χ and covering the C× action on C by scalar multipli-
cation.
(X0, E|X0

) is called the central fibre. Since 0 ∈ C is fixed by the action, (X0, E|X0
)

inherits a C× action from α, also denoted by α. Similarly, χ also denotes its
restriction to X0.

A test configuration is said to be a product configuration if X = M ×C and α is
given by a C× action on M (and scalar multiplication on C).

Since relevant properties of test configurations are unchanged if we replace E by
Er for a positive integer r, we can let E be a Q-line bundle in the definition above
(i.e., E denotes a ‘formal root’ of a line bundle Er for some positive integer r).

A particularly important class of test configurations are those associated to a
subscheme of (M,L), as studied by Ross and Thomas [35, 36]. We shall state it
here for complex submanifolds of (M,L), but the same definition actually makes
sense for subschemes.

Definition 2 (Deformation to the normal cone). For a polarized complex manifold
(M,L), the normal cone of a complex submanifold Z is M̂ ∪E P , where M̂ is the
blow-up of M along Z with exceptional divisor E = P (νZ), P = P (O⊕νZ) and νZ

is the normal bundle to Z in M . This is a singular projective variety (for example
the normal cone of a point p ∈ CP 1 is CP 1 ∪p CP 1, which is a line-pair in CP 2).

The normal cone is the central fibre of the family p : X → C obtained by blowing
up M × C along Z × {0} (where p is the projection of the blow-down to C) called
the deformation to the normal cone of Z in M . We equip this with the polarization
Ec = π∗L ⊗ O(−cP ), where O(P ) is the line bundle associated to the exceptional
divisor P , π : X →M is the projection of the blow-down to M , and c is a positive
rational number such that Ec is an ample Q-line bundle. This last condition gives
an upper bound ε on c, called the Seshadri constant of Z with respect to L.

We let α be the C× action coming from the trivial action on M and multiplication
on C. This clearly defines an action on X with a lift αc to Ec. Let us suppose further
that the (a given) extremal vector field χ vanishes on Z. Then it extends to X and
so the deformation to the normal cone determines a family of test configurations,
parameterized by c ∈ (0, ε) ∩Q.

Remark 1. Nakagawa shows [32] that the (Futaki–Mabuchi) extremal vector field
associated to a Hodge Kähler manifold (M,Ω) has closed orbits, and therefore
defines an effective C× action which we will refer to as the extremal C× action of
(M,Ω, G).

1.5. The modified Futaki invariant. The notion of K-stability will be defined
using a Hilbert–Mumford weight of a test configuration, which will involve the
Futaki invariant of the central fibre; however, since the latter is typically a singular
projective variety, we need an algebraic geometric definition of the Futaki invariant.
Such a definition has been given by Donaldson [13].

Let V be a scheme of dimension n over C (in our examples it will be be a singular
projective variety) polarized by an ample line bundle L and suppose that α is a C×

action on V with a lift to L. Then α acts on the vector spaces Hk = H0(V,Lk),
k ∈ Z+. If wk(α) denotes the weight of the highest exterior power of Hk (that is,
the trace TrAk of the infinitesimal generator Ak of the action) and dk denotes the
dimension of Hk then wk(α) and dk are given by polynomials in k for sufficiently
large k, of degrees at most n + 1 and n respectively. For sufficiently large k the
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quotient wk(α)/(kdk) can be expanded into a power series with rational coefficients
and no positive powers, and its residue at k = 0, i.e., the coefficient of the k−1 term
in the resulting expansion, is a rational number which turns out to be independent
of the choice of lift of α to L.

The Futaki invariant F(α) is is defined to −4 times this residue. (When V
is a manifold, this definition coincides with Futaki’s original definition with our
normalization convention.) We note that Donaldson [13] uses the opposite sign
convention.

We next define a modified Futaki invariant of a polarized scheme (V,L) (of
dimension n over C) relative to a C× action β. We first need to define an inner
product between such actions.

Assume then that V has two C× actions α and β with lifts to L and infinitesimal
generators Ak and Bk of the actions on Hk. Then for k sufficiently large, Tr (AkBk)
is a polynomial of degree at most n+ 2. The inner product 〈α, β〉 is defined to be
the coefficient of kn+2 of the expansion of Tr (AkBk)− wk(α)wk(β)/dk for large k,
which is independent of the lifts of α and β to L: indeed it depends only on the
trace-free parts of Ak and Bk. (When V is a manifold, this inner product coincides
with Futaki–Mabuchi bilinear form [19] up to a normalization convention.)

Finally, the (modified) Futaki invariant [39] Fβ(α) of α relative to β is defined
to be Fβ(α) := F(α)− 〈α, β〉.

1.6. K-stability. The ingredients of the previous two subsections can now be put
together to yield Székelyhidi’s extension [39] of K-stability to the context of ex-
tremal Kähler metrics. The analogue of the Hilbert–Mumford weight will be a
negative multiple of a modified Futaki invariant.

Definition 3. The Futaki invariant of a test configuration is defined to be the
Futaki invariant Fχ(α) of the central fibre relative to the extremal vector field χ,
where α denotes the induced C× action.

A Hodge manifold (M,L, χ) is said to be K-polystable if the Futaki invariant
of any test configuration is nonnegative, and equal to zero if and only if the test
configuration is a product configuration.

Here we prefer the term K-polystable to K-stable, since it is analogous to the
corresponding notion in the finite dimensional case, intermediate between stability
and semistability.

As we shall see later, an example in [7] strongly suggests that K-polystability
is not a strong enough notion to detect the existence of extremal Kähler metrics.
Székelyhidi [40] has a stronger notion of uniform K-stability, such as the following,
might address this issue.

Definition 4. A Hodge manifold (M,L,G) is said to be L2-uniformly K-polystable
if there is a constant λ > 0 such that the Futaki invariant Fχ(α) of any test
configuration satisfies Fχ(α) ≥ λ||pr⊥G(α)||, where pr⊥G is the L2-projection, with
respect to the Futaki–Mabuchi inner product, of α away from the subspace induced
by the generators of the action of Gc (where G is the maximal torus), and || · || is
the corresponding L2-norm.

Such a uniform bound on the Futaki invariant appears already in the work of
Donaldson [13] on toric surfaces, with the L2-norm replaced by a boundary integral
over the momentum polygon. Using Donaldson’s work, Székelyhidi [40] shows that
K-polystability is equivalent to uniform K-polystability for toric surfaces. With
this case in mind, he suggests that that the L2-norm needs to be replaced by an
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Lm/(m−1) for Kähler 2m-manifolds, but we do not find his argument compelling. We
believe that the boundary integral of Donaldson is a technical device which works
in the case of toric surfaces, but does not necessarily have a wider significance.

In the context of slope K-stability, introduced by Ross and Thomas [35, 36],
there is an alternative way to strengthen the notion of stability. Slope K-stability
is essentially the notion of stability obtained by considering only test configurations
(X, Ec) arising from a deformation to a normal cone of a submanifold Z. In this
case, Ross and Thomas show that the Futaki invariants F(αc) are rational in c ∈
(0, ε) ∩ Q, where ε is the Seshadri constant, and so can be extended to c ∈ (0, ε).
When the extremal vector field vanishes on Z, the same is true for the relative
Futaki invariant Fχ(αc). We thus have the following analytic notion of slope K-
polystability, extending the notion of Ross and Thomas [35, 36] to the extremal
context.

Definition 5. A Hodge manifold (M,L, χ) is said to be slope K-polystable if for the
deformation to the normal cone of any submanifold on which the extremal vector
field vanishes, the Futaki invariant Fχ(αc) of the corresponding family (X, Ec) of
test configurations is positive for c ∈ (0, ε).

Actually, the definition in [35, 36] is more subtle, since it requires that Fχ(αε) > 0
unless ε is rational and the semi-ample configuration (X, Eε) is the pullback by a
contraction of a product configuration. We shall not worry about this refinement.

At any rate, the motivation of §1.2 suggests the following conjecture [39].

Conjecture 1. Let (M,Ω, L) be a polarized Hodge manifold and G a maximal torus
in H0(M). Then there is a G-invariant extremal Kähler metric in Ω = 2πc1(L) if
and only if (M,L) is L2-uniformly K-polystable relative to the extremal C× action
of (M,Ω, G).

Following Ross and Thomas [36], one might hope that slope K-polystability im-
plies uniform K-polystability. This would imply the following corollary of the above
conjecture.

Conjecture 2. If (M,L) is slope K-polystable relative to the extremal vector field,
then there is an extremal Kähler metric in 2πc1(L).

2. Rigid toric bundles with semisimple base

2.1. The rigid Ansatz. Let π : M → S be a bundle of toric kählerian manifolds
of the form M = P ×T V , for an `-torus T , a principal T -bundle P over a kählerian
base S of dimension 2d, and a toric 2`-manifold V with Delzant polytope ∆ ⊂ t∗.
We let ∆i (i = 1, . . . n) denote the codimension one faces of ∆ and ui the primitive
inward normals (with respect to Λ).

Let 2m = 2(d+ `) be the dimension of M . By choosing a connection 1-form on
P with curvature φ ∈ Ω2(S, t), and letting θ ∈ Ω1(M, t) be the induced connection
on M , it follows that M admits Kähler metrics (g, ω) of the form

g = gh(z) + 〈dz, (Hg)−1, dz〉+ 〈θ,Hg, θ〉,
ω = ωh(z) + 〈dz ∧ θ〉, ωh = 〈φ, z〉+ ψ, dθ = φ

where:

• z ∈ C∞(M, t∗) is the momentum map of the T action with image ∆;
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• Hg ∈ C∞(∆, S2t∗) is a matrix valued function which, firstly, satisfies the bound-
ary conditions that on any codimension one face ∆i, there is a function hi with∑

t

Hg
st(y)(ui)t = 0,

∑
t

∂Hg
st

∂zr
(y)(ui)t = (ui)rhi(y)s

and 〈hi(y), ui〉 :=
∑

s hi(y)s(ui)s = 2 for all y ∈ ∆i; secondly the inverse (Hg)−1 ∈
C∞(∆, S2t) ofHg is the hessian of a function Ug on ∆; thirdly, Hg induces a positive
definite metric on the interior of each face F of ∆ (as an element of S2(t/tF )∗, where
tF is the isotropy algebra of F );
• ψ is a 2-form on S such that ωh = 〈φ, z〉+ ψ is positive for z ∈ ∆, and gh is the
associated family of Kähler metrics.
Throughout, angle brackets denote natural contractions of t with t∗, and we omit
pullbacks by z and π. In particular z itself will denote the standard t∗-valued
coordinate on ∆, as well as its pullback to M .
Ug is called a symplectic potential for Hg. The remaining (boundary and posi-

tivity) conditions can be formulated in terms of Ug [2, 15] by requiring that it is
smooth and strictly convex on the interior of each face F of ∆, and that in a neigh-
bourhood in ∆ of this interior face, Ug is equal to 1

2

∑
i(〈ui, z〉− vi) log(〈ui, z〉− vi)

plus a smooth function, where the sum is over the codimension one faces containing
F and 〈ui, z〉 = vi on F . We let S denote the space of these symplectic potentials
on ∆. (Note that in [1, 13, 43], the strict convexity condition on the interior of the
proper faces is omitted: this condition is essential. In [2], it is realised equivalently
as a condition on the determinant of HessUg.)

We shall assume that the metrics (gh(z), ωh(z)) are fixed and have constant scalar
curvature for each z ∈ ∆. (More generally, we could assume that these metrics are
extremal, but this would complicate our formulae.) Note that φ and uj determine
the bundle M and its complex structure, while ψ and vj determine a Kähler class
Ω on M .

Remark 2. Because the generators of the T -action have constant inner products
for each fixed value of z (which is equivalent to the fact that the connection on
π : M → S is induced by a principal T -connection), the T -action is said to be rigid.

We note that for metrics of this form, we have

Scalg = Scalh(z)− 1
p(z)

∑
r,s

∂2

∂zr∂zs
(p(z)Hg

rs)

Volω = p(z)VolS ∧ 〈dz ∧ θ〉∧`

where VolS is a fixed volume form on S, Volωh(z) = p(z)VolS and Scalh(z) is the
(constant) scalar curvature of ωh(z) for each fixed z. It follows that integrals overM
of functions of z (pullbacks from ∆) are given by integrals on ∆ with respect to the
volume form p(z) dv, where dv is a constant volume form on t∗. The normalization
of dv will be largely irrelevant in the following, and it is often more convenient to
tak dv to be the volume form of the lattice of circle subgroups of T .

Remark 3. If Hg is not the inverse hessian of a function Ug, then the above metric
is an almost Kähler metric on M , and one can show (at least in the semisimple case
below) that the above formula for Scalg actually computes the hermitian scalar
curvature of g (the trace of the curvature of the Chern connection on the canonical
bundle).
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2.2. The semisimple case. Suppose that the first Chern class of P is diagonal-
izable with respect to a Kähler class [ωS ] on S. By this we mean that (S, ωS) is
covered by a product of Kähler manifolds (Sj , ωj) such that 2πc1(P ) pulls back to∑

j [ωj ]⊗ bj for some constants bj ∈ t.
In this case we can take the curvature Φ =

∑
j bjωj , and the Ansatz becomes:

g =
∑

j

(〈bj , z〉+ cj)gj + 〈dz, (Hg)−1, dz〉+ 〈θ,Hg, θ〉,

ω =
∑

j

(〈bj , z〉+ cj)ωj + 〈dz ∧ θ〉, dθ =
∑

j

bjωj ,

Because the Kähler quotient metrics on S are simultaneously diagonalizable with
constant eigenvalues, we say S is semisimple. In order that ωh(z) =

∑
j(〈bj , z〉 +

cj)ωj has constant scalar curvature for each z, we require that the metrics (gj , ωj)
have constant scalar curvature. The constants bj (together with the ui) then deter-
mine the bundle M as a complex manifold, while the constants cj (together with
the vi) determine the Kähler class Ω.

We let VolS =
(∧

a ω
∧dj

j

)
be the volume of ωS , where 2dj is the dimension of Sj

(so
∑

j dj = d = m− `). Then:

Scalh(z) =
∑

j

Scal j
〈bj , z〉+ cj

, p(z) =
∏
j

(〈bj , z〉+ cj)dj

2.3. The isometry Lie algebra in the semisimple case. For a compact Kähler
manifold (M, g), we denote by i0(M, g) the Lie algebra of all Killing vector fields
with zeros. SinceM is compact this is equivalently the Lie algebra of all hamiltonian
Killing vector fields.

Proposition 1. Let g be a compatible metric on M
p→ S and equip S and with the

metric (gS , ωS) induced by
∏

j ωj. Let z(K, g) be the centralizer in i0(M, g) of the
`-torus generated by K = J gradg z ∈ C∞(M,TM)⊗ t∗.

Then the vector space z(K, g) is the direct sum of a lift of i0(S, gS) and the span
of K in such a way that p∗ : i0(M, g)→ i0(S, gS) is the natural projection.

Proof. Let X be a holomorphic vector field on S which is hamiltonian with respect
to ωS ; then the projection Xj of X onto the distribution Ha (induced by TSj on the
universal cover

∏
j Sj of S) is a Killing vector field with zeros, so ιXj

ωS = −dfj for
some function fj (with integral zero). Thus

∑
j fjbj is a family of hamiltonians for

X with respect to the family of symplectic forms covered by
∑

j bjωj : since this is
the curvature dθ of the connection on M0, X lifts to a holomorphic vector field X̃ =
XH +

∑
j fj〈bj ,K〉 on M0, which is hamiltonian with potential

∑
j(〈bj , z〉 + cj)fj

and commutes with the components of K. (Here XH is the horizontal lift to M0

with respect to θ.) X̃ and its potential extend to M since M \M0 has codimension
≥ 2 and X̃ has zeros.

Converse the image of any element V of z(K, g) in the normal bundle to the fibres
of p : M → S is holomorphic hence constant on the (compact) fibres by Liouville’s
Theorem (the normal bundle p∗TS is trivial on each fibre), so V is projectable;
since V is the pullback of a Killing vector field which commutes with K, it maps to
zero iff it comes from a constant multiple of K. This gives a projection to i0(S, gS)
splitting the inclusion just defined. �
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In particular a maximal torus G can be taken to be the product of a maximal
torus in the group of hamiltonian isometries Isom0(S, gS) and the `-torus generated
by K.

2.4. The extremal vector field. If the extremal vector field lies in the `-torus
tangent to the fibres ofM over S (as it does in the semisimple case, by Proposition 1,
since it is central, and S has constant scalar curvature), then the projection of Scalg
orthogonal to the Killing potentials of g takes the form:

pr⊥g Scalg = 〈A, z〉+B + Scalg,{∑
s αsAs + αB + 2β = 0,∑
s αrsAs + αrB + 2βr = 0,

where

α =
∫

∆
p(z)dv, αr =

∫
∆
zrp(z)dv, αrs =

∫
∆
zrzsp(z)dv,and

β =
1
2

∫
∆

Scalgp(z)dv =
∫

∂∆
p(z)dσ +

1
2

∫
∆

Scalh(z)p(z)dv,

βr =
1
2

∫
∆

Scalgzrp(z)dv =
∫

∂∆
zrp(z)dσ +

1
2

∫
∆

Scalh(z)zrp(z)dv.

Here dσ is the (n − 1)-form on ∂∆ with ui ∧ dσ = dv on the face ∆i with normal
ui. These formulae are immediate once one applies the divergence theorem and the
boundary conditions for Hg, noting that the normals are inward normals, which
introduces a sign compared to the usual formulation of the divergence theorem.

It follows that the extremal vector field is −〈A,K〉, where K ∈ C∞(M,TM)⊗ t∗

is the generator of the T action. Notice that this computation does not use the fact
that (Hg)−1 is the hessian of a function. It follows that the extremal vector field
can be computed from any almost Kähler metric compatible with ω.

A Killing potential of integral zero for the extremal vector field is given by
−〈A, z〉+

∑
s αsAs/α = −(〈A, z〉+B + 2β/α). The Futaki invariant of the vector

field with affine Killing potential f(z) = 〈C, z〉+D is therefore∑
rs

Cr(αrαs − αrsα)As/α =
∑

r

2Cr(βrα− βαr)/α.

Of course the modified Futaki invariant of any such vector field is zero.

2.5. K-energy and the Futaki invariant. If we parameterize compatible Kähler
metrics g by their (relative) symplectic potentials U (satisfying suitable boundary
conditions), then (under the same assumption as the previous subsection) the mod-
ified (Mabuchi–Guan–Simanca) K-energy EΩ on this space satisfies the functional
equation

(dEΩ)g(U̇) =
∫

∆
(pr⊥g Scalg)U̇(z)p(z)dv

=
∫

∆

((
〈A, z〉+B + Scalh(z)

)
p(z)− ∂2

∂zr∂zs
(p(z)Hg

rs)
)
U̇(z)dv

= 2
∫

∂∆
U̇(z)p(z)dσ +

∫
∆

(
〈A, z〉+B + Scalh(z)

)
U̇(z)p(z)dv

−
∫

∆
〈Hg,Hess U̇(z)〉p(z)dv.

This last equality reduces to Donaldson’s formula [13] in the toric case (when S is a
point). The relationship between the (modified) Futaki invariant and the derivative
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of the (modified) K-energy shows that if f(z) is an affine linear function then

FΩ(f) :=
∫

∂∆
f(z)p(z)dσ +

1
2

∫
∆

(
〈A, z〉+B + Scalh(z)

)
f(z)p(z)dv = 0

as one can easily check directly by writing f(z) = 〈C, z〉+D as above.
Using the fact that the derivative of log detV is trV −1dV we obtain the following

generalization of Donaldson’s formula for EΩ:

EΩ(U) = 2FΩ(U)−
∫

∆
(log det HessU(z))p(z)dv.

(In case of doubt about the convergence of the integrals, one can introduce a refer-
ence potential Uc and a relative version EΩ

gc
of EΩ, but in fact, as Donaldson shows,

the convexity of U ensures that the positive part of log det HessU(z) is integrable,
hence − log det HessU(z) has a well defined integral in (−∞,∞].)

2.6. Stability under small perturbations. On a given manifold M of the type
we consider in the semisimple case, finding a compatible extremal metric g is equiv-
alent to solving the equation (for a unknown symplectic potential Ug ∈ S(∆) 1)

(1) Pcj ,bj ,Scalj (U
g) = 〈A, z〉+B+

∑
j

Scalj
cj + 〈bj , z〉

− 1
p(z)

∑
r,s

∂2

∂zr∂zs

(
p(z)Hg

rs

)
= 0,

where Hg = (Hess Ug)−1, cj , bj , Scalj are fixed constants, p(z) = pcj ,bj ,Scalj (z) =∏
j(cj + 〈bj , z〉)dj is trictly positive on ∆, and A = Acj ,bj ,Scalj , B = Bcj ,bj ,Scalj are

determined in § 2.4.
If we leave the parameters bj , Scalj unchanged and move cj a little bit, solutions

to the equation (1) correspond to compatible extremal Kähler metrics in nearby
Kähler classes on M . Following LeBrun–Simanca [26], we will use a Banach space
implicit function theorem argument to show that the existence of compatible ex-
tremal Kähler metrics is an open condition.

To do so, let us suppose Ug0 is one such solution, corresponding to a compatible
extremal Kähler metric g0 on M , with parameters t0 = (c0j , b

0
j , Scal

0
j ) ∈ R(`+2)N .

We want to establish the existence of solutions of (1) for arbitrary t close to t0.
Note that, by the general theory of extremal metrics, for t = t0 the linear system
in § 2.4 has a unique solution At0 , Bt0 . The same is true, therefore, for any t close
to t0; moreover, the corresponding solution (At, Bt) depends smoothly on t.Thus,
fot t close to t0, (1) defines a smooth family of forth order quasi-linear differential
operators acting on S(∆).

Proposition 2. Let (g0, ω0) be a compatible extremal Kähler on M , with symplectic
potential Ug0 and parameters t0 = (c0j , b

0
j , Scal

0
j ). Then there exists ε > 0 such that

for any t ∈ R(`+2)N with |t− t0| < ε there exists a symplectic potential Ug ∈ S(∆)
such that Pt(Ug) = 0.

Proof. To avoid dealing with boundary conditions on ∆, we will reformulate our
equation (1) on the closed toric 2`-manifold V .

Recall that [2, 15] the space of symplectic potentials S(∆) parametrizes T -
invariant Kähler metrics on V , which are compatible with a fixed symplectic form
ωV

0 (equal to the restriction of ω0 to a fibre). In particular, the potential Ug0 defines
a compatible Kähler metric (gV

0 , J0, ω
V
0 ) on V (equal to the restriction of g0 to a

fibre).

1S(∆) stands for the space of symplectic potentials of compatible toric Kähler metrics on V ,
cf. [2, 15]
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Recall also that, by a well-known result of Schwarz [38], the space of C∞T (V ) of
T -invariant smooth functions on V is identified with pull-backs (via the momentum
map z) of smooth functions on ∆.

In terms of these identifications, we have the following

Lemma 1. Let (gV , J, ωV
0 ) be a T -invariant Kähler metric on V with symplectic

potential Ug. Then for t = (cj , bj , Scalj)

Pt(Ug) =〈At, z〉+Bt +
∑

j

Scalj
cj + 〈bj , z〉

+ Scal(gV )− 1
pt(z)

∑
r,s

(( ∂2pt

∂zr∂zs

)
(z)gV (Kr,Ks)

)
+

2
pt(z)

∑
r

((∂pt

∂zr

)
(z)∆gV

zr

)
,

where ∆gV
is the Laplacian of gV , and dzr = −ιKrω

V
0 .

Proof. On an open dense subset of V , the Kähler structure (gV , ωV
0 ) has the

form [22, 2]

gV =
∑
r,s

(
Grs(z)dzrdzs +Hrs(z)dtrdts

)
,

ωV
0 =

∑
r

dzr ∧ dtr,

where t1, · · · , tm are coordinates on T , K1 = ∂
∂t1
, · · · ,Km = ∂

∂tm
are some (fixed)

generators of the hamiltonian `-torus T , z1, · · · , zm are the corresponding mo-
mentum coordinates, and Grs(z) = ∂2Ug

∂zr∂zs
, (Hrs(z)) = (Grs(z))−1. Note that

J0dtr = −
∑

k Grkdzk, J0dzr =
∑

k Hkrdtk, and therefore

∆gV
(zr) = −`

(
ddczr ∧ (ωV

0 )`−1/(ωV
0 )`

)
= −

∑
k

∂Hrk

∂zk
.

According to [2],

Scal(gV ) = −
∑
r,s

( ∂2Hrs

∂zr∂zs

)
,

from where the lemma follows. �

The above lemma allows us to reformulate our problem as an existence result on
the spaceMT

Ω
∼= {f ∈ C∞T (V ) : ω0 + ddcf > 0} (an open set in C∞T (V ) with respect

to || · ||C2) of T -invariant Kähler metrics on V , which are compatible with the fixed
complex structure J0 and whose Kähler form is in the cohomology class Ω := [ωV

0 ].
Indeed, if (gV

f , ω
V
f ) is such a metric with ωV

f = ωV
0 + ddcf, f ∈MT

Ω, we then want
to solve

Qt(f) :=
pt(zf )
pt0(zf )

[
〈At, z

f 〉+Bt +
∑

j

Scalj
cj + 〈bj , zf 〉

+ Scal(gV
f )− 1

pt(zf )

∑
r,s

(( ∂2pt

∂zr∂zs

)
(zf )gV

f (Kr,Ks)
)

+
2

pt(zf )

∑
r

((∂pt

∂zr

)
(zf )∆gV

f (zf
r )

)]
= 0,

(2)
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where zf := z−(J0K) ·f is the momentum map of T with respect to (gV
f , ω

V
f ). The

principal part ofQt is concentrated in Scal(gV
f ); it follows from [26] that it is a quasi-

linear 4-th order elliptic operator acting onMT
Ω. Note also that, by the equivariant

Moser lemma, gV
f is T - equivariantly isometric to a Kähler metric compatible with

ωV
0 ; moreover, by the Delzant theorem, zf (M) = ∆. The positive factor pt(zf )

pt0 (zf )
is

introduced so that Qt(f) is L2-orthogonal with respect to the measure pt0(z
f )vgV

f

to all affine functions of zf (see Lemma 1 and the preceding section).
In the spirit of [26], we have

Lemma 2. Let ΠT
0 be the orthogonal L2-projection of C∞T (V ) to the finite dimen-

sional sub-space of (pull backs to V of) the affine functions of z, with respect to the
global inner product relative to the measure µ0 = pt0(z)

(ωV
0 )`)
`! . There exists a δ > 0

such that if a function f ∈ MT
Ω with ||f ||C1 < δ satisfies

(
Qt − ΠT

0 ◦ Qt

)
(f) = 0,

then Qt(f) = 0.

Proof. Denote by ΠT
f the orthogonal projection of C∞T (V ) to the finite dimensional

sub-space AT
f (V ) of affine functions of zf , with respect to the global inner product

on V relative to the measure µf = pt0(z
f )

(ωV
f )`)

`! . The orthogonal projection ΠT
f :

AT
0 → AT

f depends continuousely on f ; since for f = 0 it is the identity, it is
invertible for any ||f ||C1 < δ. For such an f , therefore, ΠT

f ◦ ΠT
0Qt(f) = 0 if and

anly of ΠT
0 (Qt(f)) = 0, from where our claim follows. �

Following [26], we introduce the space C̃∞T (V ) of T -invariant smooth functions
on V , which are L2-orthogonal to (the pull backs to V ) of affine functions of z
with respect to the measure µ0 := p0(z)vgV

0
. Let W̃ k

T (V ) be the closure of C̃∞T (V )
with respect to the Sobolev norm || · ||k2. For k big enough we have an embedding
W̃ k+4

T (V ) ⊂ C3
T (V ) which allows us to extend the quasi-linear elliptic operator Qt

to a C1-map from a neighbourhood of (t0, 0) ∈ R(2+`)N×W̃ k+4
T (V ) into W k

T (V ) with
Qt0(0) = 0; thus Q̃(t, f) := (t, (Id−ΠT

0 )(Qt(f))) is a C1-map from a neighbourhood
of (t0, 0) ∈ R(2+`)N × W̃ k+4

T (V ) into R(`+2)N × W̃ k,p
T (V ) with Q̃(t0, 0) = (t0, 0). The

inverse function theorem, Lemma 2 and the standard elliptic theory imply that for
Qt to have a smooth solution ft ∈ C̃∞T (V ) for any |t−t0| < ε is sufficient to establish
the following

Lemma 3. Let L0 : C̃∞T (V ) → C̃∞T (V ) be the linearization at 0 ∈ MT
Ω(V ) of Qt0.

Then L0 : C̃∞T (V )→ C̃∞T (V ) is an isomorphism of Fréchet spaces.

Proof. Let (M, g0, J0, ω0) be the extremal Kähler manifold corresponding to the
initial value t = t0.

The momentum map z : M → ∆ allows us to lift any smooth function on
∆ (or, equivalently [38], any T -invariant smooth function on V ) to a T -invariant
smooth function on M , constant on the level sets of z. Conversely, any smooth
T -invariant function on M which is constant on the level sets of z defines a T -
invariant smooth function on V . Furthermore, if G denotes the maximal torus of
Isom0(M, g0, J0) defined in § 2.3, then the lifts of T -invariant smooth functions on
V will be automatically invariant under G; since our identification is a homothety
with respect to the global inner product on V , relative to µ0 = p0(z)vg0

V , and the
global inner product on M induced by g0, it follows that f ∈ C̃∞T (V ) if and only if
the corresponding lift to M is in C̃∞G (M), where C̃∞G (M) is the space of G-invariant
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smooth functions on M which are L2-orthogonal (with respect to g0) to all Killing
potentials of vectors in Lie(G) (these potentials are explicitly identified in the proof
of Proposition 1 from where the claim follows easily).

In view of the above correspondence, for any f ∈MT
Ω(V ) we can define a Kähler

metric gf on M , with Kähler form ωf = ω+ddcf . According to [6], T acts in a rigid
and semisimple way with respect to (gf , ωf ) and, therefore, the expression Qt0(f)
is equal to the normalized scalar curvature (with respect to of the maximal torus
G) of gf (see [5] and § 2.4 above). It follows from [26, 20] that the linearisation
L0 of Qt0 (at g0), viewed as an operator acting on the sub-space of lifted functions
Ĉ∞T (V )), is equal to −2 times the Lichnerowicz operator

L(f) :=
1
2
∆2

g0
f + g0(ddcf, ρg0) +

1
2
g0(df, dScalg0).

Note that L is a (formally) self-adjoint 4-th order elliptic operator acting on C∞(M);
standard elliptic theory gives an L2-orthogonal splitting C∞(M) = ker(L)⊕ im(L),
where ker(L) is the space of all Killing potentials with respect to g0 [26]. Since L
is G-invariant, the latter splitting refines to C∞G (M) = ker(LG) ⊕ im(LG), where
LG stands for the restriction of L to the subspace C∞G (M) of G-invariant smooth
functions on M . Observe that , since G is a maximal torus, ker(LG) is the space
of all Killing potentials of vector fields in Lie(G). LeBrun and Simanca show [26]
that LG is an isomorphism of C̃∞G (M) = ker(LG)⊥ (= im(LG)).

Denote by LV = −1
2L0 the restriction of L to the yet smaller subspace Ĉ∞T (V ). It

follows from our discussion above that ker(LG) is the space of lifted affine functions
of z, while its L2-orthogonal complement, ker(LG)⊥, is nothing but the lifted space
ˆ̃C∞T (V ) of C̃∞T (V ). Our lemma claims that LV is an isomorphism of ˆ̃C∞T (V ). The
only missing piece to establish this from the facts mentioned above is the surjectivity
of LV on the space ˆ̃C∞T (V ). In what follows we shall establish this.

Suppose for a contradiction that LV : Ĉ∞T (V )→ ˆ̃C∞T (V ) is not surjective. Consid-
ering the extension of L to a linear operator between the Sobolev spaces W 4(M)→
L2(M) (by the elliptic theory L is a closed operator), our assumption is equivalent

to the existence of a non-zero function u ∈ L2(M), which is in the closure of ˆ̃C∞T (V ),
and such that

(3)
∫

M
LV (φ)uvg0 = 0,

for any T -invariant smooth function φ on V . We claim that (3) implies

(4)
∫

M
LG(φ)uvg0 = 0

for any G-invariant smooth function on M . This would be impossible because LG

is surjective by [26].
Since any sequence of functions converging in L2(M) has a point-wise converging

sub-sequence, we can assume that u = u(z) is a L2-function on ∆. It is enough
to establish (4) on M0 = z−1(∆0) (which is the complement of the union of sub-
manifolds of real co-dimension at least 2). Let φ be any G-invariant (and hence
T -invariant) smooth function on M . It can be written as a function depending on
z and S. Using [5, Prop. 7] and the specific form of g0, one can easily see that on
M0

L(φ) = LV (φ) + LS
z (φ) + 2∆S

z (∆V (φ)) +
∑

j

Rj(z)∆Sj (φ) + Pj(z)∆Sj (∆V (φ)),
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where LV and ∆V are the Lichnerowicz and Laplacian operators of (V, gV
0 ), for any

fixed value of z LS
z stands for the Lichnerowicz operator of S with respect to the

Kähler metric h(z) =
∑

j(cj +〈b0j , z〉)gj , ∆Sj is the Laplacian of gj , and Rj(z), Pj(z)
are functions of z only, depending on g0. If we integrate this expression against
u(z), with respect to the volume form vg0 = pt0(z)

(∧
a ω

∧dj

j

)
∧ 〈dz ∧ θ〉∧`

)
, we get

const
∫

M0

L(φ)u(z)vg0

=
∏
j

∫
Sj

( ∫
∆0

LV (φ)u(z)pt0(z)dz
)
ω
∧dj

j +
∫

∆0

u(z)pt0(z)
( ∫

S
LS

z (φ)vh(z)

)
dz

+
∑

j

[ ∫
Q

k 6=j Sk

( ∫
∆0

u(z)pt0(z)
(
Rj(z)

∫
Sj

∆Sj (φ)ω∧dj

j

+ Pj(z)
∫

Sj

∆Sj (∆V (φ))ω∧dj

j

)
dz

) ∧
k 6=j

ω∧dk
k

]
.

�

All the terms vanish, by using (3), and the fact that LS
z (φ) and ∆Sj are orthogonal

(with respect to the global inner products) to constants. This concludes the proof
of the proposition. �

Corollary 1. The existence of a compatible extremal Kähler metric is an open
condition on admissible Kähler classes (parametrized by the constants cj).

To give another application, we observe that the operator Pt has the symmetry
Pλt = Pt for any real number λ 6= 0. For instance, start with M = CP ` × Σ =
P (O ⊗ C`+1) → Σ, where Σ is a compact complex curve of genus g > 0. We then
have a product CSC solution g0 corresponding to the data t0 = (c0, 0 · · · 0, 2(1−g).
The perturbation result implies that for any integers p0, p1, · · · , p` there is a solution
with respect to the data tn = (c0, p0

n , · · ·
p`
n , 2(1 − g)) if n >> 1. For any such n,

this is a solution with respect to the data (nc0, p0, · · · p`, 2n(1 − g)) too, because
Pntn = Ptn . Now such a solution defines a compatible extremal Kähler metric
on the manifold Mn = P (L0 ⊕ · · · ⊕ L`) → Σn, where Σn is any curve of genus
gn = 1− n(1− g) and Li are holomorphic line bundles over Σn with deg(Li) = pi.

2.7. Existence? It is natural to speculate (as Donaldson does at the end of his pa-
per [13]) that there are S2t∗-valued functions H on ∆ satisfying the same boundary
conditions as Hg and such that the double divergence of pH is equal to(

〈A, z〉+B + Scalh(z)
)
p(z)

on ∆0. For any such H, we have

(5) FΩ(f) =
∫

∆
〈H,Hess f〉(z)p(z)dv

If such an H exists, then so do many because the double divergence is underde-
termined. Indeed there are locally exact adjoint complexes of linear differential
operators on ∆ ⊂ t∗:

C∞(R)→ C∞(S2t)→ C∞(Λ2t� t)→ · · ·
C∞(R)← C∞(S2t∗)← C∞(Λ2t∗ � t∗)← · · · ,

(6)

where Λ2t � t denotes the alternating-free tensors in Λ2t ⊗ t (the kernel of the
projection, alternation, to Λ3t). The first two arrows in the top line are the hessian
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and the exterior derivative (of a t valued 1-form). The adjoint operators in the
bottom line are the double divergence and the symmetrized divergence.

Notice that if H is positive definite then FΩ(f) is nonnegative for convex f .
It is natural to conjecture, following Donaldson [13] that the converse holds, and
that if the Futaki invariant FΩ(f) of any analytic toric test configuration (given
by piecewise linear convex f—see below) is nonnegative, with equality for product
configurations (given by affine linear f), then there are positive definite H satisfy-
ing the above conditions. Now, since log det is strictly convex on positive definite
matrices, the function

∫
∆(log detH(z))p(z)dv is strictly convex on these potentials

and therefore has at most one minimum H = HΩ. Such a minimum would auto-
matically have its inverse equal to the hessian of a function UΩ, by the adjointness
of the above complexes and the fact that the derivative of log detH is trH−1dH.
Setting Hg = HΩ would then give an extremal Kähler metric in the given Kähler
class.

It is natural to wonder if a (not necessarily positive definite) HΩ might exist
without any positivity assumptions on this invariant, generalizing the extremal
polynomial when ` = 1: FΩ(z) = p(z)HΩ(z) would be the precise generalization.

2.8. The homogeneous formalism and projective invariance. The momen-
tum map of a hamiltonian torus action is only defined up to translation, and so it
is natural to consider that it takes values in an affine space. For this, suppose that
t∗ is a codimension one subspace of a vector space W . Then the momentum map
can be considered to take values in P (W ) \ P (t∗) which can be identified with any
affine space parallel to t∗ in W . Many aspects of the geometry we have already dis-
cussed simplify in this formalism, especially with a particular choice of affine slice,
say ψ = 1, where ψ ∈ W ∗ has kernel t∗. Let w denote the tautological W -valued
coordinate on ∆, viewed as a subset of the affine slice ψ = 1, and also the pullback
of this function to M .

The sequences (6) of linear differential operators are affine invariant. In fact, after
tensoring the first sequence by O(1) and the second by O(−` − 2), and replacing
t with T ∗∆ and t∗ with T∆, they are even projectively invariant. Powers of ψ,
viewed as a section of O(1), can be used to apply these operators, e.g., to p(w)Hg.

The constants cj ∈ R and bj ∈ t can be replaced by constants aj ∈ W ∗ so that
the Kähler quotient metric is

∑
j〈aj , w〉gj . It follows that p(w) =

∏
a〈aj , w〉dj is

naturally a section of O(d). Note also that t is a quotient of W ∗, and the constants
bj are the quotient classes of the aj .

The scalar curvature and a potential for the extremal vector field are given by

Scalg =
∑

j

Scal j
〈aj , w〉

− 1
p(w)

Hess∗(p(w)Hg)

prgScalg = 〈C,w〉,and ∑
s

α̃rsCs + 2β̃r = 0,where

α̃rs =
∫

∆
wrwsp(w)dv,and

β̃r =
1
2

∫
∆

Scalgwrp(w)dv =
∫

∂∆
wrp(w)dσ +

1
2

∫
∆

(∑
j

Scal j
〈aj , w〉

)
wrp(w)dv.



16 V. APOSTOLOV, D. CALDERBANK, P. GAUDUCHON, AND C. TØNNESEN-FRIEDMAN

Powers of ψ can be used to make these formulae projectively invariant if desired.
The Futaki invariant

FΩ(f) :=
∫

∂∆
f(w)p(w)dσ +

1
2

∫
∆

(
〈C,w〉+

∑
j

Scal j
〈aj , w〉

)
f(w)p(w)dv

now vanishes on linear functions.
When the Delzant polytope is a simplex, it is particularly natural to take the slice

ψ(w) = w0 + · · ·+w` in R`+1 so that the simplex is the subset of w0 + · · ·+w` = 1
where wi is nonnegative for all i. In this case elements of S2t∗ can be identified
with (`+ 1)× (`+ 1) symmetric matrices whose rows (and columns) sum to zero.

2.9. Examples. (i) Let M be CPm, fibred over a point, with the Kähler class
and momentum map normalized so that ∆ is the standard simplex. Then Hrs =
zrδrs − zrzs.
(ii) More generally if M is a weighted projective space with a Bochner-flat metric,
then, according to Abreu (the orbifolds paper) Hrs is an inhomogeneous cubic in
z, the homogeneous cubic term having 〈A, z〉 as a factor. (This is easy to check in
the orthotoric case using Vandermonde identities—see below.)
(iii) The examples of [7] on (possibly) blown-down projective line bundles fit into
our framework as follows. Recall (with a minor change of notation) that the metric
has the form

g =
∑

a

(1 + xaz)(ga/xa) + (1 + z)g0 + (1− z)g∞ +
dz2

Θ(z)
+ Θ(z)θ2,

ω =
∑

a

(1 + xaz)(ωa/xa) + (1 + z)ω0 + (1− z)ω∞ + dz ∧ θ,

where dθ =
∑

a ωa + ω0 − ω∞, (g0, ω0) and (g∞, ω∞) are Fubini–Study metrics of
scalar curvature 2d0(d0+1) and 2d∞(d∞+1), Θ(z) = (1−z2)(1+q(z)(1−z2)/p(z)),
p(z) =

∏
a(1 + xaz)da and q(z) is a polynomial of degree at most d − 1 satisfying

an ODE. By choosing toric structures for ω0 and ω∞, this metric is defined a
toric CP d0+d∞+1-bundle. In particular, when q = 0 and ga = 0 for all a, this
is the Fubini–Study metric on CP d0+d∞+1. In general, the metric on the torus
fibres gets perturbed (compared to the Fubini–Study metric) by a rank one metric
q(z)((1− z2)θ)2/p(z). Note that the range of the index a does not include {0,∞},
so

∑
a da = d is the complex dimension of the base of the toric projective bundle,

and the polynomial pc of [7] is p(z)(1 + z)d0(1− z)d∞ .
If ω0 = 〈dy0 ∧ dt0〉 and ω∞ = 〈dy∞ ∧ dt∞〉, then we can take θ = θ′ + 〈y0, dt0〉 −

〈y∞, dt∞〉 with dθ′ =
∑

a ωa. Hence

ω =
∑

a

(1 + xaz)(ωa/xa) + dz ∧ θ′ + 〈d((1 + z)y0) ∧ dt0〉+ 〈d((1− z)y∞) ∧ dt∞〉

A momentum map for the torus action is therefore given by (z, z0, z∞), where
z0 = (1 + z)y0, z∞ = (1− z)y∞. Thus, on pulling back to the torus fibres, we can
write

φ := (1− z2)θ = (1− z2)dt+ (1− z)〈z0, dt0〉+ (1 + z)〈z∞, dt∞〉.
Hence q(z)((1− z2)θ)2 has coefficients of degree at most (d− 1) + 4 = d+ 3 in the
momenta.

Note that the image of (z, z0, z∞) is a rather nonstandard simplex. This de-
scription arises from a standard simplex in homogeneous coordinates by split-
ting the (nonnegative) variables into two groups w0, . . . wd0 and x0, . . . xd∞ , where
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j wj +

∑
k xk = 1, and then setting 1 + z = 2

∑
j wk and 1− z = 2

∑
k xk. Then

we can take z0 = (w1, . . . wd0) and z∞ = (x1, . . . xd∞). After making the dual trans-
formation of the angle variables, and introducing homogeneous coordinates, φ has
the form:

φ =
∑

j,k 2xkwj(dtj − duk).

Obviously this vanishes on the U(1) generator
∑

j ∂tj +
∑

k ∂uk
and hence defines

a 1-form on the quotient torus. Note also that along any codimension one face,
φ vanishes on the corresponding normal. This ensures that H + φ2 satisfies the
boundary conditions whenever H does.

The Fubini–Study metric on the simplex is the pullback of
∑

j dwj⊗dwj/(2wj)+∑
k dxk ⊗ dxk/(2xk), where {dwj , dxk} is dual to {dtj , duk}, so the contraction of

this metric with φ is X :=
∑

j,k(xkdwj − wjdxk). A further contraction with φ

yields φ(X) = 2(
∑

j wj)(
∑

k xk)(
∑

j wj +
∑

k xk) = 2
∑

j,k wjxk (on the simplex,
where this reduces to (1− z2)/2 in the old coordinates).

Now to find the perturbation of the Fubini–Study metric on the simplex, and
hence check the existence of a symplectic potential, we have to invert I − fφ⊗X
for a function f (such as −q(z)/p(z)). We readily check that the inverse is I+fφ⊗
X/(1− fφ(X)) (found by a geometric series argument), and so the perturbation of
the Fubini–Study metric on the simplex is (the pullback of) fX ⊗X/(1− fφ(X)).
By construction this ought to reduce to something like dz2/Θ(z)− dz2/(1− z2) in
our setting, but one wonders more generally when such an expression is the hessian
of a function.
(iv) Extremal Kähler metrics with a hamiltonian 2-form of higher order would pro-
vide further examples on projective bundles if we knew that they existed. There are
at least solutions to the extremal equations on CP 2-bundles over a Riemann surface,
albeit for inadmissible data. In this case, following the notation of [5]–[7], the mo-
mentum map z is denoted σ and its components are the elementary symmetric func-
tions of coordinates (ξ1, . . . ξ`). The polynomial p(σ) is

∏
a pnc(ηa)da = ±

∏
j pc(ξj).

The metric on the torus takes the form

Hg
rs =

∑̀
j=1

F (ξj)σr−1(ξ̂j)σs−1(ξ̂j)
pc(ξj)∆j

where F (t) has degree ≤ m+2. To compute the degree of p(σ)Hg
rs in σ, we suppose

that da = 1 for all a (the general case will follow by a limiting argument) so a ranges
from 1 to d and introduce formal variables ξ0, ξ∞. Then

∑̀
r,s=1

(−1)r+sp(σ)Hg
rsξ

`−r
0 ξ`−s

∞

= pnc(ξ0)pnc(ξ∞)
(∏

apnc(ηa)
) ∑̀

j=1

F (ξj)
∆jpc(ξj)(ξj − ξ0)(ξj − ξ∞)

.

Since F has degree at most m+ 2, it now follows by Vandermonde identities using
the m+2 variables ξ0, ξ1, . . . ξ`, ξ∞, η1, . . . ηd that this expression is a polynomial of
degree ≤ d + 3 in σ. This will still be the case if the ηa are not distinct, which is
the limiting argument mentioned above.

In view of this evidence, it is natural to conjecture that FΩ(z) := p(z)HΩ(z)
is polynomial of degree ≤ d + 3. Unfortunately, Calabi’s extremal metrics on
P (O⊕O(k))→ CP 1, regarded as toric metrics by choosing a circle action on CP 1,
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already show that FΩ(z) (if it exists) is not a polynomial in general. However,
it remains possible that a polynomial FΩ exists on CP `-bundles, as it does when
` = 1. Let us then consider the next simplest case, ` = 2, and take the base S to
be a Riemann surface (d = 1).

We work in the homogeneous formalism with ψ(w) = w0 +w1 +w2. We therefore
seek a 3 × 3 matrix polynomials of degree 4 satisfying the boundary, extremality
and integrability conditions (we do not concern ourselves with positivity at this
stage, nor with integrality conditions on the constants y).

We first impose the boundary conditions by writing FΩ as a perturbation of the
Fubini–Study matrix. The r, s component is then

2ψ(w)2p(w)wrδrs − 2ψ(w)p(w)wrws + wrwsprs

where p(w) = a0w0 + a1w1 + a2w2. In order that the rows and columns sum to
zero, the quadratic perturbation prs(= psr) is given by

p00 = x2w
2
1 + x1w

2
2 + 2y0w1w2,

p11 = x0w
2
2 + x2w

2
0 + 2y1w2w0,

p22 = x1w
2
0 + x0w

2
1 + 2y2w0w1,

p01 = y2w
2
2 − x2w0w1 − y0w2w0 − y1w1w2,

p02 = y1w
2
1 − x1w2w0 − y2w1w2 − y0w0w1,

p12 = y0w
2
0 − x0w1w2 − y1w0w1 − y2w2w0,

for six unknown constants (x0, x1, x2, y0, y1, y2). The extremality condition is then:

ψ(w)2(4a0 + 4a1 + 4a2 + s)

+ 2(y0 + x1 + x2)(w2
0 − 2w0w1 − 2w2w0 + 2w1w2)

+ 2(y1 + x2 + x0)(w2
1 − 2w1w2 − 2w0w1 + 2w2w0)

+ 2(y2 + x0 + x1)(w2
2 − 2w2w0 − 2w1w2 + 2w0w1)

= p(w)(24ψ(w) + C0w0 + C1w1 + C2w2),

where s is the scalar curvature of the base S. This is a linear system of rank 3 in
(x0, x1, x2, y0, y1, y2). The condition that the inhomogeneous term is in the image
of the linear map determines C = (C0, C1, C2), and is of course the condition that
C0w0 + C1w1 + C2w2 is a potential for the extremal vector field.

The integrability condition that HΩ is the inverse of a hessian is harder to com-
pute, but eventually reduces to six equations:

x0 = y1 + y2, x1 = y2 + y0, x2 = y0 + y1,

y0y1 + 2y0(a1 − a2) + 2y1(a0 − a2) = 0,

y1y2 + 2y1(a2 − a0) + 2y2(a1 − a0) = 0,

y2y0 + 2y2(a0 − a1) + 2y0(a2 − a1) = 0.

These last three are not independent, and imply in particular that

(7) y0y1 + y1y2 + y2y0 = 0.
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We can use the equations for the xj to reduce the extremality condition to a linear
system for the yj , which is readily solved. We obtain

y0 = K(a0 − a2)(a0 − a1)(a0 + 2a1 + 2a2)(4a0 + 4a1 + 4a2 + s)

y1 = K(a1 − a0)(a1 − a2)(2a0 + a1 + 2a2)(4a0 + 4a1 + 4a2 + s)

y2 = K(a2 − a1)(a2 − a0)(2a0 + 2a1 + a2)(4a0 + 4a1 + 4a2 + s),
(8)

for some common denominator K. Substituting (8) into (7), we find that

((a0 − a1)(a1 − a2)(a2 − a0)(4a0 + 4a1 + 4a2 + s))2 = 0.

It is easy to check that the vanishing of any of these factors ensures all the integra-
bility conditions are satisfied. The solutions with aj = ak for some k 6= j have a
hamiltonian 2-form of order one, whereas the solution with 4a0 + 4a1 + 4a2 + s = 0
is trivial (the Fubini–Study matrix being unperturbed).

By the openness result for the existence of solutions, we see that even in this
simple case, there are solutions which are not polynomial of degree ≤ 4.

3. K-stability for rigid toric bundles

3.1. Toric test configurations. Let us suppose that [
∑

j cjωj/2π] = c1(LS) for
a positive line bundle LS , so S is projective, and that ∆ has integral vertices, so M
is a bundle of toric varieties over S. Then M is also projective, with polarization
L = π∗LS ⊗ (P ×T LV ), where LV is the polarization of V defined by ∆.

Thus π∗Lk = Lk
S ⊗

(⊕
ζ∈∆∩ 1

k
Z` Λkζ

)
, where Λχ is the line bundle P ×T Cχ, Cχ

being the 1-dimensional representation of T with weight χ ∈ Z` ⊂ t∗.
Define P (ζ) = c1(LS ⊗ Λζ)d/d! and Q(ζ) = c1(LS ⊗ Λζ)d−1 ∪ c1(S)/(2 (d− 1)!).

For sufficiently large k we have, by Riemann–Roch, that

dimH0(S,Lk
S ⊗ Λkζ) = χ(S,Lk

S ⊗ Λkζ)

= 1
d!

(
c1(Lk

S ⊗ Λkζ) + 1
2c1(K

−1
S )

)d[S] +O(kd−2)

= P (ζ)kd +Q(ζ)kd−1 +O(kd−2).

Hence, using the standard formula for summation over a lattice in a polytope [13,
43, 40], we have

dimH0(M,Lk) = dimH0(S, π∗Lk)

= km

∫
∆
P dv + km−1

(1
2

∫
∂∆

P dσ +
∫

∆
Qdv

)
+O(km−2)

for sufficiently large k.
Suppose f is a positive rational piecewise-linear (PL) concave function on ∆, i.e.,

f is the minimum of a finite collection of positive affine linear functions on ∆ with
rational coefficients. Then, ∆′ = {(z, t) : z ∈ ∆, t ∈ (0, f(z))} ⊂ t∗ ⊕ R is a convex
rational polytope corresponding (up to homothety) to polarized toric variety V ′

for (the complexification of) the (` + 1)-torus T ′ = T × S1. Following work of
Donaldson, Zhou and Zhu, and Székelyhidi [13, 43, 40], it turns out that, with
P ′ = P ×S1 → S, X = π′ : P ′×T ′ V

′ = P ×T V
′ → S is a test configuration for M ,

polarized by E = (π′)∗LS ⊗ (P ′ ×T ′ LV ′). Let L0 = E|X0 where π0 : X0 → S is the
central fibre. Then (π0)∗Lk

0 can be identified with π∗Lk (since P ′ = P×S1), and the
C× action on X0 has weight kf(ζ) on Λkζ for k sufficiently large and divisible [43].
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Thus the total weight of the action on H0(X0, L
k
0) is

wk =
∑

ζ∈∆∩ 1
k

Z`

kf(ζ)
(
P (ζ)kd +Q(ζ)kd−1 +O(kd−2)

)
= km+1

∫
∆
fP dv + km

(1
2

∫
∂∆

fP dσ +
∫

∆
fQdv

)
+O(km−1).

Combined with the formula above for dk = dimH0(M,Lk), it follows that the
residue of wk/(kdk) at k = 0 is

1
2

∫
∂∆

fP dσ +
∫

∆
fQdv −

1
2

∫
∂∆ P dσ +

∫
∆Qdv∫

∆ P dv

∫
∆
fP dv,

as shown by Székelyhidi [40]. In our setting, we can compute P and Q using the
base metrics on S to provide representatives for c1(LS ⊗ Λζ) and c1(S). We thus
obtain, up to a common multiple,

P (z) = p(z), Q(z) =
1
4
p(z)Scalh(z)

It then follows that the Futaki invariant of C× action on X0 is a negative multiple
of ∫

∂∆
f(z)p(z)dσ +

1
2

∫
∆

Scalh(z)f(z)p(z)dv − β

α

∫
∆
f(z)p(z)dv.

The modified Futaki invariant is then obtained by subtracting from the Futaki
invariant the (correctly normalized) L2 inner product of f and the Killing potential
−(〈A, z〉+B+2β/α), with integral zero, for the extremal vector field [39, 40]. The
result is easily computed to be a negative multiple of FΩ(f). Replacing the concave
function f by the convex function −f (plus a constant if desired), it follows that
the FΩ(f), which vanishes for affine linear functions, computes the Futaki invariant
of toric test configurations for convex rational PL functions.

3.2. K-energy and K-stability. Let C be the set of continuous convex functions
on ∆ (continuity follows from convexity on the interior of ∆), C∞ the subset of
those functions which are smooth on the interior of each face of ∆ (including ∆
itself of course), and S ⊂ C∞ the set of symplectic potentials. Note that if u ∈ S
and f ∈ C∞, with f smooth on all of ∆, then u+ f ∈ S.

The affine linear functions act on C and C∞ by translation. Let C∗∞ be a slice for
the action on C∞ which is linear (i.e., closed under positive linear combinations)
so any f in C∞ can be written uniquely as f = π(f) + g, where g is affine linear
and π(f) ∈ C∗∞ for a linear projection π. Functions in C∗∞ are sometimes said to be
normalized.

Let || · || be any semi-norm on C∞ inducing a norm (in the obvious sense) on
C∗∞ which bounds the L1 norm

∫
∆ |f |p dv and such that the functions in C∗∞ which

are smooth on ∆ are dense. The first condition implies in particular that FΩ is
continuous on C∞. Donaldson [13] shows that EΩ is also well defined as a function
on C∞ (in fact on a slightly larger space) taking values in (−∞,+∞].

Donaldson also shows that the L1 boundary integral on ∆ satisfies the required
assumptions, where C∗∞ consists of those functions in C∞ which vanish to first order
at a chosen basepoint in the interior of ∆. However, we find it more flexible to
abstract the setting as above.

In this general situation, two elementary arguments of Donaldson [13], together
with an enhancement by Zhou–Zhu [43], can be used to prove a surprisingly strong
result.
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Lemma 4. For any λ > 0 the following are equivalent :
(i) FΩ(f) ≥ λ||π(f)|| for all f ∈ C∞;
(ii) for all 0 ≤ δ < λ there exists Cδ such that EΩ(u) ≥ δ||π(u)||+Cδ for all u ∈ S.

Proof. As FΩ(f) and and EΩ(u) are unchanged by the addition of an affine linear
function, it suffices to prove the equivalence for normalized f and u.

(i)⇒(ii) For any bounded function a on ∆, one can define a generalized Futaki
invariant Fa by replacing the second integral (over ∆), in the formula for FΩ, by∫
∆ a(z)f(z)p(z)dv. Similarly one can define a generalized K-energy Ea using Fa

instead of FΩ.
For any bounded functions a, b, there is a constant C = Ca,b > 0 with |Fa(f)−

Fb(f)| ≤ C||f || for all f ∈ C∗∞, because || · || bounds the L1 norm on C∗∞. Let us
write C = (1 + k)C − kC for an arbitrary k ≥ 0 and take b to be the bounded
function such that Fb = FΩ.

Then, by assumption, |Fa(f) − FΩ(f)| ≤ Cλ−1(1 + k)FΩ(f) − kC||f || for all
f ∈ C∗∞ and so Fa(f) ≤ (1 + Cλ−1(1 + k))FΩ(f)− kC||f ||. Turning this around,

FΩ(f) ≥ εFa(f) + δ||f ||,

where 0 < ε := (1 + Cλ−1(1 + k))−1 < 1 and δ := kCλ(λ + C(1 + k))−1. Notice
that δ is an injective function of k ∈ [0,∞) with range [0, λ). Now we can estimate

EΩ(u) = −1
2

∫
∆

log det(Hessu)p dv + FΩ(u)

≥ −1
2

∫
∆

log det(Hessu)p dv + εFa(u) + δ||u||

= Ea(εu) + δ||u||+m log ε.

As in [13], we can choose a so that Ea is bounded below on C∞ and we are done.
(ii)⇒(i) Suppose EΩ(u) ≥ δ||u|| + Cδ for all normalized u ∈ S. By density and

continuity, it suffices to prove (i) only for f ∈ C∗∞ which are smooth on ∆. Then
for fixed u ∈ S and all k > 0, u+ kf ∈ S and so EΩ(u+ kf) ≥ δ||u+ kf ||+Cδ. By
comparing with EΩ(u), we find

kFΩ(f) ≥ δ||u+ kf ||+ Cδ +
1
2

∫
∆

log
det Hess (u+ kf)

det Hessu
p dv − EΩ(u)

≥ δ||u+ kf ||+ C̃δ

with C̃δ = Cδ −EΩ(u), since the ratio of the determinants is at least one. Dividing
by k and letting k → ∞ (for fixed u ∈ S) we obtain FΩ(f) ≥ δ||f ||. Since this is
true for all 0 ≤ δ < λ, we have FΩ(f) ≥ λ||f || for all f ∈ C∗∞. �

In the case that the norm is the L1 boundary integral, (i)⇒(ii) is due to Donald-
son [14] when δ = 0, and to Zhou–Zhu [43] for some δ > 0—we have just abstracted
their arguments and found the range of δ. (ii)⇒(i) also extends an elementary
argument of Donaldson from the case of δ = 0 and the L1-boundary integral.

Donaldson’s normalization condition has the disadvantage that there is not a
unique way to normalize a convex function which is not smooth (for instance a PL
convex function). It seems more natural to use instead the L2 norm on ∆ with C∗∞
equal to the functions in C∞ which are L2 orthogonal to the affine linear functions.
Then π is the L2 projection onto C∗∞. Let us say that the K-energy is L2-proper
on compatible metrics if, modulo a constant, it is bounded below by a multiple
of the L2 norm on symplectic potentials which are L2 orthogonal to affine linear
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functions. Then the above lemma essentially establishes an equivalence between
L2-uniform K-polystability and L2-properness of the K-energy.

Theorem 1. Let M be a rigid toric bundle over a semisimple base with a compatible
Kähler class Ω. Then (M,Ω) is L2-uniformly K-polystable with respect to toric
degenerations if and only if the K-energy is L2-proper on compatible metrics in Ω.

Proof. If M is L2-uniformly K-polystable with respect to toric degenerations, then
there is a λ > 0 such that FΩ(f) ≥ λ||π(f)||2 for all rational PL f ∈ C. Such
an estimate then clearly also holds without the assumption of rationality. Now
functions in C are uniformly continuous, because ∆ is compact. It follows that
an argument of Donaldson, which he uses to establish a L1 density result for PL
convex functions [13, (5.2.8)], actually shows that the PL convex functions are dense
in C in the L∞ norm, hence in the Lq-norm for any 1 ≤ q ≤ ∞. (Given f ∈ C,
Donaldson’s construction provides a sequence fn of PL convex functions which are
bounded by values of f in cubes of side lengths δn → 0 as n → ∞. Since f is
uniformly continuous, it follows that the convergence of fn to f is uniform.) Thus
FΩ(f) ≥ λ||π(f)||2 for all f ∈ C, hence for all f in C∞. Hence the K-energy of
(M,Ω) is L2-proper on compatible metrics by the lemma.

Conversely, if the K-energy is L2-proper, then by the lemma, FΩ(f) ≥ λ||π(f)||2
for all f ∈ C∞. However, the smooth convex functions are dense in C with respect
to the Lq norm for any 1 ≤ q < ∞ (by the usual convolution argument, together
with a dilation argument about an interior point of ∆ to maintain convexity near
the boundary), so that in particular FΩ(f) ≥ λ||π(f)||2 for all rational PL f ∈ C.
Hence (M,Ω) is L2-uniformly K-polystable. �

Of course the lemma actually shows more: the modulus of L2-properness of the
K-energy and the modulus of L2-uniform K-polystability agree in an obvious sense.

It is traditional in the literature (following Tian) to define properness of the K-
energy using one of Aubin’s functionals, which have an L1 nature in the Kähler
potential. Since the L2 norm bounds the L1 norm, an argument of Zhou and
Zhu [43] shows that L2-properness implies properness in this traditional sense. For a
converse, one would need to change the norm and notion of uniform K-polystability.

A compatible extremal metric provides a global minimum for EΩ on C∞. This
gives immediately a K-semistability result.

Corollary 2. If there exists a compatible extremal metric then FΩ(f) ≥ 0 for all
PL convex functions f .

In fact, the K-energy is minimized by any extremal Kähler metric, so we don’t
actually need to assume compatibility in this corollary.

3.3. A formula for slope stability. Consider the deformation to the normal cone
(X, Ec, α) of a submanifold Z in a Kähler 2n-manifold (M,ω) polarized by a line
bundle L with ω ∈ Ω = 2πc1(L).

Denote the Seshadri constant of this polarization by ε, so that c ∈ (0, ε) ∩ Q.
Suppose that the C× action β preserves Z, so that X is compatible. We use the
letters α, β to denote also the corresponding actions on the (polarized) central fibre
(X0, L0) and on the vector space H0(X0, L

k
0), where L0 = Ec|X0

.
Let us calculate the Futaki invariant of this configuration. For this we first note

that if IZ ⊂ OM is the ideal sheaf of holomorphic functions vanishing on Z, then
for any p ≥ 0, Ip

Z/I
p+1
Z is supported on Z, and its restriction is Spν∗Z , where νZ is

the normal bundle to Z in M .
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Therefore, for k sufficiently large, we have, as in [35, 39]

H0(X0, L
k
0) =

(ε−c)k⊕
i=0

H0(Z,L|kZ ⊗ Sεk−iν∗Z)⊕
ck⊕

j=1

H0(Z,L|kZ ⊗ Sck−jν∗Z),

where α acts on the first direct sum with weight 0 and on the components of the
second direct sum with weight −j. We can choose the lift of β to L so that the
weight of the induced action on H0(Z,L|kZ⊗Suk+vν∗Z) is (u−δ)k+v for an arbitrary
fixed integer δ: δ = 0 is an obvious choice, but it will be useful later to take δ = 1.

Now Spν∗Z is the direct image q∗O(p)νZ , where O(−1)νZ is the (fibrewise) tauto-
logical bundle of q : E = P (νZ)→ Z (this is the exceptional divisor of the blow-up
of Z in M). Let i be the composite map E → Z → M and L = O(1)νZ . We shall
also choose ωE ∈ 2πc1(L). We now have

H0(X0, L
k
0) =

(ε−c)k⊕
i=0

H0(E, i∗Lk ⊗ Lεk−i)⊕
ck⊕

j=1

H0(E, i∗Lk ⊗ Lck−j)

=
εk⊕
i=0

H0(E, i∗Lk ⊗ Lεk−i).

To compute dk, TrAk, TrBk, TrAkBk, TrB2
k, and thereby Fβ(α), we need only the

dimensions of these vector spaces. We note that we only need to compute dk, TrAk

and TrBk to subleading order in k, whereas for TrAkBk and TrB2
k the leading

order term suffices. Consequently we will be dropping lower order terms without
further comment.

By the ampleness of i∗L (in fact it is only semiample unless Z = E, but we can
apply a limiting argument in this case, as in [35]), for sufficiently large k we have,
by Riemann–Roch, that

h0(E, i∗Lk ⊗ Lxk) = χ(E, i∗Lk ⊗ Lxk)

= 1
(n−1)!

(
c1(i∗Lk ⊗ Lxk) + 1

2c1(K
−1
E )

)n−1[E] +O(kn−3)

= P (x)kn−1 +Q(x)kn−2 +O(kn−3)

where P (x) and Q(x) are polynomials in x independent of k, which, for integer x,
are given by

P (x) =
1

(2π)n−1(n− 1)!

∫
E
(i∗ω + xωE)n−1

Q(x) =
1

2(2π)n−1(n− 2)!

∫
E
ρ ∧ (i∗ω + xωE)n−2.

We shall use this expansion with x = u+ v/k for various u, v. In order to carry out
the summations over i and j we use the trapezium rule, as in [35, Lemma 4.7].

Lemma 5. Let f(x) be a polynomial and b a rational number. Then for η ∈ {0, 1}
and for k ∈ Z+ such that bk is a positive integer, we have

bk∑
i=η

f(i/k) = k

∫ b

0
f(x) dx+

1
2
(f(b) + (−1)ηf(0)) +O(k−1).

The proof is easy (see e.g. [35]): by linearity we can assume f(x) = xm and
then use

∑N
i=1 i

m = Nm+1/(m+ 1) +Nm/2 +O(Nm−1) (which in turn is an easy
induction on N).
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Using η = 0, b = u = ε, v = −i, we then obtain (up to an overall multiple), that
for any r ≥ 0,

k−d−rTrBr
k = k

∫ ε

0
(ε− δ − x)rP (ε− x) dx+ 1

2((ε− δ)rP (ε) + (−δ)rP (0))

+
∫ ε

0
(ε− δ − x)rQ(ε− x) dx+O(1/k)

= kαr + 1
2βr +O(1/k)

where we define αr and βr by

αr =
∫ ε

0
(x− δ)rP (x) dx

βr = (ε− δ)rP (ε) + (−δ)rP (0) + 2
∫ ε

0
(x− δ)rQ(x) dx.

Note that if we extend δ to all real numbers then ∂αr/∂δ = −rαr−1 and ∂βr/∂δ =
−rβr−1.

Similarly, using η = 1, b = u = c, v = −j we obtain obtain

k−d−1TrAk = k

∫ c

0
−xP (c− x) dx− 1

2cP (0) +
∫ c

0
−xQ(c− x) dx+O(1/k)

= k

∫ c

0
(x− c)P (x) dx− 1

2cP (0) +
∫ c

0
(x− c)Q(x) dx+O(1/k)

k−d−r−1TrAr
k =

∫ c

0
(x− c)rP (x) dx+O(1/k)

k−d−3TrAkBk =
∫ c

0
−x(c− δ − x)P (c− x) dx+O(1/k)

=
∫ c

0
(x− c)(x− δ)P (x) dx+O(1/k).

Now we are ready to calculate 〈β, β〉, 〈α, β〉, F(β), and F(α). (We omit the depen-
dence on c for convenience.)

〈β, β〉 =
α2α0 − α2

1

α0

〈α, β〉 =
∫ c

0
P (x)(x− δ)(x− c) dx− α1

α0

∫ c

0
P (x)(x− c) dx

F(α) = Resk=0
(TrAk)1 + (TrAk)0/k
α0(1 + β0/(2kα0))

=
α0(TrAk)0 − 1

2β0(TrAk)1
α2

0

=
(
α0

∫ c

0
Q(x)(x− c) dx− 1

2α0cP (0)− 1
2β0

∫ c

0
P (x)(x− c) dx

)
/α2

0

F(β) = Resk=0
α1 + β1/2k

α0(1 + β0/(2kα0))
=
β1α0 − β0α1

2α2
0

.

Finally, we can calculate the Futaki invariant for our test configuration.

α2
0Fβ(α) = α2

0

(
F(α)− 〈α, β〉F(β)/〈β, β〉

)
= α0

∫ c

0
Q(x)(x− c) dx− 1

2α0cP (0)− 1
2β0

∫ c

0
P (x)(x− c) dx

− α0(β1α0 − β0α1)
2(α2α0 − α2

1)

(∫ c

0
P (x)(x− δ)(x− c) dx− α1

α0

∫ c

0
P (x)(x− c) dx

)
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= α0

(∫ c

0
Q(x)(x− c) dx− 1

2cP (0)− β1α0 − β0α1

2(α2α0 − α2
1)

∫ c

0
P (x)(x− δ)(x− c) dx

)
+
α1(β1α0 − β0α1)− β0(α2α0 − α2

1)
2(α2α0 − α2

1)

∫ c

0
P (x)(x− c) dx

α0Fβ(α) =
∫ c

0
Q(x)(x− c) dx− 1

2cP (0)

− β1α0 − β0α1

2(α2α0 − α2
1)

∫ c

0
P (x)(x− δ)(x− c) dx+

α1β1 − β0α2

2(α2α0 − α2
1)

∫ c

0
P (x)(x− c) dx

It follows easily that if we view the (modified) Futaki invariant Fβ(α) as a function
of δ and extend δ to all real numbers, then ∂Fβ(α)/∂δ = 0. Hence, as expected
from general principles, Fβ(α) does not depend on δ and therefore we may choose
δ as we like.

These formulae make sense even if ω is not necessarily rational. We may there-
fore still define the Futaki invariant with respect to a analytic submanifold of an
arbitrary Kähler manifold, and hence (extending the Seshadri constant in suitable
way [35, §4.4]), we may extend our notion of stability to this setting.

Definition 6. A polarized Hodge manifold (M,L) with nontrivial C× action β is
said to be slope K-polystable relative to β if for any nontrivial analytic subscheme
Z preserved by β, the Futaki invariant Fβ(αc) of Z is negative for c ∈ (0, ε).

As with the definition of (absolute) slope K-polystability, strictly speaking, we
should also require Fβ(αε) < 0 unless ε is rational and (X, Eε) is the pullback by a
contraction of a product configuration.

3.4. Slope stability for admissible bundles. Let us now specialize to the ad-
missible case. We take Z to be the infinity section, and note that the C× action β
induced by the vector field K preserves Z.

In this case, ε = 2 and we may take δ = 1 and put t = x− δ = x− 1, so that the
range of t is [−1, 1].

Also E is covered by
∏

a Sa and equipped with the local Kähler product metric∑
a ωa/xa. We write ρ =

∑
a ρa where ρa is the Ricci form of ±ωa and therefore

has the form saωa plus a primitive part with respect to ωa, where sa is a constant
with 2dasa = Scalωa and 2da = dimSa.

We take ω = dz∧ θ+
∑

a(1+xaz)ωa/xa, which represents the admissible Kähler
class Ξ +

∑
a[ωa]/xa. (Here 0 < |xa| ≤ 1 with equality iff a ∈ {0,∞}) [7].

Hence i∗ω =
∑

a(1− xa)ωa/xa and we can take ωE =
∑

a ωa so that

P (x) =
1

(2π)n−1(n− 1)!

∫
E

(∑
a

(1 + xat)ωa/xa

)n−1

=
Vol(E,

∏
a ωa/xa)

(2π)n−1

∏
a

(1 + xat)da

Q(x) =
1

2(2π)n−1(n− 2)!

∫
E

(∑
a

saωa

)
∧

(∑
a

(1 + xat)ωa/xa

)n−2

=
Vol(E,

∏
a ωa/xa)

(2π)n−1

(∑
a

dasaxa

1 + xat

) ∏
a

(1 + xat)da
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We note that since the Futaki invariant is defined in terms of ratios, we can ignore
any overall multiples. So after a rescaling, we have

P (x) = pc(t)

Q(x) =
(∑

a

dasaxa

1− xat

)
pc(t)

with t = x− 1. Hence:

αr =
∫ 2

0
(x− 1)rP (x)dx =

∫ 1

−1
trpc(t) dt

βr = P (2) + (−1)rP (0) + 2
∫ 2

0
(x− 1)rQ(x) dx

= pc(1) + (−1)rpc(−1) +
∫ 1

−1

(∑
a

dasaxa

1− xat

)
trpc(t) dt.

Note that αr and βr are just rescales (by the same factor) of the values of same
name in [7]. Substituting also z = c− 1, we then obtain

α0Fβ(α) =
∫ c

0
Q(x)(x− c) dx− 1

2cP (0) +
1
4

∫ c

0
P (x)(A(x− 1) +B)(x− c) dx

= −1
2(z + 1)pc(−1)− 1

4

∫ z

−1
(At+B +

∑
a

2dasaxa

1 + xaz
)pc(t)(z − t) dt

where A and B are exactly as in [7, Propn. 6]. Hence this is exactly −1/4 times
the extremal polynomial FΩ(z) given by e.g. [7, §2.4 Eq. (12)].

3.5. Computation via Ross–Thomas slope. From the proof of [35, Propn.
3.16] it follows that

(9) P (x) = −a′0(x)

and

(10) Q(x) = −a′1(x)−
a′′0(x)

2
,

where

a0(x) =
1
n!

(L− xE)n

and

a1(x) =
1

2(n− 1)!
c1(M̂) ∪ (L− xE)n−1.

In the general Kähler case, if Z ∈M is a smooth submanifiold preserved by the
C× action β we define

a0(x) :=
1
n!

∫
M̂

(π∗ω − xe)n

and

a1(x) :=
1

2(n− 1)!

∫
M̂
ρ̂ ∧ (π∗ω − xe)n−1,

where ρ̂ is a representative of 2πc1(M̂) and e is a representative of the Poincaré dual
of the exceptional divisor of the blow-up along Z, π : M̂ → M . This generalizes
(aside from a re-scaling factor of (2π)n, which we will ignore) the previous definition
of a0(x) and a1(x). We may also generalize the Seshadri constant to mean the least
upper bound of the set of x ∈ R such that π∗ω − xe has non-negative volume
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on any analytic subvariety of M̂ [35]. Thus we have a generalized definition of
P (x), Q(x), αr, βr, and finally the Futaki invariant Fβ(α).
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E-mail address: apostolo@math.uqam.ca

David M. J. Calderbank, Department of Mathematics, University of York, Hes-
lington, York YO10 5DD, England

E-mail address: dc511@york.ac.uk
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