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Introduction

The aim of this dissertation is to uncover and explore the intimate relation between three
different branches of mathematics: (A) local differential geometry on conformal manifolds,
in particular conformally invariant linear and bilinear differential operators, (B) homomor-
phisms and coproducts between induced modules in representation theory, and (C) interac-
tions of particles and fields in classical relativistic linear field theories for electromagnetism
and gravity in conformal Minkowski space.

The Möbius group G = O (p + 1, n − p + 1) of conformal diffeomorphisms acts transi-
tively upon the conformal sphere Sn−p,p of signature (n − p, p); hence the sphere occurs as
homogeneous space Sn−p,p = G/P with a (parabolic) stabilizer group P . Representations W
of the Möbius group enter into all three contexts in a fundamental way. In conformal geom-
etry (A), the vector bundle associated to a G-representation W carries a canonical covariant
derivative (induced by the normal Cartan connection); on the conformal sphere, the covari-
ant derivative is flat and the space of parallel sections is isomorphic to W . This is interpreted
in representation theory (B) as a canonical surjection from the G-module induced by W ∗

as a P -representation onto W ∗ using Frobenius reciprocity. The physical significance (C) of
such representations W was discovered by Penrose, see [PR84], who called elements in W
twistors . He identified W as the kernel of an overdetermined conformally invariant operator,
called a twistor operator . In linear field theories twistors play the role of generalizations of
electric charges such as gravitational masses, and they play a key role in this dissertation.

A second manifestation of the above relationship between conformal geometry, represen-
tation theory and field theory, is the fact that variations of the deRham complex of exterior
derivatives between alternating forms occur in all three of them: (A) associated to any G-
representation W is a locally exact complex of conformally invariant differential operators
between sections of homogeneous bundles over Sn−p,p = G/P , see Eastwood Rice [ER87]
or theorem 5.12, (B) any G-representation W is subject to the parabolic Bernstein Gelfand
Gelfand resolution in terms of modules induced by P -representations, see Lepowsky [Lep77]
or theorem 6.59, and (C) in n = 4 dimensions with Lorentzian signature (3, 1) any such
space W characterizes a linear field theory based upon gauges, potentials and fields, see
[PR84] or section 5.1. For the trivial representation W = R we recover electromagnetism
since Maxwell’s equations are based upon the deRham complex. The complexes occurring
in (A), (B) and (C) are named after Bernstein, Gelfand and Gelfand, and are called BGG
complexes for short. The first operator in such a complex is the twistor operator.

The main result of this dissertation is a new construction of the BGG complexes using a
projection S defined on twisted deRham complexes by an explicit finite power series. This
projection induces a homotopy equivalence between the twisted deRham complex and the
corresponding BGG complex, and has the additional benefit of revealing a new feature: not
only linear operators, but bilinear operators, generalizing the wedge product on the deRham
complex, are manifest at the interface of these three topics. In conformal geometry (A),
the projection S translates the wedge product on alternating forms into bilinear differential
pairings on the BGG complexes. These pairings and operators in the BGG complex are
subject to a general Leibniz rule and hence induce a cup product on the BGG cohomology,
see theorem 5.13. In algebraic terms (B), if g is a semisimple Lie algebra and p ⊂ g a parabolic
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subalgebra, then S is an explicit g-projection on the g-modules induced by Λk(g/p) ⊗W ∗,
see corollary 6.55. The image of the projection S is isomorphic to the g-module induced by
the relative cohomology space Hk((g/p)∗,W ∗). The map S defines a homotopy equivalence
between the deRham resolution twisted by W ∗ and the parabolic BGG resolution of W ∗,
see theorem 6.59. The wedge coproduct induces a new coproduct on the BGG resolution
which satisfies a general co-Leibniz rule, see theorem 6.61. In linear field theories (C) the
helicity of a field theory is a number reflecting a particular polarization property of plane
wave solutions of that theory. For example electromagnetic waves have helicity one and
gravitational waves are expected to have helicity two. The bilinear differential pairings
provide a wide-reaching generalization of helicity raising and lowering between solutions
in different conformally invariant linear field theories, which leads, for example, to general
constructions of conserved quantities, see the applications in section 5.4.

The motivation to study linear field theories other than the electromagnetic theory stems
from the quest for a better understanding of gravitational waves. This phenomenon is the
gravitational analogue of electromagnetic waves—the latter have a satisfactory description in
terms of Maxwell’s equations. One way to study gravitational interactions is to set up a linear
field theory with fields subject to equations analogous to Maxwell’s equations and with a force
law which predicts the motion of gravitational particles within these fields. Einstein’s theory
of gravity is nonlinear and linearizations of the Einstein equation are obvious candidates for
a linear theory of gravity. The naive linearization of the Einstein equation on the level of the
metric, with Minkowski background, fails to be conformally invariant. Instead we take the
electromagnetic theory as a starting point for a development of general linear field theories.
The guiding principle will be conformal invariance of the theory: gravitational waves are
expected to travel with the speed of light and the light cone geometry only determines a
conformal structure.

A linear field theory describing gravitational interaction deals with the following physical
phenomenon: motion of gravitational masses produces fields which travel with the speed of
light and these fields influence the motion of gravitational masses. In particular accelerated
sources will produce gravitational wave solutions. Any G-representation W leads to such a
field theory, but the expected polarization properties of plane gravitational waves rule out
most W leaving only three theories due to Fierz, Bach and Penrose, which we will recall in
some detail, see sections 5.5, 5.6, 5.7. The mentioned generalizations of helicity raising and
lowering allow us to suggest the beginning of a classical theory of motion i.e. a theory de-
scribing the interaction of particles and fields in arbitrary field theories with conformally flat
background: the elements in W play the role of generalized charges or gravitational masses in
the corresponding linear field theory. We will demonstrate how an arbitrary worldline with
an associated gravitational mass (i.e. an element in W , a twistor) gives rise to a conserved
distributional source, see paragraph 5.6. Moreover we can solve the general field equations
with that right hand side: the Lienard Wiechert fields in electromagnetism are solutions of
Maxwell’s equations with a distributional source coming from an electrically charged point-
like worldline. We will construct general Lienard Wiechert fields solving the general field
equations with a distributional source representing a gravitational mass associated to an ar-
bitrary worldline, see paragraph 5.11. In electromagnetism a straight worldline induces the
static Coulomb field, see paragraph 2.15 and accelerated worldlines induce radiation fields,
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i.e. fields which fall of like 1/r where r is the (luminosity) distance to the source, see para-
graph 5.10. Hence the general Lienard Wiechert fields provide solutions which model the
phenomenon that motion of gravitational masses produces gravitational waves that travel
with the speed of light. On the other hand the Lorentz force law in electromagnetism predicts
the force which acts on an electrically charged test particle moving in an electromagnetic
field, see paragraph 2.14. This force is proportional to the electric test charge. Similarly
the gravitational mass (i.e. the element in W ) of a test particle allows to define a force from
a general field which we suggest to be the force of the field acting on the test particle, see
paragraph 5.7. This force law models the phenomenon that gravitational fields influence the
motion of gravitational test particles. We claim that the above is the beginning of a theory
of motion for gravitational particles influencing each other through their gravitational fields.
Notice that pointlike particles as sources in the theory obtained by a linearization of the
Einstein equation are only conserved, if they follow a straight line, see Stephani [Ste91] p. 89
or remark 4.27. This prevents a theory of motion of various particles influencing each other
in a linearized Einstein theory, since already their individual conservation laws forces them
to follow straight lines.

Invariant differential operators are of interest in differential geometry: the Bianchi iden-
tity of the curvature tensor or the Codazzi equation of the second fundamental form of a
hypersurface are examples where differential operators occur in integrability conditions. The
first analytic question on a manifold with conformal structure is which differential operators
are intrinsically defined. A classification of linear conformally invariant first order operators
has been given by Fegan, Hitchin, Gauduchon [Feg76, Hit80, Gau91], see theorem 4.36. Sec-
ond order operators were classified by Branson [Bra96, Bra98], see the examples 4.47, 4.48
and proposition 4.51. Some of these operators are twistor operators, i.e. a section in the
kernel of such an operator is the curved analogue of an element in a G-representation W ,
see propositions 4.17, 4.24. Motivated by conservation of energy momentum in relativity, we
will explain, in a geometric context, how twistors give rise to new conserved properties along
conformal geodesics using bilinear differential pairings along curves, see propositions 4.19,
4.22, 4.25. We extend the theory of first and second order conformally invariant operators
by characterizing conformally invariant bilinear differential pairings by algebraic data and
construct some new classes of simple examples, see 4.39, 4.42, 4.52 ff. First and second order
operators and pairings are sufficient to do helicity raising and lowering between electromag-
netism and the three linear theories of gravity as indicated in sections 5.5, 5.6, 5.7. Indeed
it was these examples of conformally invariant bilinear pairings and Leibniz rules which led
us to conjecture the general existence of differential pairings imitating the wedge product
between forms.

In this dissertation we will explore the new product structure in BGG complexes on ho-
mogeneous parabolic geometries, i.e. on homogeneous spaces G/P where G is a semisimple
Lie group and P is a parabolic stabilizer group. For an extension of our result to curved
parabolic geometries using Cartan connections see the article by Calderbank and the author
[CD99]. Parabolic geometry includes for example conformal geometry in n ≥ 3 dimensions,
Möbius geometry in n = 2 dimensions, projective geometry, Graßmannian geometry and
Cauchy Riemann geometry. The programme of parabolic invariant theory was initiated by
Fefferman and Graham [Fef79, FG85]. We will focus on G-equivariant differential operators
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and pairings on G/P acting on sections of homogeneous bundles. Let p ⊂ g denote the Lie
algebras of P ⊂ G. The intimate relation between geometry and algebra is given in this con-
text by the fact that equivariant differential operators on G/P correspond to g-equivariant
homomorphisms between Verma modules induced by p-representations. First versions of
this observation go back to Bernstein Gelfand Gelfand [BGG75] and Eastwood Rice [ER87]
and were fully discovered independently by Baston Eastwood [BE89], Collingwood Shelton
[CS90] and Soergel [Soe90]. The study of homomorphisms between Verma modules was initi-
ated by Verma [Ver68] and continued by Bernstein Gelfand Gelfand [BGG71] and Lepowsky
[Lep77]. In interesting special cases such as the conformal case all Verma module homomor-
phisms are known due to Boe Collingwood [BC85], but in general a complete classification
has not been achieved. The resolution of a g-representation in terms of induced parabolic
Verma modules due to Bernstein Gelfand Gelfand [BGG71] and Lepowsky [Lep77] provides
us with a complex of homomorphisms between Verma modules, which are called standard
homomorphisms. The corresponding sequence of invariant differential operators is a locally
exact complex. The problem with these standard homomorphisms constructed by Verma
and Bernstein Gelfand Gelfand is that they were only explicit in special cases, for instance
if the corresponding highest weights are related by a simple root reflection. In a sequence of
pioneering papers [Bas90, Bas91], Baston introduced a number of general methods to con-
struct invariant differential operators in conformal geometry and a related class of parabolic
geometries, which he called almost hermitian symmetric structures. In the general parabolic
setting Čap, Slovák and Souček constructed in [CSS99] the standard operators by an induc-
tive process. In this context our main result is a new construction of the Bernstein Gelfand
Gelfand resolution in terms of an explicit finite power series of simple endomorphisms. The
applied method permits us to define the additional structure of a coproduct on the resolu-
tion. The corresponding bilinear differential product on the sequence of differential operators
satisfies a Leibniz rule.

The structure of this dissertation is as follows. The first chapter brings together dimen-
sional analysis in physics and geometry. The following scalars: a length scale, an electric
charge, an inertial mass, or a volume density have different distinctive dimensions . Therefore
we will not treat all of them as real numbers, but as elements in different one dimensional
vector spaces, see definition 1.1. A choice of a unit corresponds to the choice of a basis
vector in such a one dimensional space. The dimensional analysis, well known to physicists,
carries over to geometry when a preferred length scale is not available. It allows to define
conformal structures invariantly, see definition 2.1, it determines the order of differential
operators and pairings, and it provides a first hint towards the physical interpretation of a
given tensor—see the examples in section 1.2. In section 1.3 we recall the deRham complex
its wedge product and Leibniz rule. The structure of this complex lies at the heart of this
dissertation since our main result proved in the last chapter 6 is an application and gener-
alization of it. The last section 1.6 applies densities to differential geometry, i.e. defines a
covariant derivative on these line bundles. These so called Weyl derivatives not only provide
a geometric interpretation of the first Maxwell equation, but also become fundamental in
conformal geometry on manifolds.

Chapter 2 defines conformal structures on affine spaces and smooth manifolds and relates
it to electromagnetism and general relativity. It contains in section 2.2 an introduction to
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Minkowski’s relativistic formulation of electromagnetism emphasizing its conformally invari-
ant aspects such as the electromagnetic constitutive relation in vacuum. In section 2.3 we
describe how Weyl derivatives of the density bundle parameterize the covariant derivatives of
the tangent bundle on conformal manifolds. A differential geometric construction involving
a choice of Weyl derivative is called conformally invariant, if it does not depend upon that
choice. In particular for constructions involving higher derivatives, like the curvature tensor,
we present, in section 2.6, a convenient way to study the dependence on the Weyl derivative.
In section 2.7 we recall the first few integrability conditions of the conformal curvature ten-
sor. These Bianchi identities motivate the field equations for geometric theories of gravity,
such as Einstein’s or Bach’s theory.

Chapter 3 provides a link between the change of Weyl derivative and the Lie algebra g of
vector fields leaving the conformal affine structure invariant. In section 3.3 we identify this
Möbius algebra as a linear Lie algebra g = so(p+1, n−p+1). This allows to use subspaces of
the tensor algebra of Rp+1,n−p+1 as representations W for g. Elements ofW are called twistors
and they induce twistor fields on the affine conformal space, i.e. functions with values in the
space of coinvariants of W . This inclusion, twistors 7→ twistor fields, is the beginning of
the conformal Bernstein Gelfand Gelfand complex. In chapter 4 we will construct invariant
differential operators annihilating these twistor fields for W = Λk+1Rp+1,n−p+1. Hence such
a twistor operator is the next map in the BGG complex.

Chapter 4 splits into two parts. The first three sections 4.1, 4.2 and 4.3 deal with confor-
mal invariants along curves. The invariance of the lightlike acceleration suggests a classical
law of the interaction of an electromagnetic field with a light ray. This gives a classical
model for the light-light interactions predicted by quantum electrodynamics, although these
interactions are expected to be very weak and so it remains a great challenge to observe
them in the laboratory. Motivated by energy momentum conservation in general relativity
we present in section 4.3 a geometric interpretation of twistor fields: they lead to conserved
properties along conformal geodesics (circles) on arbitrary conformal manifolds. In confor-
mal affine space this observation has the reinterpretation that a conformal geodesic (perhaps
with an additional parallel tensor attached to it) induces a natural twistor up to scale. The
second part, sections 4.4 and 4.5, focuses on differential invariants up to order two for sec-
tions of natural bundles on conformal manifolds. The main definition is a 2-jet operator
4.44 in terms of a Weyl derivative. This operator transforms under a linear change of Weyl
derivative in a purely algebraic way, hence any second order conformal invariant known from
the affine space translates into an invariant on an arbitrary conformal manifold. This al-
lows to characterize linear and bilinear conformal invariants algebraically. We will give some
general examples of operators and pairings which were motivated from the study of linear
field theories for gravity, which are special cases of BGG complexes including their wedge
product structure.

Chapter 5 begins with a general analysis of the ingredients and principles a linear field
theory like electromagnetism should follow. In sections 5.2 and 5.3 we demonstrate how
differential pairings and Leibniz rules support Penrose’s idea to view twistors as generalized
charges. In section 5.4 we use our main result (which we will prove in chapter 6) to define
the notion of a conformally invariant linear field theory. In the following three sections 5.5,
5.6 and 5.7 we investigate three particular field theories in connection with linear gravity.
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We will calculate the relevant pairings here in terms of a Weyl derivative. This happens in
advance of the main result to motivate and to engender a better understanding of pairings.

Chapter 6 develops the Bernstein Gelfand Gelfand resolution in the context of homoge-
neous parabolic geometry. In section 3.4 we already observed that the conformal sphere is
an example of parabolic geometry. In the first section 6.1 we define a jet operator encoding
the information of all derivatives of a section of a homogeneous bundle at a point into a
linear form on an induced module, also called a Verma module . Invariant linear differential
operators and bilinear pairings are then in one to one correspondence with homomorphisms
and coproducts between Verma modules. In section 6.2 we fix the notion of a parabolic
subalgebra in the way we will use it in the next section 6.3 on finite dimensional relative Lie
algebra homology. The operators of the BGG complex act between sections of homogeneous
bundles associated to these relative Lie algebra homology spaces. In section 6.4 we rewrite
the deRham complex in terms of homomorphisms between Verma modules. The key obser-
vations are made in section 6.5 where we present a variation of Kostant’s Hodge theory of
Lie algebra cohomology. This allows to define a projection S on the Verma modules induced
by the cochains which projects onto a submodule isomorphic to the Verma module induced
by the cohomology. This projection S translates the deRham homomorphism to the BGG
homomorphisms and the wedge coproduct to a BGG coproduct.
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Chapter 1

Densities and dimensional analysis

This chapter, although elementary and simple, illuminates the role played by scalar den-
sities: we will bring together scale invariance in analysis, physics and geometry. To each
number w there is a one dimensional vector space Lw of elements with geometric dimension
(length )w. These spaces will allow us to define conformal metrics intrinsically (see defini-
tion 2.1) and to specify domain and target of conformally invariant differential operators
properly (see chapter 4 on differential conformal invariants). Here densities enable us to
develop a simple geometric dimensional analysis of arbitrary tensors. One novel feature is
a discussion of the exemplary correspondence between physical dimensions and geometric
dimensions: scalars of some particular physical dimension will be identified with elements
in a Lw. We will indicate how the Sobolev number in functional analysis also relates to Lw.
Volume densities L−n allow to treat integration on manifolds globally without orientability
assumptions. Particular applications are natural adjoints of differential operators, distri-
butions and integral theorems, see paragraphs 1.18, 1.22 and 1.39. Adjoints, distributions
and integral theorems clarify fundamental constructions in physical field theories such as
Maxwell’s equations 2.12 and sources from pointlike charges, see paragraph 5.6. We clarify
the distinction between integration over oriented and cooriented submanifolds in section 1.4,
which allows to distinguish between electric and magnetic charge, see definitions 2.19 and
2.21. We will recall the divergence theorem 1.39 on manifolds with boundaries since in full
generality it is less widely appreciated than the Stokes’ theorem, but is more natural since
it avoids orientability assumptions. On manifolds the density bundles can be equipped with
a Weyl derivative which illustrates the differential geometric aspect of densities and will
be pursued later in the context of conformal geometry. We view the mentioned concepts
of densities, dimensional analysis and Weyl derivatives as being as fundamental as tangent
vectors or linear connections.

1.1 Linear algebra of densities

We begin this chapter with the linear algebra of densities and define a simple geometric
dimensional analysis for tensors. From a representation theoretic view point the geometric
dimension is characterized by the weight of the tensor representation restricted to the centre
of the general linear group. The following explicit definition is taken from [Cal98b]:
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Definition 1.1 Let V be a real n-dimensional vector space and w ∈ R a real number.
A homogeneous map µ : ΛnV−{0} → R with the property µ(λω) = |λ|−w/nµ(ω) for all
λ ∈ R−{0} and ω ∈ ΛnV−{0} is called a density of weight w .

The set of all densities of weight w forms a one dimensional vector space Lw(V ) or
simply Lw. This vector space is oriented, since a nontrivial density takes either positive
or negative values. The various vector spaces of densities satisfy canonical isomorphisms:
Lw1 ⊗ Lw2 = Lw1+w2, Lw∗ = L−w and L0 = R.

Remark 1.2 The vector space Lw can equally well be characterized as the representation
GL (V )→ GL (Lw) = R−{0} given by A 7→ | detA|w/n. Dilations (positive multiples of the
identity) A = λid act by multiplication with λw on Lw. The multiples of the identity form
the centre of GL (V ) and w is also called the central weight of Lw.

Elements of L1 may be thought of as scalars with dimensions of (length ). General tensors
of V , i.e. elements of Lk ⊗ V i ⊗ V ∗j will be said to have central weight w := k + i − j or
dimensions of (length )k+i−j, since dilations λid naturally act upon them by multiplication
with λk+i−j (hence w = k+ i− j is sometimes called the degree of homogeneity ). The central
weight of the tensor product of two tensors is given by the sum of individual central weights.

Example 1.3 Real numbers R = L0 are weightless and dimensionless. Vectors of V have
central weight +1 and describe translations of dimensions (length ). A positive density of
weight −n assigns naturally a real number as volume to an n-dimensional parallelepiped
and has dimension (length )−n. The tensor product L−n ⊗ ΛnV is the weightless space of
pseudoscalars . This one dimensional space naturally carries a norm given by |µ⊗ω| := |µ(ω)|.
The two orientations of V are in one to one correspondence with the two unit elements of
L−n ⊗ ΛnV .

Remark 1.4 This definition of weight is in agreement with Gauduchon’s convention in
[Gau91]. In the fundamental articles by Fegan [Feg76] and Hitchin [Hit80] the definition of
weight differ from ours by a minus sign. However, in parts of the literature the definition
of the weight is very different and those definitions of weight do not allow the satisfactory
dimensional analysis as discussed in the next section. Eastwood in [Eas96] assigns k as
weight to elements in Lk ⊗ V i ⊗ V ∗j. Similarly Bergmann [Ber76], Stephani [Ste91] and
Weyl [Wey70] prefer to assign −k/n as weight for Lk ⊗ V i ⊗ V ∗j.

1.2 Physical dimensions and fundamental constants

.
Physical quantities are measurable aspects of physical objects. The value of a scalar

quantity is the product of a real number and a chosen unit (e.g. a ruler has length 30cm). In-
dependent of the unit is the dimension characterizing the type of the scalar quantity in ques-
tion. From a basic set of dimensions like (length ), (time ), (inertial mass ), (electric charge ),
(gravitational mass ) and (temperature ), one can generate derived dimensions as commuta-
tive products and powers of these basic dimensions like (acceleration ) := (length )/(time )2.
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Mathematically, different one dimensional real vector spaces can represent different basic
dimensions. Scalar quantities of a given (derived) dimension are elements of the appropriate
tensor product of these one dimensional vector spaces (and their duals). The choice of a
basis in such a one dimensional space corresponds to a choice of a unit of that dimension
and this is called a gauge fixing . The one dimensional vector spaces Lw from definition 1.1
are geometric examples of spaces carrying scalars of dimension (length )w.

For theoretical purposes one can reduce the number of basic dimensions by one, if one
postulates that a certain proportionality factor which appears in a (fundamental) law of
nature is a (fundamental) constant of nature. The first example is Newton’s law of mo-
tion, which says that the force (e.g. of a spring) acting on a body is proportional to the
inertial mass of the body times its acceleration: F = λma. The proportionality factor
λ is universal. This factor is always set to unity, which turns Newton’s law in a combi-
nation of a law of motion and a definition for the dimension of force (see [Par87] p. 239)
(force ) = (inertial mass )(acceleration ).

Further examples of these laws are Einstein’s relation between energy and inertial mass
of massive particles E = mc2, Planck’s relation between energy and frequency of massless
particles E = ~ω, Coulomb’s force law between two electric charges F = 1

4πε0

q1q2
r2

, New-
ton’s force law between two gravitational masses F = γm1m2

r2
and Boltzmann’s law between

thermical energy per degree of freedom and temperature of a molecule E = 1
2
kT . The

dimensions of the mentioned constants of nature are as follows:

Velocity of light: dim (c) = (length )/(time ),

Planck’s constant: dim (~) = (energy )(time ) = (force )(length )(time ),

Coulomb’s constant: dim (1/( 4πε0 )) = (force )(length )2/(electric charge )2,

Newton’s constant: dim (γ) = (force )(length )2/(gravitational mass )2,

Boltzmann’s constant: dim (k) = (energy )/(temperature ).

One way to deal with fundamental constants is to choose appropriate units in all basic
dimensions such that these constants have the value 1. Having done this, all constants
disappear in formulas. We don’t want to choose units in basic dimensions here. Instead
we will use fundamental constants as factors in front of physical quantities such that the
product has a dimension which is simply a power of (length ):

Example 1.5 (Kinematic dimensions) Using c one reduces the basic kinematic dimensions
(length ) and (time ) to powers of (length ), e.g. (frequency ) = dim (c−1) (length )−1.

Example 1.6 (Mechanical dimensions) Using c and ~ one reduces the basic mechanical
dimensions (length ), (time ) and (inertial mass ) to powers of (length ): note, dim

(
~

c

)
=

(length )(inertial mass ) and dim (~) = (length )(linear momentum ). In classical mechanics
the linear momentum is an element of the dual tangent space of the configuration space,
hence has geometric dimension (length )−1 in agreement with this choice of fundamental
constants.

Example 1.7 (Electromagnetic dimensions) In the same way one reduces the basic elec-
tromagnetic dimensions (length ), (time ), (inertial mass ) and (electric charge ) using c, ~
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and 1
4πε0

to powers of (length ). Notice that dim (~c) = (force )(length )2 and hence there is

a natural unit for electric charges since (electric charge )2 = ~c 4πε0 and electric charge q
becomes dimensionless (i.e. a real number) when divided by

√
~c 4πε0 .

In electrostatics there are two basic quantities. The electric field strength E has di-
mension dim (E) = (force )/(electric charge ). The dielectric displacement D has dimension
dim (D) = (electric charge )/(area ). Notice,

dim

(√
4πε0

~c
E

)
= dim

(√
1

4πε0 ~c
D

)
= (length )−2.

In magnetostatics there are also two basic quantities. It is convenient to introduce the di-
mensions (current ) := (electric charge )/(time ) and (voltage ) := (energy )/(electric charge ).
The magnetic flux B has dimension dim (B) = (voltage )(time )/(area ) and the magnetic
loop tension H has dimension dim (H) = (current )/(length ). Notice once more,

dim

(√
4πε0 c

~
B

)
= dim

(√
1

4πε0 ~c3
H

)
= (length )−2.

In relativistic electromagnetism, the electric field E and the magnetic flux B are sum-
marized into a 2-form F , the so called Faraday form F . The first Maxwell equation dF = 0
is expressed in terms of the natural exterior derivative see paragraphs 1.23 and 2.9. The
Faraday form therefore carries the geometric dimension (length )−2. Similarly, the dielectric
displacement D and the magnetic loop tension H are summarized into a bivector density
(denoted by G). The second Maxwell equation is expressed in terms of the natural exterior
divergence see paragraphs 1.24 and 2.9. The bivector density G therefore carries the geo-
metric dimension (length )2−n, where n is the spacetime dimension. Hence with the above
choice of fundamental constants and in n = 4 spacetime dimensions, the natural geometric
dimensions and the physical dimensions are in full correspondence.

Example 1.8 (Gravitational dimensions) Analogously, using c, ~ and γ one reduces the
basic gravitational dimensions (length ), (time ), (inertial mass ) and (gravitational mass )
to powers of (length ). A gravitational mass becomes dimensionless, when divided by

√
~c/γ.

Example 1.9 (Thermodynamical dimensions) Using c, ~ and k one reduces the basic ther-
modynamical dimensions (length ), (time ), (inertial mass ) and (temperature ) to powers of
(length ).

Fundamental constants as factors allow scalars of any physical dimension to be viewed as
elements in one of the geometrically defined spaces Lw of the previous chapter. Similarly, a
tensorial physical quantity is mathematically described by an element in the corresponding
tensor space of the central weight according to its dimension.

Remark 1.10 The elementary electric charge e of the electron defines another natural unit
of dimension (electric charge ). Hence the quotient e2/(~c 4πε0 ) determines a (dimensionless)
real number, the so called electric fine structure constant . A gravitational analogue to an
elementary electric charge has not been observed. We will not use the elementary electric
charge of the electron as a unit.
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Remark 1.11 The equivalence principle formulated as the proportionality between inertial
and gravitational mass of a massive particle leads to another constant which one could call
Galilei’s constant g:

Galilei’s constant: dim (g) = (gravitational mass )/(inertial mass ).

For historical reasons, this constant is always set to unity (the common units for inertial
mass are also used for gravitational mass). Using Galilei’s constant g together with c, ~

and γ Planck found natural units for all dimensions involved, in particular dim (g2~γc−3) =
(length )2. We will not make use of the equivalence principle in that way, hence we will not
use Galilei’s constant and we will not use the resulting units of Planck. (We believe that
Galilei’s constant is not fundamental, instead it we would like to view it as a consequence of
a proper understanding of Mach’s principle.)

Remark 1.12 In Einstein’s theory of gravity one usually uses c, γ and Galilei’s constant g
from above without Planck’s constant ~ to reduce the basic gravitational dimensions to pow-
ers of (length ) (see [MW57], p. 596). With this choice of constants we have dim (gγc−2) =
(length )/(gravitational mass ) instead of a natural unit for gravitational mass. Taking also
Coulomb’s electric constant 1/( 4πε0 ) into account, one finds for electric charge in analogy

to gravitational mass dim
(
gc−2

√
γ/( 4πε0 )

)
= (length )/(electric charge ). Note that in

this case the electric field strength has dimension dim
(
gc−2
√
γ 4πε0E

)
= (length )−1, so

that we would lose the correspondence between physical dimensions and natural geometric
dimensions explained in paragraph 1.7.

1.3 Density bundles and divergence operators

Applying the construction in definition 1.1 of densities of weight w pointwise to the tangent
space of a n-dimensional manifold M leads to a family of natural real line bundles Lw =
Lw(TM) over M . Alternatively one could use the (first order) frame bundle GL (M) of M
and the associated bundle construction for the representation | det |w/n of GL (Rn) to obtain:
Lw(TM) = GL (M)×| det |w/n R. These line bundles are oriented and hence trivializable, but
except for w = 0 do not carry a natural trivialization. The sections of L−n over M play the
role of natural integrands. We will follow Calderbank [Cal96] to define natural adjoints of
differential operators and distributions. We apply this definition to the deRham complex to
obtain the complex of exterior divergences.

Discussion 1.13 (Integration) We fix a notion of integration of smooth functions defined
on a unit cube [0, 1]n in Euclidean n-space which satisfies linearity and the transformation
formula under diffeomorphisms of the cube to itself. If F : [0, 1]n → M is smooth and
µ ∈ C∞(M,L−n) is a density of weight −n then x ∈ [0, 1]n and (F ∗µ)x := µF (x)(∂Fx(.)∧ . . .∧
∂Fx(.)) define a density on Rn. We say a real valued R-linear functional

∫
M

: C∞
o (M,L−n)→

R from densities of weight −n with compact support locally agrees with the Euclidean integral
if for any F : [0, 1]n →M and any µ ∈ C∞

o (M,L−n) with supp(µ) ⊂ im (F ) we have:
∫

M

µ =

∫

[0,1]n
F ∗µ(e1 ∧ . . . ∧ en),
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where ei is the standard basis in R
n. A partition of unity argument shows existence:

Proposition 1.14 There is a linear functional
∫
M

: C∞
o (M,L−n) → R which locally agrees

with the Euclidean integral and which therefore is unique and invariant under diffeomor-
phisms of M .

Discussion 1.15 (Divergence of vector fields) Let X ∈ C∞(M,TM) be a vector field and
µ ∈ C∞(M,L−n) a positive density of weight −n. The Lie derivative LXµ is defined by
differentiating the pull back of µ by the local flow of X. The divergence of X with respect
to µ is a function on M defined by (divµX)µ = LXµ. The divergence can be interpreted as
the rate of volume expansion of the flow of X with respect to µ. Notice that for any function
f ∈ C∞(M,R) we have L(fX)µ = LX(fµ), such that the above formula defines a linear first
order differential operator on vector field densities like µ⊗X:

div : C∞(M,L−n ⊗ TM)→ C∞(M,L−n).

A vector fieldX ∈ C∞
o (M,TM) with compact support on the interior ofM has a complete

flow. The diffeomorphism-invariance of the integral leads to the following vanishing result:

Proposition 1.16 (Integration by parts) If X ∈ C∞
o (M,TM) has compact support and

µ ∈ C∞(M,L−n) is positive then
∫
M

div(µ⊗X) = 0.

Definitions 1.17 (Jets, differential operators and pairings) Let EM → M be a vector
bundle. At a point x ∈M we define for any k ∈ N the vector space of sections which vanish up
to order k at x to be Zk

x(EM) := {e ∈ C∞(M,EM) | e(x) = 0, de(X) = 0, . . . , dke(x) = 0}.
The projection jetk(e)x of a section e ∈ C∞(M,EM) onto the quotient Jetk(EM)x :=
C∞(M,EM)/Zk

x(EM) is called the k-jet of e at x . The vector bundle Jet k(EM) → M is
called the k-jet bundle of EM . We have a bundle inclusion Sym kT ∗ ⊗ EM → Jetk(EM)
defined at x ∈ M by a function f ∈ C∞(M,R) with f(x) = 0 as (∂f)k ⊗ e 7→ jetk(f ke).
This is the beginning of a short exact sequence of bundle maps:

0→ Sym kT ∗ ⊗ EM → Jetk(EM)→ Jetk−1(EM)→ 0.

Let FM → M denote another vector bundle. A linear differential operator of order k is a
R-linear map

∇ : C∞(M,EM)→ C∞(M,FM)

which factors through a bundle map π : Jet k(EM) → FM as ∇ = π ◦ jetk with nonzero
symbol defined to be the composite: Sym kT ∗ ⊗ EM → Jetk(EM) → FM . The universal
k-jet operator jetk : C∞(M,EM) → C∞(M, Jetk(EM)) is a particular example. Similarly
we call a R-bilinear map

X : C∞(M,E1M)× C∞(M,E2M)→ C∞(M,FM)

which factors through a bundle map Q : Jet k(E1M) ⊗ Jetk(E2M) → FM as X(e1, e2) =
Q(jetk(e1)⊗ jetk(e2)) a bilinear differential pairing of order k .
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Discussion 1.18 (Adjoints) Let EM → M and FM → M be two vector bundles over
M and ∇ : C∞(M,EM) → C∞(M,FM) be a linear differential operator. A differential
operator ∇∗ : C∞(M,L−n ⊗ F ∗M) → C∞(M,L−n ⊗ E∗M) is called adjoint to ∇, if for all
sections with compact support in the interior of M we have

∫
M
〈∇ e, φ〉 =

∫
M
〈e,∇∗ φ〉. If

∇∗ exists, it is unique. One way to proof adjointness of two given operators ∇ and ∇∗ is to
construct a bilinear differential pairing

X∇ : C∞(M,EM)× C∞(M,L−n ⊗ F ∗M)→ C∞(M,L−n ⊗ TM),

such that a divergence formula holds:

div(X∇(e, φ)) = 〈∇ e, φ〉 − 〈e,∇∗ φ〉.

The differential order of the pairing is one less then the order of the operator. In particular
for first order operators the pairing is tensorial.

Definition 1.19 (Covariant derivative) A linear first order operator D : C∞(M,EM) →
C∞(M,T ∗⊗EM) with symbol given by the identity on T ∗⊗EM is called covariant derivative
on EM .

Associated to a covariant derivative D is the Riemann curvature tensor RD . It defines
the local obstruction against the existence of parallel sections:

Proposition 1.20 (Curvature) Let D be a covariant derivative of a vector bundle EM . The
following trilinear differential pairing RD : C∞(M,TM) ⊗ C∞(M,TM) ⊗ C∞(M,EM) →
C∞(M,EM) defined by RD(X, Y )e := DX(DY e) − DY (DXe) − D[X,Y ]e (where X, Y are
vector fields, e a section and the Lie bracket on functions is defined by ∂[X,Y ] = ∂X∂Y −∂Y ∂X)
is indeed zero order and defines the curvature of D to be an endomorphism valued 2-form
RD ∈ C∞(M,Λ2T ∗ ⊗ E∗ ⊗ EM).

Remark 1.21 A covariant derivative on EM induces a covariant derivative on the dual
bundle E∗M by the product rule: ∂X(〈η, e〉) = 〈DXη, e〉 + 〈η,DXe〉, with a vector field
X and sections e ∈ C∞(M,EM) and η ∈ C∞(M,E∗M). Consider the tensorial pairing
EM ⊗ (L−n⊗ T ⊗E∗M)→ L−n⊗TM with e⊗Y ⊗ η 7→ Y 〈e, η〉. It satisfies the divergence
formula:

div(〈e, (Y ⊗ η)〉) = 〈DY e, η〉+ 〈e,DY η〉+ 〈e, η〉 div(Y ),

with Y ∈ C∞(M,L−n ⊗ TM). This shows that a covariant derivative has an adjoint
D∗ : C∞(M,L−n ⊗ T ⊗ E∗M) → C∞(M,L−n ⊗ E∗M) given by D∗(Y ⊗ η) = −DY η −
div(Y )⊗ η.

Discussion 1.22 (Distributions) Let M be a n-dimensional manifold and EM → M
a vector bundle. The space of test functions C∞

o (M,L−n ⊗ E∗M) consists of smooth
sections with compact support in the interior of M . The space of sections of the k-jet
bundle C∞

o (M, Jetk(L−n ⊗ E∗M)) is equipped with the compact open topology and this
pulls back under jetk : C∞

o (M,L−n ⊗ E∗M) → C∞(M, Jetk(L−n ⊗ E∗M)) to induce the
Ck-topology on C∞

o (M,L−n ⊗ E∗M). A distributional section of EM is a linear map
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C∞
o (M,L−n⊗E∗M)→ R which is continuous with respect to the Ck-topology for all k ∈ N.

The set of all such distributions is denoted by D(M,EM) := C∞
o (M,L−n⊗E∗M)∗. Locally

integrable sections of EM , i.e. elements of L1
local(M,EM) define distributions via pointwise

contraction and integration over M .
Let ∇ : C∞(M,EM) → C∞(M,FM) be a linear differential operator. Its transpose in

terms of distributions always exists: ∇trans : D(M,L−n ⊗ F ∗M) → D(M,L−n ⊗ E∗M). If
the restriction of ∇trans to smooth sections gives smooth sections, then this restriction is the
adjoint ∇∗ : C∞(M,L−n⊗F ∗M)→ C∞(M,L−n⊗E∗M). If this adjoint exists the operator

∇ can be extended to distributional sections ∇ : D(M,EM) → D(M,FM) via 〈〈∇ e, φ〉〉 =
〈〈e,∇∗ φ〉〉 with a distribution e ∈ D(M,EM) and a test function φ ∈ C∞

o (M,L−n ⊗ F ∗M).
Since a covariant derivative D of EM always has an adjoint, one can say that distribution

can infinitely often be differentiated.

Discussion 1.23 (Exterior derivative) On any manifold the exterior derivative on alternat-
ing forms

d : C∞(M,ΛkT ∗M)→ C∞(M,Λk+1T ∗M)

defines a linear first order differential operator. The sequence of exterior derivatives builds
the deRham complex : d ◦ d = 0. The resulting cohomology is called deRham cohomology .
The deRham complex is locally exact in the sense that it becomes exact when restricted to
a contractible open subset of M . The wedge product is a zero order bilinear pairing:

∧ : C∞(M,ΛkT ∗M)× C∞(M,ΛlT ∗M)→ C∞(M,Λk+lT ∗M),

subject to the following Leibniz rule :

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ.

Hence the wedge product induces a cup product in the deRham cohomology.

For a vector space V we have a GL (V )-equivariant pairing 〈 , 〉 : ΛkV ∗ ⊗ ΛkV → R.
We define interior multiplication by forms to be a linear map y : ΛkV ∗ ⊗ Λk+lV → ΛlV
which is adjoint to the wedge product in the sense 〈α y a, β〉 = 〈a, α ∧ β〉, with α ∈ ΛkV ∗,
a ∈ Λk+lV and β ∈ ΛlV . Similarly interior multiplication by multivectors is a linear map
y : ΛkV ⊗ Λk+lV ∗ → ΛlV ∗. On a n-dimensional manifold M the bundle of alternating
forms can be tensored with the bundle of pseudoscalars L−n⊗ΛnTM and the above interior
multiplication provides an isomorphism

ΛkT ∗ ⊗ (L−n ⊗ ΛnT )
∼=−→ L−n ⊗ Λn−kT

α⊗ or 7→ α y or

to obtain the bundle of multivector densities. Likewise we can tensor the bundle of multivec-
tor densities by the (dual) pseudoscalars Ln ⊗ ΛnT ∗M to recover the bundle of alternating
forms:

L−n ⊗ ΛkT ⊗ (Ln ⊗ ΛnT ∗)
∼=−→ Λn−kT ∗

a⊗ or∗ 7→ a y or∗.
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Discussion 1.24 (Exterior divergence) The bundle of dual pseudoscalar Ln⊗ΛnT ∗M over
M has rank one, comes with a natural norm and hence with local sections or∗ which are
parallel. The exterior divergence on multivector densities

div : C∞(M,L−n ⊗ ΛkTM)→ C∞(M,L−n ⊗ Λk−1TM),

is then defined in terms of the exterior derivative by

(div a) y or∗ := (−1)k+1d(a y or∗).

The sequence of divergences defines a complex div ◦ div = 0. The resulting homology is
called deRham homology . Interior multiplication y is a zero order pairing

y : C∞(M,ΛkT ∗M)× C∞(M,L−n ⊗ Λk+lTM)→ C∞(M,L−nΛlTM).

For α ∈ C∞(M,ΛkT ∗M) and a ∈ C∞(M,L−n ⊗ Λk+lTM) we get from the Leibniz rule the
following divergence formula:

(−1)k div(α y a) = dα y a+ α ydiv a.

For that note (α y a) y or∗ = (−1)k(k+l+1)α ∧ (a y or∗). Hence the interior multiplication
defines a cap product between deRham cohomology and homology. For l = 1 the above
divergence formula shows that d and − div are adjoints.

Remark 1.25 For k = 0 we recover the divergence on vector fields from paragraph 1.15,
since for functions f ∈ C∞(M,R) and vector fields X ∈ C∞(M,L−n⊗ TM) we clearly have
the divergence formula div(fX) = 〈df,X〉+ f div X.

Remark 1.26 Let D be a torsion-free covariant derivative of TM (see definition 1.19 and
proposition 2.27). (Local coordinates induce torsion-free derivatives.) With a dual basis ti,
θi of TM we like the exterior derivative on a form α to be dα =

∑
i θ

i∧Dtiα. With the above
sign convention we obtain for a multivector a applied to the divergence div a =

∑
i θ

i yDtia.

Remark 1.27 The divergence operator can also be defined invariantly on decomposable
multivector density fields using the Lie derivative: for k = 1 let µ denote a nonvanishing
density of weight −n and X, Y vector fields then div(µ⊗X ∧ Y ) = (LXµ)⊗ Y − (LY µ)⊗
X + µ⊗ [X, Y ].

Application 1.28 (Covariant exterior derivative) Let EM be again a vector bundle over M
andD a covariant derivative on EM . Since the exterior derivative on forms is first order it can
be twisted by D to obtain a sequence of first order differential operators dD : C∞(M,ΛkT ∗⊗
EM) → C∞(M,Λk+1T ∗ ⊗ EM) between forms with values in EM . As an example, if X,
Y denote vector fields and α a 1-form with values in EM then dDα(X, Y ) := DX(α(Y ))−
DY (α(X))− α([X, Y ]). The obstruction for the twisted deRham sequence to be a complex
is the Riemann curvature: RD ∈ C∞(Λ2T ∗ ⊗ gl(EM)) which acts on a k-form to give a
(k + 2)-form as

dD ◦ dDα =
1

2

∑

i,j

θi ∧ θj ∧ RD(ti, tj)α =: RD ∧ α,
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where ti, θ
i is a dual basis of TM . Clearly D induces also a derivative on gl(EM) and the

Leibniz rule gives

dD ◦ (dD ◦ dD)α = dDRD ∧ α + (−1)2RD ∧ dDα = dDRD ∧ α + (dD ◦ dD) ◦ dDα.

This observation proves the following (see e.g. [BGV91]):

Proposition 1.29 (Bianchi identity) The curvature tensor RD of a covariant derivative D
on EM satisfies a first order integrability condition: 0 = dDRD.

1.4 Orientations and integration over submanifolds

We recall that the one dimensional space of pseudoscalars L−n(V )⊗ΛnV of a n-dimensional
real vector space V comes with a natural norm |µ ⊗ v| = |µ(v)|. The two unit elements
correspond to the two orientations of V : if v := t1 ∧ . . . ∧ tn with ti ∈ V is a positive basis
of V then this induces or = µ ⊗ v with 0 < µ determined by µ(v) = 1. A unit element
or ∈ L−n(V ) ⊗ ΛnV induces a unique element or∗ ∈ Ln(V ) ⊗ ΛnV ∗ in the dual space by
〈or∗, or〉 = 1. Alternatively, the above norm in the one dimensional space L−n(V ) ⊗ ΛnV
induces an inner product, which identifies it with its dual space: L−n(V )⊗ΛnV = Ln(V )⊗
ΛnV ∗

Definition 1.30 (Orientation) A vector bundle EM → M of rank k over a n-dimensional
manifold M is called orientable if the bundle of pseudoscalars L−k(EM)⊗ΛkEM is trivial-
izable, i.e. if there is a global section or ∈ C∞(M,L−k(EM)⊗ΛkEM) of norm one |or| = 1.
A choice of such a trivialization on an orientable bundle is called an orientation of EM and
EM with such a choice is called oriented .

Remark 1.31 In general, if M is connected and x ∈ M a point then there is a group ho-
momorphism π1(M,x) → {+1,−1} between the fundamental group and O (R) = {+1,−1}
induced by parallel transport in L−k(EM) ⊗ ΛkEM . This homomorphism factors through
the maximal Abelian quotient π1(M,x)Ab, hence the homomorphism corresponds to a co-
homology class w1(EM) ∈ H1(M,Z/2Z). The vector bundle is orientable, iff this class is
trivial. In particular if M is simply connected, π1(M,x) = 1, any vector bundle over M is
orientable.

Definition 1.32 (Orientation and coorientation) Let S ↪→ M denote a k-dimensional im-
mersed submanifold inside a n-dimensional manifold M . The submanifold S ↪→M is called
orientable iff its tangent bundle TS → S is orientable. The submanifold S ↪→ M is called
coorientable iff the normal bundle (quotient bundle) TM/TS → S is orientable.

Remark 1.33 Points in M are always oriented and the manifold M itself is always coori-
ented. The conventional (co)orientations are often denoted by +1, and the opposite orien-
tation is denoted by −1.
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Application 1.34 (Integration over oriented submanifolds) Let S ↪→ M by an immersion
as in definition 1.32. If S is orientable and or a choice of orientation then any k-form F on
M can be turned into a density 〈F, or〉 ∈ C∞(S, L−k(TS)) over S by means of the following
contraction:

L−k(TS)⊗ ΛkTS ⊗ ΛkT ∗M → L−k(TS).

Hence 〈F, or〉 can be integrated naturally over S.

Proposition 1.35 If 0 → U → V → V/U → 0 is a short exact sequence of real vector
spaces U , V and V/U , then orientations of two of them induces an orientation of the third.
Indeed if k = dim (U) denote the dimension we have the following canonical isomorphisms
between one dimensional spaces:

L−k(U)⊗ ΛkU ⊗ L−(n−k)(V/U)⊗ Λn−k(V/U)
∼=−→ L−n(V )⊗ ΛnV ,

ΛkU ⊗ Λn−k(V/U)
∼=−→ ΛnV ,

L−k(U)⊗ L−(n−k)(V/U)
∼=−→ L−n(V ).

Application 1.36 (Integration over cooriented submanifolds) Let S ↪→ M denote an im-
mersion as in definition 1.32. If S is coorientable and coor ∈ C∞(M,Ln−k(TM/TS) ⊗
Λn−k(TM/TS)∗) a choice of coorientation then any (n−k)-multivector density G on M can
be turned into a density 〈G, coor〉 ∈ C∞(S, L−k(TS)) over S, by means of the following map
(we will use the notation TS⊥ = (TM/TS)∗):

L−n(TM)⊗ Λn−kTM ⊗ Ln−k(TM/TS)⊗ Λn−kTS⊥ → L−n(TM)⊗ Ln−k(TM/TS)
∼= L−k(TS).

Hence 〈G, coor〉 can be integrated naturally over S.

Application 1.37 (Outer normal) If S is a manifold with boundary ∂S then the outer
normal induces an orientation of the normal bundle of the boundary out ∈ L−1(TS/T∂S)⊗
Λ1(TS/T∂S) with |out| = 1 along ∂S. Applying the proposition 1.35 for 0→ T∂S → TS →
TS/T∂S → 0 and for 0 → TS/T∂S → TM/T∂S → TM/TS → 0 we have two induced
isomorphisms:

L−k(TS)⊗ Λk(TS) → L1−k(T∂S)⊗ Λk−1(T∂S),

Ln−k(TM/TS)⊗ Λn−k(TS)⊥ → Ln+1−k(TM/T∂S)⊗ Λn+1−k(T∂S)⊥.

Hence a (co-)orientation of S induces a (co-)orientation of ∂S.

Proposition 1.38 (Stoke’s theorem) If F ∈ C∞(M,ΛkT ∗M) is a smooth k-form on a n-
manifold M , and Σ ↪→M an (immersed) compact oriented (k+ 1)-dimensional submanifold
with boundary ∂Σ then ∫

∂Σ

〈F, or〉 =

∫

Σ

〈dF, or〉.
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Proposition 1.39 (Divergence theorem) If G ∈ C∞(M,L−n⊗Λn−kTM) is a smooth (n−
k)-multivector density on an n-manifold M , and Σ ↪→M an (immersed) compact cooriented
(k + 1)-dimensional submanifold with boundary ∂Σ then

∫

∂Σ

〈G, coor〉 =

∫

Σ

〈div G, coor〉.

Remark 1.40 In the case of M being a manifold with boundary ∂M the outer normal
always induces a coorientation of ∂M and M itself is always cooriented. Hence the above
divergence theorem applies to the whole of M without any orientability assumptions which
is called Gauß theorem , whereas Stoke’s theorem needs an orientable M .

1.5 Scale invariance in functional analysis

In real functional analysis the weight in definition 1.1 is related to the so called Sobolev
number . To demonstrate this relation we will briefly recall Lebesgue and Sobolev spaces
using density valued functions. The dimensional analysis then gives an explanation of the
Hölder and Sobolev inequalities. Recall that the integral of a sections of the line bundle L−n

over a n-dimensional compact domain is invariant under diffeomorphisms of the domain.

Discussion 1.41 (Lebesgue spaces) A scalar function lives in the Lebesgue space Lp for
some p ∈ R if the pth power of its modulus is integrable. Therefore such a scalar function
should be considered as a section of L−n/p, i.e. one assigns −n/p as the weight of that
function. Hence Lp can be called the space of integrable functions of weight w = −n/p . For
0 < w (i.e. p < 0) this space of functions fails to be a vector space (local problem) and for
w < −n (i.e. 0 ≤ p < 1) it fails to satisfy the triangle inequality. Therefore a natural range
for w is −n ≤ w ≤ 0. We may denote the norm of an integrable function u of weight w by

||u||(w) :=

∫
|u|−n/w.

Hölder’s inequality implies that the product of two integrable functions of weight w1 and w2

respectively is integrable of weight w1 + w2.

Discussion 1.42 (Sobolev spaces) If a function has weight w then its kth derivative will
have weight w − k. If a function lives in the Sobolev space Wk,p then in particular its kth
derivative is in Lp. Hence it is natural to assign w with w − k = −n/p as the weight of
that function; w the equals the Sobolev number w = k − n/p. For a compact domain with
smooth boundary and in the case of the first derivative k = 1 we reformulate Sobolev’s and
Hölder’s inequality in terms of weights as follows: for (1 − n) ≤ w < 0 we have Sobolev’s
inequality:

||u||(w) ≤ C(n, w)||∂u||(w−1),

with a constant C(n, w) depending on the domain and the weight w, similarly for 0 < w ≤ 1
we have the Hölder estimate:

|u(x)− u(y)| ≤ C(n, w)|x− y|w||∂u||(w−1).

Note how the dimensional analysis takes care of the correct exponents.
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Example 1.43 If a differential operator ∇ of order k is selfadjoint then the pointwise inner
product 〈∇φ, ψ〉 should be considered as a density of weight −n (since these are the natural
integrands) leaving w = (k−n)/2 as natural weight for φ and ψ. This weight coincides with
the Sobolev number of the space Wk/2,2 which is the usual domain of ∇ in terms of its weak
formulation.

If a partial differential equation has a geometric origin, the involved unknown function
may have a natural geometric dimension (length )w. Such a natural or geometric weight w
usually equals the critical Sobolev number , i.e. natural sections just fail to be integrable.
(For example the Euclidean distance dist(Σ, .) to a submanifold Σ is geometrically given by
a section of L1 which is always critical.)

Example 1.44 The Yamabe problem of finding a metric within a given conformal class
which has constant scalar curvature (with respect to its own length scale) is a typical example
of such a situation. The problem reduces to a nonlinear eigenvalue problem for the conformal
Laplace operator (see example 4.47) ∆f (2−n)/2 = −f (−2−n)/2 with normalization

∫
f−n = 1,

where f is a positive section of L1 playing the role of a length scale. The geometric context
has already determined the Laplace operator to act on densities of weight w = (2 − n)/2,
which agrees with the Sobolev number in the usual analytic setting in W1,2, see [LP87].

1.6 Weyl derivatives

Since the density line bundles Lw over a manifold M have no preferred trivialization (except
for w = 0) covariant derivatives on these line bundles are of differential geometric interest.
We will indicate how densities and Weyl derivatives provide a way to geometrize electromag-
netism. Any first order differential operator can be twisted by a Weyl derivative to define
an operator on sections of arbitrary central weight. We apply this to the deRham complex
and its adjoint.

Definition 1.45 (Weyl derivatives) A covariant derivative D of L1 is called a Weyl deriva-
tive (see definition 1.19). It naturally induces covariant derivatives on all density bundles
Lw (e.g. by means of parallel transport).

Definition 1.46 (Faraday curvature) The curvature (see proposition 1.20) of a Weyl deriva-
tive D in L1 is an endomorphism valued 2-form which for a line bundle is determined by a
real valued 2-form FD ∈ C∞(M,Λ2T ∗M).

The differential Bianchi identity, see proposition 1.29, applied to a given Weyl deriva-
tive D means that FD is a closed 2-form, dFD = 0. Originally Weyl interpreted a Weyl
derivative as electromagnetic potential and its curvature as electromagnetic field, which then
automatically satisfies the first Maxwell equation. Therefore we like to call the closed two
form FD the Faraday curvature . The induced curvature of Lw is given by wFD.

The Faraday curvature is the local obstruction for finding a parallel trivialization of L1.
The Weyl derivative D is called closed if FD = 0. For a closed Weyl derivative one can find
locally positive sections of L1, which are D parallel. If there is a global positive D parallel

13



section µ of L1 then D is called exact . Conversely a positive section of L1 determines an
exact Weyl derivative Dµ via Dµµ = 0.

The space of all Weyl derivatives forms an affine space modelled on the linear space of
smooth 1-forms C∞(M,T ∗M): let D and D̃ be two covariant derivatives in the line bundle

L1. They differ by an endomorphism valued 1-form D̃−D = γ which for a line bundle is just
a real valued 1-form γ ∈ C∞(M,T ∗M). The induced derivatives in Lk differ by D̃−D = kγ.
Closed and exact Weyl derivatives are affine subspaces modelled on closed and exact 1-forms
respectively.

Application 1.47 (Twisted exterior derivative) With the help of a Weyl derivative D the
exterior derivative d can be extended to forms of arbitrary central weight (see paragraph
1.28):

dD : C∞(M,Lw ⊗ ΛkT ∗M)→ C∞(M,Lw ⊗ Λk+1T ∗M).

The obstruction for the twisted deRham sequence to be a complex is the Faraday curvature
FD.

Application 1.48 (Twisted exterior divergence) Similarly a Weyl derivative D defines di-
vergences on multivector field densities of arbitrary central weight

divD : C∞(M,Lw−n ⊗ ΛkTM)→ C∞(M,Lw−n ⊗ Λk−1TM).

For example if µ denotes a density of weight w and X a vector field of central weight 1− n,
then divD(µ⊗X) = tr(Dµ⊗X) + µ⊗ div X.

Remark 1.49 Lie derivative, Weyl derivative and twisted divergence are related as follows:
for a density µ of weight w and a vector field K we have LKµ = DKµ− w

n
µ divDK.

The vector field K generates diffeomorphisms which leave a given Weyl derivative D
invariant, iff it satisfies the following linear partial differential equation of second order:
0 = LKD. Here LKD denotes a real valued 1-form defined with the help of vector field X
and a length scale µ ∈ L1 by

(LKD)Xµ = LK(DXµ)−DLKXµ−DX(LKµ)

= FD(K,X)µ+
1

n
µ ∂X(divDK).
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Chapter 2

Elementary conformal geometry

This chapter provides the elementary background in relativity, representation theory and
differential geometry which we will use in the sequel. In the first two sections we define a
conformal structure on a vector space and apply this to relativistic kinematics and electro-
magnetism in Minkowski space. The freedom of choosing a particular inner product in the
conformal class corresponds to the free choice of a unit for the dimension (length ). Light
rays, relative velocity of observers, conservation of momentum in collision experiments and
the electromagnetic constitutive relation in vacuum only depend upon a conformal structure.
Perihelion advance illustrates the impact of special relativity on the motion in a central force
field. In section 2.3 we recall how manifolds can be equipped with a conformal structure.
There is no preferred covariant derivative on a conformal manifold: instead the space of
Weyl derivatives parameterizes compatible derivatives of the tangent bundle. In sections
2.4 and 2.5 we recall how vector bundles are associated to the orthogonal frame bundle and
determine their curvature properties. In section 2.6 we adapt Branson’s method to Weyl
derivatives, which reduces the question of conformal invariance to a linear question. In the
last section we recall the first few integrability conditions of the conformal curvature tensors.
These Bianchi identities motivate the field equations for Einstein’s and Bach’s theories of
gravity.

2.1 Conformal vector spaces

Conformal geometry concerns the concept of angle without that of absolute length. A
conformal structure of a vector space is an equivalence class of inner products with the same
notion of orthogonality. Hence two such inner products differ by a multiplicative factor in
front. Since there is no preferred inner product in the class we give the following invariant
definition which is taken from [Cal98b]:

Definition 2.1 (Conformal vector space) A conformal structure c of a real vector space V
is a normalized inner product on the weightless space L−1 ⊗ V . Normalized means that on
Λn(L−1 ⊗ V ) = L−n ⊗ΛnV the canonical inner product and the inner product induced by c

coincide: | det c| = 1. Alternatively c can be viewed as a normalized L2 valued inner product
on V . If A is an affine space over the conformal vector space V then A carries a conformal
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structure.

Remark 2.2 A conformal structure can also be defined as an equivalence class of inner
products: a positive element µ ∈ L1 is called a length scale and it determines by µ−2

c a (real
valued) inner product on V with µ−n as volume density. On the other hand, given a (real
valued) inner product g on V then g represents a conformal structure given by c := µ(g)2g,
where µ(g) is the length scale of g (equivalently µ−n(g) is the volume density of g).

Notation 2.3 We will use the conformal metric to identify V with its dual, precisely, we
will use the isomorphisms ] : Lk ⊗ V ∗ → Lk−2 ⊗ V and [ : Lk ⊗ V → Lk+2 ⊗ V ∗ sometimes
without denoting them.

The following remark is a bit technical. We will use it to integrate sections in L−1 along
nonlightlike curves (application 4.26) and to recover the electric field and the magnetic flux
from a Faraday 2-form, see remark 2.10.

Remark 2.4 (Pull back of densities) If ι : U → V denotes a subspace of dimension k
on which the induced conformal inner product stays nondegenerated, then we have an in-
duced map ι∗ : L−k(V ) → L−k(U): for µ ∈ L−k(V ), u ∈ ΛkU , sign(µ) = ±1 we de-
fine ι∗(µ)(u) := sign(µ)

√
c(µ⊗ ι(u), µ⊗ ι(u)), where c is the induced inner product on

Λk(V 0). More generally for all weights w we have ι∗ : Lw(V ) → Lw(U) with ι∗(µ)(u) =
sign(µ)(|(|µ|)−k/w ⊗ u|c)−w/k.

2.2 Special relativity and electromagnetism

The simplest geometrical model of physical spacetime is an affine space A over a real n = 4
dimensional vector space V . Points in A are called events and an observer living for some
time traces out a worldline in A. In principle an (infinitesimal) observer v ∈ V along his
worldline can measure the angle between two direction and can decide whether two rulers
have equal length (at the same time). Hence (infinitesimal) spacelike measurements take
place in a conformal class of (Euclidean) metrics (of the three dimensional quotient V/Rv).
Note, that the focus on conformal metrics also corresponds to the following physical principle:

Discussion 2.5 (Constant velocity of light) Lightrays travel through spacetime in a way
which is independent of the motion of the emitter. In the geometrical model these naturally
given lightrays form double cones through each (emitting) event. In special relativity these
light cones come from a conformal class c of inner products in V with Lorentzian signature
(3, 1). Note that such a lightcone {v ∈ V | c(v, v) = 0} characterizes its conformal metric.

The geometry of lightcones describes the causal relation between events:

Definition 2.6 (Causality) Vectors v ∈ V inside the lightcone c(v, v) < 0 of an event
x ∈ A are called timelike , vectors v with c(v, v) > 0 are called spacelike and vectors v with
c(v, v) = 0 are called lightlike .
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Similarly a (piecewise) differentiable path is called timelike (respectively spacelike or
lightlike), if all velocity vectors are timelike (respectively spacelike or lightlike). We say that
two events x and x + v with v timelike are in causal relation . A lightlike or timelike path
joining two events x and x+ v with v spacelike needs to change its time direction.

Observers are smooth curves c(t) ∈ A with timelike velocity vectors ċ. The points
in the intersection of the forward lightcone of c(t0 − τ) with the backward lightcone of
c(t0 + τ) are called simultaneous events relative to c . The three dimensional linear space
ċ(t0)

⊥ := {v ∈ V | c(v, ċ(t0)) = 0} perpendicular to ċ(t0) describes the space of simultaneous
events infinitesimally.

Remark 2.7 (Relative velocity) Relativistic kinematics of particles is also based upon the
conformal Lorentzian metric: let U ∈ V 0 := L−1⊗V be a unit tangent vector to a worldline
of an observer, hence U is timelike and normalized c(U, U) = −1, see also 4.10. A second
observer N with c(N,N) = −1 meeting U at an event x points into the same time direction
as U , if c(U,N) < 0. In that case N measures a relative velocity ~u ∈ N⊥ ⊂ V 0 (as
multiple of the velocity of light, example 1.5) in his infinitesimal space of simultaneous events
c(~u,N) = 0 given by the condition N + ~u ∼ U , hence N + ~u = −U/ c(U,N). Squaring this
equation gives |~u|2 = 1− 1/ c(U,N)2.

Remark 2.8 (Collision experiments) If two (pointlike) bodies collide at an event in space-
time then their initial velocities N1 and N2 (weightless and normalized) and inertial masses
m1 and m2 are related to their final velocities N ′

1 and N ′
2 (weightless and normalized) and

final inertial masses m′
1 and m′

2 as m1N1 +m2N2 = m′
1N

′
1 +m′

2N
′
2 (see [Par87] p. 18ff). Note

that this conservation law at the (idealized) event of collision only depends upon the confor-
mal structure. From the dimensional analysis of example 1.6 we think of inertial masses as
elements in L−1 and m1N1 ∈ V ∗ is called the linear momentum of the body.

Electromagnetism deals with the following physical phenomenon: motion of electric
charges produces fields which travel with the speed of light and these fields influence the
motion of charged particles . The theory describing electromagnetic interactions is based
upon Maxwell’s equations. In their relativistic form due to Minkowski the field equations
are part of the deRham sequence of the exterior derivative and its adjoint the sequence of
exterior divergences:

Definition 2.9 (Electromagnetic field theory) A vector field j of central weight 1 − n
represents the charge current density . It plays the role of the source and has to satisfy
a conservation law : div j = 0. We have to distinguish between two realizations of the field
itself, the dynamic and the kinematic field. The dynamic field G is represented by a bivector
density field of central weight 2 − n and it is coupled to the source by the second Maxwell
equation j = div G. The kinematic field F is represented by a 2-form of central weight
−2 the so called Faraday 2-form and satisfies an integrability condition dF = 0 the first
Maxwell equation.

Remark 2.10 (E and B field) Relative to an observer c(N,N) = −1 with its space of
simultaneous events N⊥ ⊂ V 0 the kinematic field F splits into two tensors of central weight
−2 in N⊥. We make secret use of the remark 2.4 and define a 1-form the electric field strength
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E(~u) := F (N,~u) and a 2-form the magnetic flux B(~u,~v) := F (~u,~v) with ~u,~v ∈ N⊥. Similarly
the dynamic field G splits into the dielectric displacement D(~u) := G(N,~u), a vector on N⊥

of central weight −2 and the magnetic loop tension H(~u,~v) := G(~u,~v) a bivector on N⊥ of
central weight −2. For the physical dimensions see example 1.7.

Discussion 2.11 (Constitutive relation) Dynamic and kinematic fields are related by the
so called constitutive relation which depends upon the matter in which the field propa-
gates. In vacuum (and in n = 4 dimensions) the constitutive relation between F and G is
simply given by a conformal structure c of Lorentzian signature (n − 1, 1), i.e. F (X, Y ) =∑

i,j c(X, ti) c(Y, tj)G(θi, θj), where X, Y are vectors and ti, θ
i is a dual basis of V .

Since the kinematic field F is closed there (locally) exists a 1-form A of central weight
−1, called potential , such that F = dA. This potential is not uniquely determined by F ,
instead it is subject to (local) transformations A 7→ A + df , where f is a function, called a
gauge function .

Summary 2.12 To summarize, the electromagnetic field theory in vacuum takes place in
an (affine) space modelled on a four dimensional vector space V with conformal metric of
Lorentzian signature. The kinematic sequence is given by the beginning of the deRham
sequence of the exterior derivative:

gauge potential kinematic field

C∞(A,R)
d→ C∞(A, V ∗)

d→ C∞(A,Λ2V ∗)
d→ C∞(A,Λ3V ∗)

f A F 0

The dynamic sequence is given by the end of the sequence of the exterior divergence:

0 j G

C∞(A, L−n)
div← C∞(A, L−n ⊗ V )

div← C∞(A, L−n ⊗ Λ2V )
div← C∞(A, L−n ⊗ Λ3V )

source dynamic field

The conformal metric is the constitutive relation between kinematic and dynamic field.
Hence the Maxwell equations in vacuum are linear and conformally invariant given by:

F = G via the conformal structure c,
0 = div j and j = div G,

0 = dF and F = dA and A 7→ A+ df .

Remark 2.13 Note that the second Maxwell equation div G = j between the dynamic field
and the source already determines all other differential operators which are involved: the
integrability condition for div G = j gives the conservation of the source 0 = div div G =
div j, adjoint to this conservation law is the operator for the gauge transformation A+ df ,
these transformations are in the kernel of the equation between potential and kinematic field
F = dA = d(A+df) (which is also adjoint to div G = j), finally the integrability of dA = F
gives the first Maxwell equation 0 = ddA = dF .
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Discussion 2.14 (Lorentz force law) Galilei’s principle of inertia means that a free massive
particle with initial velocity N in spacetime has the tendency to stick to that spacetime
direction, i.e. in the affine model of spacetime a free massive particle moves along straight
timelike lines: DNN = 0, where D denotes the affine derivative. Obviously the principle of
inertia isn’t conformally invariant, since it involves the affine derivative. If an electromagnetic
field F is present, an electrically charged particle q ∈ R is no longer free, instead it is
influenced by F : a simple relativistic law of motion is then given by

mDNN = q](F (N)),

where m ∈ L−1 is the inertial mass of the charged particle and N is viewed as a test particle
(q/m is small compared to F ).

Example 2.15 (Coulomb field) Coulomb’s (nonrelativistic) law determines the force be-
tween two charges q and Q which are at rest relative to the laboratory to be qQ/r2.
Viewing one charge q as test particle and the other Q as source, the Lorentz force law
mDNN = qF (N) determines the corresponding Faraday 2-form F which solves Maxwell’s
equations - the Coulomb field: let N be the unit timelike vector of the two charges and
identify the conformal affine spacetime A with V by taking an event o ∈ A along the
straight worldline of the source as origin. If P : V → N⊥ ⊂ V denotes the projection
v 7→ v−〈v,N〉/〈N,N〉N the radial distance r : A→ L1 to the source is given by r(c) := |x|,
where x = x(c) := P (c − o) ∈ N⊥ is the spacelike location of the test particle. Coulomb’s
force law on the one hand and Lorentz force law on the other hand gives qQ/r2 ~r = qF (N),
where ~r = x/|x| = gradD r denotes the unit radial field, which is the gradient of the distance
function with respect to the (usual) affine derivative D. Therefore if F : A→ Λ2V ∗ is a pure
electric field for N then it is given by

F = FCoul := Q/r2 (〈~r, .〉N − 〈N, .〉~r).

Discussion 2.16 (Motion in a central field) Next we like to study the relativistic motion
of a test particle c : R → A subject to the Lorentz force in the Coulomb field. For that we
solve the ordinary differential equation

c̈ = −a/r2 (〈~r, ċ〉N − 〈N, ċ〉~r),

where a ∈ R is a number. Clearly 〈ċ, ċ〉 is a constant of motion. For the projection x := P (c)
we have

ẍ = P (c̈) = −a/r2(−〈ċ, N〉)~r.
The function −〈ċ, N〉 satisfies ∂

∂t
(−〈ċ, N〉) = a ∂

∂t
(1/r), hence

−〈ċ, N〉 = b+ a/r,

where b = −〈ċ(0), N〉−a/r(0) depends on the initial conditions only. Hence we can introduce
the central potential U : R+ → R defined by

U(r) := −ab/r − (
1

2
a2)/r2,
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and (with U(x) = U(|x|)) the differential equation becomes

ẍ = − grad Ux = −U ′(|x|)x/|x|
r(t) = |x(t)|
ċ(t) = ẋ(t) + (b+ a/r(t))N.

We have the usual conserved quantities in a central potential: angular momentum ~l := ẋ∧x
with length squared l2 = 〈ẋ, ẋ〉r2− (rṙ)2 and energy E := 1

2
〈ẋ, ẋ〉+U(|x|) = 1

2
ṙ2 + 1

2
l2/r2 +

U(r). The conservation of the bivector ~l means that the solution curve for x(t) lies in a plane
x = r(cos(φ), sin(φ)) and for the polar angle φ we have φ̇ = l/r2. Note 〈ċ, ċ〉 = 2E − b2.

Discussion 2.17 (Perihelion advance) In the case of a Coulomb field of a charge Q and
an opposite test charge q with inertial mass m we have a = −Qq/m > 0, i.e. an attractive
potential. A timelike solution curve 〈ċ, ċ〉 = −1 = 2E − b2 which directs into the same time
0 < −〈ċ, N〉 is guaranteed if b > 0. If in addition −1/2 < E < 0 and a2 < l2 < a2/(−2E) we
have bounded orbits 0 ≤ (ṙ)2 = 2E − 2U(r)− l2/r2 hence rP ≤ r ≤ rA with rA/P = r0 ± q,
(−2E)r0 := ab and (−2E)q2 := a2/(−2E)− l2. Since (ṙ)2 = (−2E)(rA − r)(r − rP )/r2 the
polar angle satisfies

φ′(r) =
φ̇

ṙ
=

l

r2ṙ
=

l√
−2E

1

r
√

(rA − r)(r − rP )
,

hence with φ(rP ) = 0 we find

φ(r) =
l√

(−2E)rArP
arccos

(
rP rA − r0r

qr

)
.

Finally φ(rA) = πl/
√

(−2E)rArP and the total angle between two perihelion constellations
(moment of nearest approach to the centre) is given by:

2π
l√

(−2E)rArP
= 2π

1√
1− (a/l)2

≈ 2π(1 +
1

2
(a/l)2 +

3

8
(a/l)4 + . . .).

(We could compare the above special relativistic perihelion advance with the perihelion
advance in the Schwarzschild model (see e.g. [ONe83] p. 379): the qualitative behavior is
similar, since the leading term is in both cases given by (a/l)2, but the special relativistic
factor in front is 1

2
whereas in the Schwarzschild model it is 3.)

Discussion 2.18 (Charge) In physical situations where a smooth source j models the
charge distribution with a dynamic field G subject to div G = j we deduce from the diver-
gence theorem that the integral of j over a cooriented (n− 1)-dimensional ball

∫
B
〈j, coor〉 =∫

B
〈div G, coor〉 =

∫
∂B
〈G, coor〉 only depends upon the boundary ∂B rather then the span-

ning B. This leads to the definition 2.19 of charge represented by G for the case of G being
smooth in a region away from supp(j) even if j is distributional. We remark that the integral∫
∂B
〈G, coor〉 only depends upon the homology class of ∂B as will be explained in proposition

2.20. In what follows we let M ⊂ A be an open region away from supp(j) where the field G
is smooth.
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Definition 2.19 (Electric charge) If G denotes a smooth divergence-free bivector density
we define the electric charge (represented by G) contained in an (immersed) cooriented
(n− 2)-dimensional sphere Sn−2 ↪→M by:

Qe :=

∫

Sn−2

〈G, coor〉.

As is well known, this quantity satisfies a conservation law, which follows from the diver-
gence theorem:

Proposition 2.20 If Sn−2 = ∂Σ is the boundary of an (immersed) compact cooriented
(n − 1)-dimensional submanifold Σ ↪→ M , then Qe = 0. Consequently, if Sn−2, coor and
Sn−2′, coor ′ are two immersed spheres, such that there is an (immersed) compact cooriented
(n − 1)-dimensional submanifold Σ, coor with these two spheres as boundary: ∂Σ, coor =
Sn−2, coor ∪ Sn−2′,−coor ′, then Sn−2 and Sn−2′ contain the same amount of electric charge.

For completeness we will also define magnetic charge represented by a Faraday 2-form:

Definition 2.21 (Magnetic charge) If F denotes a smooth closed 2-form we define the
magnetic charge (represented by F ) contained in an (immersed) oriented 2-dimensional
sphere S2 ↪→M by:

Qm :=

∫

S2

〈F, or〉.

This quantity satisfies a conservation law, which follows from Stoke’s theorem:

Proposition 2.22 If S2 = ∂Σ is the boundary of an (immersed) compact oriented 3-
dimensional submanifold Σ ↪→ M , then Qm = 0. Consequently, if S2, or and S2′, or ′ are
two immersed spheres, such that there is an (immersed) compact oriented 3-dimensional
submanifold Σ, or with these two spheres as boundary: ∂Σ, or = S2, or ∪ S2′,−or ′, then S2

and S2′ contain the same amount of magnetic charge.

Remark 2.23 The differential equations of electromagnetism make sense on any conformal
manifold. Source-free electromagnetic fields can then give rise to charge due to nontrivial
topology of the underlying manifold. See the joint article by Hadley and the author [DH99]
for a review and extension of this idea.

2.3 Conformal structure on manifolds

In this section we follow Weyl [Wey70], Bergmann and Einstein [Ber76] to define conformal
structures and related geometries on arbitrary smooth manifolds. A Riemannian metric
defines a conformal class of metrics, but there is no preferred metric within such a class.
Consequently we define a conformal structure invariantly as a single Riemannian metric of
the weightless tangent bundle. There is no preferred covariant derivative on a conformal
manifold instead we deal with an affine space of derivatives modelled on the space of smooth
1-forms.
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Definition 2.24 A conformal structure on a manifoldM is a (smooth) normalized L2 valued
inner product c on TM (see definition 2.1). It can be viewed as a nondegenerate normalized
(real valued) inner product on the weightless tangent bundle L−1⊗TM . This inner product
between vector fields X and Y will also be denoted by 〈X, Y 〉 = c(X, Y ).

Definition 2.25 (Conformal geometry) A conformal structure c defines a conformal geom-
etry on M . Naively, a construction is called conformally invariant, if it only depends upon
c, i.e. if the construction is defined using an additional choice one needs to show that the
construction is indeed independent of that choice.

Definition 2.26 (Conformal Killing fields) A vector field K on a conformal manifold M
generates diffeomorphisms which leave the conformal structure c invariant iff 0 = LKc. A
solution to this linear first order partial differential equation is called a conformal Killing
field .

Proposition 2.27 (Torsion) Let D be a covariant derivative of the tangent bundle TM .
The following bilinear differential pairing TD : C∞(M,TM)⊗C∞(M,TM)→ C∞(M,TM)
defined by TD(X, Y ) := DXY − DYX − [X, Y ] (where X, Y are vector fields and the Lie
bracket on functions is defined by ∂[X,Y ] = ∂X∂Y − ∂Y ∂X) is indeed zero order and defines
the torsion of D to be a vector valued 2-form TD ∈ C∞(M,Λ2T ∗ ⊗ TM).

A covariant derivative D on TM is called torsion-free if TD = 0. A covariant derivative
D on TM induces covariant derivatives on all tensor bundles including Lw (for instance by
means of parallel transport or via the induced connection on the first order frame bundle
GL (M)). The covariant derivative on L1 is called a Weyl derivative, see definition 1.45.
The derivative D is called compatible with the conformal structure if Dc = 0.

Theorem 2.28 (Fundamental theorem of conformal geometry) On a conformal manifoldM
there is a one to one correspondence between covariant derivatives on L1 and derivatives on
TM , which are torsion-free and compatible with the conformal structure c. Such derivatives
will be called Weyl derivatives and for vector fields X,Y ,Z the Koszul formula holds:

2 c(DXY, Z) = DX( c(Y, Z)) +DY ( c(Z,X))−DZ( c(X, Y ))

+ c([X, Y ], Z)− c([Y, Z ], X) + c([Z,X ], Y ).

Proof: The arguments needed here are the same as those used in Riemannian geome-
try: first of all if a covariant derivative D is torsion-free and Dc = 0 then the above
Koszul formula holds. Furthermore, if f ∈ C∞(M,R) is a function then D defined by the
Koszul formula satisfies DfXY = fDXY and DX(fY ) = (∂Xf)Y + fDXY since [ fX, Y ] =
f [X, Y ]− (∂Y f)X. 2

Definition 2.29 (Riemannian geometry) A length scale, i.e. a positive section µ of L1 plus
a conformal structure c defines a Riemannian geometry on M . Let D be the (exact) Weyl
derivative which leaves the length scale parallel. The induced derivative on TM is then the
Levi-Civita derivative of the metric µ−2

c.
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A vector field K on a n-dimensional manifold M with Riemannian geometry, generates
diffeomorphisms which leave the geometry invariant, iff K is a conformal Killing field which
leaves the length scale invariant i.e. 0 = LKc and 0 = LKµ. The second condition says that
the vector field is divergence-free (with respect to the length scale). Using the Levi-Civita
derivative, the two equations can be summarized by saying that DK is a skew symmetric
endomorphism field.

Definition 2.30 (Weyl geometry) A Weyl derivative D in L1 plus a conformal structure c

defines a Weyl geometry on M .

A vector field K on a n-dimensional manifold M with Weyl geometry, generates diffeo-
morphisms which leave the geometry invariant, iff K is a conformal Killing field which leaves
the Weyl derivative invariant i.e. 0 = LKc and 0 = LKD = FD(K, ) + 1

n
∂ divDK. The

conformal Killing equation can be rewritten in terms of the Weyl derivative D:

(LKc)(X, Y ) = LK( c(X, Y ))− c(LKX, Y )− c(X,LKY )

= c(DXK, Y ) + c(X,DYK)− 2

n
(divDK) c(X, Y ).

A vector field solving both equations is called a Weyl Killing field . Its 2-jet is already
determined from its 1-jet, since for the induced derivative D on TM we clearly have 0 = LKD
and

(LKD)XY = LK(DXY )−DLKXY −DXLKY
= DKDXY −DDXYK −D[K,X ]Y −DXDKY +DXDYK

= RD
K,XY +D2

X,YK.

Remark 2.31 (Weyl’s unified theory of electromagnetism and gravity) Einstein’s theory
of gravity models the spacetime by a four dimensional manifold M with a Lorentzian metric
g. Its divergence-free Ricci curvature, see remark 2.63, is coupled to the energy density of
the matter in question. Electromagnetism is then modelled by an additional field F on M
(which might contribute to the matter energy). In contradistinction Weyl geometry provides
a geometric model of spacetime where the electromagnetic field is intrinsically represented
by the Faraday curvature FD, see [Wey70] and the next remark 2.32.

Remark 2.32 (Twin paradox) In case of Weyl geometry with Lorentzian signature we say
that the parameterization of a timelike worldline c : R → M is proportional to the proper
time of the observer c if 〈Dċċ, ċ〉 = 0. If two different worldlines c1 and c2 start at the
same point x = c1(0) = c2(0) with the same unit of proper time 〈ċ1, ċ1〉(0) = 〈ċ2, ċ2〉(0) and
both are parameterized proportional to their proper time, it is clear that if they meet again
y = c1(t1) = c2(t2) the two proper times t1, t2 will be different. This is called the twin
paradox. In the context of Weyl geometry with nontrivial Faraday curvature FD not only
are the two parameters t1, t2 different, but also the two time units 〈ċ1, ċ1〉(t1) and 〈ċ2, ċ2〉(t2)
are different. Similar, a parallel transported length scale along the two worldlines will be
different at y even if it is the same at x. The two twins starting at x and meeting at y not
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only have different ages, but also different sizes, and they will age at different rates. This
dependence on past history was the main reason why Weyl geometry as a unified theory
of gravity and electromagnetism was rejected. This does not rule out the possibility of a
very small coupling constant λ between the Faraday curvature FD and the corresponding
electromagnetic field λF = FD.

2.4 Elementary notions of representation theory

In this section we recall that Lie groups and their Lie algebras can act on vector spaces
by linear maps. This is called a representation and we will use the basic definitions in the
next section only to give a unified treatment of all relevant vector bundles on a conformal
manifold.

Notation 2.33 The group of linear isomorphisms preserving the conformal structure c will
be denoted by CO (V ) := {A ∈ GL (V ) | c.A = c}. It is a direct product CO (V ) =
R+idV×O (V ) with one dimensional centre. Its Lie algebra is given by co(V ) = Rid V⊕so(V ).

CO (V ) and co(V ) is an example of a Lie group with its Lie algebra. In general let G be
a real Lie group and g be its real (or complexified) Lie algebra.

Definition 2.34 (Group representations) A real vector space W is called a right repre-
sentation space for G if there is a group action from the right Θ : W × G → W by linear
maps. It will also be denoted by Θ(w,A) := w.A and satisfies w.A.B = w.(AB) for all
A,B ∈ G and w ∈ W . A left action of G on W would be denoted by G×W →W satisfying
A.B.w = (AB).w. Every left action has an associated right action defined by w.A = A−1.w
and vice versa. If W is a right representation of G then the dual space W ∗ carries a left G-
representation (defined without inverting group elements): 〈A.ω, w〉 = 〈ω,w.A〉 for ω ∈ W ∗

and all w ∈ W .

Definition 2.35 (Lie algebras) Let F be a field (we are interested in the cases F = R

and F = C). A finite dimensional vector space g over F with a skew symmetric bilinear
multiplication g⊗ g→ g, denoted on X, Y ∈ g by X ⊗ Y 7→ [X, Y ] is called a Lie algebra ,
if it satisfies the Jacobi identity : for all X, Y, Z ∈ g we have [X, [Y, Z ] ] + [Y, [Z,X ] ] +
[Z, [X, Y ] ] = 0.

Remark 2.36 If G denotes a real Lie group and g the space of left invariant vector fields
on G, then g carries a real Lie algebra structure induced by the Lie bracket of vector fields.

If p ⊂ g is a subspace, such that X, Y ∈ p implies [X, Y ] ∈ p, then p is called a subalgebra
of g. A linear map φ : g→ h between two Lie algebras is called a Lie algebra homomorphism ,
if φ([X, Y ]) = [φ(X), φ(Y ) ] for all X, Y ∈ g (this condition is nonlinear in φ similar to the
orthogonality condition for a linear transformation).

Example 2.37 The space of endomorphisms End (V ) = gl(V ) of a vector space V over the
field F carries a natural Lie algebra structure by [A,B ] := A ◦ B − B ◦ A and is called the
general linear Lie algebra .
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Definition 2.38 (Modules) If g denotes a Lie algebra over F, a vector space W is said to
carry a right g-module structure or W is called a right g-representation space , if there is
a linear map θ : W ⊗ g → W denoted by θ(w ⊗ X) =: w.X such that for Y ∈ g we have
w.[X, Y ] = w.X.Y − w.Y.X.

A g-representation from the left θ : g ⊗W → W will be denoted by θ(X ⊗ w) = X.w
and satisfies [X, Y ].w = X.Y.w − Y.X.w. Every left action has an associated right action
defined by w.X = −X.w and vice versa. If W is a right module then W ∗ is a left module
defined (without signs) by 〈X.ω, w〉 = 〈ω,w.X〉 for ω ∈ W ∗ and all w ∈ W .

Remark 2.39 If G denotes a real Lie group with Lie algebra g. Let W ×G→W be a right
group representation, then this induces a right representation of the Lie algebra W⊗g→ W .

Examples 2.40 (Adjoint representation) For any Lie algebra g the Jacobi identity shows,
that the Lie bracket itself induces a left representation on g itself, called adjoint representa-
tion ad : g ⊗ g → g, ad(X)Y := [X, Y ]. The kernel of the adjoint representation is given
by the centre ker ad = Z(g). The coadjoint representation coad : g ⊗ g∗ → g∗ is given by:
coad := −ad∗.

Constructions 2.41 If W ⊗ g→W is a finite dimensional right representation and X ∈ g

then the action .X is an endomorphism of W . Any F multiple of tr( .X) : F → F defines a
1-dimensional representation. If W1 ⊗ g → W1 and W2 ⊗ g→ W2 are representations, then
.X⊕ .X induces a representation on the direct sum W1⊕W2. Similarly .X⊗idW2

+idW1
⊗ .X

induces a representation on the tensor product W1 ⊗W2.

2.5 Bundles and curvature on conformal manifolds

In this section we construct all relevant vector bundles on a conformal manifold. Riemann’s
curvature tensor can be defined in Weyl geometry as in Riemannian geometry and it defines
an obstruction against local flatness.

Construction 2.42 (Associated vector bundles) Let M be a real n-dimensional confor-
mal manifold (modelled on V ). Denote by CO (M) → M the bundle of conformal frames,
i.e. the set of all orthogonal frames of equal length: for x ∈M we have CO (M)x = {f : V →
TxM | f linear, f ∗

cx = c}. The group CO (V ) acts naturally on CO (M) from the right. A
right representation Θ : E × CO (V ) → E leads to a vector bundle over M by the asso-
ciated bundle construction : EM := CO (M) ×Θ E := {{(fA, e.A) |A ∈ CO (V )} | f ∈
CO (M), e ∈ E}.

If E and F are CO (V )-representation with associated bundles EM and FM and φ : E →
F is a CO (V )-equivariant map, then φ induces a bundle map φ : EM → FM . The action of
the Lie algebra E ⊗ co(V )→ E is an example leading to the bundle map EM ⊗ co(TM)→
EM .

Discussion 2.43 Let M be a conformal manifold with an associated vector bundle EM →
M coming from a CO (V )-representation space E. Any Weyl derivative D on the line bundle
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L1 induces a covariant derivative on the tangent bundle TM (which is torsion-free and
compatible with the conformal structure). Hence D induces a connection on the conformal
frame bundle CO (M). Therefore D also induces covariant derivatives on all associated
bundles EM . These derivatives are also denoted by D : C∞(M,EM) → C∞(M,T ∗M ⊗
EM). The target bundle T ∗M ⊗ EM is associated to V ∗ ⊗ E.

Discussion 2.44 (Curvature in Weyl geometry) Let M be a conformal manifold and D a
Weyl derivative. Let EM be an associated vector bundle with induced derivative D. The
curvature of EM is a section RE,D ∈ C∞(M,Λ2T ∗ ⊗ gl(EM)) defined on vector fields X, Y
and e ∈ C∞(M,EM) by

RE,D
X,Y e := DXDY e−DYDXe−D[X,Y ]e.

It is given by the Lie algebra action of the curvature RD := RT,D ∈ C∞(M,Λ2T ∗⊗ co(TM))
of the tangent bundle as RE,D

X,Y e = RD
X,Y .e.

SinceD is torsion-freeRD satisfies the first Bianchi identity: 0 = RD
X,YZ+RD

Y,ZX+RD
Z,XY .

Two tensorial contractions of RD are possible. The contraction of the last two indices gives
back the Faraday curvature :

FD(X, Y ) =
1

n
trRD

X,Y .

The Ricci curvature ric ∈ C∞(M,T ∗M ⊗ T ∗M) is defined to be the (natural) trace of the
curvature of the weightless tangent bundle RL−1⊗T,D = RD − FD ⊗ id :

ricD(Y, Z) := tr(RL−1⊗T,D
,Y Z) = tr(RD

,YZ − FD( , Y )Z).

Since D is torsion-free, the skew part of ricD is determined by FD as follows:

ricD(Y, Z)− ricD(Z, Y ) = −(n− 2)FD(Y, Z).

Remark 2.45 In addition to the curvature terms in Riemannian geometry, the Faraday
curvature FD occurs as a new ingredient. It is the local obstruction of finding a parallel
metric in the conformal class.

In the linear algebraic context of conformal vector spaces we will define a CO (V )-
equivariant projection from gl(V ) → co(V ). In the rest of this chapter it will occur as
a useful short hand notation. The reason why we denote this projection by a Lie bracket
will become clear in section 3.2:

Definition 2.46 For a conformal vector space V we define a co(V )-equivariant map:

[ , ] : V ∗ ⊗ V → co(V ); [α, v ] := α(v)idV + α⊗ v − [v ⊗ ]α.

This projection satisfies the following properties: since it has values in co(V ) it acts on
any representation, moreover it has the following symmetries: v, w ∈ V and α, β ∈ V ∗

[α, v ].w = [α,w ].v

[α, v ].β = [ β, v ].α.
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Proposition 2.47 (Splitting the curvature) There is a natural splitting of RE,D into two
parts:

RE,D
X,Y e = (Wc

X,Y −[ rD(X), Y ] + [ rD(Y ), X ]).e,

where
rD ∈ C∞(M,T ∗M ⊗ T ∗M)

is the normalized Ricci bilinear form , and

Wc ∈ C∞(M,Λ2T ∗M � so(TM))

is the Weyl curvature tensor . The fact, that Wc takes values in the Cartan tensor product
means, that it satisfies the first Bianchi identity (separately) and all traces applied to Wc

vanish. Hence, in two and three dimensions the Weyl curvature is zero.

Proof: The canonical Ricci curvature mostly used in Riemannian geometry was defined
above by ricD(Y, Z) := tr(RD

,YZ −FD( , Y )Z). The so called normalized Ricci curvature rD

is much more appropriate in conformal geometry and related to the canonical Ricci as

ricD = (n− 2) rD + sD c.

Here we use the splitting of V ∗ ⊗ V ∗ into symmetric trace-free, trace and skew part:

rD = rD0 +
1

n
sD c− 1

2
FD,

where
2(n− 1) sD := trc ricD

denotes the scalar curvature and

(n− 2) rD0 (Y, Z) :=
1

2
ricD(Y, Z) +

1

2
ricD(Z, Y )− 1

n
trc(ric

D)〈Y, Z〉

denotes the symmetric and trace-free Ricci curvature. In n = 2 dimensions scalar and
Faraday curvature together determine the whole curvature tensor, hence in that case rD =
1
2

sD c − 1
2
FD. We refer to Calderbank [Cal98a] for more details. In n = 3 dimensions the

Ricci curvature determines the whole curvature tensor. The Ricci curvature written as cur-
vature tensor −[ rD(X), Y ].Z+[ rD(Y ), X ].Z satisfies the first Bianchi identity (separately),
hence so does Wc. 2

2.6 Changing the Weyl derivative

Recall that a Weyl derivative is a covariant derivative of the line bundle L1. The set of all
Weyl derivatives forms an affine space modelled on the space of 1-forms. On a conformal
manifold any Weyl derivative induces a covariant derivative on the tangent bundle. Let ∇D

be a linear differential operator defined using a Weyl derivative D and the conformal structure
c. The curvature tensors RD and rD are particular (zero order) examples of this situation.
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The aim of this section is to study the behavior of such differential operators under a change
of the Weyl derivative. Such operators which are independent of the choice of Weyl derivative
are conformally invariant . We adapt Branson’s method to Weyl derivatives, which reduces
the question of conformal invariance to a linear question, and more generally, provides a
method for computing explicitly the dependence on D of an operator which is polynomial in
D and its jets. We will recall that the Weyl part of the curvature tensor only depends upon
the conformal class.

Proposition 2.48 (Linearized Koszul formula) Let D and D̃ be two covariant derivatives

in L1 and γ ∈ C∞(M,T ∗M) the 1-form such that D̃ − D = γ. For X, Y ∈ C∞(M,TM)
the Koszul formula 2.28 determines the change of the induced covariant derivatives in the
tangent bundle to be:

D̃XY −DXY = [ γ,X ].Y := γ(X)Y + γ(Y )X − c(X, Y )]γ.

Corollary 2.49 Let EM be a vector bundle associated to the conformal frame bundle and
e ∈ C∞(M,EM) a section, then the induced change of covariant derivatives induced by
γ ∈ C∞(M,T ∗M) is given by the Lie algebra action as

D̃Xe−DXe = [ γ,X ].e = −e.[ γ,X ].

Discussion 2.50 (Fundamental theorem of calculus) Let ∇D be a linear differential oper-
ator defined using a Weyl derivative D and the conformal structure c. If D(s) is a smooth
curve of Weyl derivatives parameterized by s ∈ [0, 1] then ∇D(s) defines a curve of operators.
The difference ∇D(1)−∇D(0) can be calculated using the fundamental theorem of calculus

∇D(1)−∇D(0) =

∫

[0,1]

∂

∂s
∇D(s) dσ.

The velocity of D(s) will be called γ := ∂
∂s
D. Hence ∇D is independent of the choice of

D iff the derivative (∂γ ∇)D := ∂
∂s ∇D(s) vanishes for all γ ∈ C∞(M,T ∗M) and all Weyl

derivatives D. Hence the proof that a construction depending on a choice of Weyl derivative
is indeed conformally invariant can be simplified to a linear situation.

Examples 2.51 (First order) The Weyl derivative itself, the exterior derivative and the
exterior divergence are first order operators depending on a Weyl derivative: the induced
derivative D on an associated bundle EM itself depends affinely on the Weyl derivative D
by the Koszul formula, and we simply have

∂γD = [ γ, ].

Since the exterior derivative, see applications 1.47, on multilinear forms of arbitrary central
weight w,

dD : C∞(M,Lw+k ⊗ ΛkT ∗M)→ C∞(M,Lw+k ⊗ Λk+1T ∗M),

is simply the invariant d twisted by the Weyl derivative on Lw+k, we get

∂γd
D = (w + k) γ ∧ .
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Similarly for the exterior divergence, see applications 1.48, on multivector densities of arbi-
trary central weight w,

divD : C∞(M,Lw−k ⊗ ΛkTM)→ C∞(M,Lw−k ⊗ Λk−1TM),

we have
∂γ divD = (w − k + n) γ y .

Examples 2.52 (Second order) For the induced second derivative D2
X,Y e := DXDY e −

DDXY e on an associated EM we find

∂γ(D
2)X,Y e = (∂γD)XDY e +DX((∂γD)Y e)− (∂γD)DXY e−D(∂γD)XY e

= (∂γD)XDY e + (∂DXγD)Y e) + (∂γD)YDXe−D(∂γD)XY e

= [ γ,X ].DY e+ [DXγ, Y ].e+ [ γ, Y ].DXe−D[ γ,X ].Y e.

In particular the curvature tensor RE,D is defined to be the skew part of the second derivative
which simply gives

(∂γR
E,D)X,Y e = [DXγ, Y ].e− [DY γ,X ].e.

Application 2.53 Notice that the curvature tensor only changes in its Ricci part, which
already shows that the Weyl curvature is conformally invariant, i.e. Wc only depends upon
the conformal structure.

Example 2.54 (Linear change of Ricci curvature) More explicitly we can calculate the
linear change of the Faraday and Ricci curvature terms:

(∂γF
D)X,Y = tr([DXγ, Y ]− [DY γ,X ])

= dγ(X, Y ),

(∂γ ricD)Y,Z = tr(∂γR
D
,YZ − ∂γFD( , Y )Z)

= tr([Dγ, Y ].Z − [DY γ, ].Z)− dγ(Z, Y )

= (2− n)DY γ(Z)− c(Y, Z)divD γ,

(∂γ rD)Y,Z = −DY γ(Z).

I like to thank D. Calderbank for pointing out to me the following observation:

Discussion 2.55 (Taylor’s theorem of calculus) Let ∇D be again a linear differential op-
erator defined using a Weyl derivative D and the conformal structure c. For a smooth
curve D(s) of Weyl derivatives parameterized by s ∈ [0, 1] we defined the first derivative at
D = D(0) by (∂γ ∇)D := ∂

∂s ∇D(s) with γ = D′(0). Similarly we can define higher derivatives
as

(∂2
γ,γ ∇)D =

∂

∂s
(∂γ ∇)D(s), etc.

Since ∇D is assumed to be of finite order, all higher derivatives will vanish eventually. Then
Taylor’s theorem applies to give

∇D+γ = ∇D +(∂γ ∇)D +
1

2
(∂2
γ,γ ∇)D +

1

3!
(∂3
γ,γ,γ ∇)D + . . . .
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Example 2.56 (Ricci curvature) We can calculate the change of the Ricci curvature as
quadratic polynomial in γ: we only need to differentiate (∂γ rD)Y,Z = −DY γ(Z) once more
to obtain (∂2

γ,γ rD)Y,Z = −[ γ, Y ].γ(Z) and finally

rD+γ(Y, Z) = rD(Y, Z)−DY γ(Z) +
1

2
γ([ γ, Y ]Z).

2.7 Differential Bianchi identities

The Riemann curvature tensor of a covariant derivative D of a vector bundle EM satisfies a
first order integrability condition, proposition 1.29. Since there is no prefered derivative on a
conformal manifold we will construct conformally invariant operators annihilating the Weyl
curvature tensor. In n = 3 dimensions the Weyl curvature vanishes and the Cotton York
curvature defined below is a first invariant obstruction against local flatness in three dimen-
sions. In this section we will follow Gauduchon’s notes [Gau90], personal communications
with Calderbank and his paper [Cal98b].

Definition 2.57 (Cotton York tensor) For any Weyl derivative D on a conformal manifold
M define the Cotton York tensor CD to be the skew derivative of the normalized Ricci
curvature: CD := dD rD, where rD is viewed as a covector valued 1-form and CD is a
covector valued 2-form. On vector fields X, Y , Z we have

CD
X,Y (Z) := DX rD(Y, Z)−DY rD(X,Z).

Proposition 2.58 The linear change of the Cotton York tensor under a change of Weyl
derivative is given by the Weyl curvature tensor as:

(∂γC)D = γ(Wc).

Since the linear change is independent of the Weyl derivative D we can even conclude CD+γ−
CD = γ(Wc).

Proof: The calculation is a straight forward application of the method developed in the
previous chapter:

(∂γC)DX,Y = [ γ,X ]. rD(Y )− [ γ, Y ]. rD(X)−D2
X,Y γ +D2

Y,Xγ

= [ rD(Y ), X ].γ − [ rD(X), Y ].γ − RD
X,Y .γ

= −Wc

X,Y .γ.

The final remark is elementary calculus e.g. paragraph 2.50 or 2.55. 2

Corollary 2.59 The Cotton York tensor is conformally invariant in n = 3 dimensions since
then the Weyl curvature vanishes. Hence in three dimensions the Cotton York tensor is an
invariant obstruction against conformal flatness.
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Discussion 2.60 (Second Bianchi identity) The differential Bianchi identity of the Rie-
mann curvature tensor RD of the tangent bundle of a Weyl manifold reads:

0 = dDRD
X,Y,Z := DXR

D
Y,Z +DYR

D
Z,X +DZR

D
X,Y .

With the splitting RD
X,Y = Wc

X,Y −[ rD(X), Y ] + [ rD(Y ), X ] in proposition 2.47 of RD into
Weyl and Ricci part we can rewrite the Bianchi identity using the Cotton York tensor:

dDRD
X,Y,Z = dD Wc

X,Y,Z −[ CD
X,Y , Z ]− [ CD

Y,Z, X ]− [ CD
Z,X , Y ].

A first contraction of this expression gives a covector valued 2-form (note trWc = 0 and
dFD = 0):

0 = trdDRD
Y,Z

= trDWc

Y,Z −(n− 3)CY,Z

+ [Z ⊗ trcD rD(Y )− [Y ⊗ trcD rD(Z)− [Z ⊗DY sD + [Y ⊗DZ sD .

One further contraction using c shows (note trc Wc = 0):

0 = −(n− 3) trcD rD(Z) + (n− 3)DZ sD

+ trcD rD(Z)− n trcD rD(Z)−DZ sD +nDZ sD

= −(2n− 4) trcD rD(Z) + (2n− 4)DZ sD .

We summarize these calculations in the following:

Proposition 2.61 (Contracted Bianchi identity) The derivative of the normalized scalar
curvature is a divergence of the normalized Ricci curvature:

trcD rD(Z) = DZ sD,

and a multiple of the Cotton York tensor is a divergence of the Weyl curvature:

divD Wc

Y,Z := trDWc

Y,Z = (n− 3)CY,Z.

Remark 2.62 The first equation means that the Cotton York tensor is trace-free and by
dFD = 0 it is also alternating-free, hence we have identified CD as a section of CD ∈
C∞(M,Λ2T ∗ � T ∗M).

Remark 2.63 (Einstein equation) In closed Weyl geometry, i.e. FD = 0, the Ricci curva-
ture is symmetric and rD− sD c is a symmetric bilinear form, which is divergence-free by
the above contracted Bianchi identity. General relativity models spacetime by a n = 4 di-
mensional conformal manifold of Lorentzian signature together with a closed (usually exact)
Weyl derivative D. The geometry is coupled to the matter in question by the Einstein
equation rD− sD c = T where T is the central weight −2 symmetric and divergence-free en-
ergy momentum stress density tensor of the matter. The dimensional analysis uses Galilei’s
constant as was explained in paragraph 1.12.
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By the second part of the above proposition 2.61 together with paragraph 2.60, it is
clear that the Weyl curvature tensor satisfies its own first order Bianchi identity in n ≥ 5
dimensions: 0 = Bianchi(Wc) with the operator Bianchi given by the following:

Proposition 2.64 (First order Bianchi identity) The following linear first order differential
operator

Bianchi : C∞(M,Λ2T ∗ � so(TM))→ C∞(Λ3T ∗ � so(TM)),

defined on W ∈ C∞(M,Λ2T ∗ � so(TM)) by

Bianchi(W )X,Y,Z := dDWX,Y,Z−
1

n− 3
([ divDWX,Y , Z ]+[ divDWY,Z, X ]+[ divDWZ,X , Y ]),

is nonzero and conformally invariant in n ≥ 5 dimensions. It provides an integrability
condition for the Weyl curvature tensor in n ≥ 5 dimensions: 0 = Bianchi(Wc).

Proof: That this definition is independent of the choice of the Weyl derivative D is a
lengthy but elementary calculation. It is also a special case of Fegan’s result, theorem 4.36.
In n = 4 dimensions this operator is zero. 2

The next aim will be to find a conformally invariant second order Bianchi identity in
n = 4 dimensions.

Proposition 2.65 (Third Bianchi identity) The Cotton York tensor viewed as a covector
valued 2-form satisfies on vector fields X, Y , Z and U the following equation:

dDCD
X,Y,Z(U) + rD(X,Wc

Y,Z U) + rD(Y,Wc

Z,X U) + rD(Z,Wc

X,Y U) = 0.

Proof: Applying dD to dD rD gives RD. ∧ rD, i.e. cyclic permutations like:

dDCD
X,Y,Z = (RD

X,Y . r
D)(Z) + cyc (X, Y, Z)

= RD
X,Y .(r

D(Z)) + cyc (X, Y, Z),

by the first Bianchi identity for RD. The splitting of RD gives

RD
X,Y .(r

D(Z)) = Wc

X,Y .(r
D(Z))− [ rD(X), Y ].(rD(Z)) + [ rD(Y ), X ].(rD(Z)).

Summing the cyclic permutations of the last two terms gives zero because [α, v ].β is sym-
metric in α and β. 2

Remark 2.66 In three dimensions the Weyl curvature vanishes and the Cotton York tensor
is conformally invariant. Hence the above leads to a first order integrability condition dC = 0
for the Cotton York tensor, where the operator d : C∞(M,Λ2T ∗�T ∗)→ C∞(M,Λ3T ∗�T ∗)
is also conformally invariant (either by an elementary calculation or by theorem 4.36).

The contracted Bianchi identity (n − 3)CD
X,Y U = divD Wc

X,Y U together with the third
Bianchi identity gives:
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Corollary 2.67 The Weyl curvature tensor is in the kernel of a second order differential
operator:

(dD divD Wc)X,Y,ZU + (n− 3)(rD(X,Wc

Y,Z U) + rD(Z,Wc

X,Y U) + rD(Y,Wc

Z,X U)) = 0.

In n = 4 this is a conformally invariant Bianchi identity since the above operator is
conformally invariant which we will prove in proposition 4.51, see also [Bra98]:

Proposition 2.68 (Second Order Bianchi identity) For n = 4 dimensions there is a sec-
ond order conformally invariant differential operators: Bianchi : C∞(M,Λ2T ∗�so(TM))→
C∞(M,Λ3T ∗ � T ∗M) given on an endomorphism valued 2-form W by

Bianchi(W )X,Y,Z := (dD divDW )X,Y,Z + rD(X,WY,Z) + rD(Y,WZ,X) + rD(Z,WX,Y ).

It provides an integrability condition for the Weyl curvature tensor in n = 4 dimensions
Bianchi(Wc) = 0.

Remark 2.69 We have presented a number of integrability conditions on Weyl manifolds
and conformal manifolds. As was remarked before the Bianchi identity provides a motivation
for the Einstein equation in the Riemannian case. It is not clear to us how to couple matter
to Weyl’s geometric theory of gravity and electromagnetism (briefly described in remark
2.31), i.e. it is not clear how to relate the curvature invariants in Weyl geometry to the
matter energy density.

We will finish this section by introducing the Bach tensor Bc in n = 4 dimension which
is a curvature invariant of quartic order. In fact Bc is obtained by applying a conformally
invariant second order operator to the Weyl curvature tensor. The invariance of the following
operator will be proved in proposition 4.51, see also [Bra98]:

Proposition 2.70 In arbitrary dimensions n ≥ 3 there is a second order conformally invari-
ant differential operator: Bach : C∞(M,L4−n⊗Λ2T ∗�so(TM))→ C∞(M,L2−n⊗T ∗�T ∗M)
given on an endomorphism valued 2-form W by

Bach(W )Y,U :=
∑

i,j

(D2
ti,tj

+ rD(ti, tj)) c(W (θi, Y )U, θj) + sym (Y, U),

where ti, θ
i is a dual basis of TM .

Definition 2.71 (Bach tensor) On a four dimensional conformal manifold we define the
Bach tensor to be Bc := Bach(Wc), which is a trace-free symmetric tensor of central weight
−4.

Proposition 2.72 The Bach tensor on a conformal four manifold is divergence-free: 0 =
div Bc, where div : C∞(M,L2−n ⊗ T ∗ � T ∗M) → C∞(M,L−n ⊗ T ∗M) is invariant, see
theorem 4.36.
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Proof: This is an application of the Bianchi identities. For simplicity choose a flat Weyl
derivative FD = 0, then rD is symmetric. Weyl curvature and Cotton York tensor are trace-
free and alternating-free. For n = 4 we have from proposition 2.61 that divD Wc = CD and
from proposition 2.65 we know

∑
iDtiC

D
Y,Z]θ

i = 0. A lengthy but elementary calculation
shows the result. 2

Remark 2.73 (Bach’s theory of gravity) A couple of years after Weyl published his unified
theory of electromagnetism and gravity, Bach obtained in [Bac21] his conformal curvature
invariant Bc together with its conservation law div Bc = 0 on a n = 4 dimensional conformal
manifold. Using fundamental constants as in paragraph 1.8 the Bach tensor Bc has the
dimension (energy )/(volume ). The field equation in Bach’s conformal theory of gravity is
Bc = T where T is the conserved energy momentum stress tensor of the matter in question.
This theory is nonlinear in the conformal structure c since c 7→Wc is nonlinear. Bach’s field
equation is fourth order in the conformal structure. This was one reason for most physicists
to reject this theory. The induced conformal structure of the Schwarzschild geometry solves
the source free Bach equation. On the other hand, the cosmological models due to Friedmann
Robertson Walker in Einstein’s theory are conformally flat and hence only provide trivial or
flat solutions of Bach’s equation.
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Chapter 3

Algebra of conformal geometry

This chapter uses the Taylor expansion of smooth functions to determine in section 3.1 and
3.2 all vector fields on an affine conformal space A over V which leave the (flat) conformal
metric c invariant. The space of these fields forms the conformal Lie algebra g, which is
also called the Möbius Lie algebra . The algebra structure provides a link between V ∗, the
infinitesimal translations at infinity of A, and the linear change of a Weyl derivative on a
curved conformal manifolds, see remark 3.4. The Möbius algebra acts on smooth polynomial
functions through the Lie derivative, see paragraph 3.7. The above mentioned link to linear
changes of Weyl derivatives guides the search for higher jet operators on conformal manifolds,
see proposition 4.45.

In section 3.3 we identify the Möbius Lie algebra as a linear Lie algebra g = so(V̂ ), where
V̂ is a natural vector space associated to a conformal affine space A. This allows to use tensor
products of V̂ as representations W for g. An element of such a representation space is called
a twistor and it induces a twistor field on A, i.e. a polynomial with values in the vector
space WV ∗ of coinvariants of W . Twistors and twistor fields have a vivid history and play
the key role in this dissertation. They occur here in their most elementary context. The
inclusion W → C∞(A,WV ∗) is the beginning of the conformal Bernstein Gelfand Gelfand
complex, see theorem 5.12. In the last section 3.4 we will identify the conformal sphere as a
homogeneous space.

3.1 Lie derivatives on affine space

Let A be an affine space modelled on a vector space V . Let F be a finite dimensional
right representation space of gl(V ) (convention: for A,B ∈ gl(V ) we have [A,B ] = A ◦
B − B ◦ A). Denote by f ∈ C∞(A, F ) a function on A with values in F (i.e. a section
of F ). If F ⊗ gl(V ) → F comes from a group representation F × GL (V ) → F and if
φ : A → A is a (local) diffeomorphism, then the pull back of f with respect to φ is defined
to be φ∗f(x) := f(φ(x)).(∂φ|

x
). For any vector field X ∈ C∞(A, V ) let φt be its local

flow, i.e. ∂
∂t
φt(x) = X|

φt(x)
. We define the Lie derivative of f in the direction of X by

(convention):

LXf :=
∂

∂t
|
t=0
φt

∗f = ∂Xf + f.∂X.
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Here ∂ denotes the affine derivative on A in V and F . In particular, if Y ∈ C∞(A, V ) is
another vector field, then LXY = ∂XY − ∂YX. The space of smooth vector fields forms a
Lie algebra under L. This Lie algebra structure turns the space of sections with the above
Lie derivative L into a left representation of C∞(A, V ), since

LXLY f − LYLXf = LLXY f.

In what follows we like L to be a right representation of C∞(A, V ) hence we will use in
this section the opposite Lie bracket between smooth vector fields: [X, Y ] := −LXY =
∂YX − ∂XY . With these convention every right gl(V ) representation F induces a right
C∞(A, V )-representation:

L : C∞(A, F )⊗ C∞(A, V )→ C∞(A, F ).

Discussion 3.1 (Taylor expansion) We fix a point x ∈ A. Any smooth section f ∈
C∞(A, F ) has a Taylor expansion at x: if v ∈ V denotes a direction then (f + ∂vf +
. . . + 1

k!
∂k
vkf)|

x
is a polynomial in v of degree k. We assume, that F has a certain central

weight w ∈ R. We will label tensors in Sym k(V ∗) ⊗ F by their central weight w − k. An
element

f = (fw, fw−1, . . . , fw−k) ∈ Sym (V ∗)⊗ F := (R⊕ V ∗ ⊕ Sym 2V ∗ ⊕ . . .)⊗ F
can be viewed as an F -valued polynomial on V (of finite degree k) given by (ev = 1 + v +
1
2
v2 + . . .):

v 7→ f(ev) := fw + fw−1(v) + . . .+
1

k!
fw−k(v

k).

The Lie derivative of smooth sections in the direction of smooth vector fields LXf =
∂Xf + f.∂X induces a natural right action of polynomial vector fields X = (X1, X0, . . .) ∈
Sym (V ∗)⊗ V on polynomial sections:

(Sym (V ∗)⊗ F ) ⊗ (Sym (V ∗)⊗ V )→ Sym (V ∗)⊗ F,
given by f ⊗X 7→ LXf . We use the symmetric algebra Sym (V ) where the product of a and
b is denoted by ab and ev is viewed as a formal element ev = 1+v+ 1

2
v2 + . . .. Then we find:

LXf(ev) = f(X(ev)ev) + f(ev).(X(ev)).

The Lie derivative on smooth vector fields C∞(V, V ) induces a Lie algebra structure on
Sym (V ∗)⊗ V . Note, that the Lie algebra Sym (V ∗)⊗ V comes with a natural grading, such
that elements in Sym k(V ∗) ⊗ V are labled by 1 − k. We will specialize the above formula
to the Lie bracket [X, Y ] = −LXY (note that the right action of gl(V ) on V is given by
v.A = −A(v)):

[X1, Y1 ] = 0,

[X0, Y1 ] = X0(Y1),

[X−1, Y1 ](v) = X−1(Y1, v),

[X0, Y0 ](v) = X0(Y0(v))− Y0(X0(v)),

[X−1, Y0 ](v, v) = 2X−1(Y0(v), v)− Y0(X−1(v, v)),

[X−1, Y−1 ](v, v, v) = 3X−1(Y−1(v, v), v)− 3Y−1(X−1(v, v), v).
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In general we have

[X, Y ](ev) = X(Y (ev)ev)− Y (X(ev)ev).

3.2 Conformal Killing fields

Let A be an affine space modelled over the vector space V which is equipped with a conformal
inner product c (see definition 2.1). In this chapter we characterize polynomial vector fields
K on A which have local diffeomorphisms leaving the conformal structure of the affine space
invariant: LKc = 0. Such vector fields are called conformal Killing fields and represent the
infinitesimal symmetries of conformal geometry. In n ≥ 3 dimensions the space of these
fields forms a finite dimensional Lie algebra.

Proposition 3.2 The following sub space g of quadratic vector fields on a conformal vector
space V , c

g := V ⊕ co(V )⊕ V ∗ ⊂ V ⊕ V ∗ ⊗ V ⊕ Sym 2V ∗ ⊗ V,
with inclusion V ∗ ↪→ Sym 2V ∗ ⊗ V defined by

α 7→ ((v, w) 7→ α(v)w + α(w)v − c(v, w)]α = [ [α, v ], w ]),

defines a Lie algebra of polynomial vector fields K, which leave the conformal structure
invariant: LKc = 0.

Proof: If (a, A, α) and (b, B, β) denote elements in g = V ⊕co(V )⊕V ∗ then the Lie bracket
in Sym (V ∗)⊗ V under the above inclusion is given by:

[ a, b ] = 0,

[A, b ] = Ab,

[α, b ] = α(b)id + α⊗ b− [b⊗ ]α,
[A,B ] = A ◦B − B ◦ A,
[α,B ] = α ◦B,
[α, β ] = 0.

This shows that g is indeed a subalgebra. Since the conformal structure on affine space
is parallel we know Lac = 0. Also LAc = c.A = 0 by definition of co(V ). Finally
Lαc(v) = c.[α, v ] = 0. 2

Note, that the Lie algebra g inherits the grading from Sym (V ∗) ⊗ V namely g1 := V ,
g0 := co(V ) and g−1 := V ∗. The subalgebra of vector fields which vanish at the origin will
be called p := co(V )⊕ V ∗.

Remark 3.3 (Translations at infinity) The Abelian subalgebra V ∗ generates local diffeo-
morphisms which can be called translations at infinity : if µ ∈ L1 is a length scale and
g = µ−2

c a Euclidean metric then the inversion at the unit sphere I is defined to be a
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map V \ {x | c(x, x) 6= 0} → V with I(x) := x
g(x,x)

. It leaves the conformal structure in-

variant I∗c = c and is idempotent I2 = id . Finally, for α ∈ V ∗ define x 7→ I(I(x) + α),
which is independent of µ and defines a group homomorphism between V ∗,+ and conformal
diffeomorphisms of V .

Remark 3.4 (Change of Weyl derivative) The Lie bracket [ γ, v ] between a linear form
γ ∈ V ∗ and a vector v ∈ V is an element in co(V ) and hence acts on any representation
of CO (V ). The corresponding bundle map on a conformal manifold coincides with the
linearized Koszul formula 2.48, where γ represents a (linear) change of Weyl derivative and
v a direction in which to differentiate. Hence the translations at infinity on the affine space
can be interpreted as linear changes of Weyl derivatives on a curved conformal manifold.

Proposition 3.5 For n ≥ 3 the Lie subalgebra of all polynomial vector fields K with LKc =
0 is finite dimensional and given by the above g := V ⊕ co(V )⊕ V ∗.

Proof: If K ∈ Sym kV ∗⊗V with k ≥ 1 represents a polynomial vector field, then 0 = LKc

forces K to be in the kernel of the map

Sym kV ∗ ⊗ V → Sym k−1V ∗ ⊗ (V ∗ � V ),

where V ∗�V denote the endomorphisms of V which are symmetric and trace-free, i.e. V ∗⊗
V = (V ∗ � V )⊕ co(V ). For n ≥ 3 and k ≥ 3 the above map is injective. For k = 2 we have
a short exact sequence

0→ V ∗ → Sym 2V ∗ ⊗ V → V ∗ ⊗ (V ∗ � V )→ 0. 2

Remark 3.6 Conformal geometry in two dimensions n = 2 is different reflected by the
richness of holomorphic functions (which are conformal diffeomorphisms at points where the
first derivative is nonzero). Indeed for n = 2 and all k ≥ 2 we have a short exact sequence

0→ Sym k−1
0 V ∗ → Sym kV ∗ ⊗ V → Sym k−1V ∗ ⊗ (V ∗ � V )→ 0,

where Sym k−1
0 V ∗ is the two dimensional space of trace-free symmetric forms. Consequently

the Lie algebra of polynomial vector fields is infinite dimensional and given by

V ⊕ co(V )⊕ V ∗ ⊕ Sym 2
0V

∗ ⊕ Sym 3
0V

∗ ⊕ . . . .

This dissertation only covers the n ≥ 3 dimensional case. Conformal vector fields on a two
dimensional conformal space which also leave the additional choice of a Möbius structure
invariant (see [KP88] for the flat case, and [Cal98a] for the curved case) are then again only
given by the above quadratic polynomials.

Discussion 3.7 (g-action on functions) Let F ⊗ co(V ) → F be a right representation. As
before we assume, that F has a certain central weight w ∈ R. Polynomials with values
in F are elements f = (fw, fw−1, . . . , fw−k) ∈ Sym (V ∗) ⊗ F (of finite degree k) given by
v 7→ f(ev) := fw + fw−1(v) + . . . + 1

k!
fw−k(v

k). The Lie derivative L induces a right action
of (a, A, α) ∈ g = V ⊕ co(V )⊕ V ∗ on f ∈ Sym (V ∗)⊗ F :

L : Sym (V ∗)⊗ F ⊗ (V ⊕ co(V )⊕ V ∗)→ Sym (V ∗)⊗ F,
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given by

Laf(ev) = f(aev),

LAf(ev) = f((Av)ev) + f(ev).A,

Lαf(ev) = f(
1

2
([α, v ]v)ev) + f(ev).[α, v ].

3.3 Tensorial twistors in conformal geometry

Penrose discovered the physical significance of elements in a representation space of the
Lie algebra of conformal Killing fields g. He called these elements twistors (see [PR84])
and in the present context of affine conformal geometry any such element induces a special
section of a certain bundle, a twistor field . Constant functions and conformal Killing fields
are particular examples. Twistors play a central role in this dissertation and occur here as
polynomials. Later on they will be realized as solutions of overdetermined partial differential
equations and will play the role of generalized charges (such as gravitational masses) in linear
field theories.

Definition 3.8 (Conformal twistors) LetW be a right representation space of the conformal
Lie algebra g = V ⊕ co(V )⊕ V ∗. An element of W is called a conformal twistor .

Our first aim is to construct such representations W by identifying g as a linear Lie
algebra: if V is a vector space then we denote by V 0 := L−1⊗V the weightless vector space.

Definition 3.9 If V carries a conformal structure c with signature sig(c) = (p, n− p) then
the (n+ 2)-dimensional space

V̂ := L1 ⊕ V 0 ⊕ L−1

carries a natural (real valued) inner product of signature sig(c) + (1, 1) = (p+ 1, n− p+ 1).
It is given on two vectors v̂ = (v1, v0, v−1) and ŵ = (w1, w0, w−1) in V̂ by

〈v̂, ŵ〉 := v1w−1 + c(v0, w0) + v−1w1.

The space Skew (V̂ ) = so(V̂ ) of skew symmetric endomorphisms of V̂ forms a Lie algebra
under [ Â, B̂ ] = Â ◦ B̂ − B̂ ◦ Â.

Proposition 3.10 The following identification:

V ⊕ co(V )⊕ V ∗ '−→ so(V̂ ) ; (a, A, α) 7→ Â

defined on v̂ = (v1, v0, v−1) ∈ V̂ by

Âv̂ :=

(
1

n
(trA)v1 + c(a, v0) , A0v0 − a⊗ v−1 − α⊗ v1 , α(v0)−

1

n
(trA)v−1

)
,

is a Lie algebra isomorphism, where A = A0 + 1
n

trAid.
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Tensor products of V̂ = L1 ⊕ V 0 ⊕ L−1 are therefore examples of representations for
g = V ⊕ co(V )⊕ V ∗. Let A be an affine space over V and x ∈ A a point. Each element of
so(V̂ ) (the right adjoint representation) induces a polynomial vector field on A, a so called
conformal Killing field via so(V̂ ) = V ⊕ co(V ) ⊕ V ∗ → Sym (V ∗) ⊗ V → C∞(A, V ). In
general if W is a right representation of g = V ⊕ co(V ) ⊕ V ∗ then W ⊗ g → W induces a
map W ⊗ V ∗ → W with image denoted by W.V ∗ ⊂ W .

Definition 3.11 (Coinvariants) Elements of the quotient space WV ∗ := W/W.V ∗ are called
coinvariants of W with respect to V ∗.

Since the map W ⊗ V ∗ → W is p = co(V ) ⊕ V ∗ equivariant the space of coinvariants
WV ∗ is indeed a p-representation. The nilpotent part V ∗ of p acts trivially on WV ∗.

Examples 3.12 If W is an irreducible subspace of a tensor product of V̂ = L1 ⊕ V 0 ⊕ L−1

with itself, then W splits under the action of the centre of co(V ) into a direct sum of
subspaces with elements of the same central weight W = Ww ⊕ Ww−1 ⊕ . . . ⊕W−w. The
linear action of elements in V ∗ lowers the central weight by −1. From this it is clear that
the space of coinvariants WV ∗ is isomorphic to Ww as co(V )-representation (we will use the
following notation: if E is a co(V )-representation of central weight wE, then we denote by
Ew := Lw−wE ⊗ E the same so(V )-representation but of central weight w):

W = V̂ = L1 ⊕ V 0 ⊕ L−1, hence WV ∗ = L1,

W = so(V̂ ) = V ⊕ co(V )⊕ V ∗, hence WV ∗ = V,

W = Λk+1(V̂ ) = (ΛkV )1 ⊕ Λk−1V 0 ⊕ Λk+1V 0 ⊕ (ΛkV )−1, hence WV ∗ = Lk+1 ⊗ ΛkV ∗,

W = Sym 2
0(V̂ ) = L2 ⊕ V ⊕ Sym 2V 0 ⊕ V ∗ ⊕ L−2, hence WV ∗ = L2.

Remark 3.13 Suppose that a finite dimensional irreducible representation W of so(V̂ ) is
characterized by a Young diagram (see [FH91]) for V̂ . In that case, the coinvariants WV ∗

as so(V )-representation can be characterized by the Young diagram for V which arises after
deleting the first row. The central weight of WV ∗ is given by the number of entries of the first
row, which determines WV ∗ as co(V )-representation. The nilpotent part of p = co(V )⊕ V ∗

will act trivially on WV ∗.

Each element of W induces (in a linear way) a section with values in WV ∗. More precisely:

Proposition 3.14 (Conformal twistor fields) The following linear inclusion is equivariant
under the right g-actions:

ι : W → Sym (V ∗)⊗WV ∗; ι(w)(vk) = [w(.v)k]V ∗.

The resulting sections of C∞(A,WV ∗) are called conformal twistor fields induced by W .

Proof: Let (a, A, α) ∈ g be a conformal Killing field then

La(ι(w))(ev) = ι(w)(aev) = [w.a.ev]V ∗ = ι(w.a)(ev).
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As elements acting from the right on W (alternatively in the universal enveloping algebra
U(g)) we have .A.ev = [A, v ].ev + .ev.A from which we get

LA(ι(w))(ev) = ι(w)((Av)ev) + ι(w)(ev).A

= [w.[A, v ].ev + w.ev.A]V ∗

= [w.A.ev]V ∗ = ι(w.A)(ev).

Finally for the action of α note .α.ev = .(1
2
[α, v ]v).ev + .ev.[α, v ] + .ev.α hence

Lα(ι(w))(ev) =
1

2
ι(w)(([α, v ]v)ev) + ι(w)(ev).[α, v ]

= [
1

2
w.([α, v ]v).ev + w.ev.[α, v ]]V ∗

= [w.α.ev − w.ev.α]V ∗

= [w.α.ev]V ∗ = ι(w.α)(ev). 2

Example 3.15 The conformal twistor fields induced by W = Λk+1V̂ with k = 0 . . . n are
quadratic polynomials with values in Lk+1 ⊗ ΛkV ∗. In the case k = 0 the scalar valued
polynomial coming from â = (a1, a0, a−1) ∈ L1 ⊕ V 0 ⊕ L−1 is a called a Fierz twistor (for
gravity) and is given by

ι(â)(ev) = [â + â.v +
1

2
â.v.v + . . .]V ∗

= a1 − c(a0, v)−
1

2
a−1 c(v, v).

In the case k = 1 we reproduce the conformal Killing fields : the element Â = (a, A, α) ∈
V ⊕ co(V )⊕ V ∗ induces

ι(Â)(ev) = [Â + Â.v +
1

2
Â.v.v + . . .]V ∗

= [Â + [ Â, v ] +
1

2
[ [ Â, v ], v ]]V ∗

= a + Av +
1

2
[α, v ]v.

In the case k ≥ 2 the twistor fields induced by Â = (A1, A
−
0 , A

+
0 , A−1) ∈ (ΛkV )1⊕(Λk−1V )0⊕

(Λk+1V )0 ⊕ (Λk)−1 are given by

ι(Â)(ev) = [Â+ Â.v +
1

2
Â.v.v + . . .]V ∗

= A1 + v ∧ A−
0 + v yA+

0 +
1

2
c(v, v)A−1.
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3.4 Projective light cone

A projective model of conformal geometry can be constructed as follows: let V̂ be a (n+2)-
dimensional vector space with inner product of signature (p+1, n−p+1). A nonzero vector
l̂ ∈ V̂ is called lightlike , null or isotropic , if 〈l̂, l̂〉 = 0. The set of light like vectors forms the
light cone Cone := {l̂ ∈ V̂−{0} | 〈l̂, l̂〉 = 0}.

Definition 3.16 (Conformal sphere) The set of null lines S := Cone/R× = {Rl̂ | l̂ ∈ Cone}
defines a compact real smooth manifold and will be called the real conformal sphere of
signature (p, n− p) .

Remark 3.17 The real conformal sphere is diffeomorphic to a product of spheres Sp ×
Sn−p/ ∼ where points like (x, y) ∼ (−x,−y) are identified. It plays the role of the flat model
of conformal geometry. The case p = n−1 and n = 4 refers to the real conformal Minkowski
space of special relativity.

From this definition there are various tautological vector bundles over S: the trivial
bundle V̂ × S has two natural sub bundles: the canonical real line bundle denoted by
Can→ S with fibre Rl̂ over Rl̂ ∈ S and the bundle of tangent spaces to the light cone with
fibre at Rl̂ ∈ S given by Tl̂Cone = {ĵ ∈ V̂ | 〈ĵ, l̂〉 = 0}. Since the canonical line sits inside
the tangent cone Can ⊂ TCone the quotient bundle TCone/Can is also natural. Indeed
all intrinsic tensor bundles of S can naturally be rediscovered: for the tangent, cotangent
and density bundles we have TS = Can∗ ⊗ TCone/Can, T ∗S = Can ⊗ (TCone/Can)∗ and
Lw = Lw(TS) = Can−w.

Notice that the weightless tangent bundle L−1⊗TS = TCone/Can inherits a Riemannian
metric of signature (p, n − p) from V̂ , and this defines a conformal inner product on each
tangent space of S, i.e. a conformal structure on S.

Theorem 3.18 (Möbius group) The orthogonal group O (V̂ ) acts linearly upon V̂ and leaves
the light cone invariant, which induces a smooth transitive action on the conformal sphere
O (V̂ ) × S → S by conformal diffeomorphisms, the so called Möbius transformations . For
n ≥ 3 all conformal diffeomorphisms of S come from O (V̂ ).

For a proof of the last part of this theorem we refer to [KP88].

Remark 3.19 Let G := O (V̂ ) be a short hand for the Möbius transformations and Rl̂ ∈ S
be a point, then P := {g ∈ G |Rĝl = Rl̂} denotes the stabilizer sub group. By use of the
orbit stabilizer theorem S can be identified as homogeneous space S = G/P . In the case
V̂ = L1 ⊕ V 0 ⊕ L−1 the sub line L−1 is null and the stabilizer group of Rl̂ = L−1 can be
identified with P = CO (V )nV ∗.
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Chapter 4

Differential conformal invariants

The aim of this chapter is to study local differential invariants on conformal manifolds. The
conformal metric itself and the Weyl curvature are simple examples. We are concerned
here with first and second order invariants in n ≥ 3 dimensions. On conformal manifolds
of indefinite signature lightlike geodesics are well known to be invariant and because of
their physical significance we investigate them in the first section. Conformal geodesics
generalize circles to curved conformal manifolds. We derive new conserved properties along
conformal geodesics using twistors. In the last two sections we discuss differential invariants
for sections of associated bundles. We recall Fegan’s classification of linear conformally
invariant differential operators of first order and apply it to give new bilinear invariants.
These bilinear invariants are crucial when dealing with linear field theories as we will explain
in the next chapter. The key tool to study second order invariants is the definition 4.44 of
a 2-jet operator in terms of a Weyl derivative, which behaves well under a change of Weyl
derivative. With this operator in hand all second order invariants of the affine space have
analogues on curved conformal manifolds.

4.1 Conformal invariants along lightlike curves

A curve α : R → M in a conformal manifold of indefinite signature is called lightlike if
〈α̇, α̇〉 = 0. Lightlike curves play the role of light rays in relativistic geometric optics. If
the acceleration Dα̇α̇ is proportional to the tangent vector Dα̇α̇ ∼ α̇ the curve is called
a lightlike geodesic . The above condition is independent of the parameterization and of
the choice of the Weyl derivative D. Hence lightlike geodesics are conformally invariant.
Together with the conformal invariance of electromagnetism we suggest a simple law how
an electromagnetic field can influence a light ray. Unfortunately it is very difficult to verify
such a law in a laboratory, since the interaction is expected to be very weak. Motivated by
astronomical distance measurements we will define a new invariant distance on a conformal
manifold along the backward lightcone of an observer.

One way to see the conformal invariance of lightlike acceleration is to attach a never
vanishing vector field Lα ∈ Lw−1 ⊗ TαM of central weight w along α which is proportional
to the tangent vector Lα ∼ α̇. For the acceleration in terms of L we find for a 1-form γ
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representing a linear change of Weyl derivative, see example 2.51:

∂γDLL = wγ(L)L+ γ(L)L− 〈L, L〉]γ,

hence for a lightlike L of central weight w = −1 the accelerationDLL is conformally invariant.

Definition 4.1 (Lightlike geodesic) A lightlike curve α : R → M with an attached cotan-
gent vector 0 6= Lα ∈ T ∗

αM with Lα ∼ α̇ is called a lightlike geodesic if DLL = 0.

Remark 4.2 (Frequency) Lightlike acceleration being conformally invariant for vectors L of
central weight −1 corresponds to the fact that in physics one usually attaches the dimension
(frequency ) to the tangent vector L: with the velocity of light as fundamental constant this
has geometric dimension (length )−1, see paragraph 1.5. Indeed the frequency of L measured
by an observer N (with 〈N,N〉 = −1) is defined to be −〈L,N〉. This is a way to normalize
lightlike vectors in a conformally invariant and physically meaningful way.

Proposition 4.3 (Conservation law along lightlike geodesics) If K denotes a conformal
Killing field on M and L is the attached covector of a lightlike geodesic, then 〈L,K〉 is a
weightless conformally invariant constant of motion.

Proof: This is a simple application of the product rule:

∂L(〈L,K〉) = 〈DLL,K〉 + 〈L,DLK〉

= 〈DLL,K〉 + 〈L,Kill(K)(L)〉 + 1

n
〈L, L〉 divDK,

and all three summands are zero by assumption. 2

The conformal invariance of the lightlike acceleration DLL can be used to suggest an
interaction between L and a Faraday 2-form F as follows:

Remark 4.4 (Interaction with 2-forms) Let F ∈ C∞(M,Λ2T ∗M) denote a closed 2-form.
A conformally invariant interaction between a lightlike curve L and F is given by DLL =
λ](F (L)), where λ ∈ R is a coupling constant. If F is a kinematic electromagnetic field, then
the above is a simple description of a light-light interaction in terms of classical geometric
optics. The number λ needs to be determined by experiment: according to the above law a
monochromatic laser light ray of (low) frequency ν should bend in a (small) circle of radius
R when moving through a (strong) homogeneous magnetic field B such that:

R =
1

λ

√
~

4πε0 c3
ν

B
.

Remark 4.5 If K ∈ C∞(M,TM) denotes a vector field and A ∈ C∞(M,T ∗M) a (local)
potential of F = dA then q := 〈L,K〉 − λA(K) is a weightless function along the light ray
of L, which satisfies

∂Lq = 〈DLL,K〉+ 〈L,DLK〉 − λ∂L(K yA)

= −λ(K y dA)(L) + 〈L,Kill(K)(L)〉 − λd(K yA)(L)

= −λLKA(L) + 〈L,Kill(K)(L)〉.
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Hence if K is a conformal Killing field representing a symmetry of A, i.e. LK(A) = 0, then
q is a conformally invariant conserved quantity along L.

Remark 4.6 (Redshift and bending of light) We will apply the study of motion in a
Coulomb field, see paragraph 2.15, also to the case of a lightlike solution curve L = ċ
and 〈ċ, ċ〉 = 0 subject to the equation DLL = λF (L). The variables a, b, E, l are de-
fined in paragraph 2.16 and we will use their properties here. The law of motion fixes the
parameter a to be a = −λQ. The frequency of L measured by the static observer N is
−〈ċ, N〉 = b + a/r hence b > 0 has the interpretation of the frequency at infinity. In the
case of an attractive potential a > 0 the light has a higher frequency (it gains energy)
when it comes nearer to the centre (when it looses potential energy). This is a redshift
phenomenon. From 0 = 〈ċ, ċ〉 we know 2E = b2 and the extremal distances r0 with ṙ = 0
satisfy E = 1

2
l2/r2

0 + U(r0), i.e. r0 = (−a ± l)/b which has exactly one positive solution if
l > |a| > 0 given by r0 = (l − a)/b. In the case l > |a| the light ray passes the centre and
comes nearest at t = 0 with distance r0. The total polar angle is given by

φ(∞)− φ(−∞) = 2(φ(∞)− φ(0))

= 2

∫ ∞

r0

φ̇(t)

ṙ
dr = 2

∫ ∞

r0

l

r2ṙ
dr = 2

∫ ∞

0

1

cosh(x)− a/l dx

=
4√

1− (a/l)2
arctan

( ex − a/l√
1− (a/l)2

)∣∣∣
∞

0

≈ π + 2(a/l) +
π

2
(a/l)2 + . . . .

The qualitative behavior of this bending depends on the sign of a = −λQ. Moreover from
l = a + br0 we find φ(∞) − φ(−∞) ≈ π + 2a/(br0) which shows that the bending also
depends upon the frequency b of the light. The bending of light in the Schwarzschild model
(see e.g. [ONe83] p. 384) does not depend upon the frequency (in consistency with the
equivalence of energy and gravitational mass) and is given by φ(∞)−φ(−∞) ≈ π+4(a/r0).

Remark 4.7 (Luminosity distance) In special relativity the intensity of electromagnetic
radiation (also called luminosity) falls off like 1/r2 where r is the (retarded) spacelike distance
to the source (the intensity is an energy density quadratic in the field). This fall off behavior
allows one to measure astronomical distances of shining stars by comparing their radiation
intensity to that of comparable stars with known distance. In special relativity this so called
luminosity distance satisfies a differential equation (see paragraph 5.10) which generalizes to
the following equation on a (curved) conformal manifold: along a lightlike geodesic α : R→
M with DLL = 0 we can define a section rα ∈ L1

α subject to DLDLr + rD(L, L)r = 0,
where the initial conditions r(0) = 0 and DLr(0) = −〈L,N〉 depend upon the choice of an
observer 〈N,N〉 = −1 at α(0) and rD is the normalized Ricci curvature of D, see proposition
2.47. The resulting length scale along α is called the luminosity distance with respect to
the observer N , the latter can be thought of as the radiation source or as the measuring
astronomer.

Definition 4.8 A vector field L of central weight −1 on a conformal manifold of indefinite
signature is called lightlike if 〈L, L〉 = 0. It is called geodetic if DLL = 0 (which is also a
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conformally invariant condition). The frequency measured by an observer N with 〈N,N〉 =
−1 is a density of weight −1 defined to be −〈L,N〉.

Example 4.9 (Light from a point source) Let c(t) be a parameterized timelike curve rep-
resenting an emitter. Let M be a neighborhood of the worldline c such that the space-
time double lightcone of each point x ∈ M intersects the worldline c twice: once with
the forward lightcone at c(φ+(x)) and once with the backward lightcone at c(φ−(x)). This
defines two function φ± : M → R (advanced and retarded parameter). The two gradi-
ents L± := − grad φ± are lightlike geodetic vector fields. Along the worldline c we have
t = φ±(c(t)) which gives 1 = ∂φ±(ċ) = −〈L±, ċ〉, hence L± are fields pointing in the same
time direction as ċ and the emitted frequency (relative to c) is incorporated into the param-
eterization of c.

4.2 Conformal invariants along nonlightlike curves

In this section we focus on invariants along timelike or spacelike curves. The Riemannian
geodesic equation is not conformally invariant, but there is a conformally invariant third
derivative of a curve. Curves which are uniformly accelerated are called conformal geodesics .
The Fermi transport along arbitrary curves is a simpler example of an invariant, which we
will need in the next section to construct conserved properties along conformal geodesics.
None of the results of this section are new, although we simplified the conformal geodesic
equation to a single third order equation, which will turn out to be useful in the next section.

Discussion 4.10 (Geometry of curves) Let c : R → M with t 7→ c(t) be a parameterized
nonlightlike curve 〈ċ, ċ〉 6= 0 on a conformal manifold M . The parameterization induces a
positive section ν of L−1 along c defined by ±1 = ν2〈ċ, ċ〉. The normalized weightless tangent
vector N := νċ is independent of the parameterization. Given a Weyl derivative D we call
DNN the acceleration of c. The skew symmetric endomorphism KD ∈ L−1

c ⊗ so(TcM)
defined by 〈N,N〉KD := N 4DNN = 〈 , N〉DNN − 〈 , DNN〉N is called the curvature of c
with respect to D.

Definition 4.11 (Fermi derivative along curves) Let X be a vector field along a nonlightlike
curve c, then N splits X into tangential and normal partsX = X>+X⊥, where 〈N,N〉X> :=
〈X,N〉N . The Fermi derivative with respect to a Weyl derivative D is defined by

FermiDN X := (DNX
>)> + (DNX

⊥)⊥

= DNX −KD(X).

This definition on vector fields extends to arbitrary sections associated to a co(V )-
representation by means of the left KD action. The Fermi derivative leaves the conformal
structure and the projections on tangential respectively normal parts parallel. A vector field
X with 0 = FermiDN X is called minimally rotating or Fermi parallel .

Proposition 4.12 The Fermi derivative is conformally invariant for weightless tensors and
therefore weightless tensors can be transported in a conformally invariant way along any
curve.
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Proof: Let Z a vector field of central weight w along c. Under a linear change of Weyl
derivative γ, the Fermi derivative of Z in the direction N changes as follows:

∂γ FermiDN Z = ∂γDNZ − ∂γKD(Z)

= wγ(N)Z. 2

On the conformal sphere S (see definition 3.16) circles are preferred curves, since they
are mapped onto circles under all Möbius transformations. In Euclidean geometry, circles
have constant geodesic curvature, i.e. their third derivative is proportional to their velocity.
On an arbitrary conformal manifold M , c with n ≥ 3 dimensions, there is a conformally
invariant third derivative for non lightlike curves c : R → M : denote by Nc the normalized
tangent vector and choose a Weyl derivative D. From 〈N,N〉 = ±1 we have 〈DNN,N〉 = 0
and for the tangential component of DNDNN we find 〈DNDNN,N〉 = −〈DNN,DNN〉.

Proposition 4.13 (Conformal geodesics) In n ≥ 3 dimensions the following parameter
independent third derivative of c

GeodN := (DNDNN − 〈N,N〉] rD(N))⊥

is conformally invariant. A nonlightlike curve c with GeodN = 0 is called a conformal
geodesic .

Proof: Under a linear change γ of the Weyl derivative D the normal component of the
third derivative changes like the normalized Ricci curvature, see example 2.54:

∂γ(DNDNN)⊥ = ([ γ,N ].DNN)⊥ + (DN([ γ,N ].N))⊥

= −γ(N)DNN + (DN(γ(N)N − 〈N,N〉]γ))⊥
= 〈N,N〉(−DN]γ)

⊥

= 〈N,N〉(]∂γ rD(N))⊥. 2

Remark 4.14 The above third derivative occurs as Abraham vector in the Lorentz Dirac
equation for the classical motion of a charged particle influenced by its own electromagnetic
field in four dimensional Minkowski space (see Rohrlich [Roh65]).

Remark 4.15 In a conformal affine space A with base point x0 we could use the translations
at infinity φ : A → A with φ(x) := x0 + I(I(x − x0) + α) with α ∈ V ∗ and the inversion I
(see paragraph 3.3) to produce general conformal geodesics t 7→ φ(x0 + tN) i.e. (hyperbolic)
circles out of straight lines t 7→ x0 + tN . The conformal invariance of electromagnetism
allows to pull back the Coulomb field FCoul, see paragraph 2.15, associated to the straight
worldline x0+tN to produce a solution of Maxwell’s equations φ∗FCoul with source supported
along the conformal geodesic φ(x0 + tN). These solutions are called radiation fields from
uniformly accelerated charges see Rohrlich [Roh65]. They are special cases of the Lienard
Wiechert fields discussed in paragraph 5.10.
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4.3 Weight one twistors and conservation laws

This section contains new conserved conformal invariants along conformal geodesics. In
Riemannian geometry it is well known that a Killing field LKg = 0 (leaving the Riemannian
metric invariant) can be contracted with the velocity of a curve g(ċ, Kc) to produce a number
along c which is constant if c̈ = Dċċ = 0, i.e. if c is a Riemannian geodesic (see also paragraph
4.3). We will present such pairings in conformal geometry where we need to consider bilinear
differential pairings rather then just tensorial contractions as in g(ċ, K). Moreover we will use
a class of twistor fields rather than only Killing fields to construct these conserved invariants.

In the case of an affine conformal space A over V we already constructed conformal
twistor fields in proposition 3.14 which were induced by elements in a representation space
W for the Lie algebra of conformal Killing fields g = so(V̂ ), with V̂ = L1 ⊕ V 0 ⊕ L−1.
Differential operators annihilating such twistor fields are also called twistor operators . In
this section we define twistor operators covering the cases W = Λk+1V̂ for k = 0 . . . n. The
twistor fields take values in the coinvariants WV ∗ = Lk+1⊗ΛkV ∗, see the examples following
definition 3.11. These twistor operators annihilating the twistor fields on affine space make
sense on any (curved) conformal manifold. Hence we will define twistor fields on manifolds
to be sections of the bundle Lk+1 ⊗ ΛkT ∗M which lie in the kernel of the twistor operator.
The existence of a nontrivial twistor places constraints on the curvature.

The Fermi derivative is defined on weightless tensors and the above mentioned twistor
fields f (including Killing fields) have central weight +1. Along conformal geodesics we
will construct weightless Fermi parallel tensors out of twistor fields. From the dimensional
analysis we expect first order pairings between f and N the normalized weightless tangent
vector.

We begin with the defining g-representation W = V̂ = L1 ⊕ V 0 ⊕ L−1. In the conformal
affine space the resulting twistor fields are scalar valued quadratic polynomials with values
in L1, see paragraph 3.15. There is no restriction on the linear part of these polynomials, but
the quadratic part has to be tracelike. Therefore the annihilating operator must be second
order:

Discussion 4.16 (Second derivative on scalars) Let D be a Weyl derivative on a conformal
manifold M and γ a 1-form. The linear change ∂γD

2 of the second covariant derivative D2

applied to scalar densities f of weight w is given in terms of vector fields X, Y by example
2.52:

∂γD
2
X,Y f = [ γ,X ].DY f + [DXγ, Y ].f + [ γ, Y ].DXf −D[ γ,X ].Y f

= wγ(X)DY f + wDXγ(Y )f + wγ(Y )DXf −Dγ(X)Y +γ(Y )X−〈X,Y 〉]γf

= (w − 1)γ(X)DY f + wDXγ(Y )f + (w − 1)γ(Y )DXf + 〈X, Y 〉D]γf.

To find conformally invariant parts of the second derivative we like to add on the right
amount of Ricci curvature to kill the Dγ term in the above expression. This is possible in
n ≥ 3 dimensions:

∂γ(D
2 + w rD)X,Y f = (w − 1)γ(X)DY f + (w − 1)γ(Y )DXf + 〈X, Y 〉D]γf.

This proves the following:
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Proposition 4.17 (Conformal Hessian) For scalar densities of weight w = +1 in n ≥ 3
dimensions the trace-free part of the Ricci corrected second covariant derivative is a confor-
mally invariant differential operator called conformal Hessian :

Hesse : C∞(M,L1)→ C∞(M,L1 ⊗ Sym 2
0 T

∗M),

Hesse f (X, Y ) := Sym 2
0(D

2 + rD)f (X, Y )

=
1

2
(D2

X,Y f +D2
Y,Xf)− 1

n
trcD

2f c(X, Y ) + rD0 (X, Y )f.

In the case of a conformal affine space this operator annihilates the twistor fields coming
from W = V̂ , hence Hesse is a twistor operator.

Remark 4.18 (Einstein metrics from the conformal class) Sections f of L1 which are in the
kernel of Hesse are also called Fierz twistors (for gravity): Hesse(f) = 0. In a region where
a Fierz twistors is positive f > 0, it defines a length scale and induces a metric g = f−2

c

from the conformal structure which is Einstein : for the induced exact Weyl derivative D
we have Df = 0, hence 0 = Hesse(f) = Sym 0(D

2f + rD f) = 1
n−2

f ricD0 . Hence the Ricci
curvature of g is a constant multiple of g.

Proposition 4.19 (Conservation law along conformal geodesics) Let f ∈ C∞(M,L1) be a
density of weight +1 and c a nonlightlike curve with normalized weightless tangent vector N ,
then

f.N := 〈N,N〉(gradD f)⊥ + fDNN

is independent of the Weyl derivative D and hence defines a conformally invariant weightless
vector field along c perpendicular to N . For the Fermi derivative we have

FermiN f.N = f Geod(N) + 〈N,N〉(]Hesse f(N))⊥.

Hence if f is a twistor field Hesse f = 0 and c is a conformal geodesic, then the induced f.N
is Fermi parallel.

Proof: The term f.N changes under a change of Weyl derivative by the 1-form γ as

∂γ(f.N)D = 〈N,N〉]γ ⊗ f − γ(N)fN + fγ(N)N − f〈N,N〉]γ = 0.

It is straight forward to calculate the Fermi derivative of f.N :

FermiN(f.N) = (DN(f.N))⊥

= 〈N,N〉(DN gradD f)⊥ − (DNf)DNN +DNfDNN + f(DNDNN)⊥

= 〈N,N〉](D2
Nf + rD(N))⊥ + f(DNDNN − 〈N,N〉 rD(N))⊥

= 〈N,N〉](Hesse f(N))⊥ + f Geod(N). 2

Application 4.20 In the case of an affine conformal space A we have an injection ι : V̂ →
C∞(A, L1) form the (n + 2) dimensional vector space V̂ = L1 ⊕ V 0 ⊕ L−1 into the kernel
of the conformal Hessian. If c is a conformal geodesic and J a Fermi parallel vector field
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along c, then 〈J, ι(v̂).N〉 is a constant real number linear in v̂ ∈ V̂ . Hence a given conformal
geodesic with attached Fermi parallel vector field induces a linear from on V̂ . Since V̂ is
equipped with an inner product the conformal geodesic with attached Fermi parallel vector
field provides us with a unique twistor.

Definition 4.21 Conformal Killing fields K ∈ C∞(M,TM) are in the kernel of the con-
formal Killing operator Kill : C∞(M,TM) → C∞(M,L2 ⊗ Sym 2

0(T
∗M)) which in terms of

a Weyl derivative D is given by

Kill(K)(X, Y ) :=
1

2
(LKc)(X, Y )

=
1

2
〈DXK, Y 〉+

1

2
〈X,DYK〉 −

1

n
(divDK)〈X, Y 〉

= 〈DXK, Y 〉 −
1

2
dD([K)(X, Y )− 1

n
(divDK)〈X, Y 〉,

where X,Y are vector fields.

Proposition 4.22 Let K ∈ C∞(M,TM) be a vector field (of central weight +1) and c a
nonlightlike curve with normalized weightless tangent vector N . Let ti, θ

i be a dual basis of
TcM , then

K.N := K⊥ ∧DNN +
1

2
〈N,N〉

∑

i

(DtiK)⊥ ∧ (]θi)⊥

is independent of the Weyl derivative D and hence defines a conformally invariant weightless
bivector field along c perpendicular to N . For the Fermi derivative of K.N we have:

FermiN(K.N) = K⊥ ∧Geod(N) + Kill(K).N + 〈N,N〉
∑

i

(Wc

N,ti K)⊥ ∧ (]θi)⊥,

where Kill(K).N is another conformally invariant bilinear combination along c: if h ∈
C∞(M,L2 ⊗ Sym 2

0(T
∗)) is a weightless bilinear form then define:

h.N := (]h(N))⊥ ∧DNN + 〈N,N〉
∑

i

(]Dtih(N))⊥ ∧ (]θi)⊥.

Hence if K is a conformal Killing field KillK = 0 in n = 3 dimensions (where Wc = 0) and
c is a conformal geodesic, then the induced K.N is Fermi parallel.

Proof: The term K.N changes under a change of Weyl derivative by the 1-form γ as

∂γ(K.N)D = −K⊥ ∧ 〈N,N〉(γ)⊥ +
1

2
〈N,N〉

∑

i

([ γ, ti ]K)⊥ ∧ (θi)⊥

= −〈N,N〉K⊥ ∧ (γ)⊥ + 〈N,N〉K⊥ ∧ (γ)⊥ + 0 = 0.

Let U be a weightless vector and t a vector of central weight +1, then

[ γ, t ].h(N,U) = −h([ γ, t ].N, U)− h(N, [ γ, t ].U)

= −γ(N)h(t, U) + 〈t, N〉h(γ, U)− γ(U)h(N, t) + 〈t, U〉h(N, γ).
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Hence we find

∂γ(h.N)D = −〈N,N〉(h(N))⊥ ∧ γ⊥ + 〈N,N〉
∑

i

([ γ, ti ].h(N))⊥ ∧ (]θi)⊥

= −〈N,N〉(h(N))⊥ ∧ γ⊥ − 〈N,N〉γ⊥ ∧ (h(N))⊥ = 0.

Let ti and θi be Fermi parallel with respect to D, hence 0 = DN ti − KD(ti). The claimed
identification of the Fermi derivative of K.N is an elementary application of the product rule
using the above Fermi parallel basis. 2

On a conformal vector space V we define the Cartan product of a 1-form α ∈ V ∗ with
a k-form β ∈ ΛkV ∗ to be an element α � β ∈ V ∗ ⊗ ΛkV ∗ which is alternating-free and
trace-free: evaluation on v ∈ V gives

(α� β)(v) := α(v)β − 1

k + 1
v yα ∧ β − 1

n− (k − 1)

∑

i

c(v, ti)θ
i ∧ (]α yβ).

The subspace spanned by these elements is denoted by V ∗ � ΛkV ∗.

Definition 4.23 (First order operator on forms) In terms of a Weyl derivative D we define
a linear first order operator acting on alternating k-forms (with k ≥ 1) of central weight w
as follows:

TwistD : C∞(M,Lw+k ⊗ ΛkT ∗)→ C∞(M,Lw+k ⊗ T ∗ � ΛkT ∗);

TwistD(f) :=
∑

i

θi �Dtif.

Proposition 4.24 (Conformal twistor operator for weight one) For w = 1 the above op-
erator is conformally invariant. In case of conformal affine space it annihilates the twistor
fields coming from W = Λk+1V̂ , hence Twist is a twistor operator.

Proof: The linear change under a change of Weyl derivative is given by:

∂γ TwistD(f)(X) = [ γ,X ].f − w + k

k + 1
X y(γ ∧ f)− w − k + n

n− (k − 1)
〈X, 〉 ∧ (γ y f)

= wγ(X)f + 〈X, 〉 ∧ (γ y f)− γ ∧ (X y f)

−w + k

k + 1
X y(γ ∧ f)− w − k + n

n− (k − 1)
〈X, 〉 ∧ (γ y f)

= (w − 1)(γ(X)f − 1

k + 1
X y γ ∧ f − 1

n− (k − 1)
〈X, 〉 ∧ (γ y f))

= (w − 1)(γ � f)(X). 2

Proposition 4.25 Let f ∈ C∞(M,L3 ⊗ Λ2T ∗M) be a 2-form of central weight +1 and c a
nonlightlike curve with normalized weightless tangent vector N , then

f.N := f(DNN,N) +
1

n− 1
〈N,N〉 divD f(N)
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is independent of the Weyl derivative D and hence defines a conformally invariant real
number along c. For the derivative of f.N we have

∂N f.N = f(Geod(N), N) + (Twist f).N,

where (Twist f).N is another invariant pairing: for a section h ∈ C∞(M,L3 ⊗ T ∗ � Λ2T ∗)
the following scalar of weight −1 is invariant:

h.N := h(N,DNN,N) +
1

n− 2
〈N,N〉 trDh(N,N),

with trDh(N,N) :=
∑

iDtih(N, ]θ
i, N). Hence if f is a twistor field Twist f = 0 and c is a

conformal geodesic, then the induced f.N is constant.

Proof: The term f.N changes under a change of Weyl derivative by the 1-form γ as

∂γ(f.N)D = −〈N,N〉f(γ,N) +
1− (2− n)

n− 1
〈N,N〉f(γ,N) = 0.

To calculate the derivative of f.N notice

Twist f(N,DNN,N) = DNf(DNN,N) +
1

n− 1
〈N,N〉 divD f(DNN),

and

trDTwist f(N,N) = (n− 2)(f(rD(N), N) +
1

n− 1
DN divD f(N)).

Finally we obtain:

∂N f.N

= DNf(DNN,N) + f(DNDNN,N)

+
1

n− 1
〈N,N〉DN divD f(N) +

1

n− 1
〈N,N〉 divD f(DNN)

= Twist f(N,DNN,N) + f(DNDNN,N) +
1

n− 1
〈N,N〉DN divD f(N)

= Twist f(N,DNN,N) + f(Geod(N), N) +
1

n− 2
〈N,N〉 trDTwist f(N,N). 2

Application 4.26 Any nonlightlike curve c induces a distributional section J of L−n−3 ⊗
TM�Λ2TM as follows: the evaluation on a test section h ∈ C∞

0 (M,L3⊗T ∗M �Λ2T ∗M) is
defined by 〈〈J, h〉〉 :=

∫
c
h.N . (Note that h.N is a section in L−1(TM) which can be integrated

over c using the conformal structure to identify L−1(Tc) ∼= L−1(TM), see remark 2.4). The
above theorem shows that for any f ∈ C∞

0 (M,L3 ⊗ Λ2T ∗M) we have

〈〈J,Twist f〉〉 =

∫

c

(Twist f).N = −
∫

c

f(Geod(N), N).

Hence the distributional J is divergence-free Twist∗ J = 0 iff c is a conformal geodesic.
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Remark 4.27 (Pointlike sources in Einstein’s theory) The above application is a conformal
analogue of a well known observation in general relativity: a curve gives rise to a distribu-
tional symmetric tensor T (of central weight 1 − n) defined by 〈〈T, α〉〉 :=

∫
c
α(N,N) and

T is divergence-free iff c is a geodesic DNN = 0. If m denotes a mass then mT has the
interpretation being an energy momentum tensor of the particle. Viewed as a source for
gravity, the conservation law 0 = divD(mT ) forces the particle to move along a geodesic.

Remark 4.28 For twistors induced by W = Λk+1V̂ with k ≥ 2 (i.e. elements in the kernel
of the above defined operator Twist on k-forms) it is possible to construct an invariant
weightless (k − 2)-form and a weightless (k + 1)-form along a curve. In the flat case they
are Fermi parallel along conformal geodesics, but on a curved conformal manifold the Weyl
curvature prevents a true conservation law. An example of this phenomenon was given in
proposition 4.22 with Killing fields in n > 3 dimensions.

4.4 First order conformal invariants

The previous three sections dealt with conformal invariants along curves. We will now focus
on conformal differential invariants for sections of associated bundles. We begin with the first
order linear invariants of Fegan [Feg76], who classified all conformally invariant differential
operators of first order. For the proof we will follow Gauduchon [Gau91]. We will apply this
result to give new bilinear invariants: a favourite example of such a pairing is the Lie bracket
between vector fields:

[ , ] : C∞(M,TM)× C∞(M,TM)→ C∞(M,TM).

Another examples is a pairing between two scalars to give a 1-form of weight +1:

∨ : C∞(M,L1)× C∞(M,L1)→ C∞(M,L2 ⊗ T ∗M),

which is defined on scalar densities f1 and f2 by

f1 ∨ f2 := Df1 ⊗ f2 − f1 ⊗Df2.

Here D is a chosen Weyl derivative, but ∨ is indeed independent of that choice: if D̃ = D+γ
is another Weyl derivative, then D̃f1 −Df1 = γ ⊗ f1 and D̃f2 −Df2 = γ ⊗ f2. These two
examples of pairings in fact only need the smooth structure, whereas we are interested
in invariants involving the conformal structure as well: note that the Lie bracket of two
conformal Killing fields is a conformal Killing field, since the following product rule holds:

L[X,Y ]c = LXLY c− LYLXc.

Likewise the above pairing ∨ between scalar densities gives a vector field which can be applied
to the Killing operator Kill(X) = 1

2
LXc = Sym 2

0DX (see definition 4.21) to give:

Kill(f1 ∨ f2) = Kill(Df1 ⊗ f2 − f1 ⊗Df2)

= (Sym 2
0D

2f1)⊗ f2 +Df1 �Df2 −Df1 �Df2 − f1 ⊗ Sym 2
0D

2f2

= (Hesse f1)⊗ f2 − f1 ⊗ (Hesse f2).
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(The two individual Ricci corrections for Hesse, see proposition 4.17, cancel in the difference).
In particular two Fierz twistors f1, f2 (in the kernel of the conformal Hessian) induce a
conformal Killing field. In the case of an affine conformal space A over V we already
constructed conformal twistor fields in proposition 3.14 which were induced by elements in
a representation space W for the Lie algebra of conformal Killing fields g = so(V̂ ). Fierz
twistors are induced by elements in the defining representation V̂ (see remark 4.18) and
Killing fields are induced by elements in the adjoint representation so(V̂ ). On the algebraic
level we have a skew symmetric g-equivariant map

V̂ ⊗ V̂ → so(V̂ ),

and the above pairing ∨ is an extension of that map to curved conformal manifolds. Likewise
the Lie bracket between smooth vector fields is an extension of the algebraic Lie bracket

so(V̂ )⊗ so(V̂ )→ so(V̂ ).

From these two examples where algebraic pairings correspond to differential pairings we also
expect a differential pairing corresponding to so(V̂ ) ⊗ V̂ → V̂ . This is given by the Lie
derivative of a scalar density in the direction of a vector field:

L : C∞(M,TM)× C∞(M,L1)→ C∞(M,L1).

The induced product rule Hesse(LXf) = . . . becomes more involved, since not only a second
order pairing will be needed on the right hand side (between KillX and f) but there will
be also an additional curvature term. This and the next section cover first and second order
operators and pairings. More examples of product rules can be found in chapter 5 on linear
field theories. We obtain a general result on the conformal affine space, see theorems 5.12
and 5.13.

We turn now to a systematic study of first order invariants: in terms of a Weyl derivative
D we will define a first order differential operator, encoding, in a trivial fashion, all the
information of the 1-jet of a section: jet1(e) ∈ C∞(M, Jet1(EM)). It will turn out that the
operator behaves well if we would change the Weyl derivative by a 1-form γ ∈ C∞(M,T ∗M)
in the sense that the first order information transforms as expected from the algebraic action
of V ∗ ⊂ g on affine functions (polynomials of degree 1) see paragraph 3.7. This allows to
classify algebraically all first order invariants discussed here.

Definition 4.29 A Weyl derivative D induces a first order jet operator defined by

jet1,D : C∞(M,EM)→ C∞(M,E ⊕ T ∗ ⊗ EM); jet1,De := e⊕De.
Any linear first order differential operator ∇ : C∞(M,EM) → C∞(M,FM) between

associated bundles in Weyl geometry is given by a CO (V )-equivariant linear map E⊕V ∗⊗
E → F , which is nontrivial on V ∗⊗E. This in terms gives a bundle map π : EM ⊕ T ∗M ⊗
EM → FM and finally the differential operator ∇ e = π ◦ jet1,D. If E and F are irreducible
then E and F have central weights wE and wF and V ∗ ⊗ E → F being nontrivial implies
wF = wE − 1 and E → F is trivial. Hence in Weyl geometry the study of first order
operators between irreducible representations reduces to the classification of irreducible sub
representations of V ∗ ⊗ E: an application of Weyl’s character formula in representation
theory (see [Feg76] or [FH91]) gives the following
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Proposition 4.30 If E is a finite dimensional irreducible representation of co(V ), then V ∗⊗
E splits under the action of co(V ) into a direct sum of pairwise nonisomorphic irreducible
representations.

Example 4.31 Let E be a co(V )-representation of central weight wE, then we denote by
Ew := Lw−wE⊗E the same so(V )-representation but of central weight w. With this notation
we give the following examples to the above proposition (to ensure irreducibility of all the
below representations we may assume n > 5 and n > 2(k + 1)):

V ∗ ⊗ Lw = V w−1,

V ∗ ⊗ V w = Lw−1 ⊕ (Λ2V ∗)w−1 ⊕ (Sym 2
0(V

∗))w−1,

V ∗ ⊗ (ΛkV ∗)w = (Λk−1V ∗)w−1 ⊕ (Λk+1V ∗)w−1 ⊕ (V ∗ � ΛkV ∗)w−1.

Definition 4.32 (Stein Weiss operators) Let E and F be a finite dimensional irreducible
CO (V )-representation and denote by Hom CO (V )(V

∗ ⊗ E, F ) the space of CO (V )-equi-
variant linear maps π : V ∗ ⊗ E → F . Associated to a nontrivial π is a linear first order
differential operator on a conformal manifold M with Weyl derivative D:

∇D : C∞(M,EM)→ C∞(M,FM); ∇D(e) := π(De).

Remark 4.33 A Stein Weiss operator as above on a Weyl manifold always has an adjoint
which is also Stein Weiss: the zero order pairing X : E ⊗ L−n ⊗ F ∗ → L−n ⊗ V is given
by the symbol X(e, φ) :=

∑
i ti ⊗ 〈π(θi ⊗ e), φ〉 with a dual basis ti and θi. The divergence

formula follows

div(X(e, φ)) = 〈π(De), φ〉+
∑

i

〈π(θi ⊗ e), Dtiφ〉

= 〈∇D e, φ〉 − 〈e,∇∗Dφ〉.

The next aim is to study the behavior of a Stein Weiss operator ∇D under a change
of Weyl derivative. In example 2.51 we already observed that on a conformal manifold M
the covariant derivative of an associated bundle EM changes under a linear change of Weyl
derivative γ ∈ C∞(M,T ∗M) as:

(∂γD)Xe = [ γ,X ].e,

where e ∈ C∞(M,EM) is a section and X ∈ C∞(M,TM) is a vector field. As was explained
in paragraph 3.7 for a conformal vector space V any co(V )-representation E induces a g =
V ⊕ co(V ) ⊕ V ∗ representation on Sym V ∗ ⊗ E via the Lie derivative. In what follows we
like to view E as a left co(V )-representation and we will use the induced left action of g on
SymV ∗ ⊗ E. The restriction of this action to the Abelian subalgebra V ∗ ⊂ g is then given
by

L : V ∗ ⊗ Sym k−1V ∗ ⊗ E → Sym kV ∗ ⊗ E,
with

1

k!
Lγf(vk) :=

1

(k − 1)!
[ γ, v ].(f(vk−1))− 1

2(k − 2)!
f(([ γ, v ]v)vk−2).
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Special cases are as follows:

k = 0 : Lγf = L(γ ⊗ f) = 0,

k = 1 : Lγf(v) = L(γ ⊗ f)(v) = [ γ, v ].f.

The cases k = 0 and k = 1 show the following:

Proposition 4.34 Under a change of Weyl derivative the linear change of the above first
jet operator is given by the Lie derivative applied to the zero jet of the section (with a dual
basis ti, θ

i of TM):

(∂γ jet
1,D)(e) = Lγe = 0⊕

∑

i

θi ⊗ [ γ, ti ].e.

For a Stein Weiss operator ∇D we get (∂γ ∇D)(e) = π ◦ (∂γD)(e) = π ◦ L(γ ⊗ e).
Those operators which do not change ∂γ ∇D = 0 for all γ and D are conformally invariant.
Algebraically this question reduces to the study of the composition:

V ∗ ⊗ E L−→ V ∗ ⊗ E π−→ F :

Proposition 4.35 The equivariant linear maps π ∈ Hom CO (V )(V
∗ ⊗ E, F ) with π ◦ L = 0

classify all conformally invariant linear first order operators between bundles associated to
irreducible CO (V )-representations E and F .

Following Gauduchon [Gau91] we will split [ γ,X ] ∈ co(V ) into its trace and skew part:
if wE denotes the central weight of E (under the action of the centre of co(V )) then define
B to be the induced so(V )-action

B : V ∗ ⊗ E → V ∗ ⊗ E; L(γ ⊗ e) =
∑

i

θi ⊗ [ γ, ti ].e = wE γ ⊗ e+B(γ ⊗ e),

where ti, θ
i is a dual basis of V . Explicitly B(γ ⊗ e) =

∑
i θ

i ⊗ (γ ⊗ ti − [ti ⊗ ]γ).e.
According to proposition 4.30 the tensor product V ∗ ⊗ E splits into a direct sum of

pairwise nonisomorphic co(V )-sub representations F k ⊂ V ∗ ⊗ E with k = 1 . . . N . We will
use the inclusions ιk : F k → V ∗ ⊗ E and projections πk : V ∗ ⊗ E → F k with normalization
πk ◦ ιk = idF k . For any co(V )-equivariant map B ∈ gl(V ∗ ⊗ E) we know that πl ◦ B ◦ ιk is
trivial for l 6= k, since the F k are irreducible and pairwise nonisomorphic. In case l = k we
apply Schur’s lemma (see e.g. [FH91]) to get multiples of the identity: πk ◦B ◦ ιk = bkidF k.
Therefore any such co(V )-equivariant map B is determined by its eigenvalues bk:

B =

N∑

k=1

bkπk ◦ ιk.

Theorem 4.36 (Fegan’s first order conformal invariants) Let E and F be irreducible rep-
resentations of CO (V ) and π ∈ Hom CO (V )(V

∗ ⊗ E, F ) a nontrivial map. The associated
Stein Weiss operator ∇D = π ◦D changes under a change of Weyl derivative D by γ as

∇D+γ e−∇D e = ∂γ ∇D(e) = π ◦ L(γ ⊗ e) !
= (wE + b)π(γ ⊗ e),
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where e is a section of EM , wE is the central weight of E and b is a number directly associated
to the two so(V )-representations E and F . Conformally invariant linear first order operators
are characterized by wE = −b.

Proof: After writing B in terms of its eigenvalues B =
∑N

k bkπk ◦ ιk on the invariant
subspaces F k ⊂ V ∗ ⊗ E we find for the difference (with F = F l):

π ◦ L(γ ⊗ e) = π ◦
∑

i

θi ⊗ [ γ, ti ].e

= π ◦ (wE γ ⊗ e+B(γ ⊗ e))
= (wE + bl)π ◦ (γ ⊗ e). 2

Remark 4.37 The Killing form on so(V ) is proportional to the inner product induced from
the defining representation V which is given by 〈A,B〉 := − 1

2
tr(A ◦B) with A,B ∈ so(V ).

An orthonormal basis in so(V ) is given by Eij := 〈ei, 〉ej − 〈ej, 〉ei ∈ so(V ) with 1 ≤ i <
j ≤ n and ei ∈ V an orthonormal basis of V . With this convention the Casimir element
Cas ∈ Z(U(so(V ))) is Cas =

∑
i<j EijEij. Denote by Cas(W ) ∈ End (W ) the induced

endomorphism on the so(V )-representation W . Applied to the defining representation we
find Cas(V ) = (1−n)idV and Cas(ΛkV ) = k(k−n)id . In general, if W is irreducible then by
Schur’s lemma Cas(W ) is a multiple of the identity and that multiple is called the Casimir
value Cas(W ) = cas(W )idW . Fegan observed, that the endomorphism B can be written in
terms of various images of the Casimir element:

B =
1

2
(Cas(V ∗ ⊗ E)− idV ∗ ⊗ Cas(E)− Cas(V ∗)⊗ idE).

This allows to calculate eigenvalues of B once the Casimir values of the irreducible sub
representations F k ⊂ V ∗ ⊗ E are known:

bk =
1

2
(cas(F k)− cas(E)− (1− n)).

Discussion 4.38 (First order pairings) The next aim is to study first order bilinear pairings
in general. In the introduction of this chapter we mentioned two simple examples. In general
suppose E1, E2 and F are CO (V )-representations with a CO (V )-equivariant linear map

Q : (E1 ⊕ V ∗ ⊗ E1)⊗ (E2 ⊕ V ∗ ⊗ E2)→ F,

then ∨D : C∞(M,E1M)×C∞(M,E2M)→ C∞(M,FM) defined by e1∨De2 := Q(jet1,D(e1)⊗
jet1,D(e2)) is a bilinear differential pairing of first order in Weyl geometry. We will consider
those pairings which are truly first order in both e1 and e2, hence we assume such a Q to be
nontrivial when restricted to (V ∗ ⊗E1)⊗ (E2 ⊕ V ∗ ⊗ E2) and (E1 ⊕ V ∗ ⊗E1)⊗ (V ∗ ⊗ E2).
If E1, E2 and F are irreducible the action of the centre of CO (V ) determines such a Q to
be nontrivial only on the following subspace

Q : (V ∗ ⊗ E1 ⊗ E2)⊕ (V ∗ ⊗ E1 ⊗ E2)→ F.
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The corresponding pairing is then clearly given by

e1 ∨D e2 := Q(
∑

i

θi ⊗Dtie1 ⊗ e2 ⊕
∑

i

θi ⊗ e1 ⊗Dtie2).

This dependence of ∨D on the Weyl derivative leads to study the following composition of
maps:

V ∗ ⊗ E1 ⊗ E2

L⊗idE2
⊕idE1

⊗L−→ (V ∗ ⊗ E1 ⊗ E2)⊕ (V ∗ ⊗ E1 ⊗ E2)
Q−→ F,

where the first map is given by γ ⊗ e1⊗ e2 7→
∑

i θ
i⊗ [ γ, ti ].e1 ⊗ e2⊕

∑
i θ

i⊗ e1⊗ [ γ, ti ].e2.

Proposition 4.39 Conformally invariant bilinear first order differential pairings

∨ : C∞(M,E1M)× C∞(M,E2M)→ C∞(M,FM),

between associated bundles from irreducible CO (V )-representations E1, E2 and F are clas-
sified by equivariant linear maps

Q ∈ Hom CO (V )(V
∗ ⊗ E1 ⊗ E2 ⊕ V ∗ ⊗ E1 ⊗ E2, F ),

such that Q ◦ (L ⊗ idE2
⊕ idE1

⊗ L) = 0.

A simple subclass of examples is given in the following case:

Definition 4.40 (Simple projections) Suppose that E1, E2 and F ⊂ V ∗ ⊗ E1 ⊗ E2 are
irreducible CO (V )-representations with irreducible F1 ⊂ V ∗ ⊗ E1 and F2 ⊂ V ∗ ⊗ E2, such
that the projection

Q : V ∗ ⊗ E1 ⊗ E2 → F

factors through F1 ⊗ E2 → F and E1 ⊗ F2 → F . Such a map Q will be called simple .

Remark 4.41 If F has multiplicity one inside V ∗⊗E1⊗E2, i.e. 1 = dim (Hom CO (V )(V
∗⊗

E1⊗E2, F )) then there are unique spaces F1, F2 as required above and Q : V ∗⊗E1⊗E2 → F
is simple.

Proposition 4.42 (Simple conformally invariant first order pairings) Suppose that Q : V ∗⊗
E1⊗E2 → F is simple. Then there is a conformally invariant first order differential pairing

∨ : C∞(M,E1M)× C∞(M,E2M)→ C∞(M,FM),

which in terms of a Weyl derivative D applied to sections e1 and e2 is given by

e1 ∨ e2 := (w2 + b2)Q(
∑

i

θi ⊗Dtie1 ⊗ e2)− (w1 + b1)Q(
∑

i

θi ⊗ e1 ⊗Dtie2),

where w1, w2 are the central weights of E1, E2 (the central weight of F is clearly w1 +w2−1)
and −b1, −b2 are the weights for which the Stein Weiss operators associated to E1, F1 and
E2, F2 are conformally invariant.

Proof: Applying Fegan’s result, theorem 4.36, the following composition is zero:

((w2 + b2)Q⊕ (−w1 − b1)Q) ◦ (L ⊗ idE2
⊕ idE1

⊗ L)(γ ⊗ e1 ⊗ e2)
= (w2 + b2)(w1 + b1)Q(γ ⊗ e1 ⊗ e2)− (w1 + b1)(w2 + b2)Q(γ ⊗ e1 ⊗ e2) = 0. 2
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4.5 Second order conformal invariants

In terms of a Weyl derivative D we will define a second order differential operator, encoding
all the information of the 2-jet of a section: jet 2(e) ∈ C∞(M, Jet2(EM)). We will use the
Ricci curvature to correct the second covariant derivative such that this operator behaves
well if we change the Weyl derivative by a 1-form γ ∈ C∞(M,T ∗M). This allows to classify
algebraically all second order operators and pairings. We will give examples which will
become relevant in the next chapter on linear field theories for gravity.

In example 2.52 we already observed that on a conformal manifoldM the second covariant
derivative of an associated bundle EM changes under a change of Weyl derivative as:

(∂γD
2)X,Y e = [ γ,X ].DY e+ [DXγ, Y ].e + [ γ, Y ].DXe−D[ γ,X ].Y e,

where e ∈ C∞(M,EM) is a section, X, Y ∈ C∞(M,TM) are vector fields and γ ∈
C∞(M,T ∗M) is the change of the Weyl derivative D. The Dγ term can be expressed
as the linear change of the normalized Ricci curvature:

(∂γ rD)X,Y = −DXγ(Y ).

Definition 4.43 . For a Weyl derivative D we call

D2
X,Y e+ [ rD(X), Y ].e

the Ricci corrected second Weyl derivative of the bundle EM .

The skew part of the above Ricci corrected second Weyl derivative is given by the Weyl
curvature tensor, hence

D2
X,Y e + [ rD(X), Y ].e− 1

2
Wc

X,Y .e

is symmetric in X and Y . Note that this is not simply the symmetric part of the second
derivative. Instead it is characterized by the fact that under a linear change of the Weyl
derivative only first order terms algebraic in γ and no Dγ terms occur. In terms of a Weyl
derivative D we will next define a linear second order operator containing all the information
of the 2-jet of a section jet2(e) ∈ C∞(M, Jet2(EM)) (we will use the following notation:
Sym ≤kV ∗ := R⊕ V ∗ ⊕ . . .⊕ Sym kV ∗):

Definition 4.44 (Second jet operator) In Weyl geometry we define the 2-jet operator to
be the following linear differential operators of second order:

jet2,D : C∞(M,EM)→ C∞(M, Sym ≤2T ∗ ⊗ EM),

with

jet2,De := e⊕De⊕D2e+ [ rD, ].e− 1

2
Wc .e .
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Any linear second order differential operator ∇ : C∞(M,EM) → C∞(M,FM) between
associated bundles in Weyl geometry is given by a linear map (Sym ≤2V ∗)⊗ E → F , which
is CO (V )-equivariant and nontrivial on Sym 2V ∗ ⊗ E. This in terms gives a bundle map
and the differential operator ∇D = π ◦ jet2,D.

If E and F are irreducible then E and F have central weights wE and wF and Sym 2V ∗⊗
E → F being nontrivial implies wF = wE − 2 and E → F as well as V ∗ ⊗ E → F
are trivial. Hence in Weyl geometry the study of second order operators between irreducible
representations reduces to the classification of irreducible sub representations of Sym 2V ∗⊗E.
Hence given a nonzero CO (V )-equivariant linear map π : Sym 2V ∗ ⊗E → F with E and F
irreducible we get a differential operator ∇D := π ◦ (D2 + [ rD, ].− 1

2
Wc .).

As for the 1-jet in Weyl geometry, the linear change of the curvature corrected second
derivative under a change of Weyl derivative is given by the algebraic Lie derivative:

L : V ∗ ⊗ Sym k−1V ∗ ⊗ E → Sym kV ∗ ⊗ E,

with
k = 2 : Lγf(v2) = L(γ ⊗ f)(v2) = 2[ γ, v ].(f(v))− f([ γ, v ]v).

Proposition 4.45 (Linear change of the second jet) Under a change of Weyl derivative the
linear change of the above jet operator is given by the Lie derivative applied to the lower jet:

(∂γ jet
2,D)(e) = Lγ(jet1,De) = 0⊕ [ γ, ].e⊕ ([ γ, ].De + [ γ, ].De−D[ γ, ] e).

The linear change of a second order operator ∇D between irreducible E, F is then
∂γ(∇D)(e) = π ◦ Lγ(De). Hence ∇D is conformally invariant if the following composition of
maps is zero:

V ∗ ⊗ (V ∗ ⊗ E)
L−→ Sym 2V ∗ ⊗ E π−→ F :

Proposition 4.46 The linear equivariant maps π ∈ Hom CO (V )(Sym 2V ∗ ⊗ E, F ) with π ◦
L = 0 classify all conformally invariant linear second order operators between bundles asso-
ciated to irreducible CO (V )-representations E and F .

Such a classification has been given by Branson in [Bra96] and [Bra98]. Instead of
presenting the full classification, we will only construct examples directly or with the help
of Fegan’s result.

Example 4.47 (Conformal Laplacian) For E = Lw and F = Lw−2 the only map Sym 2V ∗⊗
E → F is given by (multiples of) the conformal structure: π(α2 ⊗ µ) = c(α, α)µ. In terms
of a Weyl derivative D this defines a Laplace operator

∆D : C∞(M,Lw)→ C∞(M,Lw−2),

given by

∆D(e) = trc jet2,D(e) = trcD
2e+ trc[ r

D, ].e = trcD
2e+ w trc

rD⊗e
= trcD

2e+ w sD e,
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with the normalized scalar curvature sD := trc
rD. For the linear change we directly find:

∂γ∆
D(e) =

∑

i,j

c(θi, θj)([ γ, ti ].Dtje+ [ γ, tj ].Dtie−D[ γ,ti ]tje)

= 2(w − (2− n)/2)D]γe.

Hence for w = (2− n)/2 this composite is zero and we get a conformally invariant Laplace
operator

∆ : C∞(M,L(2−n)/2)→ C∞(M,L(−2−n)/2).

Example 4.48 (Branson’s operator on forms) We will define Branson’s operator acting
between k-forms for k ≥ 1 which is part of his classification [Bra96]. There are three
Stein Weiss operators defined on k-forms according to the decomposition V ∗ ⊗ ΛkV ∗ =
Λk+1V ∗⊕L−2⊗Λk−1V ∗⊕V ∗�ΛkV ∗, which are the exterior derivative dD, exterior divergence
divD and the twistor operator TwistD see definition 4.23. The second order operator we are
looking for is based upon a linear combination of dD ◦ divD and divD ◦dD acting on k-forms
f ∈ C∞(M,Lw+k ⊗ ΛkT ∗M) of central weight w. Hence the symbol is a linear combination
of ∧(idV ∗ ⊗ y) and y(idV ∗ ⊗∧) which we will apply to the Ricci corrected second derivative.
For the individual linear changes we find using co(V )-equivariance and the examples in 2.51:

∂γ ∧ (idV ∗ ⊗ y)(D2 + [ rD, ])f

= (w + k − 2) γ ∧ divD f − (w + n− k) γ ydDf + (w + n− k)D]γf,

∂γ y(idV ∗ ⊗ ∧)(D2 + [ rD, ])f

= −(w + k) γ ∧ divD f + (w + n− k − 2) γ ydDf + (w + k)D]γf.

The linear combination killing the D]γf terms is called Branson’s operator :

BranD : C∞(M,Lw+k ⊗ ΛkT ∗M)→ C∞(M,Lw−2+k ⊗ ΛkT ∗M);

BranD := ((w + k) ∧ (idV ∗ ⊗ y)− (w + n− k) y(idV ∗ ⊗ ∧))(D2 + [ rD, ]).

The linear change under changing the Weyl derivative is therefore:

∂γ BranD = ((w + k)(w + k − 2) + (w + n− k)(w + k))γ ∧ divD f

−((w + k)(w + n− k) + (w + n− k)(w + n− k − 2))γ y dDf

= (2w + n− 2)
(
(w + k)γ ∧ divD f − (w + n− k)γ ydDf

)
.

Hence for w = (2− n)/2 we obtain a conformally invariant operator

Bran : C∞(M,L(2−n)/2+k ⊗ ΛkT ∗M)→ C∞(M,L(−2−n)/2+k ⊗ ΛkT ∗M).

The last two examples where selfadjoint operators. The conformal Hessian from propo-
sition 4.17, the Bianchi and Bach operator in n = 4 dimensions, see propositions 2.68 and
2.70, are examples of the following definition:
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Definition 4.49 (Simple projection) Suppose that E, F and G are irreducible CO (V )-
representations with irreducible F ⊂ V ∗⊗E and G ⊂ Sym 2

0V
∗⊗E, such that the projection

πG : V ∗ ⊗ V ∗ ⊗ E → G

factors through the projection πF : V ∗ ⊗ E → F . Such a map πG will be called simple .

Associated to a simple πG : V ∗ ⊗ V ∗ ⊗ E → G is a second order operator on a Weyl
manifold defined by the projected Ricci corrected second derivative on EM :

∇D := πG(D2 + [ rD, ]) : C∞(M,EM)→ C∞(M,GM).

Such operators will be called simple second order operators .

Remark 4.50 Using Fegan’s result, theorem 4.36 the Ricci curvature correction simplifies
in the simple second order case to

∇D e = πG(X, Y 7→ D2
X,Y e+ [ rD(X), Y ].e)

= πG(X, Y 7→ D2
X,Y e+ (wE + b) rD(X, Y )⊗ e)

= πG(D2e) + (wE + b)πG(rD⊗ e),
where wE is the central weight of E and −b is the weight on which the Stein Weiss operator
associated to E and F is conformally invariant. The significance of the Ricci correction for
a composite of two Stein Weiss operators as above was pointed out to me by D. Calderbank.
This has been generalized here to a Ricci correction of the full second derivative, definition
4.43.

Proposition 4.51 (Simple second order differential operators) Let ∇D be a simple second
order operator associated to E, F , G and denote by wE the central weight of E. Let −b be
the weight on which the Stein Weiss operator associated to E and F is conformally invariant
(see theorem 4.36). The linear change of ∇D under changing the Weyl derivative is then
given by

(∂γ ∇D)e = ∂γπG(D2e+ [ rD, ].e)
!
= 2(wE + b− 1)πG(γ ⊗De).

Hence, conformally invariant simple second order operators are characterized by wE = 1− b
and the Ricci correction simplifies to:

∇ e = πG(D2e + rD⊗ e).
Proof: This is a direct computation using proposition 4.45 and theorem 4.36:

∂γπG(X, Y 7→ D2
X,Y e + [ rD(X), Y ].e)

= πG(X, Y 7→ [ γ,X ].DY e + [ γ, Y ].DXe−D[ γ,X ]Y e)

= πG(X, Y 7→ 2[ γ,X ].DY e−D2γ(X)Y e)

= πG(X, Y 7→ 2(wE + b− 1)γ(X)DY e). 2

We now turn to the study of second order bilinear differential pairings. The general
theory is slightly more involved than in the first order case. For this reason we start with
three examples of pairings:
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Example 4.52 (Laplace pairing) There is a conformally invariant bilinear differential pair-
ing between scalar densities

∨ : C∞(M,Lw1)× C∞(M,Lw2)→ C∞(M,Lw1+w2−2).

It is based upon the Laplace operator example 4.47 and it is defined in terms of a Weyl
derivative by

e1 ∨ e2 := w2q2 (∆De1)⊗ e2 − 2q1q2 c(De1, De2) + w1q1 e1 ⊗ (∆De2),

where q1 := (w1 − (2 − n)/2) and q2 := (w2 − (2 − n)/2). The linear change of the Weyl
derivative is zero, since

∂γ(e1 ∨D e2)
= w2q2(2q1)Dγe1 ⊗ e2 − 2q1q2w1e1 ⊗Dγe2 − 2q1q2w2Dγe1 ⊗ e2 + w1q1(2q2) e1 ⊗Dγe2

= (2w2q2q1 − 2q1q2w2)Dγe1 ⊗ e2 − (2q1q2w1 − 2w1q1q2)e1 ⊗Dγe2.

Example 4.53 (Branson pairing) There is also a scalar valued pairing between k-forms
based upon Branson’s operator, example 4.48:

∨ : C∞(M,Lw1+k ⊗ ΛkT ∗M)× C∞(M,Lw2+k ⊗ ΛkT ∗M)→ C∞(M,Lw1+w2−2).

In terms of a Weyl derivative it is given by

f1 ∨ f2 := p2q2r2 c(BranD f1, f2) + p1q1r1 c(f1,BranD f2)

−2p1p2r1r2 c(divD f1, divD f2) + 2q1q2r1r2 c(dDf1, d
Df2),

with p1 := w1 − (−k), q1 := w1 − (k − n), r1 := w1 − (2− n)/2 and similar for the index 2.
It is straight forward to check that the linear change by changing the Weyl derivative is zero
using the results in examples 4.48 and 2.51.

Example 4.54 (Hesse pairing) There is a conformally invariant bilinear differential pairing
between scalar densities to give trace-free symmetric bilinear forms:

∨ : C∞(M,Lw1)× C∞(M,Lw2)→ C∞(M,Lw1+w2 ⊗ Sym 2
0T

∗M).

It is based upon the Hessian operator, proposition 4.17, and it is defined in terms of a Weyl
derivative by

e1 ∨ e2 := w2q2 (HesseD e1)⊗ e2 − 2q1q2De1 �De2 + w1q1 e1 ⊗ (HesseD e2),

where q1 := w1 − 1 and q2 := w2 − 1.

The last example is a special a case of a class of pairings associated to simple second
order operators:

Definition 4.55 (Simple projection) Let E1, E2 be irreducible CO (V )-representation and
G ⊂ Sym 2

0V
∗ ⊗ E1 ⊗ E2 an irreducible subrepresentation. If there are irreducible subrepre-

sentations F1 ⊂ V ∗ ⊗ E1 and F2 ⊂ V ∗ ⊗ E2 such that Q : V ∗ ⊗ V ∗ ⊗ E1 ⊗ E2 → G factors
through V ∗ ⊗ F1 ⊗ E2 and through V ∗ ⊗ E1 ⊗ F2 then Q is called simple .
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Proposition 4.56 (Simple conformally invariant second order pairings) Let Q be a simple
projection as above and denote by w1 and w2 the central weights of E1 and E2. Let −b1
respectively −b2 be the weights for which the Stein Weiss operators associated to E1, F1

respectively E2, F2 are conformally invariant. Then the following differential pairing is
conformally invariant:

∨ : C∞(M,E1M)× C∞(M,E2M)→ C∞(M,GM),

which in terms of a Weyl derivative D applied to sections e1 and e2 is given by

e1 ∨ e2 := (w2 + b2)(w2 + b2 − 1)Q((D2 + [ rD, ])e1 ⊗ e2)
−2(w1 + b1 − 1)(w2 + b2 − 1)Q(De1 ⊗De2)
+(w1 + b1)(w1 + b1 − 1)Q(e1 ⊗ (D2 + [ rD, ])e2).

Proof: From the propositions 4.51 and 4.36 we immediately have:

Q (∂γ((D
2 + [ rD, ])e1 ⊗ e2)) = 2(w1 + b1 − 1)Q(γ ⊗De1 ⊗ e2),

Q (∂γ(e1 ⊗ (D2 + [ rD, ])e2)) = 2(w2 + b2 − 1)Q(e1 ⊗ γ ⊗De2),

Q (∂γ(De1 ⊗De2)) = (w1 + b1)Q(γ ⊗ e1 ⊗De2) + (w2 + b2)Q(De1 ⊗ γ ⊗ e2). 2

Discussion 4.57 (Second order pairings) We now turn to the study of second order bilinear
differential pairings in general. Suppose E1, E2 and F are CO (V )-representations and

Q : (Sym ≤2V ∗ ⊗ E1)⊗ (Sym ≤2V ∗ ⊗ E2)→ G

is CO (V )-equivariant, then ∨D : C∞(M,E1M)× C∞(M,E2M)→ C∞(M,GM) defined by
e1 ∨D e2 := Q(jet2,D(e1)⊗ jet2,D(e2)) is a bilinear differential pairing of second order in Weyl
geometry. As in the first order case we will consider those pairings which are truly second
order in both e1 and e2. If E1, E2 and G are irreducible the action of the centre of CO (V )
determines such a Q to be nontrivial only on the following subspace

Q : (Sym 2V ∗ ⊗ E1 ⊗ E2)⊕ (V ∗ ⊗ V ∗ ⊗ E1 ⊗ E2)⊕ (Sym 2V ∗ ⊗ E1 ⊗ E2)→ G.

The corresponding pairing is then clearly given by

e1 ∨D e2 := Q(((D2 + [ rD, ])e1 ⊗ e2)⊕ (De1 ⊗De2)⊕ (e1 ⊗ (D2 + [ rD, ])e2)).

The dependence of ∨D on the Weyl derivative leads to study the following map:

Lbi : V ∗ ⊗ (V ∗ ⊗ E1 ⊗ E2 ⊕ V ∗ ⊗ E1 ⊗ E2)

→ (Sym 2V ∗ ⊗ E1 ⊗ E2)⊕ (V ∗ ⊗ V ∗ ⊗ E1 ⊗ E2)⊕ (Sym 2V ∗ ⊗ E1 ⊗ E2)

which is given by

Lbi(γ ⊗ ((α1 ⊗ e1 ⊗ e2)⊕ (e1 ⊗ α2 ⊗ e2)))
:= (L(γ ⊗ α1 ⊗ e1)⊗ e2)

⊕(L(γ ⊗ e1)⊗ α2 ⊗ e2 + α1 ⊗ e1 ⊗ L(γ ⊗ e2))

⊕(e1 ⊗ L(γ ⊗ α2 ⊗ e2)).
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We summarize the above observations in the following:

Proposition 4.58 Conformally invariant bilinear second order differential pairings

∨ : C∞(M,E1M)× C∞(M,E2M)→ C∞(M,GM),

between associated bundles from irreducible CO (V )-representations E1, E2 and G are clas-
sified by CO (V )-equivariant linear maps

Q : (Sym 2V ∗ ⊗ E1 ⊗ E2)⊕ (V ∗ ⊗ V ∗ ⊗ E1 ⊗ E2)⊕ (Sym 2V ∗ ⊗ E1 ⊗ E2)→ G,

such that Q ◦ Lbi = 0.
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Chapter 5

Conformal linear field theories

Soon after Weyl developed differential conformal geometry and his unified theory of elec-
tromagnetism and gravity (see [Wey70], or remark 2.31) Bach came up with a nonlinear
conformally invariant geometric theory of gravity (see [Bac21], or remark 2.73). We will
present its linearized version here. Fierz in [Fie39] invented a class of theories which shares
analogous properties to electromagnetism, except these theories fail to be conformally invari-
ant. We will give a variation of Fierz’s theory for gravity which is conformally invariant. The
so called zero rest mass field equations due to Penrose (see [PR84]) are conformally invariant
and provide another large class of field equations analogous to Maxwell’s equations. We will
discuss Penrose’s linear theory of gravity here. I like to thank D. Calderbank for drawing
my attention to the fact that these conformal field theories are Bernstein Gelfand Gelfand
complexes—the latter were studied in Minkowski space by Eastwood and Rice in [ER87].

The aim of this chapter is to analyse the structure of Maxwell’s equations and the Lorentz
force law to extract general principles a linear field theory should follow. This happens in
the first three sections. The key ingredient which extends the basic field equations are
bilinear differential pairings imitating the exterior and interior multiplication of forms and
multivectors known from electromagnetism. These pairings allow us to suggest the beginning
of a theory of motion: charged particles induce fields which travel with the speed of light
and these fields influence the motion of charged particles. This is summarized in section 5.4.
In the last three sections we investigate the three field theories in connection with linear
gravity. We explicitly define the field equation and bilinear pairings needed and hence prove
special cases of theorem 5.13, on an elementary level. These explicit results and calculations
arose out of joint efforts with D. Calderbank to understand conformal linear field theories.

5.1 Ingredients of a general field theory

We would like a general linear field theory to share the following ingredients and properties
with electromagnetism: a tensor field represents the source and satisfies a conservation law .
A charged particles along an arbitrary worldline naturally gives rise to a conserved source.
We distinguish between two realizations of the field itself, the dynamic and the kinematic
field . The dynamic field is coupled to the source by the dynamic field equation . The
kinematic field satisfies an integrability condition . Kinematic and dynamic fields are related
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by a constitutive relation , which in vacuum only involves the conformal structure. It is the
kinematic field which determines the motion of charged test particles by a general force law.
The integrability condition of the kinematic field means that it is (locally) in the image of a
linear differential operator applied to a potential . This potential is not uniquely determined,
instead it is subject to (local) gauge transformations . The operator of the dynamic field
equation is adjoint to the potential operator, similarly the operator for the conservation law
of the source is adjoint to the operator between gauges and potentials.

To summarize, a relativistic linear field theory in vacuum takes place on a n = 4 di-
mensional conformal manifold M of Lorentzian signature. The beginning of a complex of
conformally invariant linear differential operators defines the kinematic sequence of the the-
ory:

gauge potential kinematic field

C∞(M,H0)
dH→ C∞(M,H1)

dH→ C∞(M,H2)
dH→ C∞(M,H3)

Here Hk denote associated vector bundles in which the fields (gauges, potentials, kinematic
fields) take their values. Adjoint to this is the end of a complex defining the dynamic sequence
of the theory. Sources and dynamic fields take values in L−n ⊗Hk with Hk = Hk

∗:

C∞(M,L−n ⊗H0)
divH← C∞(M,L−n ⊗H1)

divH← C∞(M,L−n ⊗H2)
divH←

source dynamic field

To be consistent with electromagnetism we like − divH to be adjoint to dH , i.e. according to
paragraph 1.18 we postulate the existence of bilinear differential pairings

yH : C∞(M,Hk)× C∞(M,L−n ⊗Hk+1)→ C∞(M,L−n ⊗ TM),

such that the following divergence formula holds:

divH (α yH a) = 〈dH α, a〉+ 〈α, divH a〉.

5.2 Charges in field theories

We will follow Penrose who interpreted the kernel of the gauge operator

W := ker dH : C∞(M,H0)→ C∞(M,H1)

as the space of charges which characterize the field theory in question. In case M = A being
a conformal affine space W is a representation space for the Möbius Lie algebra so(V̂ ) of
conformal Killing fields in M , since dH is conformally invariant. Penrose calls dH the twistor
operator of the theory and the solutions W are called twistors . In electromagnetism electric
charges are real numbers, and we have R = ker d : C∞(M,R) → C∞(M,T ∗M). For the
linearized conformal geometry, remark 2.73, the charges are given by the space of conformal
Killing fields in affine background given by so(V̂ ) = ker Kill. In case of a linear theory for
gravity W has the interpretation as space of gravitational masses . This interpretation is not
entirely obvious and this section is only a first step towards this task: we will show how a
dynamic field represents an element in W by integrating it over a cooriented sphere, how
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a worldline with associated element in W naturally gives rise to a conserved distributional
source and how a kinematic field induces an acceleration on a test particle with associated
element in W . To make these three constructions work in a general field theory we need
bilinear pairings imitating the interior and exterior multiplication known from the deRham
complex and its adjoint (electromagnetism).

Remark 5.1 As will be explained in section 5.4, twistors in W behaves more like magnetic
charges whereas dual twistors , i.e. elements in W ∗, behave more like electric charges, see
definitions 2.19 and 2.21. Since W is a so(V̂ ) representation it carries an inner product
which allows to identify W with its dual W ∗. Hence we will not distinguish twistors from
dual twistors until section 5.4.

Discussion 5.2 (Charge represented by dynamic fields) We recall that in electromagnetism
the electric charge generating a field G can be rediscovered from G by integration: Maxwell’s
second equation div G = j allows to define the charge contained inside a cooriented (n− 2)-
dimensional sphere Sn−2 (away from the source supp(j)) to be q =

∫
Sn−2〈G, coor〉. The

divergence theorem provides a conservation law for this integral. To make a similar con-
struction work for a general field theory we need the following bilinear differential pairings :

yH : C∞(M,H0)× C∞(M,L−n ⊗H2) → C∞(M,L−n ⊗ Λ2TM),

yH : C∞(M,H1)× C∞(M,L−n ⊗H2) → C∞(M,L−n ⊗ TM),

yH : C∞(M,H0)× C∞(M,L−n ⊗H1) → C∞(M,L−n ⊗ TM),

such that for sections f ∈ C∞(M,H0) and g ∈ C∞(M,H2) the following codimension one
divergence formula holds:

div(f yH g) = (dH f) yH g + f yH divH g.

In that case we say that the gauge operator dH : C∞(M,H0)→ C∞(M,H1) and the operator
of the dynamic field equation divH : C∞(M,L−n⊗H2)→ C∞(M,L−n⊗H1) are codimension
one adjoints (see the general definition below). From this its clear that for a charge q ∈
W = ker dH and in a regions where the dynamic field G satisfies divH G = 0 we can produce
a divergence-free bivector field q yH G. Hence if Sn−2 is a cooriented sphere (away from
supp(j)), then

∫
Sn−2〈q yH G, coor〉 is a real number linear in q. This determines an element

in the dual space
∫
Sn−2〈. yH G, coor〉 ∈ W ∗. As was already mentioned in the affine case

M = A the space W is a representation of the Möbius Lie algebra, hence it can carry an
invariant inner product to identify W with its dual W ∗.

Definition 5.3 (Codimension one adjoints) Let EM , FM and GM be vector bundles over
M and ∇1 : C∞(M,EM) → C∞(M,FM) and ∇2 : C∞(M,FM) → C∞(M,GM) be two
differential operators of order d1 and d2 respectively. Suppose that both operators have
adjoints ∇∗

1 : C∞(M,L−n ⊗ F ∗M)→ C∞(M,L−n ⊗E∗M) and ∇∗
2 : C∞(M,L−n ⊗G∗M)→

C∞(M,L−n⊗F ∗M) coming from L−n⊗TM valued bilinear differential pairings X1 and X2,
such that

div(X1(e, φ)) = 〈∇1 e, φ〉 − 〈e,∇∗
1 φ〉, and

div(X2(f, ψ)) = 〈∇2 f, ψ〉 − 〈f,∇∗
2 ψ〉.

69



Then ∇1 and ∇∗
2 are called codimension one adjoints if there is a L−n ⊗ Λ2TM valued

bilinear differential pairing Y of order d1 + d2 − 2 between sections of EM and sections of
L−n ⊗G∗M , such that

div(Y (e, ψ)) = X2(∇1 e, ψ) +X1(e,∇∗
2 ψ).

Remark 5.4 Applying the operator div once more to the codimension one divergence for-
mula we obtain a necessary condition to hold for codimension one adjoints. This is satisfied
if ∇1, ∇2 from a complex, i.e. ∇2 ◦∇1 = 0 and hence also ∇∗

1 ◦∇∗
2 = 0.

Remark 5.5 A complex of first order Stein Weiss operators always has codimension one
adjoints: We assume that the operators are given in terms of a Weyl derivative D and
symbols π1 : T ∗⊗E → F and π2 : T ∗⊗F → G as ∇1 = π1 ◦D and ∇2 = π2 ◦D. With a dual
basis ti, θ

i of TM the zero order pairings are X1(e, φ) =
∑

i ti ⊗ 〈π1(θ
i ⊗ e), φ〉 and similar

X2. For α, β ∈ T ∗M we note that the symbol of ∇2 ◦∇1 is π21(α⊗α⊗e) = π2(α⊗π1(α⊗e)).
Since 0 = ∇2 ◦∇1 we know that π21(α ⊗ β ⊗ e) = π2(α ⊗ π1(β ⊗ e)) needs to be skew in α
and β, which defines Y (e, ψ) := 1

2

∑
i,j ti ∧ tj〈π21(θ

j ⊗ θi ⊗ e), ψ〉.

Discussion 5.6 (Charged particles as sources) An oriented worldline c : R→ M , t 7→ c(t)
of an electrically charged particle q ∈ R gives rise to a distributional source j ∈ D(M,L−n⊗
TM) in electromagnetism: 〈〈j, α〉〉 :=

∫
R
qα(ċ) with α ∈ C∞

o (M,T ∗M). This source is
divergence-free, since for a real valued test function f ∈ C∞

o (M,R) we have 〈〈j, df〉〉 :=∫
R
qdf(ċ) =

∫
R

∂
∂t

(qf(c(t))) = 0. A similar construction works for a general linear field
theory if it is equipped with two further bilinear differential pairings

∧H : C∞(M,H0)× C∞(M,H0) → C∞(M,R),

∧H : C∞(M,H1)× C∞(M,H0) → C∞(M,T ∗M),

such that the following product rule holds for any f, g ∈ C∞(M,H0):

d(f ∧H g) = (dH f) ∧H g + f ∧H (dH g).

If c : R → M is an oriented worldline and q ∈ W an associated charge then this gives rise
to a conserved distributional source j ∈ D(M,L−n ⊗H1) of the general linear field theory:
〈〈j, α〉〉 :=

∫
R
(q ∧H α)(ċ), where α ∈ C∞

o (M,H1) is a test section. This source is conserved,
since for a test gauge section f ∈ C∞

o (M,H0) we find

〈〈j, dH f〉〉 =

∫

R

(q ∧H dH f)(ċ)

=

∫

R

d(q ∧H f)(ċ)− ((dH q) ∧H f)(ċ)

= 0.

Discussion 5.7 (Lorentz force law in general field theories) A worldline c with normalized
timelike tangent vector N , associated electric charge q ∈ R and inertial mass m ∈ L−1

can represent a test particle moving in an electromagnetic field F . The Lorentz force law
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determines the acceleration on c to be mDNN = q](F (N)) (in terms of a Weyl derivative D
with Dm = 0). To establish a simple force law in a general linear field theory we need three
further bilinear differential pairings:

∧H : C∞(M,H0)× C∞(M,H2) → C∞(M,Λ2T ∗M),

∧H : C∞(M,H1)× C∞(M,H2) → C∞(M,Λ3T ∗M),

∧H : C∞(M,H0)× C∞(M,H3) → C∞(M,Λ3T ∗M),

such that for sections f ∈ C∞(M,H0) and F ∈ C∞(M,H2) the following product rule holds:

d(f ∧H F ) = (dH f) ∧H F + f ∧H (dH F ).

From this its clear that for a charge q ∈ W = ker dH and a kinematic field F subject to
the integrability condition dH F = 0 we can produce a closed 2-form q ∧H F . Hence a test
particle with inertial mass m and charge q ∈ W is accelerated due to the kinematic field F
as

mDNN = ]((q ∧H F )(N)),

where D denotes a Weyl derivative of M with Dm = 0.

5.3 Lienard Wiechert fields

The long history of electromagnetism provides us with a long list of solutions of the field
equations which have elaborated physical interpretations. In this chapter we will describe
how bilinear differential pairings imitating the wedge product of the deRham complex allow
to generate solutions in general field theories from solutions of Maxwell’s equations. In
particular a single electrically charged particle along a worldline produces an electromagnetic
field. The corresponding solution of Maxwell’s equation is due to Lienard and Wiechert. We
will describe how analogous solutions can be obtained in any general linear field theory.

Discussion 5.8 (Kinematic helicity raising) We begin with a general field theory based
upon the following kinematic sequence:

W → C∞(M,H0)→ C∞(M,H1)→ C∞(M,H2)→ . . .

Suppose there are bilinear differential pairings like

∧H : C∞(M,H0)× C∞(M,T ∗M)→ C∞(M,H1),

∧H : C∞(M,H0)× C∞(M,Λ2T ∗M)→ C∞(M,H2),

∧H : C∞(M,H1)× C∞(M,T ∗M)→ C∞(M,H2),

so that for sections f ∈ C∞(M,H0) and A ∈ C∞(M,T ∗M) the following product rule holds:

dH(f ∧H A) = (dH f) ∧H A+ f ∧H (dA).
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The first two pairings allow to produce a general potential f ∧H A respectively a general
kinematic field f ∧H F from an electromagnetic potential A respectively from an electro-
magnetic field F with the help of a general gauge f . If the gauge is indeed a general charge
dH f = 0 then the product rule ensures that the general kinematic field comes from the
general potential: f ∧H F = dH(f ∧H A) if F = dA. Such a translation of solutions from
electromagnetism to a general field theory is called helicity raising (where the helicity of a
field theory is a number reflecting a particular polarization property of plane wave solutions
of that theory - for example electromagnetic waves have helicity one and gravitational waves
are expected to have helicity two).

Discussion 5.9 (Dynamic helicity raising) For the dynamic sequence of a general field
theory

C∞(M,L−n ⊗H0)← C∞(M,L−n ⊗H1)← C∞(M,L−n ⊗H2)← . . .

suppose there are bilinear differential pairings like

yH : C∞(M,H0)× C∞(M,L−n ⊗ Λ2TM)→ C∞(M,L−n ⊗H2),

yH : C∞(M,H0)× C∞(M,L−n ⊗ TM)→ C∞(M,L−n ⊗H1),

yH : C∞(M,H1)× C∞(M,L−n ⊗ Λ2TM)→ C∞(M,L−n ⊗H1),

so that for sections f ∈ C∞(M,H0) and G ∈ C∞(M,L−n ⊗ Λ2TM) the following product
rule holds:

divH (f yH G) = (dH f) yH G+ f yH (div G).

The first two pairings allow to produce a general dynamic field f ∧HG respectively a general
source f ∧H j from an electromagnetic field G respectively from an electromagnetic source
j with the help of a general gauge f . If the gauge is indeed a general charge dH f = 0
then the product rule ensures that the general source comes from the general dynamic field:
f ∧H j = divH (f ∧H G) if j = div G.

Discussion 5.10 (Electromagnetic Lienard Wiechert fields) In affine conformal Minkowski
space A modelled over the vector space V let c : R→ A; t 7→ c(t) be a timelike curve, which
represents an emitter of light rays. The backward lightcone of each point x ∈ A intersects
the worldline at c(φ(x)), which defines a function φ : A → R the retarded parameter. Its
gradient L := − grad φ is a lightlike geodetic vector field in A (compare example 4.9). This
function φ satisfies 0 = 〈x−c(φ(x)), x−c(φ(x))〉 and differentiating along a curve x : R→ A;
s 7→ x(s) gives 0 = 〈x′− ċ(φ(x))∂x′φ|x, x−c(φ(x))〉, hence the lightlike vector field is explicit:

Lx =
x− c(φ(x))

−〈ċ(φ(x)), x− c(φ(x))〉 .

Let N = νċ ∈ V 0 with ν ∈ L−1 along c denote the normalized tangent vector 〈N,N〉 = −1,
whereas ν depends upon the parameterization of c. It can be viewed as being the emitted
frequency of L with respect to N , since ν = −〈L,N〉. The luminosity distance to the
worldline r : A→ L1 (compare remark 4.7) is defined by

r(x) := −〈Nc(φ(x)), x− c(φ(x))〉.
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Along the light rays r has initial conditions r(c(t)) = 0, DLr(c(t)) = −〈L,N〉 = ν and
satisfies DLDLr = 0 with the affine derivative D.

With this in hand we can define the electromagnetic Lienard Wiechert potential A : A→
V ∗ in n = 4 dimensions to be

A(x) := q
N

r
,

where q ∈ R is a constant number. From the potential we have the kinematic Lienard
Wiechert field F = dA and its dynamic field G = F (identified using the conformal struc-
ture). The source of the dynamic field is a distribution with support on the worldline given
by (see [Thi90]):

〈〈div G,α〉〉 = 4π

∫

R

qα(ċ).

Hence the Lienard Wiechert field solves Maxwell’s equation with a single charged particle
along a worldline as source. The Coulomb field (compare paragraph 2.15) is the case when
the worldline follows a straight line.

Discussion 5.11 (Distributional sources and general Lienard Wiechert fields) In paragraph
5.9 we explained what pairings were needed to raise a smooth electromagnetic field G with
sources j = div G to a general field q yH G with source q yH j = divH (q yH G). We used the
following pattern of pairings:

yH : C∞(M,Hk)× C∞(M,L−n ⊗ Λk+lTM)→ C∞(M,L−n ⊗H l),

with k = 0, 1 and k + l = 1, 2. In paragraph 5.6 we considered pairings like

∧H : C∞(M,Hk)× C∞(M,Hl) → C∞(M,Λk+lT ∗M),

(with k = 0, 1 and l = 0) to construct conserved distributional sources from worldlines with
an attached charge q ∈ W . More generally if j ∈ D(M,L−n ⊗ TM) is a distributional
source in electromagnetism, then J ∈ D(M,L−n ⊗ H1) defined by 〈〈J, α〉〉 = 〈〈j, q ∧H α〉〉
with α ∈ C∞

o (M,H1) is conserved if j is conserved. To make the smooth and distributional
construction of sources consistent we need the operators q∧H and q yH to be adjoint in the
sense that there is a trilinear differential pairing:

X : C∞(M,H0)× C∞(M,L−n ⊗ ΛlTM)× C∞(M,Hl)→ C∞(M,L−n ⊗ TM),

such that
div(X(q, a, α)) = 〈q yH a, α〉 − 〈a, q ∧H α〉,

for l = 1. Moreover for l = 2 such a pairing guarantees 〈〈divH(q yH G), α〉〉 = 〈〈div G, q∧H α〉〉
since then the following calculation holds

〈〈divH(q yH G), α〉〉 = −〈〈q yH G, dH α〉〉
= −〈〈G, q ∧H dH α〉〉
= −〈〈G, d(q ∧H α)− (dH q) ∧H α〉〉
= 〈〈div G, (q ∧H α)〉〉.

With such pairings in hands the electromagnetic Lienard Wiechert fields of the last paragraph
5.10 can be raised into any general field theory, and the sources of these general Lienard
Wiechert fields are the expected ones.
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5.4 General field theory

This section begins with quoting a special case of a general result which we will prove at
the end of this dissertation. The first of these theorems is due to Eastwood and Rice [ER87]
whereas the second statement concerning differential pairings is new: let A be an affine
space modelled on a n = 4 dimensional vector space V with conformal metric c. We already
identified the Möbius Lie algebra (of vector fields on A leaving the affine conformal structure
invariant) with the graded Lie algebra g = V ⊕ co(V )⊕V ∗ and also with the orthogonal Lie
algebra g = so(V̂ ) where V̂ = L1 ⊕ V 0 ⊕ L−1.

Theorem 5.12 (Conformal Bernstein Gelfand Gelfand complex) Associated to any finite
dimensional representation W of the Lie algebra g is a sequence of finite dimensional co(V )-
representations denoted by Hk(W ) with k = 0 . . . n, beginning with the coinvariants H0(W ) =
WV ∗ of W with respect to V ∗. The natural inclusion ιH : W → C∞(A,WV ∗) is the beginning
of a locally exact complex of g-equivariant linear differential operators:

W
ιH→ C∞(A, H0(W ))

dH→ C∞(A, H1(W ))
dH→ C∞(A, H2(W ))

dH→ . . . .

This theorem provides us with a kinematic sequence of a general linear field theory
characterized by W . For the trivial representation W = R we recover the deRham complex
Hk(R) = ΛkV ∗. The next theorem guarantees the existence of bilinear pairings imitating
the wedge product on forms in electromagnetism:

Theorem 5.13 (Conformal exterior pairings) If W1, W2 and W3 are three finite dimen-
sional g-representations and F : W1 ⊗W2 →W3 is a linear g-equivariant map, then there is
a g-equivariant bilinear differential exterior pairing

∧H : C∞(A, Hk(W1))× C∞(A, Hl(W2))→ C∞(A, Hk+l(W3)).

For k = l = 0 this pairing is an extension of F since it satisfies ∧H ◦ (ιH ⊗ ιH) = ιH ◦ F .
More generally for s ∈ C∞(A, Hk(W1)) and t ∈ C∞(A, Hl(W2)) the following Leibniz rule
holds:

dH(s ∧H t) = (dH s) ∧H t + (−1)ks ∧H (dH t).

To construct an adjoint dynamic sequence we quote the relation between Hk(W ) and its
dual space Hk(W ∗) := (Hk(W ))∗ which is given by the following observation which will also
be proved later:

Proposition 5.14 (Duality) For the sequence of co(V )-representation Hk(W
∗) we have

natural isomorphisms

y : Hk(W ∗)⊗ ΛnV ∗ ∼=→ Hn−k(W
∗).

Remark 5.15 For the natural pairing F : W ⊗W ∗ → R the bilinear differential pairing ∧H
in degrees with k + l = n is indeed zero order and induced by the above duality rewritten
as: Hk(W )⊗Hn−k(W

∗) = ΛnV ∗.
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The duality allows to twist the kinematic sequence dH induced by W ∗ with the bundle
of pseudoscalar L−n ⊗ ΛnV as in paragraph 1.24:

Definition 5.16 In analogy to the exterior divergence we define the divergence operators
associated to W : divH : C∞(M,L−n ⊗Hk(W ∗))→ C∞(M,L−n ⊗Hk−1(W ∗)), by

(divH a) y or∗ := (−1)k+1 dH(a y or∗),

where or∗ ∈ Ln ⊗ ΛnV ∗ is a parallel element of the (dual) space of pseudoscalars and the
operator dH : C∞(M,Hn−k(W

∗)) → C∞(M,Hn−k+1(W
∗)) is induced by W ∗, see theorem

5.12. Moreover, ifW1, W2 andW3 are three finite dimensional g-representations and F : W1⊗
W2 →W3 is a linear g-equivariant map, then we define bilinear differential interior pairings

yH : C∞(A, Hk(W1))× C∞(A, L−n ⊗Hk+l(W2))→ C∞(A, L−n ⊗H l(W3)),

by

(α yH a) y or∗ := (−1)k(k+l+1)α ∧H (a y or∗).

Corollary 5.17 The resulting sequence of differential operators divH

C∞(A, L−n ⊗H0(W ∗))
divH← C∞(A, L−n ⊗H1(W ∗))

divH← C∞(A, L−n ⊗H2(W ∗))
divH← . . .

defines a locally exact complex which for W = R reduces to the exterior divergence. For
the interior pairing yH induced by F : W1 ⊗W2 → W3 we obtain from the Leibniz rule the
following formula:

(−1)k divH(α yH a) = (dH α) yH a+ α yH (divH a),

with α ∈ C∞(M,Hk(W1)) and a ∈ C∞(M,L−n ⊗ Hk+l(W2)). In particular applied to the
natural pairing W ⊗W ∗ → R with l = 1 the above formula shows that dH of W and the
above − divH are adjoints.

Proof: Unraveling the definitions and using the above two theorems gives

divH(divH(a)) yH or∗ = −(−1)k−1 dH(div(a) yH or∗)

= − dH(dH(a yH or∗)) = 0.

Similarly for the divergence formula note

(−1)k(divH(α yH a)) yH or∗

= −(−1)k+l dH((α yH a) yH or∗)

= (−1)(k+1)(k+l+1) dH(α ∧H (a yH or∗))

= (−1)(k+1)(k+l+1)(dH α) ∧H (a yH or∗) + (−1)(k+1)(k+l+1)+kα ∧H dH(a yH or∗)

= ((dH α) yH a) yH or∗ + (−1)k(k+l)α ∧H ((divH a) yH or∗)

= ((dH α) yH a) yH or∗ + (α yH (divH a)) yH or∗.

75



For F : W ⊗ W ∗ → R the interior pairing yH between β ∈ C∞(A, Hk(W )) and b ∈
C∞(A, L−n ⊗ Hk(W ∗)) takes values in C∞(A, L−n) and is zero order and induced by the
natural pairing Hk(W ) ⊗ Hk(W ∗) → R. Hence the pairings yH on the right hand side of
the divergence formula for l = 1 are simple contractions. 2

We will now apply the above results to put the ideas of the previous two sections 5.2
and 5.3 into proper definitions: Dynamic helicity lowering is based upon the contraction
W ⊗W ∗ → R inducing the following interior pairing:

yH : C∞(A, Hk(W ))× C∞(A, L−n ⊗Hk+l(W ∗))→ C∞(A, L−n ⊗ ΛlV ).

Definition 5.18 (General electric charge) (Compare paragraphs 2.19 and 5.2) For a dy-
namic field G ∈ C(A, L−n ⊗ H2(W ∗)) of the theory associated to W we define the general
electric charge (represented by G) contained in an cooriented (n − 2)-dimensional sphere
Sn−2 ⊂ A to be the following element in W ∗:

W → R; q 7→
∫

Sn−2

〈q yH G, coor〉.

In regions where divH G = 0 this charge satisfies the conservation law from the divergence
theorem, see proposition 2.20. Kinematic helicity lowering is based upon the contraction
W ∗ ⊗W → R inducing the exterior pairing:

∧H : C∞(A, Hk(W
∗))× C∞(A, Hl(W ))→ C∞(A,Λk+lV ∗).

Definition 5.19 (General magnetic charge) (Compare paragraph 2.21) For a kinematic
field F ∈ C(A, H2(W )) of the theory associated to W we define the general magnetic charge
(represented by F ) contained in an oriented 2-dimensional sphere S2 ⊂ A to be the following
element in W :

W ∗ → R; q 7→
∫

S2

〈q ∧H F, or〉.

In regions where dH F = 0 this charge satisfies the conservation law from Stoke’s theorem,
see proposition 2.22.

Definition 5.20 (General Lorentz force law) (Compare paragraphs 2.14 and 5.7) The force
of a kinematic field F felt by a test particle N with an attached dual twistor q ∈ W ∗

(interpreted as general electric test charge) is given by (q ∧H F )(N).

Definition 5.21 (General particles as sources) (Compare paragraph 5.6) A dual twistor
q ∈ W ∗ (a general electric charge) attached to an oriented worldline t 7→ c(t) induces a
distributional source j ∈ D(A, L−n ⊗ H1(W ∗)) = (C∞

o (A, H1(W )))∗ by 〈〈j, α〉〉 :=
∫

R
(q ∧H

α)(ċ).

The induced exterior pairing from scalar multiplication W ⊗ R → W allows kinematic
helicity raising , as in paragraph 5.8, from electromagnetism to the general field theory
associated to W :

∧H : C∞(A, Hk(W ))⊗ C∞(A,ΛlV ∗)→ C∞(A, Hk+l(W )).
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This establishes Lienard Wiechert fields in general field theories. The interior pairing from
scalar multiplication W ⊗R→W allows dynamic helicity raising , as in paragraph 5.9, from
electromagnetism to the general field theory associated to W :

yH : C∞(A, Hk(W ))⊗ C∞(A, L−n ⊗ Λk+lV )→ C∞(A, L−n ⊗H l(W ∗)).

5.5 Fierz’s theory of gravity

The next three sections study in some detail the three linear field theories which are candi-
dates for a conformally invariant linear field theory for gravity. To relate physical dimensions
and central weights of tensors we will use fundamental constants as in example 1.8. The
three theories are based upon the representations W = ΛkV̂ with k = 1, 2, 3. Hence we
will prove special cases of the claims about sequences of differential operators and pairings
quoted in the last section. The conformal differential geometry developed in chapters 2 and
4 is sufficient to develop these theories on an arbitrary conformal manifold rather than on
the conformal affine space. The presence of curvature introduces some phenomena that do
not arise in the flat case.

Twistor fields induced by elements in the defining representation V̂ of the Möbius Lie
algebra are the gravitational masses of Fierz’s theory of gravity. Hence Fierz gravitational
masses occur as sections f of the density bundle L1 which lie in the kernel of the conformal
Hessian Hesse f = 0, see proposition 4.17. The theory is based upon the following kinematic
sequence of differential operators: (we will use the following short hand notations T 0 :=
L1 ⊗ T ∗M and C(L1) = C∞(M,L1) etc.)

charge gauge potential kinematic field

V̂ → C(L1)
Hesse→ C(T ∗ � T 0)

Coda→ C(Λ2T ∗ � T 0)
Fierz→ C(Λ3T ∗ � T 0)

f A F

The gauges are scalar densities of weight +1, the potentials are symmetric trace-free bilinear
forms of weight −1, the kinematic fields are covector valued 2-forms of weight −2 which
are alternating-free and trace-free. To summarize: H0(V̂ ) = L1, H1(V̂ ) = V ∗ � V and
H2(V̂ ) = Λ2V ∗ � V 0. The gauge operator is second order and given by the conformal
Hessian. Potential and kinematic field operator are first order Stein Weiss operators 4.32
and hence their conformal invariance is given by Fegan’s result, theorem 4.36. We will define
them explicitly in terms of a Weyl derivative D with symmetric and trace-free normalized
Ricci curvature rD0 : let X, Y, Z and U be vector fields, then

Hesse f(X,U) :=
1

2
(D2

X,Uf +D2
U,Xf)− 1

n

∑

i

(D2
ti,θif) c(X,U) + f rD0 (X,U),

CodaA(X, Y, U) := DXA(Y, U) +
1

n− 1

∑

i

DtiA(θi, X) c(Y, U)− sym (X, Y ),

Fierz F (X, Y, Z, U) := DXF (Y, Z, U)− 1

n− 2

∑

i

DtiF (Y, Z, θi) c(X,U) + cyc (X, Y, Z).
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It is elementary to check that this defines a complex in a conformally flat Wc = 0 spacetime.
However, in a curved background this is just a sequence of operators and the Weyl curvature
is the obstruction for being a complex. The dynamic sequence is given by:

0 j G

C(L−n−1)
divdiv← C(L−n ⊗ T � T 0)

Symdiv← C(L−n ⊗ Λ2T � T 0)
Fierzdiv← C(L−n ⊗ Λ3T � T 0)

source dynamic field

The operators are explicitly defined by:

Fierzdiv Q(X, Y, U) :=
∑

i

DtiQ(θi, X, Y, U)− 1

3

∑

i

DtiQ(X, Y, U, θi),

Symdiv G(X,U) :=
1

2
(
∑

i

DtiG(θi, X, U) +
∑

i

DtiG(θi, U,X)),

divdiv j :=
∑

i,j

(D2
ti,tj

j(θi, θj) + rD0 (ti, tj)⊗ j(θi, θj)).

The constitutive relation in vacuum and in n = 4 dimensions is given by the conformal
structure, which identifies kinematic and dynamic fields.

Remark 5.22 Note that the conservation law for the source is second order. This is a
consequence of conformal invariance of the theory. In the original noninvariant version Fierz
in [Fie39] used a first order divergence as a candidate for a conservation law. His sources
given by Symdiv G, where G = F = CodaA are only conserved divD Symdiv G = 0 if the
potential A satisfies an additional strong gauge condition divD A = 0 (which is also not
conformally invariant).

Discussion 5.23 (Product rules for adjoints) To see that those two sequences are adjoint
to each other we observe the following pairings and divergence formulas. Note, that the
central weights of the bundles determine the order of operators and pairings. The operators
Hesse and divdiv are second order and the required pairing is a simple first order pairing,
see proposition 4.42:

yH : C∞(M,L1)× C∞(M,L−n ⊗ T � T 0)→ C∞(M,L−n ⊗ T ),

f yH j :=
∑

i

Dtif ⊗ j(θi, )−
∑

i

f ⊗Dtij(θ
i, ),

div(f yH j) = 〈Hesse f, j〉+ 〈f,− divdiv j〉.

The pairing between potentials and dynamic fields is purely tensorial:

yH : (T ∗ � T 0)⊗ (L−n ⊗ Λ2T � T 0)→ L−n ⊗ T,
− div(A yH G) = 〈CodaA,G〉+ 〈A, Symdiv G〉.

The pairing for the kinematic integrability operator is also tensorial:

yH : (Λ2T ∗ � T 0)⊗ (L−n ⊗ Λ3T � T 0)→ L−n ⊗ T,
(−1)2 div(F yH J) = 〈Fierz F, J〉+ 〈F,Fierzdiv J〉.
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Discussion 5.24 (Mass represented by dynamic Fierz fields) To rediscover the gravitational
mass, i.e. a Fierz twistor, represented by a dynamic Fierz field we need the following pairings
and product rules: the pairing between gauges and dynamic Fierz fields is simple first order,
see proposition 4.42:

yH : C∞(M,L1)× C∞(M,L−n ⊗ Λ2T � T 0)→ C∞(M,L−n ⊗ Λ2T ),

f yH G :=
∑

i

(Dtif)G( , , θi)− 1

2
f
∑

i

DtiG( , , θi),

yH : (T ∗ � T 0)⊗ (L−n ⊗ Λ2T � T 0)→ (L−n ⊗ T ),

yH : C∞(M,L1)× C∞(M,L−n ⊗ T � T 0)→ C∞(M,L−n ⊗ T ),

div(f yH G) = Hesse f yH G+ f yH Symdiv G− f 1

2

∑

i,j,k

G(θi, θj, θk) Wc

ti,tj tk.

Note that the third pairing needed is the first order pairing from the above paragraph 5.23
and that the appearance of the Weyl curvature tensor prevents a true codimension one
divergence formula in the curved case. As was explained in paragraph 5.2 the first pairing
together with a cooriented (n − 2)-sphere S and a dynamic Fierz field G induces a linear
form on the kernel of the conformal Hessian ker (Hesse) 3 f 7→

∫
S
〈f yH G, coor〉. In the

affine case this linear form represents a Fierz twistor using the inner product from definition
3.9 on V̂ .

The next operators in the kinematic and dynamic sequences are true codimension one
adjoints, see definition 5.3 even in the curved case, since the pairing is purely tensorial and
the operators are first order:

yH : (T ∗ � T 0)⊗ (L−n ⊗ Λ3T � T 0)→ L−n ⊗ Λ2T,

− div(A yH J) = CodaA yH J + A yH Fierzdiv J.

Discussion 5.25 (Fierz particles as sources) To view a Fierz twistor along a worldline as a
pointlike source for gravity, as in paragraph 5.6, we need a pairing between Fierz potentials
and Fierz gauges to give 1-forms, which is simple first order:

∧H : C∞(M,L1)× C∞(M,T ∗ � T 0)→ C∞(M,T ∗),

f ∧H A := f ⊗ divD A− (n− 1) gradD f yA.

Given f ∈ ker (Hesse) along an oriented worldline c we define a distributional source j ∈
D(M,L−n ⊗ T � T 0) = (C∞

o (M,T ∗ � T 0))∗ by evaluating it on α ∈ C∞
o (M,T ∗ � T 0) as

〈〈j, α〉〉 :=
∫

R
(f ∧H α)(ċ) dt. To check that this source is conserved we need a pairing between

Fierz gauges and Fierz gauges to give functions, which is a Laplace pairing, example 4.52:

∧H : C∞(M,L1)× C∞(M,L1)→ C∞(M,R),

f ∧H g :=
n− 1

n

(
(∆Df)⊗ g − n c(Df,Dg) + f ⊗ (∆Dg)

)
.

To verify the product rule notice (D2 +rD)f = Hesse f + 1
n

(∆Df)c and recall the contracted
second Bianchi identity, proposition 2.61: DX sD = trc D rD(X). Together this gives

DX∆Df = (2− n) rD(X, gradD f) + divD Hesse f(X) +
1

n
DX∆Df,
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and finally
d(f ∧H g) = (Hesse f) ∧H g + f ∧H (Hesse g).

Discussion 5.26 (Kinematic Fierz fields as accelerations) The Lorentz force law in Fierz
theory is based upon a pairing between Fierz gauges (gravitational test masses) and kinematic
Fierz fields to give a 2-form. This pairing is simple first order:

∧H : C∞(M,L1)× C∞(M,Λ2T ∗ � T 0)→ C∞(M,Λ2T ∗),

(f ∧H F )(X, Y ) := (n− 2)F (X, Y, gradD f)− f ⊗
∑

i

DtiF (X, Y, θi).

Discussion 5.27 (Lienard Wiechert fields in Fierz’s theory) Given a solution of the Max-
well equation Fem = dAem, like the Lienard Wiechert field, the following pairing between
a Fierz twistor and a 1-form respectively a 2-form induces a Fierz potential respectively a
Fierz field: the pairings are simple first order:

∧H : C∞(M,L1)× C∞(M,T ∗)→ C∞(M,T ∗ � T 0),

(f ∧H Aem) := (−2)Aem �Df − f ⊗ KillD Aem,

∧H : C∞(M,L1)× C∞(M,Λ2T ∗)→ C∞(M,Λ2T ∗ � T 0),

(f ∧H Fem) := (−3)Fem �Df − f ⊗ TwistD Fem,

where � and TwistD are defined in definition 4.23.

5.6 Bach’s theory of gravity

Linearized conformal geometry and Linearized Bach’s theory of gravity are the same in
n = 4 dimensions. This theory is a linearization of Bach’s conformal theory of gravity which
we briefly recalled in remark 2.73. It is based upon the adjoint representation W = g,
hence elements in W have the geometric interpretation as being conformal Killing fields and
play the role of gravitational masses in Bach’s theory of gravity. The first operator in the
kinematic sequence is the conformal Killing operator:

Kill =
1

2
Lc : C∞(M,TM)→ C∞(M,L2 ⊗ Sym 2

0T
∗M),

with H0(g) := TM and H1(g) := L2 ⊗ Sym 2
0T

∗M . Vector fields play the role of gauges
and the potentials h ∈ C∞(M,H1(g)) are weightless symmetric bilinear forms and have the
interpretation of linearized conformal metrics : if ct denotes a family of conformal structures
on M with c0 := c being the background conformal structure, then ċ := ∂

∂t
ct|t=0

is trace-free
with respect to c0, since all ct are normalized | det ct| = 1. To understand the next operator in
the kinematic sequence (n ≥ 4) note that each conformal metric ct has an associated Weyl
curvature tensor Wct and the linearization of this process ct 7→ Wct defines a differential
operator LinWeyl(ċ) := ∂

∂t
Wct with

LinWeyl : C∞(M,L2 ⊗ Sym 2
0T

∗M)→ C∞(M,Λ2T ∗ � so(TM)),
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where H2(g) := Λ2T ∗M � so(TM) is the bundle of Weyl tensors of central weight −2,
where the kinematic fields take their values. This is the beginning of a complex only if the
background metric is conformally flat, otherwise the Weyl curvature is an obstruction: if X
is an arbitrary vector field with (local) flow Φt, then

LinWeyl ◦Kill(X) =
1

2
LinWeyl(

∂

∂t
Φ∗
t c) =

1

2

∂

∂t
WΦ∗

t c =
1

2

∂

∂t
Φ∗
t (W

c0)

=
1

2
LXWc0

If the background conformal structure c0 = c has zero Weyl curvature Wc = 0 then this Lie
derivative vanishes. The Weyl curvature tensor Wct on a conformal manifold M, ct satisfies a
differential Bianchi identity Bianchict(W

ct) = 0, see propositions 2.64, 2.68. Here Bianchict

is a linear conformally invariant operators which (as any invariant operator) depends upon
the conformal structure (in a nonlinear way). Hence the kinematic integrability condition
on Weyl tensors is given by the differential Bianchi identity: for n ≥ 5 dimensions this is

Bianchi : C∞(M,Λ2T ∗ � so(TM))→ C∞(M,Λ3T ∗ � so(TM)),

and in n = 4 dimension this is a second order operator:

Bianchi : C∞(M,Λ2T ∗ � so(TM))→ C∞(M,Λ3T ∗ � T ∗M).

For the composite Bianchi ◦LinWeyl note that for all t we know Bianchict Wct = 0 and
differentiating gives:

0 =
∂

∂t
(Bianchict Wct)

=
∂

∂t
Bianchict Wc0 +

∂

∂t
Bianchic0 Wct

= (
∂

∂t
Bianchict)W

c0 + Bianchic0 ◦LinWeyl(ċ).

Hence we have Bianchi ◦LinWeyl(ċ) = −( ∂
∂t

Bianchict) Wc, which is zero in the flat case.
The beginning of the kinematic sequence:

Killing fields vector fields lin. conf. metrics Weyl fields

so(V̂ ) → C(T )
Kill−→ C(L2 ⊗ Sym 2

0T
∗)

LinWeyl−→ C(Λ2T ∗ � so(T ))
Bianchi−→ ,

has and adjoint providing the end of the dynamic sequence:

C(L−n−2 ⊗ T )
div← C(L−n−2 ⊗ Sym 2

0T )
Bach← C(L−n ⊗ Λ2T � so(T )),

source dynamic field

where the adjoint of Kill is a first order divergence operator div acting on symmetric bilinear
forms of central weight −n and the operator adjoint to LinWeyl is second order and called
the Bach operator , see 2.70, acting on Weyl tensors of central weight 2 − n. In n = 4
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dimensions the constitutive relation in vacuum between kinematic and dynamic fields is
simply the conformal structure, since both fields are Weyl tensors of central weight −2.

For convenience we will write down the linearized Weyl operator which is simple second
order, proposition 4.51, and associated to E := V ∗�V , F := Λ2V ∗�V , G := Λ2V ∗�so(V ):
the aim is to make the projection πW : V ∗ ⊗ V ∗ ⊗ E → G explicit. For this we write πW as
a composition πW := πL ◦ (idV ∗ ⊗ πC) with πC : V ∗ ⊗ E → F and πL : V ∗ ⊗ F → G. The
Stein Weiss operator of these projections are called Codazzi operator and Lanczos operator
and are given by (X, Y , U , V are vector fields):

CodaD h(X, Y, U) := πC ◦Dh(X, Y, U)

= DXh(Y, U) +
1

n− 1

∑

i

Dtih(θ
i, X) c(Y, U)− sym (X, Y ),

LancD A(X, Y, U, V ) := πL ◦DA(X, Y, U, V )

= DXA(U, V, Y )−DYA(U, V,X) +DUA(X, Y, V )−DVA(X, Y, U)

− 2

n− 2

(
SymdivD A(Y, V ) c(X,U)− SymdivD A(X, V ) c(Y, U)

− SymdivD A(Y, U) c(X, V ) + SymdivD A(X,U) c(Y, V )
)
,

SymdivD A(X,U) :=
1

2
(trDL( , X, U) + trDL( , U,X)),

LinWeyl h := πL(id ⊗ πC)(D2h + rD⊗ h).

The Bach operator is adjoint to this and therefore given by:

BachDW (Y, U) :=
∑

i,j

(D2
ti,tj

+ rD(ti, tj))W (θi, Y, U, θj)− sym (Y, U).

Discussion 5.28 (Product rules for adjoints) To see that those two sequences are adjoint to
each other we remark that first order Stein Weiss operators like Kill always have an obvious
divergence formula, see remark 4.33. For convenience we will write out the tensorial pairing
between vector fields and Bach sources:

yH : T ⊗ (L−n−2 ⊗ T � T )→ L−n ⊗ T,
f yH j :=

∑

i

c(f, ti)j(θ
i, ),

div(f yH j) = 〈Kill f, j〉+ 〈f, div j〉.

The second order operators LinWeyl and Bach need the following simple first order pairing:

yH : C(M,L2 ⊗ T ∗ � T ∗)× C(M,L−n ⊗ Λ2T � so(T ))→ C(M,L−n ⊗ T ),

h yHW :=
1

2

∑

i,j,k

h(tj, tk)DtiW (θj, θk)θi −Dtih(tj, tk)W (θj, θk)θi,

− div(h yHW ) = 〈LinWeyl h,W 〉+ 〈h,−BachW 〉.
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Discussion 5.29 (Mass represented by dynamic Bach fields) To rediscover the gravitational
mass, a Killing field, represented by a dynamic Bach field, a Weyl tensor, we need the
following pairings and product rules: the pairing between gauges and dynamic Bach fields
is simple first order:

yH : C∞(M,T )× C∞(M,L−n ⊗ Λ2T � so(T ))→ C∞(M,L−n ⊗ Λ2T ),

f yHW :=
∑

i,j

Dtif(θj)〈W ( , , tj), θ
i〉 − 2f(θj)〈DtiW ( , , tj), θ

i〉,

yH : C∞(M,L2 ⊗ T ∗ � T ∗)× C∞(M,Λ2T ∗ � so(T ))→ C∞(M,L−n ⊗ T ),

yH : T ⊗ (Λ2T ∗ � so(T ))→ (L−n ⊗ T ),

div(f yHW ) = Kill f yHW + f yH (−BachW ) + 〈W ⊗K,Wc〉.

Note that the second pairing is the first order pairing from the above paragraph 5.28. The
appearance of the Weyl curvature tensor prevents a true codimension one divergence formula
in the curved case. As was explained in paragraph 5.2 the first pairing together with a
cooriented (n− 2)-sphere S and a dynamic Bach Weyl field W induces a linear form on the
kernel of the conformal Killing equation ker (Kill) 3 f 7→

∫
S
〈f yHW, coor〉. In the affine

case this linear form represents a Killing field using the Killing form on so(V̂ ).

Discussion 5.30 (Bach particles as sources) To view a Killing field along a worldline as a
pointlike source for gravity we need a pairing between vector fields and linearized metrics to
give 1-forms:

∧H : C∞(M,T )× C∞(M,L2 ⊗ T ∗ � T ∗)→ C∞(M,T ∗).

This pairing is second order and not simple. Its existence follows from the general theory,
theorem 5.13, applied to so(V̂ )⊗so(V̂ )→ R. To check that this source is conserved we need
the Branson pairing, example 4.53, with k = 1.

Discussion 5.31 (Kinematic Bach fields as accelerations) The Lorentz force law in Bach’s
theory is based upon a pairing between Killing fields and kinematic Bach fields to give a
2-form. This pairing is simple first order:

∧H : C∞(M,T )× C∞(M,Λ2T ∗ � so(T ))→ C∞(M,Λ2T ∗),

(f ∧H W )(X, Y ) := (n− 2)F (X, Y, gradD f)− f ⊗
∑

i

DtiF (X, Y, θi).

Discussion 5.32 (Lienard Wiechert fields in Bach’s theory) Given a solution of the Max-
well equation F = dA, like the Lienard Wiechert field, a tensorial pairing between a Killing
field and a 1-form induces a Bach potential:

∧H : T ⊗ T ∗ → L2 ⊗ T ∗ � T ∗,

(f ∧H A) := f � A.
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5.7 Penrose’s theory of gravity

Twistor fields induced by elements in the representation on trivectors Λ3V̂ of the Möbius
Lie algebra so(V̂ ) are the gravitational masses of Penrose’s theory of gravity. Hence Penrose
gravitational masses are 2-forms f of central weight +1 in the kernel of the Twistor operator
Twist f = 0, see definition 4.23. The theory is based upon the following kinematic sequence:

charge gauge potential kinematic field

Λ3V̂ → C(Λ2T 0 ⊗ L1)
Twist→ C(T ∗ � Λ2T 0 ⊗ L1)

Lanc→ C(Λ2T ∗ � Λ2T 0 ⊗ L1) →
f A F

The kinematic fields are Weyl tensors of central weight −1. The two operators above are
first order Stein Weiss operators, see definition 4.32, and were already defined in the last
section 5.6. It is a beginning of a complex in the flat case. They have natural adjoints:

j G

C(L−n−1 ⊗ Λ2T 0)
Skewdiv← C(L−n−1 ⊗ T � Λ2T 0)

div← C(L−n−1 ⊗ Λ2T � Λ2T 0) ←
source dynamic field

Note the the dynamic field is a Weyl tensor of central weight −3, whereas the kinematic field
is a Weyl tensor of central weight −1. Hence the constitutive relation in vacuum is more
involved, since we can’t use the conformal metric to identify kinematic and dynamic fields as
in electromagnetism or Fierz’s and Bach’s theory. Theorem 5.12 yields in n = 4 dimensions
an additional third order operator from potential to fields, since H2(Λ

3V̂ ) splits into a direct
sum, see example 6.30:

H2(Λ
3V̂ ) = Λ2V ∗ � Λ2V 0 ⊗ (L1 ⊕ L−1).

Hence in n = 4 dimensions there is an invariant third order differential operator

UltraLanc : C∞(M,T ∗ � Λ2T 0 ⊗ L1)→ C∞(M,Λ2T ∗ � Λ2T 0 ⊗ L−1),

which annihilates the image of Twist in the flat case, i.e. UltraLanc ◦Twist = 0. This allows
to suggest that kinematic and dynamic Weyl field F and G come from the same kinematic
potential A ∈ C∞(M,T ∗ � Λ2T 0 ⊗ L1) using

F := Lanc A,

G := UltraLanc A,

which can be interpreted as a conformally invariant constitutive relation in n = 4 dimensions,
since it does not depend upon the choice of the potential. This third order operator is related
to the kinematic integrability condition for F , which is also third order, since by example
6.30: H3(Λ

3V̂ ) = Λ3V ∗ � Λ2V 0 ⊗ L−1, which has central weight −4.

Discussion 5.33 (Mass represented by dynamic Penrose Weyl fields) To rediscover the
gravitational mass, i.e. a Penrose twistor, represented by a dynamic Penrose Weyl field we
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just need a zero order pairing:

yH : (Λ2T 0 ⊗ L1)⊗ L−1−n ⊗ Λ2T � Λ2T 0)→ L−n ⊗ Λ2T,

f yH G :=
1

2

∑

i,j

f(ti, tj)G( , , θi, θj),

div(f yH G) = Twist f yH G + f yH div G.

This divergence formula and related product rules based upon zero order pairings were first
observed by Penrose [PR84]. As was explained in paragraph 5.2 this pairing together with
a cooriented (n− 2)-sphere S and a dynamic Penrose Weyl field G induces a linear form on
the kernel of the twistor operator ker (Twist) 3 f 7→

∫
S
〈f yH G, coor〉. In the affine case this

linear form represents a twistor using the inner product on Λ3V̂ .

Discussion 5.34 (Penrose particles as sources) To view a Penrose twistor along a worldline
as a pointlike source for gravity, as in paragraph 5.6, we need a pairing between Penrose
gauges and Penrose potentials to give 1-forms, which is second order, but not simple. We
refer to the general theory, theorem 5.13, applied to Λ3V̂ ⊗ Λ3V̂ → R:

∧H : C∞(M,Λ2T 0 ⊗ L1)× C∞(M,T ∗ � Λ2T 0 ⊗ L1)→ C∞(M,T ∗).

Given f ∈ ker (Twist) along an oriented worldline c we define a distributional source j ∈
D(M,L−n−1 ⊗ T � Λ2T 0) = (C∞

o (M,T ∗ � Λ2T 0 ⊗ L1)∗ by evaluating it on α as 〈〈j, α〉〉 :=∫
R
(f ∧H α)(ċ) dt. The product rule which ensures conservation of this source involves a

pairing between Penrose gauges and Penrose gauges to give functions, which is a Branson
pairing, example 4.53.

Discussion 5.35 (Kinematic Penrose Weyl fields as accelerations) The Lorentz force law in
Penrose’s theory is based upon a pairing between Penrose gauges (gravitational test masses)
and kinematic Penrose Weyl fields to give a 2-form. This pairing is second order and not
simple. We refer to the general theory, theorem 5.13, applied to Λ3V̂ ⊗ Λ3V̂ → R:

∧H : C∞(M,Λ2T 0 ⊗ L1)× C∞(M,Λ2T ∗ � Λ2T 0 ⊗ L1)→ C∞(M,Λ2T ∗).

Discussion 5.36 (Lienard Wiechert fields in Penrose’s theory) Given a solution of the
Maxwell equation F = dA, like the Lienard Wiechert field, a tensorial pairing between a
Penrose twistor and a 1-form respectively a 2-form induces a Penrose potential respectively
a kinematic Penrose field:

∧H : (Λ2T 0 ⊗ L1)⊗ T ∗ → (T ∗ � Λ2T 0 ⊗ L1),

∧H : (Λ2T 0 ⊗ L1)⊗ Λ2T ∗ → (Λ2T ∗ ⊗ Λ2T 0 ⊗ L1).

Remark 5.37 (Schwarzschild Weyl field) Penrose’s linear theory of gravity provides a di-
rect link to Newton’s theory of gravity via the Weyl tensor of the Schwarzschild solution.
The Schwarzschild geometry in Einstein’s theory is static and spherically symmetric. It’s
Riemann curvature tensor only has a Weyl curvature part. Linearizing the Schwarzschild
solution (by the mass parameter) with Minkowski background we obtain a tensor with the
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symmetries of a Weyl tensor in Minkowski space. It is divergence-free by the contracted sec-
ond Bianchi identity 2.61. On the other hand, let c(t) := c0 + tN be the straight worldline
in the affine space representing the pointlike gravitational source. The Schwarzschild Weyl
field is (up to scale) uniquely determined to be the dynamic Penrose Weyl field GSchw which
is static and spherically symmetric and satisfies divH(GSchw) = 0 away from the worldline c:

GSchw =
M

r3
(~r ∧N)� (~r ∧N),

where M ∈ R is a parameter interpreted as gravitational mass of the source, r is the lu-
minosity distance to the source, ~r := gradD r is the spacelike radial vector field and D is
the affine derivative. The Schwarzschild Weyl field falls off like 1/r3 in agreement with the
central weight of GSchw being −3. It has a potential ASchw and a kinematic field FSchw given
by

ASchw = M(~r ∧N)�N,

FSchw = Lanc ASchw =
M

r
(~r ∧N)� (~r ∧N),

GSchw = UltraLanc ASchw.

Note that c is in particular a conformal geodesic and along a conformal geodesic any Penrose
twistor in Λ3V̂ induces a constant real number along c according to proposition 4.25. The
inner product on Λ3V̂ turns this linear form on Λ3V̂ into a Penrose twistor fSchw induced by
c. This twistor is up to scale the unique static and spherically bivector field in the kernel of
the twistor operator Twist given by the linear polynomial

fSchw := r (~r ∧N).

Obviously it is this twistor which can be used to raise the Coulomb potential and field to
the Schwarzschild potential and kinematic field: ASchw = ACoul� (MfSchw) with ACoul = 1

r
N

and FSchw = FCoul � (MfSchw) with FCoul = 1
r2
~r ∧ N . To calculate the predicted force of

FSchw on a test particle we assume a multiple of fSchw to be the gravitational mass of the test
particle, like mfSchw, with m ∈ R. Although we haven’t calculated the relevant second order
pairing (mfSchw)∧H FSchw we know that the resulting closed 2-form is static and spherically
symmetric, hence a multiple of FCoul:

(mfSchw) ∧H FSchw =
mM

r2
~r ∧N.

(The second order pairing is in this case only first order, since fSchw is linear, which also
explains why the force falls off like 1/r2.) Hence the general Lorentz force law from 5.35
specializes to the Newtonian force law in the spherically symmetric case. Paragraph 2.17
applies also to this gravitational force law and predicts a perihelion advance in this linear
theory of gravity.
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Chapter 6

Bernstein Gelfand Gelfand theory

In this chapter we develop the Bernstein Gelfand Gelfand resolution together with its co-
product. This chapter is algebraic in flavour and the link to differential geometry is given in
the first section 6.1. For a Lie group G with closed subgroup P ⊂ G, we define an invariant
jet operator, see 6.9, acting on sections of a homogeneous bundle over the homogeneous space
G/P . This jet operator encodes the information of all derivatives of a section at a point
into an algebraic object, a linear form on the induced module . This jet operator allows to
translate differential operators into homomorphisms and differential pairings into coproducts
between induced modules. From section 6.2 on we deal with a semisimple G and a parabolic
P . Parabolic subgroups contain a further subgroup L ⊂ P ⊂ G which can be thought of
as the structure group of the reduced frame bundle of G/P . For instance for the conformal
sphere G/P we have L := CO (V ) and P := CO (V )nV ∗, see section 3.4. Note that in
general a P -representation leads to vector bundle over G/P which is not associated to the
L-reduction of the linear frame bundle of G/P . Only those P -representations on which V ∗

acts trivially lead to tensor bundles. The most substantial piece of representation theory that
we will need is relative Lie algebra homology. The elementary definitions and properties are
presented in section 6.3 with detailed proofs. If p ⊂ g denote the Lie algebras with V := g/p,
then the chains of the homology theory are ΛkV ⊗W , where W is a G-representation. The
homologies Hk(W ) are examples of P -representations on which V ∗ acts trivially. In section
6.4 we twist the exterior deRham complex by a representation W of G. The resulting com-
plex is too big to be geometrically relevant, since V ∗ acts nontrivially on ΛkV ∗ ⊗ W . In
section 6.5 we construct a projection S onto the homologies and the BGG complex between
sections in the homology occurs as homotopy equivalent to the twisted deRham complex
between sections of the chains. Adjoint operators can also be studied purely algebraically,
which we will do in section 6.7.

6.1 Verma modules and the holonomic jet operator

Let G denote a (real) Lie group with closed subgroup P ⊂ G and Lie algebras g ⊂ p. We
are interested in invariant differential operators and pairings on the following manifold:

Definition 6.1 (Homogeneous model) The quotient G/P where P acts as subgroup on G
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from the right is called a Kleinian or homogeneous model .

The differential operators and pairings act between homogeneous vector bundles : any
P -representation E from the right leads to a bundle G ×P E := G × E/ ∼ where pairs
(g, e) ∼ (gp, e.p) in the orbit of p ∈ P are identified. Sections of that bundle can be viewed
as P -equivariant functions on G with values in E: C∞(G,E)P := {e ∈ C∞(G,E) | e(gp) =
e(g).p}. On these bundles we have various group action which we need to distinguish:

Definition 6.2 (Regular right G-actions) The map Rh : C∞(G,E)→ C∞(G,E) for h ∈ G
defined on functions e by right multiplication Rhe(g) := e(gh) is called the regular right
action . This is a G-action from the left:

R : G× C∞(G,E)→ C∞(G,E).

Definition 6.3 (Induced left P -action) A function e is P -equivariant, if Rpe = e.p for all
p ∈ P . Hence e is P -equivariant, if it is invariant under the following induced left P -action :

P × C∞(G,E)→ C∞(G,E),

defined by p.e := Rpe.p
−1, i.e. (p.e)(g) := e(gp).p−1.

Definition 6.4 (Regular left G-action) The map Lh : C∞(G,E) → C∞(G,E) for h ∈ G
defined on functions e by left multiplication Lhe(g) := e(hg) is called the regular left action .
This is a G-action from the right:

L : C∞(G,E)×G→ C∞(G,E).

Remark 6.5 Regular right and left action commute, hence if E is a right P -representation,
and a section e is P -equivariant, then so is Lh(e). I.e. we have a right G-action on sections
of the homogeneous bundle:

L : C∞(G,E)P ×G→ C∞(G,E)P .

Associated to a Lie algebra g is the universal enveloping algebra U(g), which is associative
and has a unit (see Appendix). The algebra U(g) can be interpreted as the algebra of scalar
differential operators on G which are equivariant under the regular left G-action. This is
how we will use it in proposition 6.9, when we define a universal jet operator on G/P , which
is the aim of the next paragraphs.

The Lie algebra g acts upon U(g) by multiplication from the left, from the right and by
conjugation:

l : g⊗ U(g)→ U(g) ; lX(U) = XU,

r : g⊗ U(g)→ U(g) ; rX(U) = −UX,
ad : g⊗ U(g)→ U(g) ; adX(U) = (lX − rX)(U) = XU − UX.

In what follows it is the left action which is the action of g on U(g) and other actions will
be mentioned explicitly.

88



Definition 6.6 (Induced modules or Verma modules) If p is a subalgebra of g and E∗ is a
left p-module, then U(g)⊗ E∗ contains an induced left U(g) ideal generated by

I(g, p, E∗) := <X ⊗ η − 1⊗X.η |X ∈ p, η ∈ E∗>.

The quotient

Verma (g, p, E∗) := U(g)⊗U(p) E
∗ := U(g)⊗ E∗/I(g, p, E∗),

is called the induced left g-module by the left p-module E∗. The action of g on U(g) by
multiplication from the left clearly leaves the ideal invariant and descends to a left g-action
on Verma (g, p, E∗).

Definition 6.7 (P -actions on Verma modules) Let P ⊂ G be Lie groups with Lie algebras
p ⊂ g. The group G acts upon U(g) by the adjoint action, which corresponds to the action
of g by conjugation on U(g). If E∗ is a left P -representation, then P as subgroup acts upon
U(g) by the adjoint action and hence on the tensor product:

Ind : P × U(g)⊗ E∗ → U(g)⊗ E∗,
Indp(U ⊗ η) := Adp(U)⊗ p.η.

This action leaves the induced ideal I(g, p, E∗) invariant, since it maps generators to genera-
tors: Indp(X⊗η−1⊗X.η) = (Adp(X)⊗p.η−1⊗p.X.η) = (Adp(X)⊗p.η−1⊗Adp(X).p.η).
Hence the action descends to the quotient

P × Verma (g, p, E∗)→ Verma (g, p, E∗).

Remark 6.8 Infinitesimally we get a left p-action

ind : p⊗ U(g)⊗ E∗ → U(g)⊗ E∗,
indX(U ⊗ η) := adX(U)⊗ η + U ⊗X.η,

leaving the ideal I(g, p, E∗) invariant: indX(Y ⊗ η− 1⊗Y.η) = (adX(Y )⊗ η+Y ⊗X.η− 1⊗
X.Y.η) = ([X, Y ]⊗ η− 1⊗ [X, Y ].η) + (Y ⊗X.η− 1⊗ Y.X.η). The corresponding p-action
on Verma (g, p, E∗) is indeed the restriction of the g-action by left multiplication, since

indX(U ⊗U(p) η) = (XU − UX)⊗U(p) η + U ⊗U(p) X.η

= XU ⊗U(p) η.

Following Weingart [Wei99] we will use the induced module Verma (g, p, E∗) by a right
P -representation E to define a jet operator for sections of the homogeneous bundle G×P E
over G/P : the left action on functions R : G × C∞(G,E) → C∞(G,E); Rhe(g) := e(gh),
induces a left representation of the Lie algebra g and hence a left action RX by elements of
the universal enveloping algebra X ∈ U(g):

R : U(g)⊗ C∞(G,E)→ C∞(G,E).
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Proposition 6.9 (Jet operator) The linear differential operator:

jet∞ : C∞(G,E)→ C∞(G, (U(g)⊗ E∗)∗)

given by
〈jet∞(e)(g), U ⊗ η〉 := 〈(RUe)(g), η〉 = (RU〈e, η〉)(g)

is G-equivariant under the regular action and P -equivariant under the induced left action.
Its restriction to P -invariant sections vanishes on the induced ideal I(g, p, E∗):

jet∞ : C∞(G,E)P → C∞(G,Verma (g, p, E∗)∗)P .

Proof: The operator jet∞ is G-equivariant since regular left and right multiplication com-
mute: Lh ◦RU = RU ◦ Lh for h ∈ G. To show P -equivariance note for p ∈ P :

〈p.(jet∞(e))(g), U ⊗ η〉 = 〈(jet∞(e))(gp).p−1, U ⊗ η〉
= 〈(jet∞(e))(gp),Adp−1U ⊗ p−1.η〉
= 〈(RAdp−1Ue)(gp), p

−1.η〉
= 〈RU(Rpe)(g), p

−1.η〉
= 〈RU((Rpe).p

−1)(g), η〉
= 〈RU(p.e)(g), η〉
= 〈jet∞(p.e)(g), U ⊗ η〉.

A function e ∈ C∞(G,E) is P -equivariant, if Rpe = e.p for all p ∈ P , which infinitesimally
means RXe = e.X for X ∈ p. That shows 〈jet∞(e)(g), I(g, p, E∗)〉 = 0. 2

Using this operator, we will present next the result, independently due to Baston East-
wood Rice [BE89], [ER87], Collingwood Shelton [CS90] and Soergel [Soe90], that G-equi-
variant linear differential operators are in one to one correspondence with g-equivariant
homomorphisms between the induced Verma modules:

Discussion 6.10 (Correspondence between operators and homomorphisms) Let E and F
be two right P -representations. The above jet operator translates g-equivariant homomor-
phisms between the induced Verma modules

∇ : Verma (g, p, F ∗)→ Verma (g, p, E∗)

into a G-equivariant differential operator

∇ : C∞(G,E)P → C∞(G,F )P

as follows: if e ∈ C∞(G,E) is a P -equivariant section, φ ∈ F ∗ an element of the dual space
and g ∈ G a point, then

〈(∇ e)(g), φ〉 = 〈jet∞(e)(g),∇(1⊗U(p) φ)〉.

This is a one to one correspondence.
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Hence the geometric question of finding G-equivariant differential operators between sec-
tions of homogeneous bundles has been translated into the algebraic question of finding
homomorphisms between Verma modules. Similarly, if E1 and E2 are two right P represen-
tations, then a G-equivariant differential pairing

∨ : C∞(G,E1)
P × C∞(G,E2)

P → C∞(G,F )P ,

corresponds to a g-equivariant coproduct:

∨ : Verma (g, p, F ∗)→ Verma (g, p, E∗
1)⊗ Verma (g, p, E∗

2).

We will finish this section with some general remarks about g-homomorphisms between
Verma modules:

Remark 6.11 Let W ∗ be some (finite or infinite dimensional) left g-representation and
E∗ a left p-representation. Clearly, any g-homomorphism W ∗ → U(g) ⊗ E∗ induces a g-
homomorphism W ∗ → Verma (g, p, E∗) by projection into the quotient.

Proposition 6.12 (Frobenius reciprocity) Let E∗ be a left p-representation and W ∗ a left
g-representation. Any p-equivariant linear map φ0 : E∗ → W ∗ induces a g-equivariant ho-
momorphism φ : Verma (g, p, E∗) → W ∗ via φ(U ⊗U(p) η) := U.(φ0(η)), with U ∈ U(g) and
η ∈ E∗. This defines an isomorphism:

Hom p(E
∗,W ∗)

∼=−→ Hom g(Verma (g, p, E∗),W ∗); φ0 7→ φ.

Proof: Any linear map φ0 : E∗ → W ∗ induces a g-homomorphism φ : U(g)⊗E∗ →W ∗ via
φ(U ⊗ η) := U.(φ0(η)). If φ0 is p-equivariant then φ0(X.η) = X.(φ0(η)) for all X ∈ p.
In that case φ vanishes on the generators of the induced ideal I(g, p, E∗) since φ(X ⊗
η − 1 ⊗ X.η) = X.(φ(1 ⊗ η)) − φ(1 ⊗ X.η) = X.(φ0(η)) − φ0(X.η). Hence φ descends
to the quotient φ : Verma (g, p, E∗) → W ∗. On the other hand, given a g-homomorphism
φ : Verma (g, p, E∗)→W ∗, there is an induced φ0 : E∗ →W ∗ defined by φ0(η) = φ(1⊗U(p) η)
and φ0 satisfies φ0(X.η) = φ(1⊗U(p)X.η) = φ(X⊗U(p)η) = X.(φ(1⊗U(p)η)) = X.(φ0(η)). 2

Let E∗ and F ∗ be two left p-representations. In the sequel we will construct g-homo-
morphisms between Verma modules like Verma (g, p, F ∗) → Verma (g, p, E∗) which lift to
g-homomorphism between U(g)⊗F ∗ → U(g)⊗E∗. In general a g-homomorphism φ : U(g)⊗
F ∗ → U(g)⊗E∗ induces a homomorphism between the corresponding Verma modules, iff φ
maps the induced ideal into the induced ideal: φ(I(g, p, F ∗)) ⊂ I(g, p, E∗). To evaluate φ
on the ideal we summaries the relevant left p-actions on U(g) ⊗ E∗ as follows: for X ∈ p,
U ∈ U(g) and η ∈ E∗ we have

lX(U ⊗ η) := XU ⊗ η,
rX(U ⊗ η) := −UX ⊗ η,

adX(U ⊗ η) := XU ⊗ η − UX ⊗ η,
indX(U ⊗ η) := XU ⊗ η − UX ⊗ η + U ⊗X.η,

(ind− l)X(U ⊗ η) := −UX ⊗ η + U ⊗X.η.
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Notice that the last action maps onto the ideal I(g, p, E∗). We will often use the following
criterion:

Proposition 6.13 A g-homomorphism φ : U(g) ⊗ F ∗ → U(g) ⊗ E∗ descends to a homo-
morphism between the corresponding Verma modules iff its commutator with the induced
p-actions maps into the induced ideal: im [φ, indX ] ⊂ I(g, p, E∗) with X ∈ p.

Proof: The action of (ind− l)X maps onto the induced ideal, hence φ descends iff φ◦(ind−
l)X takes values in the ideal. Since φ commutes with the left lX action we have:

φ ◦ (ind− l)X = [φ, (ind− l)X ] + (ind− l)X ◦ φ
= [φ, indX ] + (ind− l)X ◦ φ,

where the second summand already is in the ideal. 2

6.2 Homogeneous parabolic geometry

We will now focus on the class of parabolic homogeneous spaces G/P which will be char-
acterized algebraically on the level of the Lie algebras p ⊂ g. We will use the following
definition which emphasizes exactly the properties which we will need in the sequel:

Definition 6.14 (Parabolic geometry) Let g be a finite dimensional semisimple Lie algebra,
which splits as vector space into a direct sum g = V ⊕ l⊕V ∗, where V , l, V ∗ are subalgebras,
V ∗ and V are dual to each other (via the Killing form of g), and we have the following prop-
erties of the Lie bracket: [V, l ] ⊂ V , [V ∗, l ] ⊂ V ∗. Denote by p := l⊕V ∗ the complementary
subalgebra to V . Such a Lie algebra g = V ⊕ l ⊕ V ∗ characterizes a so called parabolic
geometry . If V is Abelian, then this is called the Abelian or almost Hermitian case. If G
denotes a Lie group with Lie algebra g (e.g. G = Aut (g)) then P := {g ∈ G |Adg(p) = p}
is a closed subgroup with Lie algebra p and we refer to G/P as the homogeneous model of
parabolic geometry .

Remark 6.15 In the above situation l is reductive, V and V ∗ are nilpotent and p is a
parabolic subalgebra. Alternatively, if g is semisimple and p ⊂ g a parabolic subalgebra, then
g splits into a direct sum as explained above. Hence a parabolic geometry is characterized
by a semisimple g and a choice of a parabolic p ⊂ g. In the Abelian case Z(l), the centre of
l, is one dimensional. For completeness we mention the dual parabolic subalgebra, defined
by p∗ := V ⊕ l.

Example 6.16 (Conformal geometry) Let V be an n-dimensional conformal vector space.
The Möbius Lie algebra g = V ⊕ co(V ) ⊕ V ∗ with p := co(V ) ⊕ V ∗ is a special case of a
parabolic geometry. In view of the isomorphism g = so(V̂ ) with V̂ := L1 ⊕ V 0 ⊕ L−1 we
can take as Möbius group G := O (V̂ ) and as subgroup P = CO (V )nV ∗ (see also section
3.4). For positive definite signature we obtain the sphere Sn = G/P as homogenous model
of parabolic geometry.
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Example 6.17 (Projective geometry) Let V be an n-dimensional vector space. The Lie
algebra of projective geometry is g = V ⊕ gl(V ) ⊕ V ∗ with p = gl(V ) ⊕ V ∗, where the Lie
bracket on (a, A, α), (b, B, β) ∈ g is given by

[ a, b ] = 0,

[A, b ] = Ab,

[α, b ] = −α(b)id − α⊗ b,
[A,B ] = A ◦B − B ◦ A,
[α,B ] = α ◦B,
[α, β ] = 0.

We have a Lie algebra isomorphism ψ : g → sl(V̂ ) where V̂ := L−n/(n+1) ⊗ V ⊕ L−n/(n+1) is
(n+ 1)-dimensional and

ψ(a, A, α)(v, t) := (at− 1

n + 1
tr(A)v + Av,− 1

n + 1
tr(A)t + α(v)),

with v ∈ L−n/(n+1) ⊗ V and t ∈ L−n/(n+1). The central element idV ∈ gl(V ) acts as
ψ(idV )(v, t) = (1/(n+1)v,−n/(n+1)t) which explains the choice of weights in the definition.
V̂ is equipped with a canonical density. As Lie group we can take the Lie group G := SL (V̂ )
leaving this density invariant and P := GL (V )nV ∗. As homogeneous model we obtain n-
dimensional projective space G/P = RP n.

Construction 6.18 (Penrose’s twistor fields) Let W be a right G-representation. This
clearly induces a right g-action on W . Elements of W are called parabolic twistors . The
space of coinvariants WV ∗ := W/WV ∗ obviously defines a right P -representation. Each
twistor w ∈ W induces (in a linear way) a section of the homogeneous bundle G×P WV ∗, a
so called twistor field by mapping g ∈ G to [wg]V ∗ ∈ WV ∗ . This gives a G-equivariant linear
inclusion:

ιH : W → C∞(G,WV ∗)P ,

i.e. ιH(wh) = Lh(ιH(w)) for all h ∈ G.

The aim of the next sections is to identify the twistor fields as solution of a G-equivariant
linear differential operator. For this we assume W to be finite dimensional. In fact the above
inclusion ιH is the beginning of a G-equivariant differential complex:

Theorem 6.19 (Parabolic Bernstein Gelfand Gelfand complex) If we denote by Hk(V
∗,W )

the relative Lie algebra homology spaces defined in the next section in paragraph 6.23, then
Hk(V

∗,W ) are right P -representations and there is a locally exact complex

0→W ιH→ C∞(G,H0(V
∗,W ))P

dH→ C∞(G,H1(V
∗,W ))P

dH→ C∞(G,H2(V
∗,W ))P

dH→ . . . ,

of G-equivariant linear differential operators.
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In particular we have H0(V
∗,W ) = WV ∗. Such a complex can be viewed as a variation of

the deRham complex of alternating multilinear forms. So we denoted the resulting differential
operators by dH where the subscript H stands for homology. The first differential operator
C∞(G,H0(V

∗,W ))P → C∞(G,H1(V
∗,W ))P will be called the twistor operator . On the

deRham complex we have the wedge product on forms and the exterior derivative satisfies
the Leibniz rule. Similarly we have the following:

Theorem 6.20 If W1, W2 and W3 are three finite dimensional G-representations from the
right and F : W1 ⊗ W2 → W3, is a linear (nontrivial) G-equivariant map, then there is a
G-equivariant bilinear differential pairing

∧H : C∞(G,Hk(V
∗,W1))

P ⊗ C∞(G,Hl(V
∗,W2))

P → C∞(G,Hk+l(V
∗,W3))

P .

For k = l = 0 this pairing is an extension of F since it satisfies

∧H ◦ (ιH ⊗ ιH) = ιH ◦ F.

More generally for s ∈ C∞(G,Hk(V
∗,W1))

P and t ∈ C∞(G,Hl(V
∗,W2))

P the following
Leibniz rule holds:

dH(s ∧H t) = (dH s) ∧H t + (−1)ks ∧H (dH t).

Examples 6.21 Such pairings between G-representations are as follows: the G-equivariant
contraction W ⊗W ∗ → R, the trivial multiplication W ⊗ R → W , the Lie algebra action
g⊗W →W and its dual W ⊗W ∗ → g.

We will prove the above results not on the level of differential operators acting on sections
(differential geometric picture). Instead we will work in the dual (algebraic) picture with
homomorphisms between induced modules, see definition 6.6. In the parabolic context,
when g is semisimple and p is parabolic, the induced module Verma (g, p, E∗) is also called
a parabolic Verma module .

Remark 6.22 (Universal lowest weight modules) The case when b is a Borel subalgebra of
a semisimple g containing a Cartan subalgebra h ⊂ b ⊂ g is a special (non Abelian) parabolic
geometry g = V ⊕ l ⊕ V ∗ with l = h, p = b = h ⊕ n− and n− = V ∗. Let W ∗ be a left g-
representation. An element λ ∈ h∗ is called a weight of W ∗ if the corresponding weight space
W ∗

λ = {ω ∈ W ∗ |H.ω = λ(H)ω, ∀H ∈ h} is nontrivial. Nonzero elements of nontrivial weight
spaces are called weight vectors . A weight vector ω ∈ W ∗

λ is called lowest weight vector if
n− ⊂ g acts trivially on it: n−.ω = 0. A representation W ∗ is called lowest weight module if
it is generated by a lowest weight vector ω, i.e. W ∗ = U(g)ω. In this context Verma defined
in [Ver68] to each weight λ ∈ h∗ a universal lowest weight module as quotient U(g)/I(g, b, λ),
where I(g, b, λ) is the left U(g) ideal generated by n− and <X − λ(X) |X ∈ h>. This defines
a lowest weight module which is universal in the sense that it maps onto all other lowest
weight modules of weight λ. Indeed all finite dimensional irreducible g-representations occur
as quotients. Lepowsky in [Lep77] generalized this notion to the above parabolic Verma
modules.
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6.3 Eilenberg’s relative Lie algebra homology

In case of a parabolic geometry p ⊂ g see definition 6.14, we will consider a p-equivariant
relative Lie algebra homology theory with values in a right g-representation W : the boundary
operator is a map between

δV ∗ : ΛkV ∗ ⊗W → Λk−1V ∗ ⊗W,

where the subscript V ∗ denotes the Lie algebra which effectively acts. The homology spaces
Hk(V

∗,W ) will define the right p-representations relevant in the sequence of differential op-
erators (geometric picture). Completely dual to the above homology theory is a cohomology
theory with values in W ∗:

dV ∗ = δ∗V ∗ : ΛkV ⊗W ∗ → Λk+1V ⊗W ∗.

This coboundary operator will define left p-representations Hk(V ∗,W ∗) = Hk(V
∗,W )∗ which

occur when the differential operators are expressed in terms of Verma module homomor-
phisms (algebraic picture).

In addition we like to mention another boundary operator

δV : ΛkV ⊗W ∗ → Λk−1V ⊗W ∗

which will appear in the next section as zero order part of the twisted deRham homomor-
phism. Therefore we define it here, although its p∗-equivariant homology theory is not rele-
vant in our context. For completeness we also like to mention its dual coboundary operator,
which is the zero order part of the twisted deRham operator (geometric picture):

dV = δ∗V : ΛkV ∗ ⊗W → Λk+1V ∗ ⊗W.

Definition 6.23 (V ∗ homology with values in W ) Let W be a right representation of g.
We denote the right action of X ∈ g on w ∈ W by w.X ∈ W . The k-chains are defined by

Ck(V
∗,W ) := ΛkV ∗ ⊗W.

Note that p acts upon V ∗ by the adjoint representation (from the right) and therefore p acts
on ΛkV ∗ by the product rule: let ti, θ

i be a dual basis of V , then we have for X ∈ p and
α ∈ ΛkV ∗:

α.X :=
∑

i

[ θi, X ] ∧ ti yα.

In the Abelian case the action of V ∗ ⊂ p on ΛkV ∗ is trivial. Clearly p as subalgebra of g acts
also on W from the right and hence Ck(V

∗,W ) is a right p-representation Ck(V
∗,W )⊗ p→

Ck(V
∗,W ): for w ∈ W we have: (α⊗ w).X := (α.X)⊗ w + α⊗ (w.X). Next we define the

boundary operator δV ∗ where the subscript denotes the Lie algebra which effectively acts
upon W in the following definition: δV ∗ : Ck(V

∗,W )→ Ck−1(V
∗,W );

δV ∗(α⊗ w) :=
1

2

∑

i

(ti yα).θi ⊗ w +
∑

i

(ti yα)⊗ w.θi.

For k = 0, 1 this definition means δV ∗(w) = 0 and δV ∗(α⊗ w) = w.α.

95



Proposition 6.24 This defines a complex δV ∗ ◦ δV ∗ = 0, which is equivariant under the
right action of X ∈ p, i.e. [ .X, δV ∗ ] := .X ◦ δV ∗ − δV ∗ ◦ .X = 0. Hence the kernel, image
and homology of δV ∗ give right p-representations:

Zk(V
∗,W ) := ker δV ∗ : Ck(V

∗,W )→ Ck−1(V
∗,W ),

Bk(V
∗,W ) := im δV ∗ : Ck+1(V

∗,W )→ Ck(V
∗,W ),

Hk(V
∗,W ) := Zk(V

∗,W )/Bk(V
∗,W ).

For γ ∈ V ∗ and c ∈ Ck(V ∗,W ) we have Cartan’s identity:

δV ∗(γ ∧ c) + γ ∧ (δV ∗c) = c.γ.

Hence, V ∗ acts trivially on Hk(V
∗,W ), such that Hk(V

∗,W ) can equally well be viewed as
a right l-representation extending trivially to a p-representation.

Proof: To do these calculation we remark the following formulas: the right adjoint action
of V ∗ on V ∗ is clearly given by θ.γ = [ θ, γ ]. Hence for the right coadjoint action of V ∗ on V
we have v.γ =

∑
k tk〈v.γ, θk〉 =

∑
k tk〈v, γ.θk〉 =

∑
k tk〈v, [ γ, θk ]〉, with v ∈ V . The identity

on V is invariant under this action 0 = idV .γ =
∑

i(θ
i ⊗ ti).γ. To show δ2

V ∗ = 0 note that
the square of the first summand in the definition of δV ∗ has to be zero separately, since this
is the only summand in case of a trivial g-representation W . This follows from the Jacobi
identity in V ∗:

∑

i,j

(tj y(ti yα).θi).θj =
∑

i,j

(tj y ti yα).θi.θj − (tj.θ
i y ti yα).θj

=
1

2

∑

i,j

(tj y ti yα).[ θi, θj ]−
∑

i,k

(tk y ti yα).[ θi, θk ]

=
1

2

∑

i,j

(ti y tj yα).[ θi, θj ]

=
1

2

∑

i,j,k

[ θk, [ θi, θj ] ] ∧ (tk y ti y tj yα) = 0.

In general we have

δV ∗(δV ∗(α⊗ w)) =
1

4

∑

i,j

(tj y(ti yα).θi).θj ⊗ w +
1

2

∑

i,j

tj y(ti yα).θi ⊗ w.θj

+
1

2

∑

i,j

(tj y ti yα).θj ⊗ w.θi +
∑

i,j

(tj y ti yα)⊗ w.θi.θj

= 0 +
1

2

∑

i,j

(tj y ti yα).θi ⊗ w.θj − 1

2

∑

i,j

(tj.θ
i y ti yα)⊗ w.θj

+
1

2

∑

i,j

(tj y ti yα).θj ⊗ w.θi + 1

2

∑

i,j

(tj y ti yα)⊗ w.[ θi, θj ]

= −1

2

∑

i,k

(tk y ti yα)⊗ w.[ θi, θk ] +
1

2

∑

i,j

(tj y ti yα)⊗ w.[ θi, θj ] = 0.
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For the equivariance under X ∈ p note once more v.X =
∑

k tk〈v, [X, θk ]〉. The following
calculation shows p-equivariance in case of a trivial g-representation W :

(
∑

i

(ti yα).θi).X −
∑

i

(ti y(α.X)).θi =
∑

i

(ti yα).θi.X − (ti yα).X.θi + (ti.X yα).θi

=
∑

i

(ti yα).[ θi, X ] +
∑

k

(tk yα).[X, θk ] = 0.

In general we have

[ .X, δV ∗ ](α⊗ w)

= (δV ∗(α⊗ w)).X − δV ∗(α.X ⊗ w)− δV ∗(α⊗ w.X)

=
1

2

∑

i

(ti yα).θi.X ⊗ w +
1

2

∑

i

(ti yα).θi ⊗ w.X +
∑

i

(ti yα).X ⊗ w.θi

+
∑

i

(ti yα)⊗ w.θi.X − 1

2

∑

i

(ti yα.X).θi ⊗ w − 1

2

∑

i

(ti yα).θi ⊗ w.X

−
∑

i

(ti yα.X)⊗ w.θi −
∑

i

(ti yα)⊗ w.X.θi

= 0 +
∑

i

(ti.X yα)⊗ w.θi +
∑

i

(ti yα)⊗ w.θi.X −
∑

i

(ti yα)⊗ w.X.θi

=
∑

k

(tk yα)⊗ w.[X, θk ] +
∑

i

(ti yα)⊗ w.[ θi, X ] = 0.

Cartan’s identity is a straight forward calculation: c = α⊗ w,

δV ∗(γ ∧ c) + γ ∧ (δV ∗c)

=
1

2

∑

i

(ti y(γ ∧ α)).θi ⊗ w +
∑

i

ti y(γ ∧ α)⊗ w.θi

+
1

2

∑

i

γ ∧ (ti yα).θi ⊗ w +
∑

i

γ ∧ (ti yα)⊗ w.θi

=
1

2
α.γ ⊗ w − 1

2

∑

i

(γ ∧ ti yα).θi ⊗ w + α⊗ w.γ −
∑

i

γ ∧ ti yα⊗ w.θi

+
1

2

∑

i

γ ∧ (ti yα).θi ⊗ w +
∑

i

γ ∧ (ti yα)⊗ w.θi

=
1

2
α.γ ⊗ w − 1

2

∑

i

γ.θi ∧ ti yα⊗ w + α⊗ w.γ

= α.γ ⊗ w + α⊗ w.γ. 2

Remark 6.25 If G is a (real) Lie group with (complexified) Lie algebra g and if W is
indeed a right G-representation, then all the above constructed p-representation are also
P -representation with P = {g ∈ G |Adg(p) = p}.
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Definition 6.26 The zero homology H0(V
∗,W ) is also called the space of coinvariants of

W with respect to V ∗, since in that case Z0(V
∗,W ) = W and B0(V

∗,W ) = im (W ⊗ V ∗ →
W ) = W.V ∗, i.e. H0(V

∗,W ) = W/W.V ∗ =: WV ∗ .

Example 6.27 (Maxwell’s homology) The homology for the trivial representation W = R

in the Abelian case gives back the usual multilinear forms:

Hk(V
∗,R) = ΛkV ∗.

Example 6.28 (Fierz’s homology) In case of V being a conformal vector space, the con-
formal Lie algebra g is given by g = V ⊕ co(V )⊕ V ∗, which is semisimple, since we have an
isomorphism g = so(V̂ ) with V̂ := L1⊕V 0⊕L−1. In particular V̂ itself is a g-representation:

H0(V
∗, V̂ ) = L1,

Hk(V
∗, V̂ ) = ΛkV ∗ � V 0,

Hn(V
∗, V̂ ) = ΛnV ∗ ⊗ L−1.

Here elements in the Cartan product ΛkV ∗ � V ∗ are tensors in ΛkV ∗ ⊗ V ∗ which are
alternating-free and trace-free.

Example 6.29 (Linearized conformal geometry, Bach’s homology) The adjoint represen-
tation W = g = V ⊕ co(V )⊕ V ∗ in the conformal case gives:

H0(V
∗, g) = V,

H1(V
∗, g) = V ∗ � V,

Hk(V
∗, g) = ΛkV ∗ � so(V ),

Hn−1(V
∗, g) = Λn−1V ∗ � V ∗,

Hn(V
∗, g) = ΛnV ∗ ⊗ V ∗.

Elements in the homology for k = 0, 1, 2 have immediate geometric interpretations as vectors,
linearized conformal metrics and conformal Weyl curvature tensors.

Example 6.30 (Penrose’s homology) The representation on trivectors W = Λ3V̂ in the
conformal case gives for n > 4:

H0(V
∗,W ) = Λ2V 0 ⊗ L1,

H1(V
∗,W ) = V ∗ � Λ2V 0 ⊗ L1,

H2(V
∗,W ) = Λ2V ∗ � Λ2V 0 ⊗ L1,

Hk(V
∗,W ) = ΛkV ∗ � Λ3V 0,

Hn−2(V
∗,W ) = Λn−2V ∗ � Λ2V 0 ⊗ L−1,

Hn−1(V
∗,W ) = Λn−1V ∗ � Λ2V 0 ⊗ L−1,

Hn(V
∗, g) = ΛnV ∗ ⊗ Λ2V 0 ⊗ L−1.

For n = 4 the middle dimensional homology becomes:

H2(V
∗,W ) = Λ2V ∗ � Λ2V 0 ⊗ (L1 ⊕ L−1).
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Example 6.31 (Spinor homology) In the even dimensional conformal case n = 2l let S+

and S− be the two (weightless) (fundamental) spinor representations for co(V ) (on which
the centre acts trivially). The spinor representation of central weight w will be denoted by

S+,w and S−,w. Then (by periodicity) Ŝ+ := S+, 1
2 ⊕ S−,− 1

2 and Ŝ− := S−, 1
2 ⊕ S+,− 1

2 are the
two spinor representations for so(V̂ ). For the homology we find:

Hk(V
∗, Ŝ+) = ΛkV ∗ � S+, 1

2 .

The elements in the Cartan product ΛkV ∗ � S are elements in the tensors product which
are in the kernel of the Clifford multiplication.

Example 6.32 (Linearized projective geometry) The adjoint representation W = g =
V ⊕ gl(V )⊕ V ∗ in the projective case gives:

H0(V
∗, g) = V,

H1(V
∗, g) = Sym 2V ∗ � V,

Hk(V
∗, g) = ΛkV ∗ � sl(V ),

Hn−1(V
∗, g) = Λn−1V ∗ � V ∗ � V,

Hn(V
∗, g) = ΛnV ∗ ⊗ V ∗.

Elements in the Cartan product are in the kernel of the gl(V ) equivariant alternation or con-
traction. Elements in the homology for k = 0, 1, 2 have immediate geometric interpretations
as vectors, linearized torsion-free derivatives (up to projective equivalence) and projective
Weyl curvature tensors.

Discussion 6.33 (V ∗ cohomology with values in W ∗) Secondly we describe the V ∗ coho-
mology with values in W ∗ and here we like to view W ∗ as a left g-representation. It is then
completely dual to the above homology theory: the k-cochains are defined by

Ck(V ∗,W ∗) := ΛkV ⊗W ∗ = (Ck(V
∗,W ))∗.

The left action of X ∈ p on v ∈ V is given by projecting the adjoint action onto V :
[X, v ]V = X.v =

∑
k〈θk, X.v〉tk =

∑
k〈θk.X, v〉tk =

∑
k〈[ θk, X ], v〉tk. This extends as

derivation on ΛkV , hence the left action of X ∈ p on a⊗ ω ∈ Ck(V ∗,W ∗) is therefore given
by:

X.(a⊗ ω) :=
∑

i

([X, ti ]V ∧ θi y a)⊗ ω + a⊗X.ω

=
∑

j

tj ∧ ([ θj, X ] y a)⊗ ω + a⊗X.ω.

We define the coboundary operator dV ∗ : Ck(V ∗,W ∗) → Ck+1(V ∗,W ∗) to be dual to the
boundary operator dV ∗ = δ∗V ∗:

dV ∗(a⊗ ω) :=
1

2

∑

i

(ti ∧ θi.a)⊗ ω +
∑

i

(ti ∧ a)⊗ θi.ω.
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Therefore it satisfies dV ∗ ◦ dV ∗ = 0 and it is equivariant under the action of X ∈ p, i.e.
[X., dV ∗ ] = 0. Hence the kernel, image and cohomology of dV ∗ give left p-representations:

Zk(V ∗,W ∗) := ker dV ∗ : Ck(V ∗,W ∗)→ Ck+1(V ∗,W ∗),

Bk(V ∗,W ∗) := im dV ∗ : Ck−1(V ∗,W ∗)→ Ck(V ∗,W ∗),

Hk(V ∗,W ∗) := Zk(V ∗,W ∗)/Bk(V ∗,W ∗).

The zero cohomology H0(V ∗,W ∗) is also called the space of invariants of W ∗ with respect
to V ∗, since in that case B0(V ∗,W ∗) = 0 and H0(V ∗,W ∗) = Z0(V ∗,W ∗) = W ∗V ∗

with
W ∗V ∗

= {ω ∈ W ∗ | γ.ω = 0 ∀γ ∈ V ∗}. Again V ∗ acts trivially on Hk(V ∗,W ∗) since Cartan’s
identity holds for γ ∈ V ∗ and c ∈ Ck(V ∗,W ∗):

dV ∗(γ y c) + γ y(dV ∗c) = γ.c.

Proposition 6.34 (Poincaré duality) For dimV = n there is a canonical isomorphism
y : ΛkV ∗ ⊗ ΛnV → Λn−kV which induces isomorphisms Ck(V

∗,W ) ⊗ ΛnV ∼= Cn−k(V ∗,W )
and

Hk(V
∗,W )⊗ ΛnV ∼= Hn−k(V ∗,W )

= Hn−k(V
∗,W ∗)∗.

Proof: Let v ∈ ΛnV be nontrivial and θ ∈ V ∗. For the action of θ on the volume element
v note v.θ = trV ∗(α 7→ α.θ)v =

∑
k〈θk.θ, tk〉v = 〈θ,

∑
k tk.θ

k〉v. Then we find that y v
intertwines dV ∗ and δV ∗ :

(δV ∗(α⊗ w)) y v

=
1

2

∑

i

((ti yα).θi ⊗ w + 2ti yα⊗ w.θi) y v

=
1

2

∑

i

(ti.θ
i yα⊗ w + ti yα.θ

i ⊗ w + 2ti yα⊗ w.θi) y v

=
1

2
(−1)k

∑

i

(ti.θ
i ∧ (α y v)⊗ w + ti ∧ (α.θi y v)⊗ w + 2ti ∧ (α y v)⊗ w.θi)

=
1

2
(−1)k

∑

i

(ti ∧ (α y v).θi ⊗ w + 2ti ∧ (α y v)⊗ w.θi)

=
1

2
(−1)k+1

∑

i

(ti ∧ θi.(α y v)⊗ w + 2ti ∧ (α y v)⊗ θi.w)

= (−1)k+1dV ∗((α⊗ w) y v). 2

Discussion 6.35 (V homology with values in W ∗) Thirdly we discuss the V homology with
values in W ∗ viewed as a left g-representation: the k-chains are defined by

Ck(V,W
∗) := ΛkV ⊗W ∗ = Ck(V ∗,W ∗)
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Note, that p∗ acts upon V by the adjoint representation and therefore p∗ acts on Ck(V,W
∗):

for Y ∈ p∗ and a ∈ ΛkV , ω ∈ W ∗:

Y.(a⊗ ω) :=
∑

i

[Y, ti ] ∧ θi y a⊗ ω + a⊗ Y.ω.

The boundary operator δV : Ck(V,W
∗)→ Ck−1(V,W

∗) is defined to be

δV (a⊗ ω) := −1

2

∑

i

ti.(θ
i y a)⊗ ω −

∑

i

(θi y a)⊗ ti.ω.

It satisfies δV ◦ δV = 0 and is equivariant under the action of Y ∈ p∗, i.e. [Y., δV ] = 0.

Remark 6.36 The commutator on the spaces Ck(V ∗,W ∗) = Ck(V,W
∗) = ΛkV ⊗W ∗ of δV

with the left X ∈ p action is given by

[X., δV ] = −
∑

i

[X, ti ]p.(θ
i y⊗idW ∗).

To check this we recall that the left action of X ∈ p on v ∈ V is given by projecting the
adjoint action onto V , see paragraph 6.33. The extention as derivation on a ∈ ΛkV is then
given by X.a =

∑
i[X, ti ]V ∧ θi y a =

∑
k tk ∧ [ θk, X ] y a. Notice the following commutator

rules on ΛkV for t ∈ V and θ ∈ V ∗:

[X., t∧ ] = [X, t ]V∧ ,
[X., θ y ] = [X, θ ] y .

Then we get:

[X., δV ] = [X.,−1

2

∑

i,j

[ ti, tj ] ∧ θj y θi y⊗idW ∗ −
∑

i

θi y⊗ti. ]

= −1

2

∑

i,j

[X, [ ti, tj ] ]V ∧ θj y θi y⊗idW ∗ − 1

2

∑

i,j

[ ti, tj ] ∧ [X, θj ] y θi y⊗idW ∗

−1

2

∑

i,j

[ ti, tj ] ∧ θj y[X, θi ] y⊗idW ∗ −
∑

i

[X, θi ] y⊗ti.−
∑

i

θi y⊗[X, ti ].

= −
∑

i,j

[ [X, ti ], tj ]V ∧ θj y θi y⊗idW ∗ −
∑

i,j

[ ti, tj ] ∧ [X, θj ] y θi y⊗idW ∗

−
∑

i

[X, θi ] y⊗ti.−
∑

i

θi y⊗[X, ti ].

= −
∑

i,j

[ [X, ti ]p, tj ]V ∧ θj y θi y⊗idW ∗ −
∑

i

[X, θi ] y⊗ti.−
∑

i

θi y⊗[X, ti ].

= −
∑

i

[X, ti ]p.(θ
i y)⊗ idW ∗ −

∑

i

[X, θi ] y⊗ti.−
∑

i

θi y⊗[X, ti ].

= −
∑

i

[X, ti ]p.(θ
i y⊗idW ∗).
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6.4 Twisted deRham resolution

Let p ⊂ g be again a Cartan geometry with g = V ⊕ l⊕ V ∗ and p = l⊕ V ∗. Let ti, θ
i be a

dual basis of V . The exterior deRham operator on differential forms is given in terms of a
g-equivariant homomorphism between Verma modules by the following:

Definition 6.37 We define a g-homomorphism δdR : U(g)⊗ΛkV → U(g)⊗Λk−1V generated
on a ∈ ΛkV by

δdR(1⊗ a) :=
∑

i

ti ⊗ θi y a+
1

2

∑

i,j

1⊗ [ ti, tj ] ∧ θi y θj y a.

For low degrees k = 1, 2 the above definition of δdR means

δdR(a) = a⊗ 1,

δdR(a ∧ b) = a⊗ b− b⊗ a− 1⊗ [ a, b ].

In general we notice that the deRham homomorphism and the boundary operator δV of the
V homology with values in the trivial R, from paragraph6.35, are related as:

δdR(1⊗ a) =
∑

i

ti ⊗ θi y a−
1

2

∑

i,j

1⊗ ti.(θi y a)

=
∑

i

ti ⊗ θi y a + δV a.

Proposition 6.38 (deRham resolution) The homomorphism δdR maps the induced ideal
I(g, p,ΛkV ) to I(g, p,Λk−1V ) and thus induces a g-homomorphism

δdR : Verma (g, p,ΛkV )→ Verma (g, p,Λk−1V ).

This leads to the deRham complex δdR ◦ δdR = 0. In zero degree k = 0 we can replace the
trivial δdR = 0 by ev : U(g)⊗R→ R (with R as trivial g-representation) given by 1⊗ 1 7→ 1
and still obtain a complex:

0← R
ev← Verma (g, p,R)

δdR

← Verma (g, p, V )
δdR

← Verma (g, p,Λ2V )← . . . .

Proof: The homomorphism δdR maps the induced ideal I(g, p,ΛkV ) into I(g, p,Λk−1V )
since for the commutator with the induced action of X ∈ p we find:

[ δdR, indX ] = [
∑

i

rti ⊗ θi y +1⊗ δV ,−rX ⊗ idCk + 1⊗X. ]

= [
∑

i

rti ⊗ θi y,−rX ⊗ idCk ] + [
∑

i

rti ⊗ θi y, 1⊗X. ] + [ 1⊗ δV , 1⊗X. ]

=
∑

i

r[ ti,X ] ⊗ θi y +
∑

i

rti ⊗ [ θi, X ] y +1⊗ [ δV , X. ]

=
∑

i

−r[X,ti ]p ⊗ θi y+1⊗ [X, ti ]p.(θ
i y).
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Hence δdR : Verma (g, p,ΛkV ) → Verma (g, p,Λk−1V ) is well defined. For the composite we
have:

δdR ◦ δdR = δdR ◦
∑

i

ti ⊗ θi y +
1

2
δdR ◦

∑

i,j

1⊗ [ ti, tj ] ∧ θi y θj y

=
∑

i,j

titj ⊗ θj y θi y +
1

2

∑

i,j,k

ti ⊗ [ tj, tk ] ∧ θj y θk y θi y

+
1

2

∑

i,j,k

tk ⊗ θk y ([ ti, tj ] ∧ θi y θj y )

+
1

4

∑

i,j,k,l

1⊗ [ tk, tl ] ∧ θk y θl y ([ ti, tj ] ∧ θi y θj y )

=
1

2

∑

i,j,k

ti ⊗ [ tj, tk ] ∧ θj y θk y θi y −1

2

∑

i,j,k

tk ⊗ [ ti, tj ] ∧ θk y θi y θj y

+
1

4

∑

i,j,k,l

1⊗ [ tk, [ ti, tj ] ] ∧ θk y θi y θj y

−1

4

∑

i,j,k,l

1⊗ [ tk, tl ] ∧ θk y ([ ti, tj ] ∧ θl y θi y θj y )

= −1

4

∑

i,j,k,l

1⊗ [ tk, tl ] ∧ [ ti, tj ] ∧ θk y θl y θi y θj y = 0.

For the last statement note ev(δdR(1⊗ a)) = ev(a⊗ 1) = a.1 = 0. 2

Remark 6.39 If G is a Lie group with Lie algebra g and P := {g ∈ G |Adg(p) = p} the
(closed) sub group with Lie algebra p, then the above homomorphism δdR induces the exterior
derivative as differential operator on G/P : indeed the Verma module homomorphism δdR

corresponds to a differential operator like

d : C∞(G,Λk−1V ∗)P → C∞(G,ΛkV ∗)P ,

which on a (k− 1)-form F ∈ C∞(G,Λk−1V ∗)P can be evaluated on a k-multivector a ∈ ΛkV
at g ∈ G to give

〈(dF )(g), a〉 = 〈jet∞(F )(g), δdR(1⊗U(p) a)〉

= 〈jet∞(F )(g),
∑

i

ti ⊗U(p) θ
i y a+

1

2

∑

i,j

1⊗U(p) [ ti, tj ] ∧ θi y θj y a〉

=
∑

i

Rti〈θi ∧ F, a〉(g) +
1

2

∑

i,j

〈θj ∧ θi ∧ [ ti, tj ] yF, a〉(g).

Remark 6.40 A complex of homomorphisms is called a resolution , if it is exact. From local
exactness of the deRham complex, the Poincaré lemma, we deduce with the above remark
that the deRham homomorphisms of proposition 6.38 form a resolution of R.
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Discussion 6.41 (Hopf map) The universal enveloping algebra U(g) of a Lie algebra g is
an associative algebra, hence U(g) ⊗ U(g) carries an obvious algebra structure. Moreover
there is a coproduct, the Hopf map :

4 : U(g)→ U(g)⊗ U(g),

defined to be an algebra homomorphism induced by

1 7→ 1⊗ 1 and X 7→ X ⊗ 1 + 1⊗X,
for X ∈ g. Similarly if W ∗

1 and W ∗
2 are left g-representations then their tensor product

W ∗
1 ⊗W ∗

2 is a left U(g)⊗ U(g) module, hence U(g) acts upon W ∗
1 ⊗W ∗

2 through 4.

Proposition 6.42 (Co-Leibniz rule) The wedge coproduct 4kl : Λk+lV → ΛkV ⊗ ΛlV de-
fined on c ∈ Λk+lV with the help of α ∈ ΛkV ∗ and β ∈ ΛlV ∗ by:

〈4kl c, α⊗ β〉 := 〈c, α ∧ β〉,
is p-equivariant. This induces g-equivariant pairings

4kl : U(g)⊗ Λk+lV → (U(g)⊗ ΛkV )⊗ (U(g)⊗ ΛlV ), 4kl(U ⊗ c) := 4U ⊗4klc,

and
4kl : Verma (g, p,Λk+lV )→ Verma (g, p,ΛkV )⊗ Verma (g, p,ΛlV ).

This pairing is compatible with the deRham homomorphisms in the sense that the following
co-Leibniz rule holds:

4kl ◦ δdR = (δdR ⊗ id) ◦ 4k+1,l + (−1)k(id ⊗ δdR) ◦ 4k,l+1.

Proof: The p-equivariance of 4kl is clear. To verify the Co-Leibniz rule note that the
associativity of the wedge product with θ ∈ V ∗ means 4kl ◦ θ y = (θ y⊗id) ◦ 4k+1,l =
(−1)k(id ⊗ θ y) ◦ 4k,l+1. Similar the interior multiplication by t ∈ V is a derivation hence
4kl ◦ t∧ = (t ∧ ⊗id) ◦ 4k−1,l + (−1)k(id ⊗ t∧) ◦ 4k,l−1. With this in hands we find:

4kl ◦ δdR =
∑

i

(ti ⊗ 1 + 1⊗ ti)⊗4kl ◦ θi y+
1

2

∑

i,j

(1⊗ 1)⊗4kl ◦ [ ti, tj ] ∧ θi y θj y

=
∑

i

(ti ⊗ 1)⊗ (θi y⊗id) ◦ 4k+1,l + (−1)k
∑

i

(1⊗ ti)⊗ (id ⊗ θi y) ◦ 4k,l+1

+
1

2

∑

i,j

(1⊗ 1)⊗ ([ ti, tj ] ∧ θi y θj y⊗id) ◦ 4k+1,l

+
1

2
(−1)k

∑

i,j

(1⊗ 1)⊗ (id ⊗ [ ti, tj ] ∧ θi y θj y) ◦ 4k,l+1

= (δdR ⊗ id) ◦ 4k+1,l + (−1)k(id ⊗ δdR) ◦ 4k,l+1. 2

In what follows we will twist the deRham homomorphism and the wedge coproduct by a
left g-representation W ∗. This is easily done after appreciating the following proposition: if
W ∗ is a left g-representation, then g acts on (U(g)⊗E∗)⊗W ∗ by the product rule. Also W ∗

is a left p-representation by restriction and therefore (E∗ ⊗W ∗) is a left p-representation.
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Proposition 6.43 There is an isomorphism between g-representations:

Ψ : U(g)⊗ (E∗ ⊗W ∗)
∼=−→ (U(g)⊗ E∗)⊗W ∗,

induced by 1⊗ (η⊗ω) 7→ (1⊗η)⊗ω. For X ∈ g this means Ψ(X⊗ (η⊗ω)) = (X⊗η)⊗ω+
(1⊗η)⊗X.ω and hence Ψ−1((X⊗η)⊗ω) = X⊗ (η⊗ω)−1⊗ (η⊗X.ω). This isomorphism
maps I(g, p, (E∗ ⊗W ∗)) onto I(g, p, E∗)⊗W ∗ and hence descends to an isomorphism

Ψ : Verma (g, p, E∗ ⊗W ∗)
∼=−→ Verma (g, p, E∗)⊗W ∗.

Definition 6.44 (Twisted deRham homomorphism) If W ∗ is a left g-representation, then
δdR⊗idW ∗ leads with the above isomorphism to the so called twisted deRham homomorphism
between the Verma modules induced by Ck(V ∗,W ∗) := ΛkV ⊗W ∗:

δ := Ψ−1 ◦ (δdR ⊗ idW ∗) ◦Ψ : U(g)⊗ (ΛkV ⊗W ∗)→ U(g)⊗ (Λk−1V ⊗W ∗).

Proposition 6.45 The twisted deRham homomorphism is induced by the g-homomorphism
defined on a⊗ ω ∈ ΛkV ⊗W ∗ by

δ(a⊗ ω) =
∑

i

ti ⊗ θi y a⊗ ω + 1⊗ δV (a⊗ ω),

where δV is the boundary operator of paragraph 6.35. The ideal I(g, p, (ΛkV ⊗W ∗)) is mapped
into I(g, p, (Λk−1V ⊗W ∗)) hence we have and induced map

δ : Verma (g, p, Ck(V ∗,W ∗))→ Verma (g, p, Ck−1(V ∗,W ∗)).

Proof: We simply have to unravel the definitions:

δ(a⊗ ω) = Ψ−1 ◦ (δdR ⊗ idW ∗) ◦Ψ(a⊗ ω)

= Ψ−1 ◦ (δdR ⊗ idW ∗)(a⊗ ω)

= Ψ−1(δdRa⊗ ω)

= Ψ−1(
∑

i

ti ⊗ θi y a⊗ ω +
1

2

∑

i,j

1⊗ [ ti, tj ] ∧ θi y θj y a⊗ ω)

=
∑

i

(ti ⊗ θi y a⊗ ω − 1⊗ θi y a⊗ ti.ω) +
1

2

∑

i,j

1⊗ [ ti, tj ] ∧ θi y θj y a⊗ ω

=
∑

i

ti ⊗ θi y a⊗ ω + 1⊗ δV (a⊗ ω).

For the commutator with the induced action of X ∈ p we have:

[ δ, indX ] =
∑

i

−r[X,ti ]p ⊗ θi y +1⊗ [X, ti ]p.(θ
i y). 2

Remark 6.46 Note that Ck(V ∗,W ∗) = Ck(V,W
∗) and that in this formula the p∗-equivar-

iant boundary operator δV of the V homology with values in W ∗ occurs as zero order part:
the twisted deRham homomorphism can therefore be viewed as a p-equivariant extension of
δV : Ck(V ∗,W ∗)→ Ck−1(V ∗,W ∗) to δ : Ck(V ∗,W ∗)→ Verma (g, p, Ck−1(V ∗,W ∗))

105



Proposition 6.47 (Twisted deRham resolution) The twisted deRham homomorphisms de-
fine a complex δ ◦δ = 0. In degree zero k = 0 we can replace the trivial homomorphism δ = 0
by the g-equivariant evaluation ev : Verma (W ∗)→W ∗ generated by 1⊗U(p) ω 7→ ω and still
obtain a complex:

0←W ∗ ev← Verma (g, p,W ∗)
δ← Verma (g, p, V ⊗W ∗)

δ← Verma (g, p,Λ2V ⊗W ∗)← . . . .

Proposition 6.48 (Twisted Co-Leibniz rule) Let W ∗
1 , W ∗

2 and W ∗
3 be three g-representa-

tions and F ∗ : W ∗
3 → W ∗

1 ⊗W ∗
2 be a (non trivial) g-equivariant homomorphism. Then F ∗

together with the wedge coproduct4kl : Λk+lV → ΛkV⊗ΛlV defines a p-equivariant coproduct
on the level of the cochains 4kl ⊗ F ∗ : Ck+l(V ∗,W ∗

3 )→ Ck(V ∗,W ∗
1 )⊗ C l(V ∗,W ∗

2 ) and thus
induces a g-equivariant pairing:

4kl : Verma (g, p, Ck+l(V ∗,W ∗
3 ))→ Verma (g, p, Ck(V ∗,W ∗

1 ))⊗ Verma (g, p, C l(V ∗,W ∗
2 )).

For k = l = 0 this coproduct satisfies

F ∗ ◦ ev = (ev ⊗ ev) ◦ 400,

and for general k, l the following Co-Leibniz rule holds for the twisted deRham operators:

(4kl ⊗ F ∗) ◦ δ = (δ ⊗ id) ◦ (4k+1,l ⊗ F ∗) + (−1)k(id ⊗ δ) ◦ (4k,l+1 ⊗ F ∗).

6.5 Projection on Verma cochains

From now on we assume that the left g-representation W ∗ is a finite dimensional representa-
tion. In that case Kostant’s Hodge theory provides a splitting of Ck(V ∗,W ∗) := ΛkV ⊗W ∗

(the chains of the V ∗ cohomology with values in W ∗) into a direct sum, where one summand
is isomorphic to Hk(V ∗,W ∗). This splitting is not p-invariant, but only l-invariant. The
basic ingredient is the so called quabla operator defined by the following anti commutator:

�l := dV ∗ ◦ δV + δV ◦ dV ∗ : Ck(V ∗,W ∗)→ Ck(V ∗,W ∗).

Since dV ∗ is p-equivariant and δV is p∗ equivariant, the quabla operator is only l = p ∩
p∗ equivariant. Clearly quabla commutes with dV ∗, in particular quabla maps the image
Bk(V ∗,W ∗) := im (dV ∗) to itself.

Theorem 6.49 (Kostant’s inversion) For a finite dimensional g-module W ∗, Kostant’s qua-
bla operator �l = dV ∗δV + δV dV ∗ is invertible on the image of the coboundary operator
im (dV ∗) = Bk(V ∗,W ∗).

Proof: In [Kos61] Kostant demonstrates that �l is diagonalizable. He calculates the eigen-
values of �l which are nonzero on the image of dV ∗. 2
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Corollary 6.50 The above proposition allows to define a homomorphism like

Ql := �l
−1 ◦ dV ∗ : Ck−1(V ∗,W ∗)→ Ck(V ∗,W ∗),

which maps into Bk(V ∗,W ∗). Furthermore we define a map

Sl = id − δV ◦Ql −Ql ◦ δV : Ck(V ∗,W ∗)→ Ck(V ∗,W ∗),

which satisfies the following properties:

dV ∗ ◦ Sl = 0,

Sl ◦ dV ∗ = 0,

proj ◦ S ◦ repr = id : Hk(V ∗,W ∗)→ Hk(V ∗,W ∗),

where proj : Zk(V ∗,W ∗)→ Hk(V ∗,W ∗) denotes the p-equivariant projection from the kernel
of dV ∗ to cohomology and repr means the choice of a representative of the cohomology class.
Furthermore we have

Sl ◦ Sl = Sl,

δV ◦ Sl = Sl ◦ δV .

Proof: The properties have simple verifications:

dV ∗Sl = dV ∗ − dV ∗δV �l
−1dV ∗ = dV ∗ −�l�l

−1dV ∗ = 0,

SldV ∗ = dV ∗ −�l
−1dV ∗δV dV ∗ = dV ∗ −�l

−1
�ldV ∗ = 0.

For z ∈ Zk(V ∗,W ∗) (i.e. dV ∗z = 0) we have proj (Sl(z)) = proj (z − δVQl(z) − QlδV (z)) =
proj (z), since Ql(z) = �l

−1dV ∗z = 0 and im (Ql) ⊂ im (dV ∗). For the projection property
note:

QlδVQl = �l
−1dV ∗δV �l

−1dV ∗ = �l
−1

�l�l
−1dV ∗ = Ql,

which gives:

SlSl = (id − δVQl −QlδV )2

= id − δVQl −QlδV − δVQl + (δVQl)
2 − δVQlQlδV −QlδV +QlδV δVQl + (QlδV )2

= Sl,

δV Sl = δV − δVQlδV = SlδV . 2

Corollary 6.51 The projection Sl provides a splitting

Ck(V ∗,W ∗) = ΛkV ⊗W ∗ = ker Sl ⊕ imSl,

with im (Sl) ⊂ ker (dV ∗) and the natural projection proj : im (Sl) → Hk(V ∗,W ∗) into coho-
mology is an isomorphism.
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The next aim is to modify Kostant’s l-equivariant projection from cochains to cohomology
into a g-equivariant projection from the Verma module induced by the cochains to the Verma
module induced by cohomology. In analogy we will construct a map

S : Verma (g, p, Ck(V ∗,W ∗))→ Verma (g, p, Ck(V ∗,W ∗)),

with the following properties: S maps to the kernel of the coboundary operator dV ∗ , it
vanishes on the image of dV ∗, it is an extension of the canonical projection from the kernel
of dV ∗ onto the cohomology of dV ∗, and it commutes with the deRham homomorphism δ.

Remark 6.52 Recall that given a linear map between p-representations φ0 : F ∗ → E∗ we
have an induced g-homomorphism φ := id ⊗ φ0 : U(g) ⊗ F ∗ → U(g) ⊗ E∗. This descends
to the corresponding Verma modules iff φ0 is p-equivariant. Therefore the boundary oper-
ator dV ∗ : Ck(V ∗,W ∗) → Ck+1(V ∗,W ∗) gives a g-homomorphism between Verma modules,
whereas the coboundary operator δV : Ck(V ∗,W ∗)→ Ck−1(V ∗,W ∗) does not since δV is only
l-equivariant. Therefore Kostant’s quabla operator �l : C

k(V ∗,W ∗) → Ck(V ∗,W ∗) induces
a g-equivariant homomorphism: �l : U(g) ⊗ Ck(V ∗,W ∗) → U(g) ⊗ Ck(V ∗,W ∗), but this
homomorphism does not descend to the Verma module.

Definition 6.53 The anti commutator of the twisted deRham homomorphism δ and the
coboundary operator dV ∗ defines a quabla operator

� := dV ∗ ◦ δ + δ ◦ dV ∗ : U(g)⊗ Ck(V ∗,W ∗)→ U(g)⊗ Ck(V ∗,W ∗),

which descends to the corresponding Verma modules. Clearly � commutes with dV ∗, so it
maps the image of dV ∗ to itself:

� : U(g)⊗Bk(V ∗,W ∗)→ U(g)⊗ Bk(V ∗,W ∗).

Theorem 6.54 The difference between the two quabla operators Al := � − �l commutes
with dV ∗, so also Al maps U(g) ⊗ Bk(V ∗,W ∗) to itself. Al is given by the action of V ∗ on
cochains as:

Al = �−�l =
∑

i

rti ⊗ θi.

For a finite dimensional W ∗ the composite (�l
−1 ◦ Al)

m(1 ⊗ c) vanishes for a large m ∈ N

depending on c ∈ Bk(V ∗,W ∗) and �
−1 defined by the following Neumann series

�
−1 :=

∑

m=0

(−1)m(�l
−1 ◦ Al)

m ◦�l
−1,

gives a two sided inverse of � which leaves the ideal I(g, p, Bk(V ∗,W ∗)) invariant and hence
descends to an endomorphism of the corresponding Verma module Verma (g, p, Bk(V ∗,W ∗)).

Proof: We will use the symbol {, } for the anti commutator of two maps. The difference
Al is given by the following:

Al = {dV ∗, δ} − {dV ∗, δV }
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= {dV ∗, (δ − δV )}
=

∑

i

ti ⊗ {dV ∗, (θi y⊗idW ∗)}

=
∑

i

ti ⊗ θi. ,

where we used Cartan’s identity in the last equality. The action of V ∗ on Ck(V ∗,W ∗)
lowers the Z(l) weight in Ck(V ∗,W ∗). Now �l

−1 restricted to Bk(V ∗,W ∗) = im dV ∗ is l-
equivariant, and hence when applied leaves the weight invariant. Consequently �l

−1 ◦ Al

also lowers the weight. Since ΛkV ⊗W ∗ is a finite sum of lowest weight modules it follows
that (�l

−1 ◦Al)
m(1⊗ c) vanishes for large enough m ∈ N for all c ∈ Bk(V ∗,W ∗). Obviously

�
−1 maps U(g)⊗Bk(V ∗,W ∗) to itself (since so do �l

−1 and Al). Then its clear that restricted
to U(g)⊗ Bk(V ∗,W ∗) we find �

−1 ◦� = id and � ◦�
−1 = id . We recall the commutators

between the relevant operators and the induced p-action:

[ dV ∗ , indX ] = 0,

[ δ, indX ] =
∑

i

(ind− l)[X,ti ]p ◦ (1⊗ θi y),

[ �, indX ] = [ {dV ∗, δ}, indX ] = {dV ∗, [ δ, indX ]}
= {dV ∗,

∑

i

(ind− l)[X,ti ]p ◦ (1⊗ θi y)}

=
∑

i

(ind− l)[X,ti ]p ◦ (1⊗ {dV ∗, θi y})

=
∑

i

(ind− l)[X,ti ]p(1⊗ θi.),

[ �−1, indX ] = −�
−1[ �, indX ]�−1.

From the last two equations we deduce:

�
−1(ind− l)X = (ind− l)X�

−1 +
∑

i

�
−1(ind− l)[ ti,X ]p(1⊗ θi.)�−1.

We now iterate this equation to obtain:

�
−1(ind− l)X
= (ind− l)X�

−1

+

M−1∑

m=1

∑

i1,...,im

(ind− l)[ tim ,...[ ti1 ,X ]p... ]p�
−1(1⊗ θim .) . . .�−1(1⊗ θi1 .)�−1

+
∑

i1,...,iM

�
−1(ind− l)[ tiM ,...[ ti1 ,X ]p... ]p(1⊗ θiM .)�−1 . . . (1⊗ θi1 .)�−1.

For a large M the last sum is zero, since p has a highest Z(l) weight with respect to the
adjoint V action. Hence the commutator with the induced p-action is:

[ �−1, indX ] =
∑

m=1

∑

i1,...,im

(ind− l)[ tim ,...[ ti1 ,X ]p... ]p�
−1(1⊗ θim .) . . .�−1(1⊗ θi1 .)�−1 ,
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which maps into the ideal I(g, p, Bk(V ∗,W ∗)). 2

Corollary 6.55 (Projection map) From above we have a well defined g-equivariant homo-
morphism

Q := �
−1 ◦ dV ∗ : Verma (g, p, Ck−1(V ∗,W ∗))→ Verma (g, p, Ck(V ∗,W ∗)).

The homomorphism S from Verma (g, p, Ck(V ∗,W ∗)) to itself defined by

S := id − δ ◦Q−Q ◦ δ,

satisfies the following properties:

dV ∗ ◦ S = 0,

S ◦ dV ∗ = 0,

proj ◦ S ◦ repr = id on Verma (g, p, Hk(V ∗,W ∗)),

where proj : Zk(V ∗,W ∗)→ Hk(V ∗,W ∗) denotes the p-equivariant projection from the kernel
of dV ∗ to cohomology and repr means the choice of a representative of the cohomology class.
Furthermore we have

S ◦ S = S,

δ ◦ S = S ◦ δ,
ev ◦ S = ev in degree k = 0.

Proof: The calculations are the same as in the presented version of Kostant’s Hodge theory
for Sl. For dV ∗z = 0 we know Sz = z −Q ◦ δ(z) and Q maps into Verma (g, p, Bk(V ∗,W ∗)),
hence proj (Sz) = proj (z). For k = 0 note S = id − δ ◦Q and ev ◦ δ = 0, hence ev ◦S = ev .
2

Corollary 6.56 The projection S provides a splitting

Verma (g, p, Ck(V ∗,W ∗)) = ker S ⊕ imS,

with im (S) ⊂ Verma (g, p, Zk(V ∗,W ∗)) and the natural projection

proj : im (S)→ Verma (g, p, Hk(V ∗,W ∗))

is an isomorphism onto cohomology.

Remark 6.57 The projection S can be viewed as a chain map from the twisted deRham
complex to itself, since δ◦S = S ◦δ. From the definition of S the map Q is a chain homotopy
between S and id such that the induced map of S in the twisted deRham homology is the
identity.
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6.6 Bernstein Gelfand Gelfand resolution

Again W ∗ is a finite dimensional module for a semisimple g and p ⊂ g is a parabolic subal-
gebra with complement V ⊕p = g, see definition 6.14. In this context we have constructed a
projection S : Verma (g, p,ΛkV ⊗W ∗)→ Verma (g, p,ΛkV ⊗W ∗), see corollary 6.55, between
the Verma modules, see definition 6.6, induced by the twisted forms ΛkV ⊗W ∗. On these
forms Ck(V ∗,W ∗) := ΛkV ⊗W ∗ acts the p-equivariant coboundary operator dV ∗, with coho-
mology spaces denoted by Hk(V ∗,W ∗), see paragraph 6.33. The two additional properties
dV ∗ ◦ S = 0 and S ◦ dV ∗ = 0 allow to define two p-equivariant homomorphisms

proj ◦ S : Verma (g, p, Ck(V ∗,W ∗))→ Verma (g, p, Hk(V ∗,W ∗)), and

S ◦ repr : Verma (g, p, Hk(V ∗,W ∗))→ Verma (g, p, Ck(V ∗,W ∗)),

where proj : Zk(V ∗,W ∗)→ Hk(V ∗,W ∗) denotes the p-equivariant projection from the kernel
of dV ∗ to cohomology and repr means the choice of a representative of the cohomology class.

In the dual geometric picture Čap, Slovák and Souček in [CSS99] constructed the ho-
momorphism proj ◦ S even in curved rather then homogeneous parabolic geometry. Their
construction of this map is given by an inductive process. Our construction involves a Neu-
mann series. Moreover to construct bilinear pairings we need the full S rather then just
proj ◦ S.

Definition 6.58 (Bernstein Gelfand Gelfand homomorphisms) From the twisted deRham
resolution, see proposition 6.47,

0←W ∗ ev← Verma (g, p,W ∗)
δ← Verma (g, p, V ⊗W ∗)

δ← Verma (g, p,Λ2V ⊗W ∗)
δ← . . . ,

we can now define g-homomorphisms between the induced Verma modules corresponding to
the cohomology spaces:

δH := proj ◦ S ◦ δ ◦ S ◦ repr : Verma (g, p, Hk(V ∗,W ∗))→ Verma (g, p, Hk−1(V ∗,W ∗)).

The zero cohomology H0(V ∗,W ∗) = W ∗V ∗

is the space of invariants in W ∗ with respect to
V ∗. This is a p-invariant subspace, so that the inclusion H0(V ∗,W ∗) ↪→ W ∗ is p-equivariant,
inducing a g-equivariant homomorphism:

evH : Verma (g, p, H0(V ∗,W ∗))→W ∗,

which could also be viewed as evH = ev ◦ repr .

Theorem 6.59 (Parabolic Bernstein Gelfand Gelfand resolution) The resulting sequence

0←W ∗ evH←− Verma (g, p, H0(V ∗,W ∗))
δH← Verma (g, p, H1(V ∗,W ∗))

δH← . . . ,

defines a complex δH ◦ δH = 0, evH ◦ δH = 0 and evH is surjective. The two homomorphisms
S ◦ repr and proj ◦ S are chain maps going back and forth between the twisted deRham
complex and the Bernstein Gelfand Gelfand complex (on W ∗ the chain map is given by
the identity). These chain maps induce an isomorphism between the homologies of the two
complexes. Since twisted deRham is a resolution, so is the BGG complex.
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Proof: Unraveling the definitions and using S2 = S, [S, δ ] = 0, ev ◦S = ev and ev ◦ δ = 0
gives:

δH ◦ δH = (proj ◦ S ◦ δ ◦ S ◦ repr ) ◦ (proj ◦ S ◦ δ ◦ S ◦ repr )

= (proj ◦ S ◦ δ ◦ S ◦ δ ◦ S ◦ repr )

= (proj ◦ S ◦ δ ◦ δ ◦ S ◦ repr ) = 0,

evH ◦ δH = (ev ◦ repr ) ◦ (proj ◦ S ◦ δ ◦ S ◦ repr )

= ev ◦ S ◦ δ ◦ S ◦ repr

= ev ◦ δ ◦ S ◦ repr = 0.

The evaluation ev : Verma (g, p,W ∗) → W ∗ is surjective and evH ◦ proj ◦ S = ev , hence so
is evH . The two homomorphisms S ◦ repr and proj ◦ S are chain maps since

δH ◦ (proj ◦ S) = (proj ◦ S ◦ δ ◦ S ◦ repr ) ◦ (proj ◦ S)

= proj ◦ S ◦ δ ◦ S
= (proj ◦ S) ◦ δ,

evH ◦ (proj ◦ S) = id ◦ ev ,

(S ◦ repr ) ◦ δH = (S ◦ repr ) ◦ (proj ◦ S ◦ δ ◦ S ◦ repr )

= S ◦ δ ◦ S ◦ repr

= δ ◦ (S ◦ repr ),

id ◦ evH = ev ◦ (S ◦ repr ).

These chain maps induce an isomorphism between the homologies of the two complexes,
since (proj ◦ S) ◦ (S ◦ repr ) = proj ◦ S ◦ repr = id . 2

Conjecture 6.60 The complex constructed above is equivalent to the resolution of W ∗ in
terms of Verma modules, which was originally constructed by Verma [Ver68] and Bernstein
Gelfand Gelfand [BGG71] in the case where p ⊂ g is a Borel subalgebra and later was
generalized by Lepowsky [Lep77] to the case where p is a parabolic subalgebra.

Theorem 6.61 (Co-Leibniz rule) Let W ∗
1 , W ∗

2 and W ∗
3 be three g-representations which are

finite sums of lowest weight modules. Let F ∗ : W ∗
3 →W ∗

1 ⊗W ∗
2 be a (nontrivial) g-equivariant

homomorphism. Then F ∗ together with the wedge coproduct 4kl : Λk+lV → ΛkV ⊗ ΛlV and
the projection S define a g-equivariant coproduct on the Verma modules from cohomology

4kl
H : Verma (g, p, Hk+l(V ∗,W ∗

3 ))→ Verma (g, p, Hk(V ∗,W ∗
1 ))⊗ Verma (g, p, H l(V ∗,W ∗

2 )),

given by
4kl
H := (proj ◦ S ⊗ proj ◦ S) ◦ (4kl ⊗ F ∗) ◦ (S ◦ repr ).

This is an extension of F ∗ in the sense that for k = l = 0 this coproduct satisfies

F ∗ ◦ evH = (evH ⊗ evH) ◦ 400
H .
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For general k, l the coproduct satisfies the following Co-Leibniz rule with the Bernstein
Gelfand Gelfand homomorphisms:

4kl
H ◦ δH = (δH ⊗ id) ◦ 4k+1,l

H + (−1)k(id ⊗ δH) ◦ 4k,l+1
H .

Proof: The result demonstrates the flexibility of using S, since it follows directly from the
Co-Leibniz rule of the twisted deRham complex:

(evH ⊗ evH) ◦ 400
H = (ev ⊗ ev) ◦ (S ⊗ S) ◦ (400 ⊗ F ∗) ◦ (S ◦ repr )

= (ev ⊗ ev) ◦ (400 ⊗ F ∗) ◦ (S ◦ repr )

= F ∗ ◦ ev ◦ (S ◦ repr )

= F ∗ ◦ ev ◦ repr

= F ∗ ◦ evH .

Similarly:

(δH ⊗ id)4k+1,l
H + (−1)k(id ⊗ δH)4k,l+1

H

= (projSδS repr ⊗ id)(projS ⊗ projS)4k+1,l(S repr )

+(−1)k(id ⊗ projSδS repr )(projS ⊗ projS)4k,l+1(S repr )

= (projS ⊗ projS)(δ ⊗ id)4k+1,l(S repr )

+(−1)k(projS ⊗ projS)(id ⊗ δ)4k,l+1(S repr )

= (projS ⊗ projS)4k,lδ(S repr )

= (projS ⊗ projS)4k,lS repr projSδ(S repr )

= 4k,l
H δH . 2

6.7 Adjoint homomorphisms

For a left p-representation E∗ we have a p-equivariant map ΛnV → E∗⊗ (E⊗ΛnV ) induced
by the identity: if em, ηm is a dual basis of E then ΛnV 3 a 7→ ∑

m η
m ⊗ (em ⊗ a). The

coproduct 4 : U(g)→ U(g)⊗ U(g) then induces a coproduct

4⊗ idE⊗ΛnV : U(g)⊗ ΛnV → (U(g)⊗ E∗)⊗ (U(g)⊗ (E ⊗ ΛnV )),

which descends to the corresponding Verma modules.

Definition 6.62 Let E∗, F ∗ be left p-representations and

φ : U(g)⊗ F ∗ → U(g)⊗ E∗

be a g-homomorphism. A g-homomorphism

φ∗ : U(g)⊗ (E ⊗ ΛnV )→ U(g)⊗ (F ⊗ ΛnV )
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is called an adjoint to φ if there is a g-equivariant coproduct

Xφ : U(g)⊗ Λn−1V → (U(g)⊗ E∗)⊗ (U(g)⊗ (F ⊗ ΛnV )),

such that with the deRham homomorphism

δdR : U(g)⊗ ΛnV → U(g)⊗ Λn−1V

the following codivergence formula holds:

Xφ ◦ δdR = (φ⊗ id) ◦ (4⊗ idF⊗ΛnV )− (id ⊗ φ∗) ◦ (4⊗ idE⊗ΛnV ).

A similar definitions holds for g-homomorphisms descending to the corresponding Verma
modules.

Remark 6.63 In view of the definition of adjoint differential operators in paragraph 1.18 we
remark that adjoint Verma module homomorphisms have corresponding differential operators
on the homogeneous space G/P which are adjoint after one of them is twisted by the bundle
of pseudoscalars L−n⊗ΛnV . The Lie algebra p acts trivially on L−n⊗ΛnV , so we used ΛnV
in the above algebraic definition rather then Ln.

Example 6.64 A derivative D : U(g) ⊗ (E∗ ⊗ V ) → U(g) ⊗ E∗ is defined to be generated
by

D :=
∑

i

rti ⊗ idE∗ ⊗ 〈θi, 〉.

It has an adjoint homomorphism D∗ : U(g)⊗ (E⊗ΛnV )→ U(g)⊗ (E⊗V ∗⊗ΛnV ) given by

D∗ := −
∑

i

rti ⊗ (idE ⊗ θi ⊗ idΛnV )−
∑

i

1⊗ (idE ⊗ θi ⊗ ti ∧ δV ).

The coproduct XD is generated by the wedge product Λn−1V 7→ (E∗)⊗ (E ⊗ V ∗⊗ΛnV ), as
XD := 4◦

∑
i 1⊗ (idE ⊗ θi⊗ ti∧). For the composite XD ◦ δdR note t∧ (θ y) = θ(t) on ΛnV

and 4 ◦ rt = (rt ⊗ 1)4+ (1⊗ rt)4, hence:

XD ◦ δdR =
∑

i,j

4 ◦ (1⊗ idE ⊗ θi ⊗ ti∧) ◦ (rtj ⊗ θj y +δV )

=
∑

i

(rti ⊗ 1)4(idE ⊗ θi ⊗ idΛnV ) + (1⊗ rti)4(idE ⊗ θi ⊗ idΛnV )

+
∑

i

(1⊗ θi ⊗ ti ∧ δV )4idE

= (D ⊗ 1)4⊗ idE⊗V ∗⊗ΛnV − (1⊗D∗)4⊗ idE⊗ΛnV .

Example 6.65 (Adjoints of deRham homomorphisms) Notice once more the canonical iso-
morphism y : ΛkV ∗ ⊗ ΛnV → Λn−kV . Consequently, for the identity idΛkV ∗⊗ΛnV we have
with the cowedge product: y ◦idΛkV ∗⊗ΛnV = 4k,n−k : ΛnV → ΛkV ⊗Λn−kV . The Co-Leibniz
rule shows that the adjoint of the deRham homomorphism

δdR : Verma (g, p,ΛkV )→ Verma (g, p,Λk−1V )

δdR∗
: Verma (g, p,Λk−1V ∗ ⊗ ΛnV )→ Verma (g, p,ΛkV ∗ ⊗ ΛnV )
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satisfies y δdR∗
= (−1)kδdR ◦ y with the deRham homomorphism acting on degree (n−k+1)

since

4k−1,n−k ◦ δdR = (δdR ⊗ id) ◦ 4k,n−k + (−1)k−1(id ⊗ δdR) ◦ 4k−1,n−k+1.

Example 6.66 For the twisted deRham homomorphism we have F ∗ = ΛkV ⊗ W ∗ and
F ⊗ ΛnV = Λn−k ⊗W . The twisted Co-Leibniz rule applied to the three g-representations
R→W ∗ ⊗W shows that δ on ΛkV ⊗W ∗ is adjoint to (−1)kδ on Λn−kV ⊗W .

Example 6.67 (Adjoints of Bernstein Gelfand Gelfand homomorphisms) Poincaré duality
applied to F ∗ = Hk(V ∗,W ∗) gives F ⊗ ΛnV = Hn−k(V ∗,W ). The Co-Leibniz rule applied
to the three g-representations R → W ∗ ⊗ W shows that δH on Hk(V ∗,W ∗) is adjoint to
(−1)kδH on Hn−k(V ∗,W ).

Remark 6.68 Let G∗ be another left p-representations and

ψ : U(g)⊗G∗ → U(g)⊗ F ∗

another g-homomorphism with adjoint

ψ∗ : U(g)⊗ (F ⊗ ΛnV )→ U(g)⊗ (G⊗ ΛnV ),

then φ ◦ ψ has an adjoint given by ψ∗ ◦ φ∗ with the coproduct

Xφψ : U(g)⊗ Λn−1V → (U(g)⊗ E∗)⊗ (U(g)⊗ (G⊗ ΛnV )),

given by
Xφψ := (φ⊗ id) ◦Xψ + (id ⊗ ψ∗) ◦Xφ.

Remark 6.69 The above remark indicates that the projection

S : Verma (g, p, Ck(V ∗,W ∗))→ Verma (g, p, Ck(V ∗,W ∗)),

as composite of operators which all have adjoints, also has an adjoint. A candidate for such
an adjoint is the projection S induced by W in complementary degree:

S : Verma (g, p, Cn−k(V ∗,W ))→ Verma (g, p, Cn−k(V ∗,W )).
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Chapter 7

Appendix: Elementary representation

theory

In this appendix we summarize basic notions of the representations theory of Lie algebras.
It is taken from [FH91].

Definition 7.1 (Lie algebras) Let F be a field (we are interested in the cases F = R and F =
C). A finite dimensional vector space g over F with a skew symmetric bilinear multiplication
g ⊗ g → g, denoted on X, Y ∈ g by X ⊗ Y 7→ [X, Y ] is called a Lie algebra , if it satisfies
the Jacobi identity : for all X, Y, Z ∈ g we have [X, [Y, Z ] ] + [Y, [Z,X ] ] + [Z, [X, Y ] ] = 0.

If p ⊂ g is a subspace, such that X, Y ∈ p implies [X, Y ] ∈ p, then p is called a subalgebra
of g. A linear map φ : g→ h between two Lie algebras is called a Lie algebra homomorphism ,
if φ([X, Y ]) = [φ(X), φ(Y ) ] for all X, Y ∈ g (this condition is nonlinear in φ similar to the
orthogonality condition for a linear transformation).

Example 7.2 The space of endomorphisms End (V ) = gl(V ) of a n-dimensional vector
space V over the field F carries a natural Lie algebra structure by [A,B ] := A ◦B −B ◦ A
and is called the general linear Lie algebra . It has dimension dim gl(V ) = n2

Lie algebras which are isomorphic to subalgebras of some gl(V ) are called linear Lie alge-
bras . Lie algebras with trivial Lie bracket are called Abelian Lie algebras . One dimensional
Lie algebras are necessarily Abelian.

Definition 7.3 (Modules) If g denotes a Lie algebra over F, a vector space W (finite or
infinite dimensional) is said to carry a right g-module structure or W is called a right g-
representation space , if there is a linear map θ : W ⊗ g→ W denoted by θ(w ⊗X) =: w.X
such that for Y ∈ g we have w.[X, Y ] = w.X.Y − w.Y.X.

A g-representation from the left θ : g ⊗W → W will be denoted by θ(X ⊗ w) = X.w
and satisfies [X, Y ].w = X.Y.w − Y.X.w. Every left action has an associated right action
defined by w.X = −X.w and vice versa. If W is a right module then W ∗ is a left module
defined (without signs) by 〈X.ω, w〉 = 〈ω,w.X〉 for ω ∈ W ∗ and all w ∈ W .
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Example 7.4 Let V be a vector space over R or C and g ⊂ gl(V ) a Lie sub algebra. Clearly,
V is a g-representation, also its dual V ∗ and all tensor products Lk ⊗ V i ⊗ V ∗j including
densities Lk for i, j ∈ N and k ∈ R.

Example 7.5 (Adjoint representation) For any Lie algebra g the Jacobi identity shows, that
the Lie bracket itself induces a left representation on g itself, called adjoint representation
ad : g ⊗ g → g, ad(X)Y := [X, Y ]. The kernel of the adjoint representation is given by
the centre ker ad = Z(g). The coadjoint representation coad : g ⊗ g∗ → g∗ is given by:
coad := −ad∗.

Definition 7.6 (Enveloping algebra) Let g be a Lie algebra over the field F. An enveloping
algebra of g is a pair (U, i) consisting of an associative algebra U over F with 1 and a linear
map i : g→ U satisfying i([X, Y ]) = i(X)i(Y )− i(Y )i(X) for all X, Y ∈ g.

The universal enveloping algebra U(g) for g satisfies the following property: for any
enveloping algebra A, j there exists a unique homomorphism of algebras φ : U(g)→ A (send-
ing 1 to 1) such that φ ◦ i = j. The universal enveloping algebra U(g) can be realized as
U(g) := T (g)/I, where T (g) is the graded tensor algebra and I is the two sided T (g) ideal
generated by <X ⊗ Y − Y ⊗X − [X, Y ] |X, Y ∈ g>. This ideal respects the filtration of
T (g) which induces a filtration of the quotient U(g) = T (g)/I. IfW ∗ is a left g-representation,
then U(g) acts as algebra on W ∗: for XY ∈ U(g) we define (XY ).ω := X.Y.ω with X, Y ∈ g

and ω ∈ W ∗.

Definition 7.7 (Invariant submodules) A subspace W ′ ⊂ W of a g-representation θ : g →
gl(W ) is called g-invariant, if w′ ∈ W ′ and X ∈ g implies θ(X)(w′) ∈ W ′. A vector w ∈ W
is called g-fix or g-invariant, if for all X ∈ g we have θ(X)(w) = 0. The set of g-invariant
vectors forms a g-invariant subspace denoted by W g ⊂ W .

Application 7.8 (Linear Lie algebras defined by invariant tensors) Let V be a vector space
over F and T ∈ V i ⊗ V ∗j a nonzero tensor. Then gl(V ) acts on T as an element of the
representation space V i ⊗ V ∗j, hence T induces a linear map gl(V ) → V i ⊗ V ∗j. Define
the kernel of that map to be g(V, T ) := {A ∈ gl(V ) |T.A = 0}. This clearly defines a Lie
subalgebra. The representation space V is then called the defining representation g(V, T )→
gl(V ).

Let V be a n-dimensional vector space over F. The following Lie algebras defined by
invariant tensors are called classical Lie algebras :

Definition 7.9 (Special linear Lie algebra) Let α ∈ ΛnV ∗ denote a nonzero volume form,
then define sl(V, α) := {A ∈ gl(V ) | 0 = α.A = α(A , . . . , ) + . . . + α(. . . , A ) = tr(A)α}.
This space of trace-free endomorphisms is clearly independent of the choice of α hence
sl(V ) := sl(V, α) is called the special linear Lie algebra and has dimension dim sl(V ) = n2−1.

Definition 7.10 (Symplectic Lie algebra) If n is even and ω ∈ Λ2V ∗ denotes a nondegen-
erated bilinear skew form then sp(V, ω) := {A ∈ gl(V ) |ω.A = ω(A , ) + ω( , A ) = 0} is
called symplectic Lie algebra and has dimension dim sp(V, ω) = n(n + 1)/2. Obviously, for
n = 2 we have sl(V ) = sp(V ).
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Definition 7.11 (Orthogonal Lie algebra) If g ∈ Sym 2V ∗ denotes a nondegenerate bilinear
symmetric form then so(V, g) := {A ∈ gl(V ) | g.A = g(A , ) + g( , A ) = 0} is called the
orthogonal Lie algebra and has dimension dim so(V, g) = n(n− 1)/2.

Remark 7.12 The special linear group sl(n) is (n2−1)-dimensional. On sl(n) the following
symmetric bilinear form g is invariant and non degenerated: g(A,B) := trA ◦B. Hence the
adjoint representation induces a map ad : sl(n)→ so(sl(n), g) which defines an isomorphism
for n = 2 when sl(2) is three dimensional.

Remark 7.13 Let V be a n = 2l even dimensional vector space with nondegenerated skew
bilinear form ω ∈ Λ2V ∗. The space of trace-free bivectors (with respect to ω) Λ2

0V forms a
((n(n − 1) − 2)/2)- dimensional space, which carries a nondegenerated symmetric bilinear
form g induced by:

g(v1 ∧ v2, w1 ∧ w2) := ω(v1, w1)ω(v2, w2)− ω(v1, w2)ω(v2, w1).

The defining representation V of sp(n) clearly leaves g-invariant. For n = 4 the space Λ2
0V

is five dimensional and this defines an isomorphism sp(V, ω) = so(Λ2
0V, g).

Remark 7.14 Let V be a n = 2l even dimensional vector space with nonzero volume form
α ∈ ΛnV ∗. The wedge product induces a non degenerated symmetric bilinear form g on
ΛlV : g(a, b) := α(a∧ b) which is invariant under sl(V ). The defining representation induces
a map sl(V )→ so(ΛlV, g). This is an isomorphism for n = 4 when dim ΛlV = 6.

Definitions 7.15 (Automorphisms and derivations) A linear isomorphism φ : g → g of a
Lie algebra g such that φ([X, Y ]) = [φ(X), φ(Y ) ] for allX, Y ∈ g is called an automorphism .
The set of all automorphisms builds a group Aut (g) ⊂ GL (g). A linear map δ : g → g

is called a derivation , if δ([X, Y ]) = [ δ(X), Y ] + [X, δ(Y ) ] for all X, Y ∈ g (this is the
linearized automorphism condition). The set of all derivations builds a Lie algebra der(g) ⊂
gl(g). The kernel of a derivation defines a subalgebra.

Definition 7.16 (Ideals) A sub space I ⊂ g of a Lie algebra g over the field F is called an
ideal of g, if X ∈ g and Y ∈ I implie [X, Y ] ∈ I. The kernel of a Lie algebra homomorphism
is an ideal. The centre of g is defined to be Z(g) := {Z ∈ g | [X,Z ] = 0, X ∈ g} and defines
a natural ideal. The derived algebra [ g, g ] := {[X, Y ] |X, Y ∈ g} ⊂ g is another example
of an ideal. If I ⊂ g is an ideal then the quotient space g/I inherits a natural Lie algebra
structure.

Definition 7.17 (Simple Lie algebras and ideals) A non Abelian Lie algebra g is called
simple , if {0} and g are the only ideals of g. An ideal I ⊂ g of a Lie algebra is called simple
if {0} and I are the only sub ideals of g in I.

Proposition 7.18 Among the complex classical Lie algebras the following are simple: sl(V )
for n ≥ 2, so(V ) for n = 3 and n ≥ 5, sp(V ) for n ≥ 2.
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Definition 7.19 A finite dimensional g-representation g⊗W → W is called semisimple , if
for any g-invariant subspace W ′ ⊂ W there is a g-invariant complement in W . A Lie algebra
g is called semisimple , if any finite dimensional representation is semisimple.

Definition 7.20 (Trace form) If θ : g → gl(W ) denotes a finite dimensional g-representa-
tion, then θ induces a bilinear symmetric form on g, the so called trace form Trθ ∈ Sym 2(g∗),
defined by Trθ(X, Y ) := tr(θ(X) ◦ θ(Y )).

The trace form Trθ is an example of a g-invariant vector under the representation
Sym 2(−ad∗) : g→ Sym 2(g∗). The radical of Tθ is the space {X ∈ g |Trθ(X, Y ) = 0, Y ∈ g}
and defines an ideal in g. If the radical is zero, then the trace from is non degenerated, i.e. it
defines an inner product on W and the representation takes values in θ : g→ so(W,Trθ).

Definition 7.21 (Killing form) The trace from Trad corresponding to the adjoint represen-
tation ad : g→ gl(g) is called the Killing form .

Examples 7.22 Let V be a n-dimensional vector space over F. The Killing form for gl(V )
is given by Trad(A,B) = (2n) tr(A ◦ B) − 2 tr(A) tr(B). For the (complex) classical Lie
algebras, the Killing form is a multiple of the trace form of the defining representation,
the later is nondegenerate: for sl(n) we get Trad(A,B) = (2n) tr(A ◦ B), for so(n) we get
Trad(A,B) = (n − 2) tr(A ◦ B) and for sp(n) we get Trad(A,B) = (n + 2) tr(A ◦ B). This
shows, that the Killing form for most of the classical Lie algebras is nondegenerated.

Theorem 7.23 A Lie algebra is semisimple iff its Killing form Trad ∈ Sym 2(g∗) is nonde-
generated. Hence a simple Lie algebra is semisimple.

Definition 7.24 (Reductive Lie algebra) Let g be a Lie algebra. g is called reductive , if
the derived algebra [ g, g ] is semisimple and we have a decomposition g = Z(g)⊕ [ g, g ].
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