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Abstract. Weyl derivatives, Weyl-Lie derivatives and conformal submersions
are defined, then used to generalize the Jones-Tod correspondence between self-
dual 4-manifolds with symmetry and Einstein-Weyl 3-manifolds with an abelian
monopole. In this generalization, the conformal symmetry is replaced by a par-
ticular kind of conformal submersion with one dimensional fibres, and the gauge
group of the monopole becomes a group of diffeomorphisms of a 1-manifold. Spe-
cial cases are studied in which the conformal submersion is affine or projective.
All scalar-flat Kähler metrics with a holomorphic conformal submersion, and
all four dimensional hypercomplex structures with a compatible Einstein met-
ric are obtained from affine monopoles, while projective monopoles encompass
Hitchin’s twistorial construction of selfdual Einstein metrics from an Einstein-
Weyl conformal infinity. The results include a linear equation for hyperKähler
metrics generalizing the Gibbons-Hawking Ansatz, and an explicit formula for
Hitchin’s metrics. New selfdual Einstein metrics depending explicitly on an ar-
bitrary holomorphic function of one variable or an arbitrary axially symmetric
harmonic function are obtained. The former generically have no continuous
symmetries.

Introduction

The aims of this paper are threefold: firstly, to advertise the notion of a Weyl
derivative both as a simple, but useful, tool in differential geometry, and also as
an object of study in its own right; secondly, to apply this tool to the theory of
conformal submersions, with particular attention to the case of selfdual conformal
4-manifolds; and thirdly to give explicit constructions of selfdual Einstein metrics.
The key discovery is a class of conformal submersions with one dimensional fibres
which admit a holomorphic interpretation on the twistor space. This class includes
the conformal submersions generated by conformal vector fields and provides a nat-
ural setting for a generalized Jones-Tod correspondence [17] encompassing Hitchin’s
construction of selfdual Einstein metrics with Einstein-Weyl conformal infinity [15].

A Weyl derivative on a manifold M is nothing more than a covariant derivative
on a real line bundle naturally associated to the differential geometry of M . Weyl
derivatives can be used to define Lie derivatives along foliations with one dimen-
sional leaves, generalizing the usual Lie derivative along a vector field. They also
occur naturally in the geometry of conformal submersions. These two situations
have in common the conformal submersions with one dimensional fibres, to which
most of this paper is devoted. I focus on the case that the total space is a selfdual

Date: November 2005.

1



2 DAVID M. J. CALDERBANK

4-manifold M and define the notion of a selfdual conformal submersion. In The-
orem I (4.6), the base B of such a submersion is shown to be not just conformal,
but Einstein-Weyl, generalizing the Jones-Tod correspondence, and yielding an ex-
plicit construction, in Theorem II (4.9), of selfdual spaces from solutions of the
Einstein-Weyl Bogomolny equation, where the gauge group acts on a 1-manifold.

The central part of the paper deals with special cases of this construction. In
Theorem III (4.11), shear-free geodesic congruences on B are shown to correspond
to antiselfdual complex structures on M which are invariant with respect to the
conformal submersion (i.e., the submersion is holomorphic), and the hypercomplex
structures and scalar-flat Kähler metrics arising in this way are identified (gener-
alizing [8, 12]). In Theorem IV (4.13), an antiselfdual complex structure is con-
structed from a generic selfdual conformal submersion on a selfdual Einstein-Weyl
4-manifold—for a selfdual Einstein metric with a Killing field, this reduces to the
construction of Tod [24].

The notion of an affine conformal submersion is defined, characterized, and
shown, in Theorem V (5.2), to provide a method for constructing selfdual spaces
from coupled linear differential equations, which will be called affine monopole equa-
tions. In Theorem VI (6.1), I show that the generalized Jones-Tod constructions for
scalar-flat Kähler and hyperKähler metrics arise in this way—this includes as spe-
cial cases, the Gibbons-Hawking Ansatz [13], LeBrun’s construction of scalar flat
metrics with Killing vector fields [19], and the construction of such metrics with
homothetic vector fields [8, 12]. Projective conformal submersions are analysed
in a similar way and the projective monopole equations are identified in Theorem
VII (7.3) with the SL(2,R) Einstein-Weyl Bogomolny equation.

In Theorem VIII (8.2), I prove that Hitchin’s version of LeBrun’s H-space con-
struction, defined twistorially in [15], is a special case of the generalized Jones-Tod
correspondence, and this special case is characterized. The Hitchin-LeBrun con-
struction, although simple from a twistor point of view, has always been difficult
to carry out explicitly due to a lack of a direct construction: the known examples
are, to the best of my knowledge, those of [18, 15, 22, 9]. The main result of the
final portion of the paper is an explicit formula for the selfdual Einstein metric
associated to an arbitrary Einstein-Weyl structure.

To this end, I first study selfdual Einstein-Weyl 4-manifolds, which are known
to be either Einstein or locally hypercomplex [4, 23]. Theorem IX (9.2) states
that a pair of compatible selfdual Einstein-Weyl structures determine a selfdual
conformal submersion, and this is used, in Theorem X (10.3), to prove that all
selfdual Einstein metrics with a compatible hypercomplex structure admit an affine
conformal submersion over a hyperCR Einstein-Weyl space. This special case of
the Hitchin-LeBrun construction yields new examples of selfdual Einstein metrics,
and motivates the final result, Theorem XI (11.1), in which the formula for the
Hitchin-LeBrun construction is obtained.

The paper is organized as follows. In section 1, Weyl derivatives and Weyl-Lie
derivatives are introduced. Although it is possible to present some of the later
results without this formalism, the proofs are simpler and more natural when one
makes systematic use of the affine space of Weyl derivatives and the product rule
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for Weyl-Lie derivatives. Indeed, many of the results of this paper would have
been impossible to find (for the author at least) without the geometric guidance
provided by working in a gauge-independent way. In order to familiarize the reader
with this language, I have presented a few simple applications of Weyl derivatives,
and discussed the Weyl-Lie derivative on natural bundles. The key formula from
this section is the Weyl-Lie derivative of a torsion-free covariant derivative on a
natural bundle. In section 2, after recalling basic facts from conformal geometry, I
present another arrow in the Weyl geometer’s quiver: the linearized Koszul formula.

In the third section, the notion of a conformal submersion is defined, but most
of the local properties are studied within the more general framework of conformal
almost product structures. I prove a simple proposition which shows that there
is a canonically defined Weyl derivative in this setting, which will be called the
minimal Weyl derivative. The main interest, however, is in conformal submersions
with one dimensional fibres, which may be analyzed locally using the congruences
and Weyl-Lie derivatives of section 1. I focus on this case for the second half of
section 3 and characterize basic objects using the minimal Weyl-Lie derivative.

The generalized Jones-Tod correspondence (Theorem I) is established in sec-
tion 4. In an earlier version of this paper [5], my proof followed closely the proof of
the “classical” Jones-Tod correspondence given in [7, 8]. However, Paul Gauduchon
has recently obtained a cleaner proof by exploiting more thoroughly the isomor-
phism between the bundle of antiselfdual 2-forms on the conformal 4-manifold M
and the pullback of the tangent bundle of the 3-dimensional quotient B. This
approach also integrates nicely with the fact that invariant antiselfdual complex
structures on M correspond to shear-free geodesic congruences on B [8], and so I
adapt it here to the context of conformal submersions.

The defining equation for conformal submersions, and the monopole equation
arising in the inverse construction, are nonlinear, but there is a special case in
which the Bogomolny equation linearizes: affine conformal submersions. Here M
is an affine bundle over B such that the nonlinear connection and relative length
scale induced by the conformal structure are affine. Such submersions are studied
in section 5, then applied in section 6 to scalar-flat Kähler and hyperKähler metrics.
The new Ansatz is illustrated by some examples, taken from [9]. Section 7 treats
projective conformal submersions in a similar way.

The motivation for several results in this paper originally came from twistor the-
ory. I explain this in section 8, and also discuss the Hitchin-LeBrun construction.
The twistorial point of view suggests that the conformal submersion arising here
will be affine if the Einstein-Weyl conformal infinity is hyperCR, and projective
in general. In the former case, the selfdual Einstein metric admits a compatible
hypercomplex structure and this is studied first. A key tool is the general observa-
tion that two compatible Einstein-Weyl structures on a conformal manifold define
a conformal submersion, and in four dimensions, this submersion is selfdual if the
conformal structure is. This is proven in section 9 and then, in section 10, selfdual
Einstein metrics admitting a compatible hypercomplex structure are characterized
explicitly in terms of affine monopoles. Examples with no continuous symmetries
are given, which depend on an arbitrary holomorphic function of one variable.
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In the final section, a projective gauge transformation is applied to obtain a solu-
tion of the projective monopole equations which makes sense on any Einstein-Weyl
space. In section 11, I show that the explicit metric given by the induced projective
conformal submersion is Einstein. The resulting direct method for carrying out the
Hitchin-LeBrun construction is illustrated by a family of selfdual Einstein metrics
depending on an arbitrary axially symmetric harmonic function on R3.
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1. Weyl derivatives and Weyl-Lie derivatives

If V is a real n-dimensional vector space and w any real number, then the
oriented one dimensional linear space Lw = Lw(V ) carrying the representation
A 7→ |detA|w/n of GL(V ) is called the space of densities of weight w or w-densities.
It can be constructed canonically as the space of maps ρ : (ΛnV )r0 → R such that
ρ(λω) = |λ|−w/nρ(ω) for all λ ∈ R× and ω ∈ (ΛnV ) r 0.

The same construction can be carried out pointwise on any vector bundle E to
give, for each w ∈ R, the oriented real line bundle Lw

E whose fibre at x is Lw(Ex).
Applying this to the tangent bundle gives the following definition.

1.1. Definition. Suppose M is any n-manifold. Then the density line bundle
Lw = Lw

TM of M is defined to be the bundle whose fibre at x ∈ M is Lw(TxM).
Equivalently it is the associated bundle GL(M)×GL(n) L

w(n) where GL(M) is the
frame bundle of M and Lw(n) is the space of w-densities of Rn.

The density bundles are oriented (hence trivializable) real line bundles, but there
is no preferred trivialization. Sections of L = L1 may be thought of as scalar fields
with dimensions of length. This geometric dimensional analysis may also be applied
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to tensors: the tensor bundle Lw ⊗ (TM)j ⊗ (T ∗M)k (and any subbundle, quotient
bundle, element or section) is said to have weight w + j − k, or dimensions of
[length]w+j−k. Note that Lw1 ⊗Lw2 is canonically isomorphic to Lw1+w2 and L0 is
the trivial bundle. When tensoring a vector bundle with some Lw (or any real line
bundle), I shall often omit the tensor product sign. Note also that an orientation of
M may be viewed as a unit section of LnΛnT ∗M , defining an isomorphism between
L−n and ΛnT ∗M . A nonvanishing (usually positive) section of L1 (or Lw for w 6= 0)
is called a length scale or gauge (of weight w).

1.2. Definition. A Weyl derivative is a covariant derivative D on L1. It induces
covariant derivatives on Lw for all w. The curvature of D is a real 2-form FD called
the Faraday curvature.

If FD = 0 then D is said to be closed. There are then local length scales µ with
Dµ = 0. If such a length scale exists globally then D is said to be exact. Conversely,
a length scale µ induces an exact Weyl derivative Dµ such that Dµµ = 0. Note that
Dcµ = Dµ for any constant c 6= 0. Weyl derivatives form an affine space modelled
on the linear space of 1-forms, while closed and exact Weyl derivatives are affine
subspaces modelled on the linear spaces of closed and exact 1-forms respectively.

A gauge transformation on M is a positive function ef which rescales a gauge
µ ∈ C∞(M,Lw) to give ewfµ. It acts on Weyl derivatives by ef ·D = ef ◦D◦e−f =
D − df , so that ef · Dµ = Def µ for µ ∈ C∞(M,L1). If D is any Weyl derivative,
then D = Dµ + ωµ for the 1-form ωµ = µ−1Dµ, and consequently, ωef µ = ωµ + df .

On an oriented manifold, Weyl derivatives may be viewed as a generalization of
volume forms, since the exact Weyl derivatives correspond to volume forms up to
constant multiples. For instance, let Ω ∈ L2Λ2T ∗M be a weightless 2-form on M2m

such that Ωm is an orientation. Then Ω is nondegenerate and one would like to find
a length scale µ such that µ−2Ω is symplectic. If 2m > 2 this may not be possible.

1.3. Proposition. (cf. [20]) Let M be an n-manifold (n = 2m > 2) and let Ω ∈
L2Λ2T ∗M be nondegenerate. Then there is a unique Weyl derivative D such that
dDΩ is tracefree with respect to Ω, in the sense that

∑
dDΩ(ei, e′i, ·) = 0, where

ei, e
′
i are frames for L−1TM with Ω(ei, e′j) = δij.

This can be proven [8] by picking any Weyl derivative D0 and setting D = D0+γ
for some 1-form γ, then dDΩ = dD0

Ω+2γ ∧Ω and so the traces differ by a multiple
of γ. It follows that there is a unique γ such that dDΩ is tracefree.

There are therefore two local obstructions to finding µ with d(µ−2Ω) = 0, namely
dDΩ and FD [20]. In four dimensions dDΩ automatically vanishes. In general if
dDΩ = 0 then FD ∧Ω = 0. In six or more dimensions this implies FD = 0, so D is
closed, but it need not be exact. In four dimensions, however, D need not even be
closed. This construction is of particular interest in Hermitian geometry [25].

There is also a version of this in contact geometry. A contact structure on M is
codimension one subbundleH of TM which is maximally nonintegrable, in the sense
that the Frobenius tensor ΩH : Λ2H → TM/H is nondegenerate. In this context,
one defines a (slightly generalized) Weyl derivative to be a covariant derivative
on the real line bundle TM/H. The following result generalizes the fact that a
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contact form (which corresponds to a section of TM/H) defines a Reeb vector field
complementary to the contact distribution.

1.4. Proposition. Let M,H be a contact manifold. Then there is a bijection be-
tween complementary subspaces to H in TM and Weyl derivatives on TM/H such
that the horizontal part of FD is tracefree with respect to ΩH.

Proof. Let ηH : TM → TM/H be the twisted contact 1-form whose kernel defines
H. Then given any Weyl derivative D, one can define dDηH and if D = D0 + γ

then dDηH = dD0
ηH + γ ∧ ηH. Note that dDηH|H is well defined, being equal to

ΩH. Since ΩH is nondegenerate, given D there is a unique complementary subspace
(spanned by ξ, say) such that dDηH(ξ, ·) = 0, and such a complementary subspace
fixes D up to 1-forms γ with ηH ∧ γ = 0.

Now note that if D = D0 + µ−1ηH for a section µ of TM/H, then FD|H =
FD0 |H + µ−1ΩH and consequently, D may be found uniquely with tracefree hori-
zontal Faraday curvature. �

The first part of the proof also gives an affine bijection between complementary
subspaces and “horizontal” Weyl derivatives (i.e., covariant differentiation is only
defined along directions in H).

Much of the rest of the paper is concerned with the dual situation of one di-
mensional subbundles of TM (the complementary subspaces arising above being
an example). The integral manifolds of such a distribution define a foliation of M
with one dimensional leaves. This will be viewed as an unparameterized version of
a vector field by thinking of such a subbundle as an inclusion ξ : V → TM of a real
line bundle V, and hence as a “twisted” vector field. Sections of V correspond to
vector fields tangent to the foliation. It is therefore natural to consider covariant
derivatives on V, which will again be referred to as Weyl derivatives. I will also use
the following terminology from relativity.

1.5. Definition. A congruence on a manifold M is a nonvanishing section ξ of
V−1TM for some oriented real line bundle V. It defines an oriented one dimensional
subbundle of TM and hence a foliation with oriented one dimensional leaves.

No use will be made of the orientation of V in this section.

1.6. Proposition. Let E be a vector bundle associated to the frame bundle of
M with induced representation ρ of gl(TM). Then for a congruence ξ, a Weyl
derivative D (on V), and a section s of E, the formula

µ−1Lµξs+ ρ(µ−1Dµ⊗ ξ)s

is independent of the choice of a nonvanishing section µ of V, and will be called the
Weyl-Lie derivative LD

ξ s of s along ξ.

Proof. For any vector field X and function f , LfXs = fLXs− ρ(df ⊗X)s. �

Note that LD
ξ s is a section of V−1E. If D is exact, then trivializing V by a

parallel section gives back the usual Lie derivative. The dependence of LD
ξ on D is
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clearly given by LD+γ
ξ s = LD

ξ s+ ρ(γ ⊗ ξ)s. In particular, for functions (ρ trivial),
LD

ξ f = df(ξ), which is a section of V−1 independent of D.
In order to compute the Weyl-Lie derivative, it is convenient to find a formula

in terms of a torsion-free connection inducing covariant derivatives ∇ on any asso-
ciated bundle E. In the case of the usual Lie derivative, LKX = ∇KX −∇XK for
vector fields X, and so LKs = ∇Ks−ρ(∇K)s on sections of E. This readily yields
the following generalization to Weyl-Lie derivatives:

(1.1) LD
ξ s = ∇ξs− ρ

(
(D⊗∇)ξ

)
s,

where (D⊗∇)ξ denotes the twisted or tensor sum covariant derivative of ξ as a
section of V−1TM = V−1 ⊗ TM . More generally D⊗∇ will denote the twisted
covariant derivative on V−1E. Formula (1.1) immediately gives the following.

1.7. Proposition. Let ξ be a congruence and D be a Weyl derivative (on V).
Then the Weyl-Lie derivative may be computed in terms of an arbitrary torsion-
free covariant derivative ∇ as follows:

• For a w-density µ, LD
ξ µ = ∇ξµ− w

n (divD⊗∇ ξ)µ.
• For a vector field X, LD

ξ X = ∇ξX − (D⊗∇)Xξ.
• For a 1-form α, LD

ξ α = ∇ξα+ α
(
(D⊗∇)ξ

)
= dα(ξ, ·) +D(α(ξ)).

• For a k-form α, LD
ξ α = ιξdα+ dD(ιξα).

Here divD⊗∇ ξ denotes the trace of (D⊗∇)ξ, i.e., the divergence has been
twisted by D on V−1 and ∇ on Ln.

The above treatment only deals with the Weyl-Lie derivative for zero and first
order geometric objects (functions and sections of bundles associated to the first
order frame bundle). It may be extended to differential operators (higher order
geometric objects) using the product rule, but because the Weyl-Lie derivative of
a section of E is not a section of E, the differential operators have to be twisted
by D. Consequently, some natural differential operators may have nonzero Weyl-
Lie derivative. In particular (LD

ξ d)α = LD
ξ (dα) − dD(LD

ξ α) = FD ∧ ιξα, i.e., the
Weyl-Lie derivative only commutes with exterior differentiation on functions in
general. Similarly, for the Lie bracket, LD

ξ [, ](X,Y ) = −FD(X,Y )ξ. Of course,
this is compatible with the definition of d in terms of [, ].

If ∇ is any torsion-free covariant derivative then its Weyl-Lie derivative LD
ξ ∇ =

LD
ξ ◦ ∇ − (D⊗∇) ◦ LD

ξ evaluates to

(1.2) (LD
ξ ∇)X = R∇ξ,X + (D⊗∇)X

(
(D⊗∇)ξ

)
∈ V−1gl(TM).

This acts on an associated bundle E via the corresponding representation ρ of
gl(TM). The vanishing of LD

ξ ∇ defines a notion of invariance, along ξ, of ∇ on
E. Also note that ∇ξ − LD

ξ = ρ
(
(D⊗∇)ξ

)
is a kind of Higgs field. If the Higgs

field vanishes, I will say ∇ is horizontal, for reasons that will become clear later.
In particular if ∇ is invariant and horizontal on E, then ρ(R∇ξ,X) = 0.
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2. Conformal geometry

In the previous section, the term “Weyl derivative” was sometimes applied in a
generalized sense, when the oriented real line bundle was not necessarily L1. Such
a distinction disappears when one introduces a conformal structure.

2.1. Definition. A conformal structure c on M is a metric on L−1TM , whose
determinant at each x ∈M (defined up to sign) is a unit element of Ln

xΛnT ∗xM .

A conformal structure identifies any oriented one dimensional subbundle or quo-
tient bundle of TM with L1. In particular if M is conformal and ξ is a con-
gruence, there is a unique oriented isomorphism between V and L1 such that
ξ ∈ C∞(M,L−1TM) is a weightless unit vector field. A congruence will now be
viewed as an injective linear map ξ : L1 → TM and V will denote its image.

A conformal structure is equivalently a fibrewise inner product 〈· , ·〉 on TM
with values in L2: compatible Riemannian metrics therefore correspond to length
scales. As in the previous section, it is natural to replace length scales with Weyl
derivatives, and the Koszul formula for the Levi-Civita connection generalizes to
give an induced torsion-free conformal connection, called a Weyl connection, on M :

2〈DXY, Z〉 = DX 〈Y, Z〉+DY 〈X,Z〉 −DZ 〈X,Y 〉
+ 〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉.

(2.1)

This gives an affine bijection between Weyl derivatives and Weyl connections on
TM . The corresponding linear map sends a 1-form γ to the co(TM)-valued 1-form
Γ defined by ΓX = [[γ,X]] = γ(X)id+γ MX, where (γ MX)(Y ) = γ(Y )X−〈X,Y 〉γ.

2.2. Remark. Here, and elsewhere, I freely identify a 1-form γ with a vector field
of weight −1 using the isomorphism ] : T ∗M → L−2TM given by the conformal
structure. Similarly, vector fields of any weight are identified with 1-forms of the
same weight. Also, a skew linear map J on TM (of any weight) corresponds to
a 2-form ΩJ (of the same weight) via J(X) = ](ιXΩJ); this identifies γ MX with
γ ∧ 〈X, ·〉. It will sometimes, but not always, be helpful to maintain a distinction
between a skew endomorphism and the corresponding 2-form. The bracket [[· , ·]] is
part of an algebraic Lie bracket on TM ⊕ co(TM)⊕ T ∗M , and the same notation
will be used for the commutator bracket on co(TM).

The curvature RD of D, as a co(TM)-valued 2-form, decomposes as follows:

(2.2) RD
X,Y = WX,Y − [[rD(X), Y ]] + [[rD(Y ), X]].

HereW is the Weyl curvature of the conformal structure, an so(TM)-valued 2-form,
and rD is a covector valued 1-form, the normalized Ricci tensor of D.

If ξ is a congruence, then the Weyl-Lie derivative of D on L1 reduces to

(2.3) (LξD)L1

X µ = FD(ξ,X)µ+
1
n
Dξ

X(divDξ⊗D ξ)µ,

where Dξ is the Weyl derivative used to define Lξ. Linearizing (2.1) gives a formula
for the Weyl-Lie derivative on other bundles:

(LξD)X = DX(Lξc) + alt
(
D(Lξc)(X)

)
+ [[LξD

L1
, X]] + 1

2ξMF ξ(X) + 1
2〈ξ,X〉F

ξ.
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In this linearized Koszul formula, F ξ is the Faraday curvature ofDξ: these F ξ terms
come from the Weyl-Lie derivative of the Lie bracket. All the terms apart from
the first belong the conformal Lie algebra co(TM). This reflects the fact that if
Lξc = 0, the Weyl-Lie derivative preserves conformal subbundles of natural vector
bundles and so extends to any bundle associated to the conformal frame bundle.

3. Conformal submersions

3.1. Definition. Let π : M → B be a smooth surjective map between conformal
manifolds and let the horizontal bundle H be the orthogonal complement to the
vertical bundle V of π in TM . Then π will be called a conformal submersion iff for
all x ∈M , dπx|Hx

is a nonzero conformal linear map.

Since the main aim is to study the local geometry on M , it is not really necessary
for the base to be a manifold: it could be an orbifold, or be replaced altogether by
the horizontal geometry of a foliation.

A bundle H complementary to V is often called a (nonlinear) connection on π:
it is determined by a projection η : TM → V, the connection 1-form.

3.2. Proposition. If π : M → B is a submersion onto a conformal manifold B,
then conformal structures on M making π into a conformal submersion correspond
bijectively to triples (H, cV ,w), where H is a connection on π, cV is a conformal
structure on the fibres, and w : π∗L1

TB
∼= L1

H → L1
V is a (positive) isomorphism.

Proof. dπ : H → π∗TB is certainly an isomorphism, so L2
H
∼= π∗L2

TB and the
conformal structure on H is obtained by pullback. Combining this with cV gives an
L2
V valued inner product c = cV ⊕w2cH, which in turn determines an isomorphism

between LV and LTM such that c becomes a conformal structure on M . �

The final ingredient w in this construction will be called a relative length scale,
since it allows vertical and horizontal lengths to be compared. The freedom to vary
w generalizes the so-called “canonical variation” of a Riemannian submersion, in
which the fibre metric is rescaled, while the base metric remains constant.

A natural generalization of conformal submersions, following Gray [14], is a con-
formal almost product structure. On a conformal manifold M , this is a nontrivial
orthogonal direct sum decomposition TM = V ⊕⊥ H, i.e., V and H are nontrivial
subbundles of TM and are orthogonal complements with respect to the confor-
mal structure. Although the roles of V and H are interchangeable, I will call the
corresponding tangent directions vertical and horizontal.

Given any Weyl derivative D, observe that that the vertical component (DXY )V

for X,Y ∈ H is tensorial in Y and so defines a tensor in H∗⊗ H∗⊗ V. I will
write (DXY )V = IIDH(X,Y ) + 1

2ΩH(X,Y ), where IIDH is symmetric and ΩH is skew,
and extend these fundamental forms by zero to T ∗M ⊗ T ∗M ⊗ TM . Similarly
the horizontal component (DUV )H for U, V ∈ V defines tensors IIDV and ΩV in
V∗⊗ V∗⊗ H 6 T ∗M ⊗ T ∗M ⊗ TM . Since D is torsion-free, ΩH and ΩV are the
Frobenius tensors of the distributions H and V, which vanish iff the distributions
are tangent to foliations. On the other hand, the fundamental forms IIDH and IIDV
do depend on D and can be used to find a distinguished Weyl derivative D0.
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3.3. Proposition. Suppose M is conformal with a conformal almost product struc-
ture TM = V ⊕⊥ H. Then there is a unique Weyl derivative D0 such that V and
H are minimal, in the sense that the fundamental forms, denoted II0H and II0V , are
tracefree. It may be computed from an arbitrary Weyl derivative D via the formula:

D0 = D +
tr IIDH
dimH

+
tr IIDV
dimV

.

Proof. Observe that if D̃ = D + γ then 〈tr IID̃H, U〉 = 〈tr IIDH, U〉 − (dimH)γ(U) for
all U ∈ V, and similarly for IIV . This shows that the formula for D0 is independent
of D. Substituting D = D0 shows that II0H and II0V are tracefree. �

I shall refer to D0 as the minimal Weyl derivative; this usage is consonant both
with minimal submanifolds and minimal coupling. The minimal Weyl derivative
need not be closed: I shall write F 0 for its Faraday curvature.

3.4. Remark. The curvature of D0 on TM can be related to the curvatures of
horizontal and vertical connections onH and V. One defines a horizontal connection
on H by DH

XY = (D0
XY )H for X,Y ∈ H; similarly DV

UV = (D0
UV )V for U, V ∈ V.

The (modified) curvature of DH is defined by

RHX,Y Z = DH
XD

H
Y Z −DH

Y D
H
XZ −DH

[X,Y ]HZ −
[
[X,Y ]V , Z

]H,
where X,Y, Z ∈ H. The definition of RV is analogous, and O’Neill-type formu-
lae [21] relating RD0

to RH and RV follow directly as in [14].

Some of the properties of the minimal Weyl derivative may be elucidated by
comparing it with partial Lie derivatives. If X is a horizontal vector field and U is
vertical, then [U,X]H is tensorial in U , which defines a partial covariant derivative
on H in vertical directions. This extends naturally to horizontal forms in ΛkH∗ and
to densities in L1

H. One says a horizontal vector field, form, or density is invariant
if its partial covariant derivative along V vanishes; if V is a tangent to the fibres of
a submersion, this means the horizontal vector field, form, or density is basic.

Similarly, there is a partial covariant derivative on V, ΛkV∗ and L1
V in hori-

zontal directions. Since the conformal structure identifies L1
H with L1

V , putting
these together gives a Weyl derivative. In order to verify that this is the min-
imal Weyl derivative defined above, introduce an arbitrary Weyl connection D
so that [U,X]H = (DUX)H − (DXU)H and the second term is tensorial: since
〈DXU, Y 〉 = −〈U,DXY 〉 this tensor is essentially IIDH+ 1

2ΩH. Therefore the vertical
partial connections on L1

H induced by [U,X]H and (DUX)H agree if and only if
tr IIDH = 0. Similarly the horizontal partial connections on L1

V induced by [X,U ]V

and (DXU)V agree if and only if tr IIDV = 0.
According to this discussion, the following definition for densities is compatible

with the identification of L1 with L1
H and L1

V .

3.5. Definition. A density µ ∈ C∞(M,L1) on a conformal manifold M with a
conformal almost product structure (V,H) is invariant along V iff D0

Uµ = 0 for all
vertical U , and invariant along H iff D0

Xµ = 0 for all horizontal X.
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I specialize now to the case that V is one dimensional and oriented. Then the
positively oriented weightless unit vector field ξ spanning L−1V 6 L−1TM is a
congruence and the minimal Weyl derivative D0 is characterized by D0

ξξ = 0 and
trD0ξ = 0 (note that 〈D0ξ, ξ〉 = 0 since ξ has unit length). The formula for
computing D0 reduces to D0 = D− 1

n−1(divD ξ)ξ + (dDξ)(ξ, ·). Also note that ΩV
and II0V both vanish, so Ω and II0 will denote the fundamental forms of H. I denote
the minimal Weyl-Lie derivative along ξ by L0

ξ .

3.6. Proposition. Let ξ be a congruence with minimal Weyl derivative D0 and let
D be an arbitrary Weyl derivative.

(i) 1
2L

0
ξc = sym0(D0⊗D)ξ = symD0ξ = −〈ξ, II0〉.

(ii) D0 is exact iff ξ = K/|K| for some (nonvanishing) vector field K which
is divergence-free and geodesic with respect to the metric g = |K|−2c.

(iii) If D0 is exact and L0
ξc = 0 then K is a conformal vector field, and hence

is a Killing field of the metric g = |K|−2c.
Conversely if K is a nonvanishing conformal vector field then ξ = K/|K| is a
congruence with L0

ξc = 0 and D0|K| = 0.

Proof. For the first part, note that for any vector fields X,Y ,

(L0
ξc)(X,Y ) = L0

ξ〈X,Y 〉 − 〈L0
ξX,Y 〉 − 〈X,L0

ξY 〉

= Dξ〈X,Y 〉 − 2
n(divD0⊗D ξ)〈X,Y 〉

− 〈DξX − (D0⊗D)Xξ, Y 〉 − 〈X,DξY − (D0⊗D)Y ξ〉

= 〈(D0⊗D)Xξ, Y 〉+ 〈X, (D0⊗D)Y ξ〉 − 2
n(divD0⊗D ξ)〈X,Y 〉.

This is 2(sym0(D0⊗D)ξ)(X,Y ) = 2(symD0ξ)(X,Y ), since D was arbitrary. If
either X or Y is parallel to ξ, (symD0ξ)(X,Y ) vanishes automatically, because
D0

ξξ = 0 = 〈D0ξ, ξ〉. On the other hand, if X and Y are orthogonal to ξ, it is equal
to −1

2〈ξ,D
0
XY +D0

YX〉 = −〈ξ, II0(X,Y )〉.
For the second and third parts, observe that an exact D0 preserves a length scale

µ. Then K = µξ and D0 is the Levi-Civita connection of g = µ−2c. �

I shall now assume that the congruence ξ is tangent to the one dimensional fibres
of a submersion π over a manifold B; this is always true locally. A horizontal vector
field, form or density is then basic if it is invariant in the sense above. The Weyl-Lie
derivative L0

ξ provides an efficient way to characterize such basic objects.

3.7. Proposition. Let ξ be a congruence with minimal Weyl derivative D0 gener-
ating a submersion π of M over B. Then a horizontal vector field X is basic iff
L0

ξX = 0. Similarly a horizontal form α is basic iff L0
ξα = 0. Finally a density µ

is basic iff L0
ξµ = 0.

Proof. It suffices to check that L0
ξX = 0 is equivalent to [U,X] being vertical for

all vertical U . If U = λξ then away from the zero set of λ, Dλ = D0 + γ for
some 1-form γ and so [U,X] = LλξX = λLDλ

ξ X = λL0
ξX + γ(X)λξ. Hence L0

ξX is
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vertical if and only if [U,X] is vertical for all vertical U . For the vertical component
observe that 〈ξ,L0

ξX〉 = −L0
ξc(ξ,X) which vanishes by the previous Proposition.

The result for forms follows from the product rule.
For densities, L0

ξµ = D0
ξµ, and this means µ is basic as a section of L1

H. �

The product rule means that other basic objects are characterized by vanishing
Weyl-Lie derivative. For instance the submersion is conformal (i.e., the horizontal
part of the conformal structure is basic) iff L0

ξc = 0.
A connection ∇ on E (associated to the frame bundle, or the conformal frame

bundle if L0
ξc = 0) is horizontal if ∇ξ = L0

ξ , i.e., invariant sections are covariant
constant along the fibres. The horizontal part of ∇ is ∇ − 〈ξ, ·〉 ⊗ ρ

(
(D0⊗∇)ξ

)
,

and this is basic (i.e., a pullback connection) iff ∇ is invariant, i.e., L0
ξ∇ = 0.

The horizontal part of a Weyl derivativeD onM is basic iff 0 = L0
ξD = FD(ξ, ·)+

1
nD

0(divD0⊗D ξ). If D is horizontal this reduces to FD(ξ, ·). In particular D0 itself
is basic iff F 0(ξ, ·) = 0. If L0

ξc = 0, the only nonzero fundamental form is Ω = ΩH:

〈Ω(X,Y ), ξ〉 = 2〈D0
XY, ξ〉 = −2〈D0

Xξ, Y 〉 = −(d0ξ)(X,Y ).

Note that L0
ξ(d

0ξ) = ιξ(d
0)2ξ = F 0 − ξ ∧

(
F 0(ξ, ·)

)
and so Ω is basic iff ξ ∧F 0 = 0.

Note also that the linearized Koszul formula with respect to the minimal Weyl
derivative along the fibres of the conformal submersion reduces to:

(3.1) (L0
ξD)X = [[L0

ξD
L1
, X]] + 1

2ξMF 0(X) + 1
2〈ξ,X〉F

0.

Hence invariance on L1 does not imply invariance on other natural bundles.

4. The Jones-Tod correspondence

Suppose that ξ is a congruence on an oriented conformal 4-manifold M defining a
conformal submersion π onto a manifold B. Let D0 be the minimal Weyl derivative
of ξ, define ω = −(∗dDξ)(ξ, ·) (which can be computed using any Weyl derivative
D) and let Dsd = D0 + 1

2ω and DB = D0 + ω.

4.1. Remarks. The definition of ω uses the natural extension of the star operator
to 2-forms of any weight. The star operator on 1-forms (of any weight) is a 3-
form of the same weight defined by ιX∗α = ∗(〈X, ·〉 ∧α) for any vector field X. In
general the star operator on any manifold will be defined in terms of the orientation
∗1 so that a similar relation holds between the star operator, wedge product and
interior multiplication, with no signs. As remarked in [8], this is more convenient
in computations than the usual choice. Note that ∗2 = +1 in four dimensions,
whereas ∗2

B = −1 in three dimensions.
Since the star operator is an involution on 2-forms in four dimensions, Λ2T ∗M =

Λ2
+T

∗M ⊕ Λ2
−T

∗M . The selfdual and antiselfdual parts of a 2-form are denoted
F = F+ +F−. A skew endomorphism J of TM may be identified with a weightless
2-form ΩJ ∈ L2Λ2T ∗M ∼= L−2Λ2TM via ΩJ(X,Y ) = 〈JX, Y 〉 and J is said to be
selfdual or antiselfdual if ΩJ is. If J is antiselfdual, then ΩJ = η ∧Jη − ∗η ∧Jη
for any weightless unit 1-form η. It follows that, for a 1-form α (of any weight),
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∗α = Jα∧ΩJ for any antiselfdual endomorphism J with J2 = −id. Note that if F
is a selfdual 2-form, then X ∧ F (Y )− Y ∧ F (X) is also selfdual.

4.2. Proposition. 〈(D0⊗Dsd)ξ, ·〉 is a selfdual 2-form of weight −1.

Proof. In terms of an arbitrary Weyl derivative D,

D0 = D − 1
4(divD0⊗D ξ)ξ + 1

2(dD0⊗Dξ)(ξ, ·)

ω = −(∗dD0⊗Dξ)(ξ, ·)

Dsd = D − 1
4(divD0⊗D ξ)ξ + 1

2(dD0⊗Dξ)(ξ, ·)− 1
2(∗dD0⊗Dξ)(ξ, ·).and so

Substituting D = Dsd into this formula gives the result. �

4.3. Remark. This property clearly characterizes Dsd. One can characterize DB in
a similar way by the vanishing of the trace of DBξ and the selfduality of altDBξ.

4.4. Proposition. The Weyl derivative DB is basic iff D0 has selfdual Faraday
curvature.

Proof. Since ω(ξ) = 0, DB is basic iff FB(ξ, ·) = 0, where FB is the Faraday
curvature of DB. Now DB = D0 + ω and so

FB(ξ, ·) = F 0(ξ, ·) + dω(ξ, ·) = F 0(ξ, ·) + L0
ξω.

Writing ω = −(∗d0ξ)(ξ, ·) = −∗(ξ ∧ d0ξ) yields

L0
ξω = −∗(ξ ∧L0

ξd
0ξ) = −∗(ξ ∧F 0) = −(∗F 0)(ξ, ·).

So FB(ξ, ·) = (F 0−∗F 0)(ξ, ·). Since F 0−∗F 0 is antiselfdual, this contraction with
ξ vanishes iff F 0 = ∗F 0. �

When D0 has selfdual Faraday curvature, the conformal submersion is said to
be selfdual. In this case DB is a basic Weyl derivative on L1 ∼= π∗L1

B and the
induced Weyl structure on B is sometimes called the Jones-Tod Weyl structure.
It follows from the Koszul formula that the induced Weyl connection on TB pulls
back to the conformal connection on H ∼= π∗TB given by the horizontal part of
the Weyl connection induced by DB on TM . The same observation holds for
L−1H ∼= π∗L−1

B TB.
Now observe that the map ΩJ 7→ Jξ is an isomorphism from L2Λ2

−T
∗M to L−1H

with inverse χ 7→ ξ ∧χ − ∗(ξ ∧χ) ∈ L−2Λ2
−TM

∼= L2Λ2
−T

∗M . If J2 = −id then
|Jξ| = 1 and so this isomorphism is an isometry up to a constant multiple (conven-
tionally, |ΩJ |2 = 2 when J2 = −id). Also note that [[J1, J2]]ξ = −2∗(ξ ∧J1ξ ∧J2ξ).

The action of co(TM) on antiselfdual endomorphisms is by commutator, and
so only the antiselfdual part contributes, since selfdual and antiselfdual endomor-
phisms commute. Therefore Proposition 4.2 shows that L0

ξJ = Dsd
ξ J , i.e., Dsd is

horizontal on L2Λ2
−T

∗M . The linearized Koszul formula may be used to show that
if π is selfdual, then Dsd is invariant on L2Λ2

−T
∗M . More precisely,

L0
ξD

sd
X = 1

2F
0(ξ,X)id + 1

2ξMF 0(X)− 1
2X MF 0(ξ) + 1

2〈ξ,X〉F
0,
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which has selfdual skew part. Hence Dsd is basic on L2Λ2
−T

∗M ∼= π∗L−1
B TB. The

following Proposition identifies it withDB (which gives another proof of invariance).

4.5. Proposition. If J is an antiselfdual endomorphism, then for any horizontal
vector field X,

(
DB

X(Jξ)
)H = (Dsd

X J)ξ.

Proof. Write χ = Jξ so that ΩJ = ξ ∧χ− ∗(ξ ∧χ). Then

Dsd
X ΩJ = Dsd

X ξ ∧χ+ ξ ∧Dsd
X χ− ∗(Dsd

X ξ ∧χ+ ξ ∧Dsd
X χ).

Now Dsd = D0 + 1
2ω = DB − 1

2ω and so

Dsd
X ξ = 1

2 ∗(X ∧ ξ ∧ω),

Dsd
X χ = DB

Xχ+ 1
2ω(χ)X − 1

2〈χ,X〉ω.

Dsd
X ξ ∧χ = −1

2〈χ,X〉 ∗(ξ ∧ω) + 1
2ω(χ) ∗(ξ ∧X)Therefore

ξ ∧Dsd
X χ = ξ ∧DB

Xχ+ 1
2ω(χ)ξ ∧X − 1

2〈χ,X〉ξ ∧ωand

which gives ξ ∧Dsd
X χ− ∗(Dsd

X ξ ∧χ) = ξ ∧DB
Xχ.

Taking the antiselfdual part and contracting with ξ completes the proof. �

A generalized Jones-Tod correspondence follows readily from these observations,
following an approach due to Gauduchon. Recall [15] that a Weyl connection is said
to be Einstein-Weyl iff the symmetric traceless part of its Ricci tensor vanishes.

4.6. Theorem I. Suppose (M, c) is an oriented conformal 4-manifold and ξ gen-
erates a selfdual conformal submersion π over a manifold B. Then DB = D0 + ω
is Einstein-Weyl on B if and only if c is selfdual.

Proof. Since π is selfdual, DB descends to a Weyl connection on B. If π∗DB

denotes the pullback of DB to π∗L−1
B TB ∼= L−1H then Proposition 4.5 implies that

DsdJ = (π∗DB)(Jξ) for any antiselfdual endomorphism J , and so [[Rsd
X,Y , J ]]ξ =

(π∗RB)X,Y (Jξ), where RB is the curvature of DB on B and X,Y are arbitrary
vector fields. Here I have used the fact that Dsd is horizontal, and so Dsd

ξ J =
L0

ξJ = (π∗DB)ξ(Jξ) by definition of pullback; horizontality and the definition of
pullback likewise imply that [[Rsd

X,Y , J ]] and (π∗RB)X,Y (Jξ) vanish if X or Y is
vertical. (Recall that L0

ξD
sd = Rsd

ξ,X + (D0⊗Dsd)X(D0⊗Dsd)ξ.)
Let Rsd,− : Λ2TM → L2Λ2T ∗−M denote the antiselfdual part of Rsd and let

RB,0 : Λ2TB → L2
BΛ2T ∗B denote the skew part of RB. Then, omitting pullbacks,

Rsd,−(J)ξ = −1
2∗BR

B,0(∗BJξ), since Rsd,−(ξ ∧X) = 0. The symmetric traceless
part of J 7→ Rsd,−(J) is the antiselfdual Weyl tensor W− and the symmetric trace-
less part of χ 7→ ∗BRB,0(∗Bχ) is the symmetric traceless Ricci tensor of DB, which
proves the theorem. �

An explicit formula for the relationship between rsd and rB will be useful later.
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4.7. Proposition. Let ξ generate a selfdual conformal submersion π from a selfdual
space M to an Einstein-Weyl space B. Then F sd

− = 1
4(FB − ∗FB) and

sym rsd = 1
12 scalB(id − 2ξ ⊗ ξ) + 1

4

(
∗BFB ⊗ ξ + ξ ⊗ ∗BFB

)
.

Proof. Let X,Y be basic vector fields. Since 〈Rsd,−(ξ ∧X), ξ ∧Y 〉 = 0, it follows
that

rsd(X,Y ) + rsd(ξ, ξ)〈X,Y 〉+ ∗
(
ξ ∧ rsd(ξ, ·)∧X ∧Y

)
= 0.

On the other hand, since 〈Rsd(∗ξ ∧X), ξ ∧Y − ∗(ξ ∧Y )〉 = 〈RB,0(∗BJX), ∗BJY 〉,
it follows that

rsd(X,Y )− (trH r
sd)〈X,Y 〉 − ∗

(
ξ ∧ rsd(· , ξ)∧X ∧Y

)
= rB(X,Y )− (tr rB)〈X,Y 〉 = −1

2F
B(X,Y )− 1

6 scalB〈X,Y 〉.

The stated formulae follow easily from these. �

Note that F sd = 1
2(F 0 + FB) and so the formula for F sd

− follows immediately
from the fact that F 0

− = 0. On the other hand F 0 and F sd
+ are not basic in general.

The form of the Jones-Tod construction stated in Theorem I gives a procedure
for constructing Einstein-Weyl spaces from selfdual spaces. For the inverse con-
struction, the following reformulation is useful.

4.8. Proposition. Suppose that (M, c) is an oriented conformal 4-manifold, that ξ
generates a conformal submersion π over an Einstein-Weyl manifold B, and that
D0 = π∗DB − ω, where DB is the Weyl derivative on L1

B and ω = −(∗dDξ)(ξ, ·)
(computed using any Weyl derivative D). Then (M, c) is selfdual and ξ is selfdual.

This follows immediately from Theorem I and Proposition 4.4: π∗DB − ω has
selfdual Faraday curvature since π∗DB is basic. Therefore, an inverse Jones-Tod
construction will be obtained if the equation D0 = π∗DB − ω can be interpreted
as an equation on B. There are two ways to do this. Recall from Proposition 3.2,
that a conformal structure on a fibre bundle π : M → B over a conformal manifold
B is determined by a connection 1-form η : TM → V and a relative length scale
w : π∗L1

B → V, where I have assumed the fibres are oriented and one dimensional
so that L1

V = V. Choosing a fibre coordinate t identifies M with an open subset
of B × T, for a connected 1-manifold T, and provides trivialization of V and a flat
connection 1-form dt, so that η = dt+A.

The inverse construction can now be formulated as a nonlinear evolution equation
on B, or as a monopole equation with infinite dimensional gauge group. This idea
is closely related to Ward’s constructions of hyperKähler metrics [27].

4.9. Theorem II. Let (M, c) be an oriented conformal 4-manifold with a conformal
submersion over an Einstein-Weyl space (B, cB, D

B). Then π : M → B is locally
conformal to π1 : B × T → B with conformal structure

c = π∗cB + w−2(dt+A)2

for A ∈ C∞(B × T, π∗T ∗B) and w ∈ C∞(B × T, π∗L−1
B ).
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Furthermore M and π are selfdual if and only if (A,w) satisfy the evolution
equation

∗B(DBw + Ȧw −Aẇ) = dA+ Ȧ∧A,

where w : T → C∞(B,L−1
B ) and A : T → C∞(B, T ∗B) are viewed as a time-

dependent density and 1-form on B, so that a dot denotes differentiation with
respect to t, while DBw and dA are the derivatives on B.

Equivalently, writing instead w = w(t)d/dt : L1
B → Vect(T) and A = A(t) =

A(t)d/dt : TB → Vect(T), the equation is the Einstein-Weyl Bogomolny equation

∗B(DBw + [A,w ]) = FA := dA+ 1
2 [A∧A]

where [· , ·] denotes the Lie bracket of vector fields in Vect(T).

Proof. A conformal submersion certainly has the form given and the two equations
on B are clearly equivalent. I will show that the evolution equation is equivalent
to the fact that π∗1D

B = D0 +ω. To do this, I will work in the (arbitrarily chosen)
gauge g = w2c and rewrite the equation π∗1D

B = D0 + ω = Dg − 1
3(divg ξ)ξ +

(dgξ)(ξ, ·)− (∗dgξ)(ξ, ·) using the fact that Dgw = 0.
In the chosen gauge, wξ = dt+A and so

wdgξ = d(wξ) = dA+ dt∧ Ȧ = wξ ∧ Ȧ+ dA+ Ȧ∧A.

It follows that (dgξ)(ξ, ·) = Ȧ and

(∗dgξ)(ξ, ·)w = ∗(ξ ∧ dgξ)w = −∗B(dA+ Ȧ∧A).

Writing divg in terms of ∗dg∗ readily yields 1
3 divg ξ = ẇ . Therefore:

0 = Dgw = (π∗1D
B)w − ẇwξ + Ȧw + ∗B(dA+ Ȧ∧A)

= DBw + ẇdt− ẇ(dt+A) + Ȧw + ∗B(dA+ Ȧ∧A)

= DBw −Aẇ + Ȧw + ∗B(dA+ Ȧ∧A).

This completes the proof and also shows that D0 = Dg − ẇξ + Ȧ. �

4.10. Remarks. A gauge theoretic interpretation is obtained by viewing M as an
open subset of an associated bundle M̃ = P ×Diff (T) T, where Diff (T) is the group
of orientation preserving diffeomorphisms of T(= S1 or R) and P is the principal
Diff (T)-bundle whose fibre at x ∈ B consists of the orientation preserving diffeo-
morphisms T → M̃x. Choosing a gauge, i.e., a (local) section of P , identifies M̃
(locally) with B × T. Thus the gauge freedom is essentially the choice of t co-
ordinate made above. If t̃ = f(b, t) for a function f on B × T with ḟ 6= 0 then
w(t) = w̃(t̃)/ḟ and A(t) = (Ã(t̃) + dBf)/ḟ .

The classical Jones-Tod construction arises by reduction to a one dimensional
translational subgroup S1 or R. In this case, there is a preferred gauge in which
to work: the constant length gauge of the conformal vector field K (D0 = D|K| is
exact). The section t = 0 of M over B makes it into a line bundle and M may be
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recovered from a linear differential equation on B:

c = π∗cB + w−2(dt+A)2

∗BDBw = dA for w ∈ C∞(B,L−1
B ).where

This equation for (A,w) is often called the (abelian) monopole equation. Other
finite dimensional subgroups of Diff (T) will be studied later.

Now suppose that J is an antiselfdual almost complex structure on M which is
invariant with respect to ξ, i.e., L0

ξJ = 0. Let ΩJ(X,Y ) = 〈JX, Y 〉 be the conformal
Kähler form of J and D the unique Weyl derivative such that dDΩJ = 0. Then it is
well known that J is integrable if and only if DJ = 0; D is then called the Kähler-
Weyl connection of J . If DJ = 0 then (L0

ξJ)X = J(D0⊗D)Xξ − (D0⊗D)JXξ,
and so J is invariant iff ξ is holomorphic in the sense that (D0⊗D)ξ is complex
linear. The following generalizes a theorem of [8] to conformal submersions.

4.11. Theorem III. Let M be an oriented conformal 4-manifold, let ξ generate a
selfdual conformal submersion over a manifold B and let J be an invariant antiself-
dual almost complex structure on M . Define D = Dsd − κξ − τχ for basic sections
τ and κ of L−1, where χ = Jξ. Then DJ = 0 iff DBχ = τ(id − χ ⊗ χ) + κ ∗Bχ
on B. Hence J is integrable if and only if χ is a shear-free geodesic congruence, in
the sense that DBχ has the above form.

Proof. Since J is invariant, χ is invariant, hence basic, since it is horizontal. Note
that DξJ = Dsd

ξ J − τ [[ξMχ, J ]] = Dsd
ξ J = L0

ξJ = 0, so it remains to compute DXJ

for horizontal vector fields X. Since ΩJ = ξ ∧χ− ∗(ξ ∧χ) it follows that

DXΩJ = DXξ ∧χ+ ξ ∧DXχ− ∗(DXξ ∧χ+ ξ ∧DXχ),

DXξ ∧χ = Dsd
X ξ ∧χ− κX ∧χwhere

ξ ∧DXχ = ξ ∧Dsd
X χ− τξ ∧

(
X − 〈χ,X〉χ

)
.and

Therefore (see the proof of 4.5)

ξ ∧DXχ− ∗(DXξ ∧χ) = ξ ∧DB
Xχ− τξ ∧

(
X − 〈χ,X〉χ

)
+ κ ∗(X ∧χ).

Since the right hand side is a vertical 2-form, it follows that DXJ = 0 iff

DB
Xχ− 〈DB

Xχ, ξ〉 = τ(X − 〈χ,X〉χ) + κ ιX ∗Bχ.

To prove the final statement, suppose that J is invariant and integrable with
Kähler-Weyl connection D. Then (D0⊗D)ξ = −κ id + 1

2τJ + 1
2(dD0⊗Dξ)+, where

(dD0⊗Dξ)+ is a selfdual 2-form and κ, τ are sections of L−1. It follows that

(dD0⊗Dξ)(ξ, ·) = τχ+ (dD0⊗Dξ)+(ξ, ·)

(∗dD0⊗Dξ)(ξ, ·) = −τχ+ (dD0⊗Dξ)+(ξ, ·).

Therefore Dsd = D + κξ + τχ. It remains to check that κ and τ are basic. Since
DJ = 0 and L0

ξJ = 0 it follows that [[L0
ξDX , J ]] = 0. By the linearized Koszul
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formula, this implies L0
ξD = 1

2F
0(ξ) on L1 and therefore

RD
ξ,X + (D0⊗D)X

(
−κ id + 1

2τJ + 1
2(dD0⊗Dξ)+

)
= L0

ξDX = 1
2F

0(ξ,X)id + 1
2F

0(ξ) MX − 1
2F

0(X) M ξ + 1
2〈ξ,X〉F

0.

The identity and J components of this formula give D0κ + 1
2F

0(ξ) = FD(ξ) and
D0τ = ρD(ξ) where ρD(X,Y ) is the Ricci form of D, defined to be the contraction
of RD

X,Y with J . In particular D0
ξκ = 0 = D0

ξτ . �

4.12. Remark. τ and κ are called the divergence and twist of the congruence χ.

Assume now that W is selfdual. Then so are FD and ρD (see e.g. [8]), and hence
they are uniquely determined by their contractions with ξ. It follows that (M,J)
is locally hypercomplex iff D0τ = 0 iff τ = 0 or D0 is exact and τ is constant in
this gauge. This implies that a hyperCR structure on the Einstein-Weyl quotient
B (the case τ = 0) induces a hypercomplex structure on M , generalizing a result
of Gauduchon and Tod [12] to conformal submersions. On the other hand, (M,J)
is locally scalar-flat Kähler iff D0κ + 1

2F
0(ξ) = 0, so the presence of F 0 obstructs

a naive generalization of LeBrun’s work [19] to this context. This will be remedied
in the next two sections.

I next generalize a result of Mason and Tod, which was used by Tod [24] to give
a general description of selfdual Einstein metrics with a Killing vector field.

4.13. Theorem IV. Let (M, c, Dew) be a selfdual Einstein-Weyl 4-manifold and let
ξ generate a selfdual conformal submersion with minimal Weyl derivative D0. Then
M admits a canonical compatible Kähler-Weyl structure on the open set where the
antiselfdual part of (D0⊗Dew)ξ is nonzero.

More precisely, if this antiselfdual part is τJ where J2 = −id then J is integrable,
with Kähler-Weyl connection D = Dew − τ−1D0τ = Dew +D0 −Dτ , where Dτ is
defined by Dττ = 0.

Proof. It suffices to prove that DJ = 0. Observe first that (D0
Xτ)J + τDew

X J is
the antiselfdual part of (D0⊗Dew)X(D0⊗Dew)ξ = L0

ξD
ew
X − Rew

ξ,X , where Rew is
the curvature of Dew. Expanding the curvature and using the linearized Koszul
formula to compute the Weyl-Lie derivative gives

(D0
Xτ)J + τDew

X J

=
[

1
2F

ew(ξ) MX + 1
2F

ew(X) M ξ + 1
12 scalew ξMX −D0κMX + 1

2ξMF 0(X)
]−

=
[
(F ew(ξ) + 1

12 scalew ξ −D0κ− 1
2F

0(ξ))MX
]−
,

where [...]− denotes the antiselfdual part, κ is minus the identity component of
(D0⊗Dew)ξ, scalew is the scalar curvature of Dew, F ew is the Faraday curvature
of Dew, and I have used the fact that F 0 and F ew are selfdual. The precise form
of this expression is now not important: it suffices to observe that it is of the form
[JαMX]− for some 1-form α. Since ∗(JαMX) = −αM JX + α(X)J , it follows
that JαMX − ∗(JαMX) = −[[αMX, J ]] − α(X)J and the commutator term is
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orthogonal to J . Since DewJ is also orthogonal to J , D0
Xτ = −α(X) and τDew

X J =
−[[αMX, J ]] = [[D0τ MX, J ]], i.e., J is parallel with respect to Dew − τ−1D0τ . �

The theorems of this section reduce to known results when the conformal sub-
mersion is generated by a symmetry. However, the defining equation for conformal
submersions and the generalized monopole equation, unlike the conformal Killing
equation and the abelian monopole equation, are nonlinear. For the results of this
section to be interesting, it is therefore essential to find situations in which these
equations can be solved. This will be done next.

5. Affine conformal submersions

An affine structure on a submersion π : M → B is a flat torsion-free connection
on each fibre. This identifies M , at least locally, with an affine bundle modelled
on the vector bundle whose fibre at each point of B is the space of parallel vector
fields on the corresponding fibre of M . For conformal submersions with oriented
one dimensional fibres, the vertical bundle V of M is isomorphic to L1 and so the
vertical part Dξ of any Weyl derivative D defines an affine structure on M .

There are many choices of affine structure on M , but such a choice is only helpful
if the conformal structure on M is affine; that is, in terms of Proposition 3.2, the
nonlinear connection on M is an affine connection, and the relative length scale is
affine along the fibres. If such a “good” affine structure can be found, I will say
that π is an affine conformal submersion.

More precisely, a nonlinear connection H induces a linearized connection on the
infinite dimensional vector space of vertical vector fields defined by DXU = [X̃, U ],
where U is a vertical vector field, X is a vector field on B and X̃ is its horizontal
lift, so that [X̃, U ] is vertical. H is affine iff the parallel vertical vector fields on
each fibre are preserved by D; this then induces the linearized connection on the
model vector bundle. Affine connections form an affine space modelled on 1-forms
on B with values in the affine vector fields on V. Similarly, the relative length scale
w : π∗L1

B → V is affine iff it maps basic densities to affine vector fields, in which
case it may be viewed as a (−1)-density on B with values in the affine vector fields.

The above approach and the next proposition arose from discussions with Paul
Gauduchon in a joint effort to understand affine conformal submersions.

5.1. Proposition. Let M be a conformal manifold and let ξ generate be a conformal
submersion π over B with minimal Weyl derivative D0. Define an affine structure
Dξ on π by the Weyl derivative D = D0 + λξ where λ is a section of L−1.

(i) The connection H on M → B is affine with respect to Dξ iff FD(ξ) = 0.
(ii) The relative length scale is affine with respect to Dξ iff λ is basic.

Proof. The Dξ-parallel vertical vector fields are defined by identifying V with L1

using ξ. Hence the linearized connection may be defined on µ ∈ C∞(M,L1) by

(DXµ)ξ = [X̃, µξ] = D0
X̃

(µξ)− µD0
ξX̃ = (D0

X̃
µ)ξ − µ(D0

X̃
ξ −D0

ξX̃)

= (D0
X̃
µ)ξ + µL0

ξX̃ = (D
X̃
µ)ξ



20 DAVID M. J. CALDERBANK

since X̃ is invariant and D −D0 is vertical. Hence H is affine iff Dξ(DX̃µ) = 0 for
all µ with Dξµ = 0. Since [U, X̃] is vertical for U vertical, Dξ(DX̃µ) = FD(ξ, X̃)µ
and so H is affine iff FD(ξ) = 0.

The relative length scale is section w of π∗L−1
B ⊗ V. This is affine iff its vertical

derivative with respect to the affine structure, as a section of π∗L−1
B ⊗ V∗⊗ V ∼=

π∗L−1
B , is basic. Identifying π∗L1

B and V with L1 identifies w with the identity
map in L−1 ⊗ L1 but its vertical derivative must be computed with respect to the
covariant derivative D0⊗D and so w is affine iff 0 = D0

ξ (D
0 ⊗D)ξid = D0

ξλ. �

Since FD(ξ) = F 0(ξ)+d(λξ)(ξ) = F 0(ξ)+(D0
ξλ)ξ−D0λ, it follows immediately

that the conformal submersion is affine if D0λ = F 0(ξ). Hence there is an obstruc-
tion to the existence of a good affine structure for a conformal submersion: since
−F 0λ = d0(F 0(ξ)) = L0

ξF
0, the Weyl-Lie derivative of F 0 must be a multiple of

F 0. If a good affine structure exists, it is essentially unique: any two differ by a
section µ of L−1 with D0µ = 0 which implies that the affine structures are equal
or D0 is exact and µ is constant.

I now return to four dimensions and the Jones-Tod construction.

5.2. Theorem V. Let (B, cB, D
B) be Einstein-Weyl and let

c = π∗cB + (tw1 + w0)−2(dt+ tA1 +A0)2

∗BDBw1 = dA1where

∗B(DBw0 +A1w0 −A0w1) = dA0 +A1 ∧A0and

for some w0,w1 ∈ C∞(B,L−1
B ) and A0, A1 ∈ C∞(B, T ∗B). Then c is selfdual with

a selfdual affine conformal submersion ξ over B, and D0w1 = F 0(ξ).
A selfdual conformal structure with a selfdual conformal submersion ξ arises

locally in this way if and only if it admits such a section w1 of L−1.

Proof. An affine conformal submersion certainly has the form given. It remains to
apply this Ansatz to the equations of Theorem II, by writing w = tw1 + w0 and
A = tA1 +A0. Now

DBw + Ȧw −Aẇ = tDBw1 +DBw0 + w0A1 − w1A0

dA+ Ȧ∧A = tdA1 + dA0 +A1 ∧A0

and the linear and constant terms (in t) of these equations prove the result. Note
that D0 = Dg −w1ξ +A1 and so F 0(ξ) = −d(w1ξ)(ξ) = D0w1 − (D0

ξw1)ξ = D0w1

since w1 is basic. The characterization follows from the previous proposition. �

5.3. Remarks. The freedom in the choice of affine coordinate t corresponds to the
gauge freedom for the affine monopole equations. If t̃ = at+b for basic functions a, b,
write w1 = w̃1, w0 = a−1(w̃0+bw̃1), A1 = Ã1+a−1da and A0 = a−1(Ã0+bÃ1+db).
One immediately verifies, by substituting into the affine monopole equations, that
(Ã, w̃) is a solution if (A,w) is. Note that tµg = tw−1 is a well defined section
of L1 up to translation by a basic section of L1: it may be fixed by choosing a
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section of M → B. The induced exact Weyl derivative is Dtµg = Dg − t−1dt =
D0 − t−1w0ξ + t−1A0.

The equations show that the affine Jones-Tod correspondence reduces to the
classical case in two ways. Firstly the linear part of the affine monopole equation
is an abelian monopole equation for (A1,w1), and if (A0,w0) is zero, the affine
bundle M is isomorphic to the model line bundle. Secondly if (A1,w1) is zero, the
translational part of the of the affine monopole equation is an abelian monopole
equation for (A0,w0): the model line bundle is trivial, and so M is a principal
R-bundle. On the other hand if the solution (A1,w1) is nontrivial, then it gives
a linearization of M , i.e., a selfdual space with an affine conformal submersion is
affinely modelled on a selfdual space with a conformal vector field.

6. Scalar-flat Kähler and hyperKähler metrics

The affine monopole equations give give a new method for constructing selfdual
spaces from linear differential equations, since the translational part is linear once a
solution of the linear part is chosen. In particular, this method gives all scalar-flat
Kähler metrics with a holomorphic selfdual conformal submersion.

6.1. Theorem VI. Suppose (cB, D
B) is an Einstein-Weyl space and let χ be a

shear-free geodesic congruence with twist κ and divergence τ . Then for any solution
ρ ∈ C∞(B,L−2

B ), Φ ∈ C∞(B,L−1
B T ∗B) of the linear differential equation

∗B(DBρ+ 2τχρ+ 2κΦ) = dBΦ + 2τχ∧Φ,

the metric

g = (ρ− 2µ−1
t κ)π∗cB +

(
DB(µ−1

t ) + 2τχµ−1
t + Φ

)2

ρ− 2µ−1
t κ

on an affine bundle π over B, where µ−1
t is a section of L−1 increasing along the

fibres, is scalar-flat Kähler, and is hyperKähler if and only if D0τ = 0 (i.e., iff
τ = 0 or D0 is exact and τ is constant in this gauge).

Any 4-dimensional scalar-flat Kähler metric admitting a holomorphic selfdual
conformal submersion arises locally in this way.

Proof. Suppose g is a scalar-flat Kähler metric and ξ generates a holomorphic self-
dual conformal submersion. Then by Theorem III, Dg = Dsd − κξ − τχ where
DBχ = τ(id−χ⊗χ)+κ ∗B χ, and furthermore, D0κ+ 1

2F
0(ξ) = 0, since FDg

= 0.
Hence D0

ξ − 2κ defines an affine structure on M making the submersion affine and
w1 = −2κ.

The analysis of shear-free geodesic congruences in [8] shows that ∗BDBκ = 1
2F

B−
d(τχ), and hence, choosing any gauge µB, one can take A1 = −ωB + 2τχ. The
translational part of the monopole equation is therefore:

∗B(DBw0 − ωBw0 + 2τχw0 + 2κA0) = dA0 + (−ωB + 2τχ)∧A0.

Now the Levi-Civita connection of the affine gauge is D0 + w1ξ−A1 = D0− 2κξ−
2τχ + ωB, whereas the Levi-Civita connection of the µB-gauge is DB − ωB. The
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barycentre of these is Dsd − κξ − τχ = Dg, which iidentifies the scalar-flat Kähler
metric within the conformal class as

g = (w0 − 2tκ)π∗gB + (w0 − 2tκ)−1(dt− tωB + 2τχt+A0)2

and the gauge-invariant form of the theorem is obtained by setting ρ = µ−1
B w0,

Φ = µ−1
B A0 and µ−1

t = tµ−1
B . �

When κ = 0 this is LeBrun’s construction of scalar-flat Kähler metrics with
Killing fields [19], including the Gibbons-Hawking Ansatz for hyperKähler metrics
as the special case τ = 0 [13]. On the other hand, when (A0,w0) = 0, this theorem
reduces to the construction of scalar-flat Kähler metrics with homothetic vector
fields [8], including, as the special case τ = 0, the hyperKähler metrics of [12].

There is a plentiful supply of shear-free geodesic congruences on any Einstein-
Weyl space [8], and many hyperCR Einstein-Weyl spaces (admitting a shear-free
divergence-free geodesic congruence) are known explicitly. The only remaining
problem, therefore, is to solve a linear differential equation, and I now discuss some
nontrivial examples. In [9], the following Einstein-Weyl structures were found from
solutions of the SU(∞) Toda field equation.

gB = (z + h)(z + h)gS2 + dz2, ωB = − 2z + h+ h

(z + h)(z + h)
dz,

where h is a holomorphic function on an open subset of S2 and DB = Dg +ω. Note
that the weightless unit vector field dual to dz is a shear-free geodesic congruence
with vanishing twist (τ 6= 0, κ = 0). These spaces also admit shear-free geodesic
congruences with vanishing divergence (τ = 0, κ 6= 0), i.e., they are hyperCR, and
they are called the hyperCR-Toda spaces.

Applying the classical Jones-Tod construction to these spaces gives conformal
structures of the form c = π∗cB + w−2(β + v dz)2, where β = dt+ θ for a 1-form θ
on B orthogonal to dz, and ∗BDBw = dA with A = θ + v dz.

These conformal structures admit a compatible scalar-flat Kähler metric and
also a compatible hypercomplex structure. The conformal vector field ∂/∂t is a
Killing field of the scalar-flat Kähler metric and triholomorphic with respect to the
hypercomplex structure.

For certain solutions of the abelian monopole equation, ∂/∂z defines a conformal
submersion. To see this, write c = ε20+ε21+ε22+ε23 where ε0 and ε3 are the weightless
unit 1-forms corresponding to w dz and β+v dz. The weightless unit 1-form dual to
∂/∂z is ξ = (wε0 +vε3)/

√
w2 + v2 and so ε20 + ε23− ξ2 = (vε0−wε3)2/(w2 +v2) =

w2β2/(w2 + v2). Hence if β and (w2 + v2)|z+h|2 are independent of z, then ∂/∂z
will define a conformal submersion with quotient (w2 + v2)|z + h|2gS2 + β2.

Now Ian Strachan has pointed out [9] that for any holomorphic function f ,

w =
1
2

(
f

z + h
+

f

z + h

)
, v =

1
2i

(
f

z + h
− f

z + h

)
, dβ = 1

2(f + f)volS2

defines a solution of the monopole equation. Clearly β and (w2 + v2)|z + h|2 are
independent of z and so ∂/∂z defines a conformal submersion. Explicitly, c has a
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compatible metric

g =
(
z + h

2f
+
z + h

2f

)2(
|f |2gS2 + β2

)
+

[
dz + i

(
z + h

2f
− z + h

2f

)
β

]2

and so this submersion is obviously affine, with affine coordinate z. The quotient
conformal 3-manifold B̃ admits an Einstein-Weyl structure:

g
B̃

= |f |2gS2 + β2, ω
B̃

=
i

2

(
1
f
− 1
f

)
β.

These are the Einstein-Weyl spaces with geodesic symmetry described in [8]. One
easily checks that g is given by a solution of the affine monopole equations with
w1 = −2κs where κs is the twist of the geodesic symmetry on B̃, i.e., dβ = 2κs∗Bβ.
Hence these scalar-flat Kähler metrics with compatible hypercomplex structures
could have been constructed directly as selfdual affine conformal submersions over
the Einstein-Weyl spaces with geodesic symmetry. When f = ah + b for a, b ∈ R,
these metrics are conformally Einstein [9] and will feature again in section 10.

7. Projective conformal submersions

A natural generalization of an affine conformal submersion is a projective con-
formal submersion. A projective structure on a 1-manifold is a second order linear
differential operator from L1/2 to L−3/2 which has no first order term with re-
spect to any Weyl derivative, and the same definition may be applied fibrewise
to a congruence ξ. Hence any Weyl derivative D induces a projective structure
µ 7→ Dξ(Dξµ). Note that (D + γ)ξ

(
(D + γ)ξµ

)
= (Dξ −

1
2γ(ξ))(Dξµ + 1

2γ(ξ)µ) =
Dξ(Dξµ) + 1

2Dξ(γ(ξ))µ−
1
4(γ(ξ))2 µ, verifying that the condition of vanishing first

order term is independent of the Weyl derivative.
A conformal submersion π will be called projective iff there is a projective struc-

ture on π such that the connection H is projective and the relative length scale w
takes values in the projective vector fields: recall that these are characterized as
being quadratic in any projective coordinate.

7.1. Remark. A curve in a conformal manifold, with weightless unit tangent ξ has a
canonical projective structure given by (Dξ)

2 + 1
2r

D(ξ, ξ)+ 1
4 |Dξξ|2, and is called a

conformal geodesic if Dξ(Dξξ) + |Dξξ|2ξ− rD(ξ) + rD(ξ, ξ)ξ = 0; these expressions
are independent of the Weyl derivative D. However, if ξ generates a projective
conformal submersion, there is no reason for the projective structure to equal the
canonical one, nor will the fibres be conformal geodesics in general.

7.2. Proposition. Let M be a conformal manifold and let ξ generate a conformal
submersion over B with minimal Weyl derivative D0. Then the conformal submer-
sion is projective with respect to the projective structure (D0

ξ )
2 + 1

2ρ, for a section
ρ of L−2, iff D0ρ = L0

ξF
0(ξ).

Proof. Write the projective structure as (Dξ)2 where Dξ = D0
ξ + λ is a compatible

affine structure, so that ρ = D0
ξλ −

1
2λ

2. Then the connection H is projective iff
it maps Dξ-parallel vertical vector fields to Dξ-affine vertical vector fields, i.e., iff
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Dξµ = 0 =⇒ ∂ξ(Dξ(DXµ)) = 0 for basic vector fields X. This condition reduces
easily to (L0

ξ − λ)(F 0(ξ,X)−D0
Xλ) = 0.

The relative length scale is projective iff 0 = (D0⊗D)ξ(D
0
ξλ) = (L0

ξ − λ)(D0
ξλ).

Hence the conformal submersion is projective iff

0 = (L0
ξ − λ)(F 0(ξ)−D0λ)

= (L0
ξ − λ)F 0(ξ)− (L0

ξD
0)λ−D0(L0

ξλ) + λD0λ

= L0
ξF

0(ξ)−D0(D0
ξλ− 1

2λ
2)

since L0
ξD

0 = −F 0(ξ) on L−1. �

There is an obstruction to solving this for ρ, since it implies −2F 0(ξ)ρ =
L0

ξL0
ξF

0(ξ).

7.3. Theorem VII. Let (B, cB, D
B) be Einstein-Weyl and let

c = π∗cB + (t2w2 + tw1 + w0)−2(dt+ t2A2 + tA1 +A0)2,

∗B(DB + adA)w =FA := dA+A∧Awhere

A =
(

1
2A1 A0

−A2 −1
2A1

)
, w =

(
1
2w1 w0

−w2 −1
2w1

)
for

with w0,w1,w2 ∈ C∞(B,L−1
B ) and A0, A1, A2 ∈ C∞(B, T ∗B).

Then c is selfdual with a selfdual projective conformal submersion ξ over B, and
the projective structure is (D0

ξ )
2 + 1

2ρ where ρ = 2w0w2 − 1
2w2

1 .
A selfdual conformal structure with a selfdual projective conformal submersion

ξ arises locally in this way. Note that the equation is the SL(2,R) Einstein-Weyl
Bogomolny equation for an sl(2,R)-connection A and sl(2,R)-valued density w.

Proof. As in the proof of Theorem VI, this amounts to computing the equations of
Theorem II, now with w = t2w2 + tw1 + w0 and A = t2A2 + tA1 + A0. This leads
to the quadratic expressions

DBw + Ȧw −Aẇ = t2
(
DBw2 +A2w1 −A1w2

)
+ 2t

(
1
2D

Bw1 +A2w0 −A0w2

)
+DBw0 +A1w0 −A0w1

dA+ Ȧ∧A = t2(dA2 +A2 ∧A1) + 2t(1
2dA1 +A2 ∧A0) + dA0 +A1 ∧A0.

Equating coefficients (in t) of the resulting equations and expanding the Einstein-
Weyl Bogomolny equation completes the proof. �

Note that Dg
ξ = D0

ξ +2tw2 +w1 and Dtµg = D0 +(tw2− t−1w0)ξ− tA2 + t−1A0.

8. Twistor theory of conformal submersions

The constructions discussed so far have a natural interpretation on the twistor
space Z of M . This is a complex manifold fibering over M whose fibres are the
antiselfdual complex structures on each tangent space of M (see [2, 3, 10]). The
antipodal map on each fibre defines a real structure (antiholomorphic involution) σ
on Z, so the fibres of Z are real, i.e., σ-invariant. Each fibre Zx has normal bundle
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N (x) ∼= O(1) ⊕ O(1) and so the fibres are precisely the real lines amongst the
“twistor lines”, which are the holomorphic deformations of a typical fibre. Hence
real holomorphic sections of N (x) over Zx are constant as maps from Zx to TxM .

Each Weyl derivative D induces a connection on πZ : Z → M and hence a pro-
jection vD : TZ → V Z onto the vertical bundle of Z. Under a change of Weyl de-
rivative, vD+γ(U) = vD(U)+ [[γ M dπZ(U), J ]] for U ∈ TJZ. If K is any vector field
on M and J ∈ Zx, then the commutator [[DK − 1

2LKc, J ]] is a skew endomorphism
of TxM anticommuting with J (since LKc = 2 sym0DK) and hence an element of
VJZ = TJ(Zx). The lift KC of K to Z defined by vD(KC) = [[DK − 1

2LKc, J ]] is
easily seen to be independent of the choice of D, and is a holomorphic vector field
iff K is a conformal vector field, in which case vD(KC) = [[DK,J ]] (see [11]). This
generalizes to congruences.

8.1. Proposition. Congruences ξ on M (up to a sign) are in bijective correspon-
dence with complex line subbundles Lξ of TZ which are σ-invariant and transverse
to the real twistor lines.
Lξ is a holomorphic subbundle of TZ iff ξ is a selfdual conformal submersion.

The holomorphic structure on this line bundle corresponds, under the Ward corre-
spondence, to the minimal Weyl derivative D0.

Proof. Given ξ, let Lξ be the complex span of those vectors U in TJZ with dπZ(U) =
µξ and vD(U) = µ[[(D0⊗D)ξ − 1

2L
0
ξc, J ]] for some element µ of L1

πZ(J) (recall that
1
2L

0
ξc = sym0(D0⊗D)ξ). This line subbundle Lξ of TZ naturally isomorphic to

π∗ZL
1⊗C and is clearly transverse to the real twistor lines. Conversely, a σ-invariant

complex line subbundle Lξ transverse to a real twistor line Zx must be degree 0 and
the real sections define a congruence ξ up to sign, and identify Lξ with π∗ZL

1 ⊗ C.
By the Ward correspondence, a ∂-operator on Lξ corresponds to a Weyl deriva-

tive D0 on M , and Lξ holomorphic if D0 is selfdual [11]. If so, the inclusion of Lξ

into TZ may be viewed as a section ξC of the holomorphic bundle (Lξ)−1⊗TZ and
the invariance of the construction implies that ξC is holomorphic iff L0

ξc = 0. �

This gives a twistorial explanation for the theorems of section 4.
I. The distribution Lξ on Z given by a selfdual conformal submersion ξ integrates
a holomorphic foliation with one dimensional leaves. Since Lξ is trivial on each
twistor line, the twistor lines map to rational curves (called “minitwistor lines”)
with normal bundle O(2) in the (local) quotient space S, which is the “minitwistor
space” that gives rise to the Einstein-Weyl structure on M/ξ [15].
II. Conversely, Z is obtained as a fibre bundle over S which is trivial on the
minitwistor lines. In the affine or projective case Z → S is an affine or projec-
tive line bundle. Such bundles arise as affine subspaces or projectivizations of rank
two vector bundles trivial on minitwistor lines. The Einstein-Weyl Bogomolny
equation now arises from a generalized Hitchin-Ward correspondence [16], and the
same idea applies formally to the general, infinite dimensional, case.
III. The condition that ξ is holomorphic with respect to an antiselfdual complex
structure J is simply the condition that the image of J (as a section of Z) is a union
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of leaves of the foliation determined by ξ. This divisor D in Z therefore descends to
a divisor C in the minitwistor space, which in turn determines a shear-free geodesic
congruence [8]. The correspondence between hypercomplex and hyperCR spaces
follows from the fact that [D−D] is trivial if [C−C] is trivial: if so this gives a map
from S to CP 1 and hence from Z to CP 1. On the other hand, the correspondence
between scalar-flat Kähler metrics and Toda Einstein-Weyl spaces has a more subtle
generalization because the canonical bundle KZ is no longer the pullback of KS
and so [D +D]K1/2

Z is not the pullback of [C + C]K1/2
S .

IV. Compatible Einstein-Weyl structures D on selfdual conformal manifolds are
Einstein or locally hypercomplex [4, 23] and correspond to holomorphic rank two
distributions HD = ker vD on Z. The twisted 1-form θ ∈ H0

(
Z, (LD)−1K

−1/2
Z T ∗Z

)
defining HD can be contracted with ξC ∈ H0

(
Z, (Lξ)−1TZ

)
to give a holomorphic

section θ(ξC) of (LD)−1(Lξ)−1K
−1/2
Z , which has degree two on each twistor line. If

this section is not identically zero, then the corresponding divisor gives rise to a
complex structure. If the section is identically zero, then Lξ is a subbundle of HD

and so [[(D0⊗D)ξ, J ]] = 0 for all antiselfdual almost complex structures J .

When the Einstein-Weyl structure is Einstein with nonzero scalar curvature,
HD is a contact distribution, whereas when it is locally hypercomplex, HD is
integrable. Therefore, if the skew symmetric part of (D0⊗D)ξ is selfdual (i.e., if
Lξ is a subbundle of HD), I will say that ξ is Legendrian or triholomorphic in the
case that the scalar curvature is nonzero or zero respectively.

In the Legendrian case, the leaves of the foliation of Z given by ξ are Legendrian
curves in a contact manifold. Let S be the (local) quotient and let Z(y) be the
leaf corresponding to a point y ∈ S. Then at each point J of Z(y), the contact
distribution projects onto a one dimensional subbundle of TyS, giving a holomorphic
map of complex curves from Z(y) to P (TyS). This map cannot be constant, as
the contact distribution is non-integrable, so it is locally an isomorphism. By
its very definition, this isomorphism identifies the contact distribution on Z with
the canonical contact distribution on P (TS) ∼= P (T ∗S), where a line in TyS is
identified with its annihilator in T ∗yS. Therefore, Z can be locally identified (in
a neighbourhood of any twistor line) with the projectivized cotangent bundle of
S. This is Hitchin’s construction of the selfdual Einstein metric (with nonzero
scalar curvature) “filling in” a 3-dimensional Einstein-Weyl space [15]. LeBrun [18]
has given such a construction for any real analytic conformal 3-manifold B, and
Hitchin observes that the choice of a compatible Einstein-Weyl structure on B (if
one exists) equips the selfdual Einstein metric with a conformal submersion onto B.
The discussion here characterizes the conformal submersions arising in this way.

8.2. Theorem VIII. Let M be a selfdual Einstein manifold with nonzero scalar
curvature. Then M arises from the Hitchin-LeBrun construction iff it admits a
Legendrian selfdual conformal submersion.

The scalar curvature is usually taken to be negative: it is in such a real slice that
the original conformal 3-manifold appears as a conformal infinity.
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When the Einstein-Weyl space is hyperCR, its minitwistor space fibres over CP 1

and the vertical bundle of this fibration is transverse to the minitwistor lines. This
line subbundle of TS defines a sectionX of P (TS) which does not intersect the lifted
minitwistor lines, and hence does not intersect nearby twistor lines. On removing
this section P (TS) rX(S) is an affine bundle over S (and is still a twistor space).
Hence one can expect to carry out the Hitchin-LeBrun construction explicitly in
this case, using the affine monopole equations.

In general, P (TS) = P (K1/2
S TS) is at least a projective bundle, and so, corre-

sponding to K1/2
S TS, which is trivial on minitwistor lines and has trivial determi-

nant, there should be a canonical solution of the SL(2,R) Einstein-Weyl Bogomolny
equation on any Einstein-Weyl space, yielding a general formula for the Hitchin-
LeBrun construction on any Einstein-Weyl space. In the final section I shall find
this canonical solution directly.

9. Einstein-Weyl structures and conformal submersions

If g is a Riemannian metric and D = Dg + ω is Einstein-Weyl, then it is well
known that Dg − ω is Einstein-Weyl if and only if ω is dual, with respect to g, to
a conformal vector field. If ω is also divergence-free with respect to g, i.e., g is a
Gauduchon gauge for D, then ω is dual to a Killing field of g. (See e.g. [7, 8, 11, 23]
for more information on Einstein-Weyl geometry.)

9.1. Proposition. Suppose that (M, c) is a conformal manifold and (D+, D−) are
compatible Einstein-Weyl structures on M . Define a 1-form θ := 1

2(D+ −D−) and
a Weyl derivative D := 1

2(D+ +D−) (the barycentre) so that D± = D ± θ. Then
on the open set where θ is nonvanishing, ξ = θ/|θ| locally generates a conformal
submersion with minimal Weyl derivative D0 = 2D −D|θ| = D − |θ|−1D|θ|.

(Here D|θ| is the exact Weyl derivative defined by D|θ||θ| = 0. Since |θ| is a section
of L−1, this means that D|θ| = D + |θ|−1D|θ|.)

Proof. The standard formula for the dependence of the (normalized) Ricci tensor
on the Weyl derivative gives

rD± = rD ∓Dθ + θ ⊗ θ − 1
2 |θ|

2id

and hence Dθ = 1
2(rD− − rD+

). Since D± are both Einstein-Weyl, sym0Dθ = 0
and so one can write Dθ = σ id + F where σ is a section of L−2 and F is a skew
endomorphism of weight −2. Direct calculations give

D0 = D − |θ|−1(σξ − F (ξ))

D|θ| = D + |θ|−1(σξ − F (ξ)).

One now readily checks that ξ is conformal. �
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The following diagram in the affine space of Weyl derivatives summarizes this
Proposition, where γ = |θ|−1D|θ| = |θ|−1(σξ − F (ξ)).

D
+

D0 γ
-

-

D

θ 6

γ
- D|θ|

-

D
−

θ 6 -
-

In particular D0 is exact iff D is exact. This holds, for instance if D± are both
Levi-Civita derivatives of Einstein metrics.

I now specialize to four dimensions and Einstein-Weyl structures with selfdual
Faraday curvature. On a selfdual conformal 4-manifold, Einstein-Weyl structures
necessarily have selfdual Faraday curvature [4] and are either Einstein or locally
hypercomplex [23].

9.2. Theorem IX. Let D± be Einstein-Weyl structures whose Faraday curvatures
FD± are selfdual. Then, with the notation of the previous proposition, ξ locally
generates a selfdual conformal submersion, and also alt(D0⊗D±)ξ is selfdual.

Proof. Since FD+

and FD− are both selfdual, so is FD, and hence so is F 0, since
D|θ| is exact. This means that ξ locally generates a selfdual conformal submersion.
Furthermore F is selfdual, since it is equal to 1

4(FD+

− FD−). Consequently ω =
−2|θ|−1F (ξ) and so D = Dsd + |θ|−1σξ. Therefore D± both differ from Dsd by a
vertical 1-form, and so the antiselfdual part of (D0⊗D±)ξ vanishes. �

In the language of the previous section, the final condition on ξ means that ξ is
Legendrian if D± is the Levi-Civita derivative of an Einstein metric, and triholo-
morphic if D± is the Obata derivative of a hypercomplex structure.

Another picture in the affine space of Weyl derivatives may be helpful.

D0
1
2ω- Dsd

1
2ω- DB

D

|θ|−1σξ?γ -

D|θ|

2|θ|−1σξ

?γ
-

When both Einstein-Weyl structures are (locally) hypercomplex σ = 0 and so
DB = D|θ| and the Einstein-Weyl structure on B is Einstein. Indeed, since the
Einstein-Weyl quotient B admits two hyperCR structures, it must be the round
3-sphere metric [12]. Such bi-hypercomplex structures have been studied by Apos-
tolov and Gauduchon [1] and they have an elegant construction of the conformal
submersion that arises in this case, which I briefly describe.

If the hypercomplex structures corresponding to D+ and D− are (I+

1 , I
+

2 , I
+

3 )
and (I−1 , I

−
2 , I

−
3 ), then since both give oriented orthonormal frames for L2Λ2

−T
∗M ,

they are related by an SO(3)-valued function: I+

i = AijI
−
j . Applying D to this
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equation gives dAij(X)I−j = −2[[θMX,AijI
−
j ]], which implies that dAij(X) =

−Aikεjk`θ(I
−
` X). In particular, dAij(ξ) = 0 so this map to SO(3) factors through

the conformal submersion ξ. To see that the map to SO(3) actually is the conformal
submersion generated by ξ, one computes dAij(X)dAij(X) = 2(|θ|2|X|2 − θ(X)2).

Conversely, by Theorem III, any selfdual conformal submersion over the round
3-sphere metric is bi-triholomorphic with respect to a bi-hypercomplex structure.
The generalized monopole equation in the gauge w = |θ| = µ−1

S3 reduces to ∗BȦ =
dA+ Ȧ∧A, which has been also obtained by Belgun and Moroianu.

10. Selfdual Einstein metrics and hypercomplex structures

In this section I study selfdual conformal 4-manifolds M admitting a compati-
ble Einstein metric with nonzero scalar curvature and a compatible hypercomplex
structure. All such structures are obtained by applying the Hitchin-LeBrun con-
struction to a hyperCR Einstein-Weyl space B and the Einstein metric will be found
explicitly in terms of the Einstein-Weyl structure on B and a special solution of
the affine monopole equations.

The work of the previous section shows that if Dg = D − θ is the Levi-Civita
derivative of the Einstein metric and DOb = D + θ is the Obata derivative of the
hypercomplex structure, then ξ = θ/|θ| locally generates a Legendrian triholomor-
phic selfdual conformal submersion. The first goal in this section is to add one
more adjective to this list and prove that the submersion is affine.

To do this, a section w1 of L−1 must be found with D0w1 = F 0(ξ): w1 is then
linear part of the affine monopole w and the affine structure is given by D0

ξ + w1.

10.1. Proposition. Write DOb = Dsd − κξ. Then D0(2κ) = F 0(ξ).

Proof. First recall that κ is basic, i.e., D0
ξκ = 0. Now D0 and DOb are gauge

equivalent, since Dg and D|θ| are both exact. This implies that

0 = d(ω − 2κξ)(ξ) = dω(ξ) +D0(2κ) = FB(ξ)− F 0(ξ) +D0(2κ)

which proves the proposition since FB(ξ) = 0. �

This shows that the linear part of the affine monopole is twice the κ monopole
of the hyperCR space B = M/ξ, and so it satisfies ∗BDB(2κ) = FB [12, 8]. Fix
a gauge on B so that the Einstein-Weyl structure is given by a metric gB and a
1-form ωB. Then w1 = 2κ and one can take A1 = ωB. In order to fix the affine
gauge on M note that σ is a nonzero constant multiple of the scalar curvature of g
and so Dgσ = 0 since g is Einstein. In particular σ is nonvanishing by assumption.

10.2. Proposition. Define Daf = D0 + 2κξ. Then Daf
ξ (σ−1|θ|) = −2 so σ−1|θ| is

an affine section of L1 with respect to the affine structure.

Proof. Observe that (D0 − 2θ)(σ−1|θ|) = 0, i.e., Dσ−1|θ| = D0 − 2θ and so Daf =
Dσ−1|θ| + 2θ + 2κξ = Dσ−1|θ| − 2|θ|−1σξ. Hence Daf (σ−1|θ|) = −2ξ. �
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One more diagram in the affine space of Weyl derivatives may again clarify the
situation, where the Weyl derivative D̂ with D̂

(
|θ|−1) = 2ξ has been introduced for

completeness.

Daf - DB

D0 -

ω
-2κξ

�

DOb - D̂

2κξ
�

D

θ6

.............-

γ -

Dσ−1|θ|

2θ
6

-

2|θ|−1σξ

-

Dg
θ 6

- D|θ|

2θ
6

................................-γ
-

It follows from Proposition 10.2 that the affine coordinate t can be taken to be
a multiple of σ−1|θ| and so |θ|−1σξ is a multiple of t−1(dt + tA1 + A0). Now note
that DB = D|θ| − 2|θ|−1σξ and so −2d(|θ|−1σξ) = FB, A0 = 0 and |θ|−1σξ =
−1

2(t−1dt+ ωB). The remaining gauge freedom is fixed by taking w0 = µ−1
B .

Certainly (1 + 2tµBκ, tωB) is a solution of the affine monopole equations on
a hyperCR Einstein-Weyl space, yielding a selfdual space with a hypercomplex
structure by Theorem III. The Einstein gauge is the barycentre of the |θ|−1 gauge
and the σ−1|θ| gauge (both of which have been identified in terms of the affine
structure) and this encodes the Einstein equation, since DOb is Einstein-Weyl and
sym0Dθ = 0. Hence, writing µt = tµB, the following theorem is obtained.

10.3. Theorem X. Suppose (cB, D
B) is a 3-dimensional hyperCR Einstein-Weyl

space with twist κ. Then

g =
1
µ2

t

(
(1 + 2µtκ)π∗cB + (1 + 2µtκ)−1(DBµt)2

)
is a selfdual Einstein metric with nonzero scalar curvature a compatible hypercom-
plex structure. (Here µt is a section of L1 increasing along the fibres of a conformal
submersion π : M → B and cB is a conformal infinity at µt = 0.) Any selfdual
Einstein metric with a compatible hypercomplex structure arises locally in this way.

Explicit selfdual Einstein metrics can be found by applying this construction to
explicit hyperCR Einstein-Weyl spaces. To the best of my knowledge, the known
examples are the Einstein-Weyl spaces with geodesic symmetry, and the hyperCR-
Toda spaces. In the former case note that the twist of the hyperCR structure is
minus the twist of the geodesic symmetry and so the examples of section 5.2 (with
h = f) are reobtained [9]—these are the Pedersen metrics [22] when h is constant.

On the other hand, the hyperCR-Toda spaces yield new selfdual Einstein metrics
with compatible hypercomplex structures and no continuous symmetries:

g =
1
t2

(
H( |z + h|2gS2 + dz2) +H−1(dt+ tωB)2

)
H = 1 +

i(h− h)t
|z + h|2

, ωB = −2z + h+ h

|z + h|2
dzwhere

and h is holomorphic on an open subset of S2.
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HyperCR Einstein-Weyl spaces are not well understood: the results of this sec-
tion perhaps provide motivation for further investigations. Alternatively, one may
study hypercomplex selfdual Einstein 4-manifolds directly. Along these lines, Apos-
tolov and Gauduchon [1] have characterized the Pedersen metrics as the hyper-
complex selfdual Einstein 4-manifolds admitting a compatible (selfdual) Hermitian
structure.

11. The Hitchin-LeBrun construction

There is an interesting gauge transformation one can apply to the metric of
Theorem X: on replacing µt by the new projective coordinate µt/(1 − µtκ), the
metric becomes:

g =
1
µ2

t

((
1− µ2

tκ
2
)
π∗cB +

(
1− µ2

tκ
2
)−1(

DBµt + µ2
tD

Bκ
)2

)
.

Now on a hyperCR Einstein-Weyl space, DBκ = −1
2∗BF

B and κ2 = 1
6 scalB

(see [12]), so this form of the metric makes sense for any Einstein-Weyl space.
In this final section, I prove the following theorem.

11.1. Theorem XI. Let (cB, D
B) be an arbitrary 3-dimensional Einstein-Weyl

structure with Faraday curvature FB and scalar curvature scalB. Then

g =
(
1− 1

6µ
2
t scalB

)
µ−2

t π∗cB +
(
1− 1

6µ
2
t scalB

)−1(
µ−1

t DBµt − 1
2µt∗BFB

)2

is a selfdual Einstein metric of nonzero scalar curvature, with a Legendrian selfdual
conformal submersion π over B. (Here µt is a section of L1 increasing along the
fibres of π : M → B and the conformal structure cB is the conformal infinity at
µt = 0.) Any such selfdual Einstein metric arises locally in this way.

Strictly speaking, the above metric is only positive definite for 1
6µ

2
t scalB < 1

and in this region the scalar curvature is negative. For 1
6µ

2
t scalB > 1 the negation

of the above metric is positive definite and has positive scalar curvature.
Note that the Einstein metric can be written in a gauge µB by writing µt = tµB,

gB = µ−2
B cB and DB = D

µB + ωB. Then

g =
1
t2

((
1− 1

6 t
2µ2

B scalB
)
gB +

(
1− 1

6 t
2µ2

B scalB
)−1(

dt+ tωB − 1
2 t

2µB∗BFB
)2

)
.

The theorem is proven using the SL(2,R) Einstein-Weyl Bogomolny equation.
The conformal structure is determined by a canonical monopole on L

1/2
B ⊕ L

−1/2
B .

In a gauge µB, the Higgs field and connection 1-form are given by:

w =
(

0 µ−1
B

1
6µB scalB 0

)
, A =

(
1
2ωB 0

1
2µB∗BFB −1

2ωB

)
.

The connection is therefore DB + 1
2∗BF

B, with ∗BFB acting from L
1/2
B to L−1/2

B ,
while the Higgs field is 1+ 1

6 scalB in L−1
B ⊗

(
Hom(L−1/2

B , L
1/2
B )⊕Hom(L1/2

B , L
−1/2
B )

)
.
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The projective monopole equations are:

−1
6∗B(DB(µB scalB)− ωBµB scalB) = −1

2d(µB∗BFB) + 1
2ωB ∧µB∗BFB,

1
2F

B = 1
2dωB,

DB(µ−1
B ) + ωBµ

−1
B = 0.

Since DBµB = ωBµB and FB = dωB, the only nontrivial equation is the first one,
which reduces to 1

6D
B scalB = −1

2∗Bd
B∗BFB = 1

2δ
BFB, where δB is the twisted

exterior divergence. This equation is satisfied automatically: it is the differential
Bianchi identity for the Weyl connection in Einstein-Weyl geometry [11, 7].

It follows from Theorem VII that the metric g is selfdual with a selfdual projective
conformal submersion. It remains, therefore, to prove that g is Einstein and the
submersion is Legendrian. To do this, observe that the Levi-Civita derivative of g
is the barycentre of the Levi-Civita derivatives of µt and tw−1. Simple calculations
show that these are given by

DB − µ−1
t DBµt = DB − (1− 1

6µ
2
t scalB)µ−1

t ξ − 1
2µt∗BFB

Dw − t−1dt = D0 − (1 + 1
6µ

2
t scalB)µ−1

t ξ + 1
2µt∗BFB.and

HenceDg = Dsd−µ−1
t ξ (which will give the Legendrian property) and consequently,

rg = rsd +DB(µ−1
t )⊗ ξ + µ−1

t (D0⊗Dsd)ξ + µ−2
t (ξ ⊗ ξ − 1

2 id),

where I have written Dsd = DB ⊗D0⊗Dsd on T ∗M = L−1 ⊗ L−1 ⊗ TM . This
simplifies to give

rg = rsd − 1
2∗BF

B ⊗ ξ + 1
6 scalB ξ ⊗ ξ − 1

2µ
−2
t id + µ−1

t (D0⊗Dsd)ξ.

Finally substituting from Proposition 4.7 yields sym rg = 1
2(1

6 scalB −µ−2
t )id, and

so g is Einstein, with scalar curvature −12µ−2
t (1− 1

6 scalB µ2
t ). This completes the

proof of Theorem XI.
Examples arising from hyperCR Einstein-Weyl spaces have already been dis-

cussed. One source of further examples are the Ward-Toda spaces [26, 6]

g = (V 2
ρ + V 2

η )(dρ2 + dη2) + dψ2

ω =
2VρVη dη + (V 2

ρ − V 2
η )dρ

ρ(V 2
ρ + V 2

η )

where V is an axially symmetric harmonic function: (ρVρ)ρ + ρVηη = 0. These
spaces admit a symmetry generated by ∂/∂ψ and hence so will their Hitchin-LeBrun
metrics. Already in these examples, the Faraday and scalar curvatures are quite
formidable, so these Einstein metrics are not at all simple. Nevertheless, they can
be made completely explicit, and will undoubtedly repay further study.
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Centre de Mathématiques, Ecole Polytechnique, UMR 7640 du CNRS, F-91128
Palaiseau Cedex, France.

E-mail address: davidmjc@maths.ed.ac.uk


