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Summary

This work is concerned with two examples of the interactions between differential

geometry and analysis, both related to spinors. The first example is the Dirac operator

on conformal spin manifolds with boundary. I aim to demonstrate that the analysis of the

Dirac operator is a natural generalisation of complex analysis to manifolds of arbitrary

dimension, by providing, as far as possible, elementary proofs of the main analytical

results about the boundary behaviour of solutions to the Dirac equation. I emphasise

throughout the conformal invariance of the theory, and also the usefulness of the Clifford

algebra formalism. The main result is that there is a conformally invariant Hilbert space

of boundary values of harmonic spinors, and that the pointwise evaluation map defines a

conformally invariant metric on the interior. Along the way, many results from complex

analysis are generalised to arbitrary (Riemannian or conformal spin) manifolds, such as

the Cauchy integral formula, the Plemelj formula, and the L2-boundedness of the Hilbert

transform.

The second example concerns the geometry of the twistor operator and the analysis

of differential operators arising in twistor theory. I study the differential equations on

a complex quadric induced by holomorphic vector bundles on its twistor space. In 4

dimensions, there is already a beautiful example of such a relationship, the Ward cor-

respondence between holomorphic vector bundles trivial on twistor lines, and self-dual

connections. There are many generalisations of twistor theory to higher dimensions, but

it is not clear how best to generalise the Ward correspondence. Consequently, I focus on

6 dimensional geometry, and one possible generalisation proposed by Atiyah and Hitchin,

and investigated by Manin and Minh. I study a number of differential equations produced

by this 6 dimensional twistor construction, with a view to reconstructing the holomorphic

vector bundle on the twistor space from these equations. While this aim has not been

realised, some progress has been made.
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Introduction

This thesis, which might equally have been called ‘Analytical aspects of spinor and twistor

geometry’, is concerned with the mutual interaction between analysis and geometry of dif-

ferential operators on manifolds. I concentrate on two particular differential operators, the

Dirac operator and the twistor operator, which are the two conformally invariant first order

differential operators acting on spinor fields.

The thesis is divided into four Parts, each of which has its own introduction. Therefore,

here I will only briefly review the contents of each Part and the relationships between them.

Part I contains the background material used throughout the other three Parts. This

material is purely expository, but is included in order to set up the Clifford algebra formalism

in a way that makes it easy to use later on.

Part II consists of my work on the Dirac operator. I have tried to write it in such a way

that it is self-contained, and consequently, I have included an exposition of the well-known

elliptic theory of the Dirac operator on a closed manifold before going on to the boundary

behaviour.

Part III is a development of some techniques for analysing integrability obstructions for

first order differential operators. While the theory of integrability obstructions is well un-

derstood, it is usually presented in a form too general and abstract to be easy to apply to

examples. The version of the theory I have devised was developed to tackle problems occuring

in my work on 6 dimensional twistors, but I believe it is also of interest in its own right, and

to illustrate this I apply it to a number of other examples, and also try to set it in a wider

context.

Part IV is concerned with my work on twistor correspondences in 6 dimensions. My

results here are not conclusive, and so the presentation differs slightly from the rest of the

thesis, in that I concentrate on the methods I have used in my investigation of this area,

rather than presenting a definitive theory.
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Part I

Clifford Algebras and Spinors in

Conformal Geometry

In this first Part, I will introduce the essential background of Clifford algebras, spinors and

conformal geometry. None of this material is new, except in terms of the presentation, which

is based on Gilbert and Murray [36].

The first section concerns Clifford algebras. Here I establish, with brief proofs, their main

properties, such as the relationship with the orthogonal groups, and 1-1 periodicity.

In section 2, I outline the facts I will need from the theory of Clifford modules. I focus on

the natural representation of the Clifford algebra acting on itself by left multiplication, and

also the irreducible complex representations in even dimensions.

In the following section I turn to conformal geometry, and show how a conformal structure

on a manifold is given by a (normalised) metric on the weightless tangent bundle. I also

emphasise the line bundle associated to the conformal structure, since this gives an easy way

of keeping track of the conformal weights which will be used later on.

Finally, I discuss the manifold Sn = Rn ∪ {∞} in more detail. Here, I pay particular

attention on the natural role of Clifford algebras in describing the geometry. This leads to

the well-known identification of the group of Möbius transformations with a group of 2 × 2

matrices of Clifford numbers, which proves to be invaluable in computations. I will show that

this relationship arises out of the many different ways of looking at Sn, which as a conformal

manifold is most naturally the space of null lines in Rn+1,1, but can also be represented as a

projective space of pure spinors.

1 Clifford algebras

Clifford algebras were introduced independently by W. K. Clifford in [24] and H. Grass-

mann in [39]. In this section I will describe their main properties, essentially as presented

in [36]. Proofs will be kept brief, the emphasis being on understanding the algebras heuris-

tically. The key point is that the Clifford algebra of Euclidean space is an extremely natural

object capturing the geometry of the space in an algebraic form. Because of this, one should

not be surprised that it makes an appearance and proves to be very useful in a variety of

contexts.

One way to introduce Clifford algebras is to pose the following problem: given an inner

product space V (or more generally, a vector space with a quadratic form), find an associative

7



algebra describing (in some sense) its geometry. An immediate observation is that the linear

space R⊕V can be made into an algebra, since R acts on V by scalar multiplication, and the

inner product gives a map from V ×V to R. Unfortunately, this algebra fails to be associative

when the dimension of V is larger than one, and furthermore it fails to contain information

about the higher dimensional structure of V . In order to get an associative algebra, the

requirement that vw = 〈v , w〉 for all v, w in V needs to be relaxed.

1.1 Definition. Let V be an linear space and q : V → R a quadratic form. A Clifford algebra

for (V, q) is an extension of the linear space R ⊕ V to an associative algebra A with identity

1 ∈ R such that

(i) A is generated (as a ring) by R ⊕ V

(ii) v2 = q(v) for all v ∈ V .1

In fact there is essentially only one Clifford algebra associated to (V, q), which will be

called the Clifford algebra for (V, q); it is a maximal and universal extension of R⊕ V . More

precisely, define a Clifford map to be a linear map ι from V into an associative algebra such

that ι(v)2 = q(v) for all v, and let π : V → Cl(V, q) be a universal Clifford map. Such a

universal map is unique up to (natural) isomorphism, and will have the following property.

1.2 Proposition. Let (V, q) and (W, r) be quadratic spaces, T : V →W an isometry (that is,

r(Tv) = q(v) for all v ∈ V ), and A a Clifford algebra for W. Then there is a unique algebra

homomorphism T∗ : Cl(V, q) → A extending T , in the sense that T∗ ◦π = ι ◦ T , where ι is the

inclusion of W into A.

There are several ways of defining Cl(V, q) explicitly. In order to prove the above propo-

sition, the following definition, expressing it as a quotient of the tensor algebra by an ideal,

is particularly convenient. Another, perhaps more intuitive, definition will be given shortly.

1.3 Definition. Cl(V, q) :=
⊗
V
/

(v ⊗ v − q(v)) =
⊗
V
/
(v ⊗ w + w ⊗ v − 2q(v, w)), where

⊗
V is the tensor algebra of V, and q(v, w) (which will sometimes be written v.w) is the

bilinear form induced by q.

Note. It is not immediately clear that Cl(V, q) is a Clifford algebra, since it has not been

shown that the quotient map π :
⊗
V → Cl(V, q) is injective on R⊕V . The other properties

of a Clifford algebra clearly do hold. In particular π(R ⊕ V ) generates Cl(V, q). The fact

that π embeds R⊕ V into Cl(V, q) will follow from the Proposition once (V, q) is shown to

have a Clifford algebra.

Proof of Proposition 1.2: Let T : V →W be an isometry. Since W ⊆ A, T is a linear map

1Warning! There are other sign conventions—see 1.9 for a discussion.
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from V into an associative algebra. Therefore, by the universal property of the tensor algebra,

there is an extension of T to an algebra homomorphism T∗ :
⊗
V → A. But T is an isometry,

so T∗(v⊗v) = T (v)2 = r(Tv) = q(v) = T∗(q(v)), so T∗ descends to the quotient Cl(V, q). The

uniqueness of T∗ is an immediate consequence of the fact that π(R ⊕ V ) generates Cl(V, q)

and the action of T∗ on this space is predetermined by T .

Remark. The same method can be used to show that there is also a unique algebra anti-

homomorphism T∗ from Cl(V, q) to W . Also note that if T is surjective, so is T∗.

The above abstract algebra is not central to this section, but will prove useful in estab-

lishing some of the properties of the Clifford algebra. First, a more geometrical construction

of a Clifford algebra will be carried out. This will establish that every quadratic space has a

Clifford algebra A, and thus the injectivity of π follows from Proposition 1.2 applied to the

identity isometry of V .

1.4 Proposition. Let End(Λ(V )) be the algebra of linear transformations of the exterior

algebra Λ(V ) of V (note that Λ(V ) = Cl(V, 0)) and let A be the subalgebra generated by

{c(v) = εv + ιv : v ∈ V }, where εv(v0 ∧ . . .∧ vk) = v ∧ v0 ∧ . . .∧ vk and ιv is the operation

of contraction by q(v, .) ∈ V ∗, which is adjoint to εv (with respect to q) and is defined by

ιv(1) = 0 and

ιv(v0 ∧ . . .∧ vk) =
k∑

j=0

(−1)jq(v, vj)v0 ∧ . . . v̂j . . .∧ vk.

Then A is a Clifford algebra for (V, q).

Proof: First note that c(v)(1) = v so R ⊕ V embeds into A and generates this associative

algebra. It remains to show that c(v)2 = q(v). To do this note that ε2v = 0 since v ∧ v = 0

and ι2v = 0 by an elementary computation (when q is nondegenerate this also follows from

the fact that ιv is adjoint to εv). Thus c(v)2 = ιvεv + εvιv, and direct computation shows

that ιvεw(v0 ∧ . . .∧ vk) = q(v, w)v0 ∧ . . .∧ vk − εwιv(v0 ∧ . . .∧ vk).

Remarks. The operators εv and ιv are known in the literature as exterior and interior

multiplication by v. They are also referred to as creation and annihilation operators by

analogy with the theory of the quantum harmonic oscillator, and c : V → A is a quantisation

map,2 its inverse being evaluation at 1 ∈ R, ev 1 : A → Λ(V ). More straightforwardly, for

v, w in V , c(v)c(w)(1) = c(v)(w) = v∧w+ v.w, so Clifford multiplication is the sum of the

outer (wedge) and inner (dot) products. Since the latter is commutative and the former

anticommutative, they may easily be recovered from the Clifford product as symmetric and

2see [12] for this point of view.
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antisymmetric parts.

1.5 Proposition. If V is finite dimensional then ev 1 is a linear isomorphism from A to

Λ(V ). Furthermore A and Cl(V, q) are isomorphic algebras.

Proof: (c(v0) . . . c(vk))(1) = v0 ∧ . . .∧ vk +
∑k

j=0 xj where xj ∈ Λj(V ). Since im(ev 1) con-

tains Λ0(V ) and Λ1(V ), a simple inductive argument shows that ev 1 is surjective. Next

note that if e1, . . . en is a quasiorthonormal basis (i.e., a basis diagonalising q with q(ej) ∈

{−1, 0, 1}) then any Clifford algebra for (V, q) is spanned by
{
em1
1 . . . emn

n : mj ∈ {0, 1} ∀j
}

(since ejek = −ekej for j 6= k) and so has dimension no bigger than 2n. By 1.2, there is

a surjective algebra homomorphism from Cl(V, q) to A, and therefore 2n > dimCl(V, q) >

dimA > dimΛ(V ) = 2n and so equality holds all the way through and the surjective linear

maps are all bijective.

1.6 Corollary. If e1, . . . en is a quasiorthonormal basis of V , then
{
eα : α ⊆ {1, . . . n}

}
is a

basis for Cl(V, q), where eα = em1
1 . . . emn

n and mj = 1 iff j ∈ α and 0 otherwise.

Remark. This proposition finally illuminates the geometric structure of the Clifford alge-

bra. As a linear space it is isomorphic to Grassmann’s exterior algebra Λ(V ) (the algebra of

subspaces of V ), but the wedge product has been ‘quantised’ by adding the inner product,

so they are not isomorphic as algebras.

1.7 Notation. Henceforth Cl(V, q) will be used to denote either of the Clifford algebras

defined above. When q is induced by the inner product on Euclidean n-space, the shorthand

Cln will be used. More generally if q is nondegenerate with signature (p,m) (i.e., in a

quasiorthonormal basis, p vectors have positive square and m vectors have negative square),

Cl(V, q) will be written Cl p,m.

1.8 Definitions. The elements of Cl(V, q) are sometimes called Clifford numbers or multi-

vectors. Now that Cl(V, q) has been identified with Λ(V ), the subspace Cl(V, q)k can be

defined as the space of k-vectors i.e. those multivectors corresponding to elements of Λk(V )

(2-vectors are also called bivectors). Next, it is easy to see from either definition of Cl(V, q)

that the even multivectors form a subalgebra Cl(V, q)ev called the even subalgebra. Alterna-

tively, denote by x 7→ x∗ the ‘twisting’ automorphism of Cl(V, q) induced by v 7→ −v (see 1.2).

Then Cl(V, q)ev is the fixed point set of ∗, which is a subalgebra since ∗ is an automorphism.

The decomposition of Cl(V, q) as Cl(V, q)ev ⊕ Cl(V, q)od corresponds to the decomposition

Λ(V ) = Λ+(V ) ⊕ Λ−(V ).

The operation x 7→ x̃ is defined as the extension of the identity on V to an antiautomor-

phism, and is called reversion since it maps v0 . . . vk to vk . . . v0. The composite x 7→ x = x̃∗
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is called conjugation and is the antiautomorphism induced by v 7→ −v. These operations are

all involutions.

1.9Aside. Because Clifford algebras have been rediscovered so many times, there is a confusion

of conventions and terminology in the literature. For example, different authors use different

symbols and names for the three involutions. More confusingly, however, there are different sign

conventions used in the definition of the Clifford algebra. When working with Euclidean Clifford

algebras, there are essentially four possible sign conventions. Firstly, one can use either positive

or negative definite quadratic forms. Secondly, one can define Clifford algebras using either the

relation v2 = v.v or v2 = −v.v (where the dot denotes the inner product). My two main references

on Clifford algebras, namely Gilbert and Murray [36] and Lawson and Michelsohn [56], both use

the v2 = −v.v convention. Benn and Tucker [10], Crumeyrolle [25], Plymen and Robinson [66],

and Hestenes (e.g. [46]) all use the v2 = v.v convention. Brackx, Delanghe and Sommen [17] also

use the v2 = v.v convention, but then work with a negative definite quadratic form. I have chosen

the v2 = v.v sign convention (and prefer positive definite quadratic forms) for several reasons:

• In the Euclidean case, I prefer vectors to have a positive square in the Clifford algebra,

since this distinguishes them from bivectors (which always have a negative square in Eu-

clidean Clifford algebras)—the historical reason for the extra minus sign (which is present in

Clifford’s papers) was that the imaginary complex numbers and quaternions could then be

identified as vectors, but this is a misinterpretation of their geometrical role: they are more

naturally bivectors.

• I prefer zero order operators to be self-adjoint and first order operators to be skew-adjoint,

if possible. In my chosen sign convention Clifford multiplication by vectors is a self-adjoint

operation, whereas the Dirac operator is skew-adjoint. In index theory, a self-adjoint Dirac

operator is often prefered, as in [56] for example.

• I see no reason to distinguish the square of v from the norm squared of v. This is related to

my point of view that the vectors in the Clifford algebra are the vectors in Euclidean space,

not some skew-Hermitian matrix representation. If vectors of negative square are needed, I

prefer to use a negative definite quadratic form.

Of course, these are just my own preferences, and as with all sign conventions (such as the related

difference in sign between the “geometer’s” and the “analyst’s” Laplacian3) it makes no difference

to the mathematics which convention is used.

Examples The relation of the Clifford algebras Cln to Euclidean geometry is most simply

illustrated in two and three dimensions.

(i) The Clifford algebra Cl 2 of the plane R2 is four dimensional, Cl ev2 being isomorphic to C

and Cl od
2 being R2 itself. Clifford multiplying vectors by complex numbers identifies C ∗

3my Laplacian is, of course, a sum of squares, but I’m not sure whether that makes me a geometer or an

analyst...
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as the group of rotations and dilations of the plane. The usual identification of C with

R2 can be made only after choosing a unit vector in R2 (the ‘real’ axis).

(ii) The algebra Cl 3 is eight dimensional, Cl ev3 being the quaternions H. It is well known

that H∗ may be used to describe rotations and dilations of R3. Also, the wedge product

may be identified as the cross product via a unit ‘pseudoscalar’ in Cl 33 (a choice of a unit

pseudoscalar is equivalent to a choice of orientation, explaining why the cross product

of two ‘polar’ vectors is an ‘axial’ vector — ‘axial’ vectors are really bivectors). This

has led Hestenes [46] and others to suggest that Clifford algebra provides a more natural

language for vector algebra than the usual approach of Heaviside and Gibbs, since it

combines Hamilton’s quaternions and Grassmann’s wedge product in a more natural

way.

In both of these examples, the relevance of Clifford algebras to rotations and dilations is

evident. The next step is to establish such a relationship in the general context. For the rest

of this section I will restrict attention to a nondegenerate quadratic form of signature (p,m),

where p+m = n.

Now, since any isometry of V = Rp,m extends to an automorphism of Cl p,m (by 1.2), it

seems likely that the automorphisms of the Clifford algebra will play an important role.

1.10 Definitions. Let Cl ∗p,m be the Lie group of invertible elements of Cl p,m and let cl∗p,m

be its Lie algebra (which is Cl under Lie bracket [x, y] = xy − yx). The adjoint action

Ad : Cl∗p,m → Aut(Clp,m) is given by Adx(y) = xyx−1, but if x is odd, it is often useful to

incorporate the grading of Cl p,m and define the twisted adjoint action Ad∗ : Cl ev∗p,m ∪Cl od∗
p,m →

Aut(Clp,m) by Ad∗
x = Adx for x even, but Ad∗

x(y) = xy∗x−1 for x odd. This is still a

representation,4 but only of the subgroup Cl ev∗p,m ∪ Clod∗
p,m of Cl∗p,m. However, there is an

“action” of Cl ∗p,m on Clevp,m∪Cl od
p,m given by y 7→ xyx−1 for y even and y 7→ xyx∗−1 for y odd,

which will also be denoted by Ad∗
x.

1.11 Lemma. Let x ∈ Clp,m. Then

(i) xv = vx∗ ∀v ∈ V iff x ∈ R

(ii) if dimV is even then xv = vx ∀v ∈ V iff x ∈ R

(iii) if dimV is odd then xv = vx ∀v ∈ V iff x ∈ R ⊕ Clnp,m.

4In their presentation of infinite dimensional Clifford algebras, Plymen and Robinson [66] remark that the

usual definition of the twisted adjoint action, namely y 7→ x∗yx−1 is unsuitable for their purposes, because

x does not act by algebra automorphisms. The definition I have given is such an action, and can be used to

simplify Plymen and Robinson’s treatment of automorphisms of Clifford algebras in infinite dimensions.
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Proof: Let eα be a basis for Cl p,m and let x =
∑

α λαeα. Then for each j,

xej = ej

(
∑

j /∈α

(−1)|α|λαeα −
∑

j∈α

(−1)|α|λαeα

)
.

The result follows from this.

1.12 Corollary. ker Ad∗ = R∗, whereas ker Ad = R∗ only if dimV is even. When dimV is

odd, the centre of Cl p,m is R ⊕ Clnp,m.

1.13 Definition. The Clifford group Γp,m of Rp,m consists of those x in Cl ∗p,m such that

Ad∗
x(v) ∈ V ∀v ∈ V .

1.14 Proposition. For x ∈ Γp,m, Ad∗
x(v) defines an isometry of V . In particular if w is

an invertible vector (i.e., w2 6= 0) then v 7→ −wvw−1 is a reflection Tw in the hyperplane

perpendicular to w.

Proof: As an element of V , xv(x∗)−1 = −
(
xv(x∗)−1

)∗
= −x∗(−v)x−1 = x∗vx−1. Therefore

(xv(x∗)−1)2 = x∗vx−1xv(x∗)−1 = x∗v2(x∗)−1 = v2 and so this is an isometry. Finally

−wvw−1 = vww−1 − 2v.ww−1 = v − 2v.ww/w2 .

1.15 Theorem. Any isometry can be written as a composite of reflections.

Proof: This is an elementary and well-known result. Briefly, any two vectors x, y of the same

nonzero length are related by the reflection Tx−y (if x− y is non-null) or the transformation

Ty ◦ Tx+y. If T is an isometry and x a non-null vector, this gives a composite of reflections S

such that Sx = Tx, so S−1 ◦ T fixes x and its perpendicular hyperplane. The result follows

by an inductive argument.

1.16 Corollary. Ad∗ : Γp,m → O(p,m) is a surjective group homomorphism with kernel R∗

and x ∈ Γp,m iff x can be written as a product of invertible vectors. Also x̃x ∈ R∗.

1.17 Definition. The Clifford semigroup Λp,m consists of those elements of Cl p,m which can

be written as a product of vectors, so Γp,m = {x ∈ Λp,m : x̃x 6= 0}. Define:

Pin(p,m) = {x ∈ Λp,m : x̃x = ±1}

Spin(p,m) = {x ∈ Λev
p,m : x̃x = ±1}

Spin+(p,m) = {x ∈ Λev
p,m : x̃x = 1}.

1.18 Corollary to Theorem 1.15. Ad∗ defines a two-fold cover of O(p,m) by Pin(p,m),

SO(p,m) by Spin(p,m) and SO+(p,m) by Spin+(p,m).
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Remarks. These results establish the relationship between the Clifford algebra and the

rotation group. For example SO(3) is homeomorphic to RP (3) and its two-fold cover is

S3 ∼= Spin(3), the group of unit quaternions. More generally, note that in the Euclidean

case x̃x is always positive so Spin(n) = Spin+(n). It is now possible to represent conformal

linear transformations (see section 3) by elements of Γn since xv(x∗)−1 = xvx
/
(x̃x) and

so v 7→ xvx is a conformal transformation, and an isometry when x̃x = 1. This gives a

two-fold cover of CO(n) by Γn.

I will finish this section by describing briefly some of the relationships between Clifford

algebras in different dimensions.

1.19 Proposition. Let w be a unit vector in V = Rp,m ⊆ Clp,m and W its perpendicular

hyperplane. Then

(i) if w2 = 1, W has Clifford algebra Cl p−1,m ⊆ Clp,m and w defines an embedding ιw of V

into R ⊕ Cl 2p,m ⊆ Clevp,m via v 7→ vw. This determines an algebra isomorphism θw from

Clevp,m to Clm,p−1, the Clifford algebra of ιw(W ) ⊆ Cl 2p,m. Furthermore, for any v ∈ V , the

equality v2 = (ι̃wv)(ιwv) = (ιwv)(ιwv) holds in Clp,m, and θw(ι̃wv) = θw(ιwv) = θw(ιwv)
∗

in Clm,p−1.

(ii) if w2 = −1, W has Clifford algebra Cl p,m−1 and a similar result holds, but this time

Clevp,m
∼= Clp,m−1, the Clifford algebras of W and ιw(W ) are identified by ιw, and v2 =

−(ι̃wv)(ιwv) = −(ιwv)(ιwv).

Proof: Since Cl evp,m is an associative algebra generated by R ⊕ ιw(W ) and (vw)2 = vwvw =

−w2v2 for all v ∈ W , the existence of the algebra isomorphism θw is a consequence of 1.2.

The rest is immediate.

In case (ii), the isomorphism can be written quite explicitly in terms of the natural

inclusion of Clp,m−1 = Cl(W ) into Cl p,m: namely if r + sw ∈ Cl evp,m with r ∈ Cl evp,m−1 and

s ∈ Cl od
p,m−1 then the corresponding element of Cl p,m−1 is just r + s.

In case (i), an alternative approach is (replacing p by p+ 1) to identify Cl p+1,m with an

algebra of graded 2× 2 matrices with values in Cl p,m. More precisely, r+ sw ∈ Cl p+1,m with

r, s ∈ Clp,m = Cl(W ) may be identified with the 2 × 2 matrix

[
rev − sev sod + rod

sod − rod rev + sev

]
.

Rather than prove this, I will establish a more general result, relating Cl p+1,m+1 to Clp,m.

This involves choosing a pair of orthogonal vectors v+ and v− in Rp+1,m+1, with v2
± = ±1.

Such a pair can also be obtained from null vectors w,w ′ with 〈w ,w′〉 = 1
2 , by setting v± =

w ± w′.
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1.20 Theorem (1-1 Periodicity). For ψ in Cl p+1,m+1 write ψ = r + sv+ + tv− + uv+v−

with r, s, t, u ∈ Clp,m. Then the map

U : ψ 7→

[
r − u s+ t

(s− t)∗ (r + u)∗

]

is an isomorphism from Cl p+1,m+1 to the algebra of 2 × 2 matrices
[

a b
c d

]
with a, b, c, d ∈

Clp,m. Also note that the principal automorphism ∗ of Clp+1,m+1 becomes the automorphism
[

a b
c d

]
7→
[ a∗ −b∗

−c∗ d∗
]
, and so the even subalgebra consists of those matrices with a, d even, and

b, c odd.

Proof: It is clear that U is a linear isomorphism. The image of a vector v + λv+ + µv− is
[ v λ+µ

λ−µ −v

]
which squares to

[ v2+λ2−µ2 0
0 v2+λ2−µ2

]
and so there is certainly an algebra inclusion

of Clp+1,m+1 into the matrix algebra by 1.2. That this is the isomorphism stated can be

verified by checking that ψ(v + λv+ + µv−) is mapped to the corresponding matrix product.

The last part is immediate from the fact that ψ∗ = r∗ − s∗v+ − t∗v− + u∗v+v−.

This result can be found in slightly different form in Chevalley [23], Gilbert and Mur-

ray [36], and also Lawson and Michelsohn [56]. These works give the isomorphism implicitly

(using the universal property), although it is then a simple matter to write out the explicit

version. There are several possible such isomorphisms and the one chosen here is not the

usual one: see the end of this Part for further remarks.

2 Clifford modules and spinors

In this section, I will outline those aspects of the theory of Clifford modules which I will

need later. Further information can be found in [4], [12], [10], [22], [23], [44], and [56].

2.1 Definition. A Clifford module for Cl p,m is a vector space E on which Cl p,m acts as an

algebra i.e. an algebra homomorphism Cl p,m → End(E) is given. Often E is equipped with

an inner product such that vectors in Cl 1p,m are self-adjoint. Elements of a Clifford module

will be called spinors.

Warning. If different sign conventions are used, it is natural to focus attention on a Clifford

algebra in which the vectors have a negative square (corresponding here to the Clifford algebra

of a negative definite quadratic form). In this case, definite inner products on Clifford modules

give rise to skew-adjoint actions of vectors. This change in sign appears throughout the theory,

leading for example to a self-adjoint Dirac operator, rather than a skew-adjoint one.
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2.2 Examples.

Clp,m acts on itself by left multiplication, making Cl p,m into a Clifford module. Since Cl p,m

is Λ(Rp,m) as a vector space, this may also be viewed as the natural action of Cl p,m on

Λ(Rp,m). In the positive definite case 〈x , y〉 = 〈x̃y〉 is an inner product on Cl n, where 〈.〉

denotes the scalar part. Clearly 〈vx , y〉 = 〈x̃vy〉 = 〈x , vy〉 for v ∈ Rp,m, so vectors are self-

adjoint. (Note also that it is not necessary to take the scalar part, in which case the inner

product takes its values in Cln.)

Let v+ be a unit vector in V with v2
+ = 1 in Clp,m. Then 1

2(1 + v+) is an idempotent in

Clp,m and so Clp,m(1 + v+) is a left ideal. The left action of Cl p,m on this ideal gives it a

Clifford module structure. The same of course holds for 1− v+ and Clp,m = Clp,m(1 + v+)⊕

Clp,m(1− v+). It will be seen in section 4 that this Clifford module may be interpreted using

the conformal geometry of Sn.

For most applications, it is not important which Clifford module is used, in which case,

the first example seems most natural, because of its canonical construction. However, some-

times it is necessary to restrict attention to irreducible Clifford modules, which unfortunately

cannot be constructed canonically in general. There is a mysterious period 8 pattern to

these irreducible representations, which shows up most clearly in the irreducible real rep-

resentations, but is also present in the complex case. Here only the complex irreducible

representations in even dimensions will be considered, and I will state the results without

proof.

In even dimensions, there is only one irreducible Clifford module E (up to isomorphism),

and it is graded. It splits into the direct sum of two inequivalent irreducible representations

E± for the even subalgebra. These are also irreducible representations of the Spin group.

E possesses an inner product, which in dimensions congruent to 2 mod 4, induces a pair-

ing of E+ and E−, whereas in dimensions congruent to 0 mod 4, it restricts to inner products

on E
±, which are symmetric in dimensions congruent to 0 mod 8 and skew-symmetric in

dimensions congruent to 4 mod 8.

In the case of a pairing of the two spinor bundles, the Clifford action of vectors between

them turns out to be skew-symmetric. I will make use of these spinors in Part IV.

3 Conformal geometry

Conformal geometry concerns the concept of angle without that of length. A conformal

structure on a vector space is essentially an equivalence class of inner products which have the

same notion of orthogonality. Such inner products must be related by a scalar multiple. This

section begins with the basic definitions concerning conformal structures on vector spaces and

16



manifolds. Of crucial importance here is the remarkable way that the line bundle describing

the conformal structure relates to the density bundle. This means that there is an intimate

relationship between integration on the manifold and a choice of metric, which will lie at the

heart of later arguments.

This material is all entirely elementary, and I have not followed any particular sources.

3.1 Definition. Two inner products q1, q2 on a vector space V are said to be conformally

equivalent iff there is a real number λ such that q1(v, w) = λ2q2(v, w). Given an inner product

on V , a conformal linear map with scale factor λ ∈ R+ is an invertible linear map T such

that 〈Tv , Tw〉 = λ2〈v , w〉. The group of all conformal linear maps is denoted CO(n), and

the connected component of the identity is denoted CO+(n). Since 1
λT is an orthogonal map,

CO(n) ∼= O(n) × R+, and SO(n) × R+ is the identity component. Conformal linear maps

between two inner product spaces are defined similarly.

Remarks. Note that the notion of a conformal linear map depends only on the conformal

equivalence class of the inner product. Also if two vectors have the same length in one inner

product, they have the same length in any conformally equivalent inner product. Thus any

vector v is an element of an orthogonal basis of vectors with the same length as v (called a

conformal frame), and this defines an element CV (v) of Λn(V ) which depends (up to a sign)

only on v and the conformal equivalence class of the inner product. Choosing a particular

inner product is equivalent to assigning a (positive) length to v, which is equivalent to

assigning a (positive) volume to CV (v).

A map assigning a volume to an n-vector is usually called a density and the above shows

that the set of densities is closely related to the conformal equivalence class.

3.2 Definition. A density ρ on an n-dimensional vector space V is a map from Λn(V ) to

R such that ρ(λω) = |λ|ρ(ω) for all λ ∈ R and ω ∈ Λn(V ). The set of densities on V is a

one dimensional linear space denoted |Λn∗|(V ), or |Λn∗| for short. Also define |Λ∗| = |Λ∗|(V )

to be the space of maps ρ from Λn(V ) to R such that ρ(λω) = |λ|1/nρ(ω). Note that

|Λ∗|n = |Λ∗| ⊗ . . .⊗ |Λ∗| (n times) is canonically isomorphic to |Λn∗| and so the square of the

evaluation map defines a map from Λn(V ⊗ |Λ∗|) ∼= Λn(V ) ⊗ |Λ∗|n to R.

3.3 Proposition. A conformal equivalence class of inner products on V defines an inner

product q on V ⊗ |Λ∗| and conversely.

Proof: The converse is clear: an inner product 〈. , .〉 is in the equivalence class iff there

is an element l of |Λ∗| such that 〈v , w〉 = q(v ⊗ l, w ⊗ l) for all v, w ∈ V . For the main

implication it suffices to define the associated quadratic form. If v ⊗ l is an element of

17



V ⊗|Λ∗| then CV (v)⊗ ln is defined (up to a sign) independently of the representation of v⊗ l

(here ln = l ⊗ . . . ⊗ l ∈ |Λ∗|n). Therefore q(v ⊗ l) may be defined to be the the real number

obtained by evaluating ln on CV (v) and squaring (the canonical map Λn(V ) ⊗ |Λ∗|n → R),

then taking the positive nth root.

Remark. Note that the volume form of the inner product q constructed in the above

proof corresponds to 1 ∈ R under Λn(V ⊗ |Λ∗|) ∼= R. Such an inner product on V ⊗ |Λ∗|

will be called a normalised inner product. The above proposition shows that there is a

bijection between conformal equivalence classes of inner products on V , and normalised

inner products on V ⊗ |Λ∗|.

3.4 Definition. Let M be a smooth manifold. Then the weightless tangent bundle is defined

to be the bundle TM ⊗ L where L is the trivialisable line bundle whose fibre at x ∈ M is

|Λ∗|(TxM). A conformal structure on M is a normalised metric on the weightless tangent

bundle (i.e., a smooth choice of a normalised inner product on TxM ⊗ Lx for each x ∈ M),

which (by the above proposition) defines a conformal class of inner products on each tangent

space. M is then said to be a conformal manifold. A trivialisation of L defines a Riemannian

metric on M and Ln is the density bundle |Λn∗|(M). A conformal transformation of M is a

diffeomorphism of M whose derivative is a conformal linear map at each point x ∈M .

4 Möbius transformations of Sn

I will now focus on the particular case of Sn with its usual conformal structure (i.e., the

equivalence class of the metric induced by the usual embedding of Sn in Rn+1). The following

well-known feature of Sn will be used in the following:

4.1 Definition. Let v be a unit vector in Rn+1 (so v ∈ Sn). Then stereographic projection

from Sn r {−v} to Rn is defined to be the map

x 7→
x− 〈x , v〉v

1 + 〈x , v〉

which is conformal, has an inverse

z 7→
2z + v(1 − z2)

1 + z2

and sends (n−1)-spheres in Snr{−v} to hyperplanes or (n−1)-spheres in Rn. This identifies

Sn with Rn ∪ {∞}, where ∞ denotes −v. It also shows that Sn is conformally flat, in the

sense that it has conformal charts.
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4.2 Definition. The group of Möbius transformations of Sn, M(n), is defined to be the

group generated by reflections in n-planes through the centre of Sn, together with reflections

in (n − 1)-planes in Rn (the former generate the group of spherical isometries, while the

latter fix ∞ and generate the group of Euclidean isometries of Rn). Note that since the

spherical isometries act transitively, this group is independent of the choice of v and is the

group generated by ‘reflections’ or ‘inversions’ in (n− 1)-spheres in Sn.

Clearly the Möbius transformations are all conformal. The following theorem asserts the

converse, and is given (without proof) to justify restricting attention to Möbius transforma-

tions.

4.3 Theorem (Liouville). The conformal transformations of Sn preserve (n − 1)-spheres

and for n > 2 they are all Möbius transformations.

Remarks. This is not the full strength of Liouville’s Theorem, which states that for n > 3

conformal transformations defined on a domain Ω ⊆ Sn are restrictions of Möbius trans-

formations. Of course, when n = 1 any diffeomorphism is conformal so the subgroup of

Möbius transformations is more interesting. Also note here that a dilation of Rn is confor-

mal, and hence is a Möbius transformation — indeed the composite of spherical inversions

which produce a given dilation can be constructed quite explicitly.

Discussion. The group M(n) has two components, the identity component being the group

M+(n) of orientation preserving Möbius transformations. This group turns out to be iso-

morphic to SO+(n+ 1, 1) because Sn can be represented as the space of null lines in Rn+1,1

(it is ‘the sky’ in (n + 1, 1)-dimensional space-time) and SO+(n + 1, 1) preserves the null

cone. Furthermore, in one and two dimensions, Möbius transformations can be represented

by matrices in SL(2,R) and SL(2,C). From an algebraic point of view, this corresponds to

the special isomorphisms SL(2,R) ∼= Spin+(2, 1) and SL(2,C) ∼= Spin+(3, 1), while from a

geometric point of view, it corresponds to the diffeomorphisms S1 ∼= RP 1 and S2 ∼= CP 1.

At any rate, this representation proves to be extremely convenient and a higher dimensional

generalisation would be very useful. The generalisation I present here involves describing

Spin+(n+1, 1) as a group of 2× 2 matrices, using 1.20. To do this, a pair of orthogonal unit

vectors v+, v− in Rn+1,1 will be chosen, one of each sign.

The timelike vector v− identifies Rn+1,1 with R ⊕ Rn+1 in Cln+1 (and v− is identified

with 1 ∈ R). Also, by 1.19, it may be used to identify Cl ev
n+1,1 with Cln+1. I will use this

identification when it is convenient, although it will not be strictly necessary to do so. Finally

v− may be used to identify Sn ⊆ Rn+1 with the space of null lines in Rn+1,1 ∼= R⊕Rn+1 (by

means of the translate 1 + Sn in the null cone). This is a more natural way of viewing Sn as
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a conformal manifold.

The spacelike vector v+, on the other hand, determines a distinguished origin in Sn, its

antipode −v+ being the point at infinity. It also gives rise to the the following representation

of Sn.

4.4 Lemma. Γev
n+1 acts transitively on Sn by rotations and the stabiliser of v+ is a copy of

Γev
n . Thus Sn ∼= Γev

n+1/Γ
ev
n

∼= Spin(n+ 1)/Spin(n) by the orbit-stabiliser theorem.

This result is immediate, and generalises the isomorphisms S1 ∼= S1/S0 and S2 ∼= S3/S1.

I will now turn to a related way a viewing Sn.

The projective representation Consider the map
(
w

λ

)
7→

(λ2 + w2) + 2λw + v+(λ2 − w2)

λ2 + w2
=

(1 + v+)λ2 + 2λw + (1 − v+)w2

λ2 + w2

where λ ∈ R and w ∈ Rn = v⊥+ ⊆ Rn+1 are not both zero. When λ = 1 this map is the inverse

of stereographic projection from the copy of Sn in the null cone, so thinking of z as w/λ, one

sees that this is a projective representation of Sn, the preimage of ∞ being {
(w
0

)
: w 6= 0}.

The crucial observation is that this works for much more general pairs
(w
λ

)
.

4.5 Definition. Let Γ =
{(y

x

)
= x + yv+ = φ ∈ Λev

n ⊕ (Λod
n v+) r {0} : yx̃ ∈ Rn

}
and define

P : Γ → Sn by

φ =

(
y

x

)
7→

(1 + v+)xx̃+ yx̃+ xỹ + (1 − v+)yỹ

x̃x+ ỹy
=

1

x̃x+ ỹy

(
(x+ y)(1 + v+)(x̃+ ỹ)

)

=
(
φ(1 + v+)φ̃

)/
φ̃φ

= 1 + φv+φ
−1 = ss̃

/
〈s̃s〉,

where s = φ 1
2(1 + v+) (see section 2). Note that yx̃ = xỹ and that v+ commutes with

x, but anticommutes with y. Also note that if x 6= 0 then P
(y
x

)
= P

(y/x
1

)
, and projects

stereographically back to z = y/x ∈ Rn.

4.6 Lemma. Γ = Γev
n+1, so P comes from the action on Sn described in Lemma 4.4, except

that here Sn has been translated so that it lies in the null cone (since P : φ 7→ 1 + φv+φ
−1 ∈

1 + Sn ⊆ R ⊕ Rn+1).

Proof: It is clear that Γ ⊆ Γev
n+1, since if x+ yv+ ∈ Γ, then (x+ yv+)x̃x = (xx̃v+ + yx̃)xv+,

a product of vectors. Conversely any φ ∈ Γev
n+1 can be written φ = x+yv+ with x, y ∈ Cln ⊆

Cln+1. But the projective representation is surjective, so there exists χ = λ + wv+ ∈ Γev
n+1

with φv+φ
−1 = χv+χ

−1. Therefore φ and χ differ by t ∈ Γev
n , so x = λt, y = wt and it follows

that φ ∈ Γ.
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Remark. The above shows that Sn can be represented as ‘Λev
n P

1’, the projective space of

‘Λev
n -subspaces’ of Λev

n+1, or as a projective space of spinors in Γev
n+1e.

It remains to describe the action of ψ ∈ Spin+(n + 1, 1) on the null cone (i.e., y 7→

ψy(ψ∗)−1) in terms of 2 × 2 matrices, a result which goes back to Vahlen [78] (although

the modern incarnation comes from Ahlfors [1]). To do this, I will use the fact, immediate

from 4.5, that the action induced on Γev
n+1e is φe 7→ ψφe, where e is the idempotent 1

2(1+v+)

and I have freely identified ψ with an element of Cl n+1. I shall also make use of Theorem 1.20

of section 1.

4.7 Theorem. Write ψ in Cl evn+1,1 as ψ = r + sv+ + tv− + uv+v− with r, u ∈ Cl evn and

s, t ∈ Cl od
n , so that the corresponding element of Cl n+1 is r + t+ (u+ s)v+.

Recall from Theorem 1.20 that U : ψ 7→
[ r−u s+t

s−t r+u

]
is an isomorphism from Cl evn+1,1 to the

algebra of
[

a b
c d

]
with a, d ∈ Cl evn and b, c ∈ Cl od

n .

Under this isomorphism, Γev
n+1,1 consists of matrices satisfying the following conditions:

(i) a, d ∈ Λev
n and b, c ∈ Λod

n

(ii) ab̃, cd̃, bd̃, ac̃ ∈ Rn

(iii) d̃a− b̃c ∈ R∗.

Furthermore ψ(x+ yv+)e =
[ r−u s+t

s−t r+u

](y
x

)
e, and the determinant d̃a− b̃c gives the norm ψψ.

Thus SL(Λev
n ⊕ Λod

n v+), the subgroup of those matrices with determinant one, is isomorphic

to Spin+(n+1, 1). These matrices act by Möbius transformations on Sn, and Spin+(n+1, 1)

is a two-fold cover of M+(n).

Proof: The image GL(Λev
n ⊕ Λod

n v+) of Γev
n+1,1 consists of products of matrices of the form

[
β w
w α

]
, with α, β ∈ R and w ∈ Rn, and such products preserve the defining properties of

(y
x

)
∈ Γev

n+1: for example (βy + wx)x̃x = (βyx̃ + wxx̃)x ∈ Λev
n and (βy + wx)( ˜wy + αx) =

βyỹw + wxỹw + βαyx̃+ αwxx̃ ∈ Rn. Now observe that since v+e = e, the following holds:

(r + t+ uv+ + sv+)(x+ yv+)e

=
(
(rx+ uxv+) + (ryv+ − uy) + (tx+ sxv+) + (tyv+ − sy)

)
e

=
(
(r + u)x+ (r − u)yv+ + (t+ s)xv+ + (t− s)y

)
e.

This means that the action of GL(Λev
n ⊕Λod

n v+) on Γev
n+1 by matrix multiplication corresponds

to the action of Γev
n+1,1 on the null cone by conjugation. Matrices in this group satisfy

conditions (i)–(iii) since if
[

a b
c d

]
satisfies the three conditions, so does

[
a b
c d

][
β w
w α

]
: for example

(βa + bw)b̃b = (βab̃ + bwb̃)b ∈ Λev
n . Conversely, the following decompositions show that any
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matrix satisfying the three conditions is in GL(Λev
n ⊕ Λod

n v+):

[
a b

0 d

]
=

[
1 bd−1

0 1

] [
d 0

0 d

] [
d−1a 0

0 1

]

[
a b

c d

]
=

[
1 ac−1

0 1

] [
0 −c

c 0

] [(
ãd−c̃b

c̃c

)
0

0 1

] [
1 c−1d

0 1

]
,

the second decomposition being for c 6= 0. Note that d−1a = d̃a/(d̃d) and that c
(

c̃b−ãd
c̃c

)
=

b− c̃−1ãd = b−ac−1d (because ac−1 ∈ Rn). These decompositions also show that matrices in

GL(Λev
n ⊕Λod

n v+) act by Möbius transformations on Sn. The diagonal matrices are rotations

and dilations of Rn, the upper triangular matrices are translations of Rn, and if c = fw with

f ∈ Γev
n and w ∈ Rn, then

[
0 −c
c 0

]
=
[ f 0

0 f

][
0 −w
w 0

]
, where the final matrix acts like wv+, which

is a composite of two reflections. All sense-preserving Möbius transformations are obtained

as elements of Spin+(n+ 1, 1) since even products of reflections (either in Rn or through the

origin of Sn) are in the latter group. Finally the elements of Spin+(n + 1, 1) preserve the

orientation of the null cone and null vectors span, so the kernel of the homomorphism into

M+(n) is ±1.

4.8 Notation. The Möbius transformation represented by the matrix
[

a b
c d

]
acting on

(v
u

)

will be written z 7→ az+b
cz+d , where z = v/u ∈ Rn ∪ {∞}.

The representation of Möbius transformations of Sn as fractional linear transformations

is very useful in practice. It can be used, for example, to show that the Dirac operator on the

sphere is conformally invariant (see e.g. [21]). The above line of proof is a minor modification

of [21], which in turn was taken from [36] pp. 275–282. In my formulation of this result,

I have tried to maintain as many geometric distinctions as possible. Consequently, the 1-1

periodicity isomorphism I use is slightly different from that in [36], so that the grading of

Clp+1,m+1 would be reflected in a graded structure for the 2× 2 matrices. Also, it is possible

to introduce a third distinguished vector (analogous to the real axis in the plane), and obtain

a more direct generalisation of the two dimensional result, but such a choice seems artificial

and unnecessary.

Finally, note that the above theorem applies with only minor changes, to other quadrics

(i.e., spaces of null lines in Rp,m for arbitrary p,m)—see for example Porteous [68]—but I

shall only need the Euclidean version.
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Part II

The Analysis of the Dirac Operator

On a Riemannian manifold with a spin structure, there is an important and natural differential

operator: the Dirac operator. This can be defined directly using spin representations E+ and

E− of the group Spin(n), together with an action of Rn from E+ to E−. However, in some

ways such a definition is too direct because it obscures the natural algebraic, geometrical, and

analytical context for the Dirac operator. More precisely, the algebra here is Clifford algebra,

the geometry is conformal geometry and the analysis is harmonic analysis. This claim can

be justified briefly as follows. Firstly, the action of Rn from E+ to E− can be interpreted

more naturally as the restriction of a representation of the Clifford algebra on some Clifford

module. Secondly, by assigning conformal weights n±1
2 to the induced spinor bundles E±,

the Dirac operator can be made conformally invariant. Thirdly, the Dirac operator is a

square root of a Laplacian (second order elliptic scalar differential operator), and so it is an

analogue, for arbitrary spin manifolds of any dimension, of the Cauchy-Riemann operator,

which is intimately related to harmonic analysis in the plane.

My aim in this Part is to present a thorough study of the analysis of the Dirac operator

on manifolds with boundary, with particular reference to conformal invariance, and also to

the potency of Clifford algebra as a language in which to express the results. The analysis of

the Dirac operator is presented here in a way that directly generalises some of the approaches

used for the Cauchy-Riemann equations. In flat space, the Dirac operator lies at the heart of

the rapidly developing fields of Clifford and hypercomplex analysis (see for example, Gilbert

and Murray [36], and Brackx, Delanghe and Sommen [17]). Here I would like to emphasise

that this function theoretic point of view on the Dirac operator is also extremely useful on

arbitrary manifolds.

It is well known that any elliptic pseudodifferential operator on a manifold with boundary

has many of the properties of the Cauchy-Riemann equations on the unit disc, using ideas

developed by Seeley [73]. In their recent book [15], Booß and Wojciechowski show that these

ideas are particularly natural in the case of Dirac operators, and use them to present an

extensive study of elliptic boundary problems for Dirac operators. However, for one of the

main parts of their proofs, they follow the technical computations of Seeley. Here I wish to

demonstrate that there is another approach. Indeed, using only integral Sobolev spaces, no

pseudodifferential operators, and very few coordinate computations, I present proofs of the

crucial boundary ellipticity properties of Dirac operators. One remarkable aspect of these

proofs, which apply to arbitrary Dirac operators on arbitrary (Riemannian or conformal spin)
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manifolds, is that they are recognisable even in some of the details as generalisations of proofs

used in complex analysis. In particular the line of proof in section 10, is based quite closely

on a recent textbook on complex analysis in the plane (Bell [11]). This is not to say that

generalising these proofs is completely trivial, since one needs to have at ones disposal potent

tools such as the Bochner-Weitzenböck and Green formulae. (I present these tools in the first

four sections, following Lawson and Michelsohn [56], Roe [69], and Gilbert and Murray [36].)

As a consequence of the methods used, many of the results obtained along the way are

direct analogues of classical results in complex analysis and I shall therefore simply name

them after their classical counterparts. The results generalised include Cauchy’s theorem,

the Cauchy integral formula, the Borel-Pompieu representation theorem, the Plemelj formula,

the Kerzman-Stein formula, and the L2-boundedness of the Hilbert and Cauchy transforms.

Of course, most of these results are already known in some form or other, and indeed many

are known to have generalisations for arbitrary elliptic operators, but there is some novelty

in the approach taken here. For although in some sense the proofs are not original in that

they follow complex analytical ones such as those of Bell [11], to the best of my knowledge,

these methods have not been used in this context before, a context which, I believe, sheds

light upon the 2 dimensional results. Furthermore, I claim that these methods are not only

illuminating, but also useful, in that they present the tools in a way that makes them easy

to apply. To illustrate this, I develop some of the further analytical properties of the Dirac

operator in section 11.

The final section is devoted to an application of these tools in conformal geometry. On

a conformal spin manifold, the Dirac operator is conformally invariant in such a way that

the boundary values of its solutions lie in a conformally invariant Hilbert space, which is a

generalisation of the Hardy space H2 of harmonic and complex analysis. The fact that a

genuine L2-norm is obtained ‘for free’ leads to a trivialisation of the density bundle on the

interior of the manifold. The result of this analysis is that given a conformal structure on

a compact spin manifold with boundary, the Dirac operator defines a conformally invariant

metric on the interior, which is complete and has negative scalar curvature. In the case of

the unit ball, it reduces to the Poincaré metric. This surprising result may have applications

in the theory of hypersurfaces in conformal manifolds.

5 Dirac operators and conformal invariance

Let M be a Riemannian manifold. Then the Clifford bundle Cl(M) is the vector bundle

whose fibre at x ∈ M is the Clifford algebra Cl(TxM). Using the metric this is isomorphic

to Cl(T ∗
xM) and hence, as a vector space, it is isomorphic to ΛT ∗

xM .
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Now suppose E is a bundle of Clifford modules on M , so that on each fibre Ex there is

a Clifford action c : Cl(T ∗
xM) ⊗ Ex → Ex, written c(α ⊗ s) = c(α)s. Let DE be a covariant

derivative on E such that the Clifford action is parallel, in the sense that DE
X(c(α ⊗ s)) =

c(DXα⊗ s) + c(α⊗DE
Xs), where D is the Levi-Civita covariant derivative.

5.1 Definition. The (generalised) Dirac operator associated to (E,DE) is the differential

operator 6∇ = c ◦DE : E → E.

Slightly more generally, if E = E− ⊕ E+ is a bundle of graded Clifford modules, then

there are chiral Dirac operators 6∇± : E∓ → E±. Even if E is ungraded, the notation E± =

E provides a useful way of distinguishing between the domain and codomain of a Dirac

operator. The Dirac operators between E± will then be “nonchiral” if there is a distinguished

equivariant isomorphism E+ ∼= E− identifying them.

A section in the kernel of a Dirac operator will be called Dirac harmonic. Other terms in

common use are monogenic or Clifford analytic functions, and harmonic spinors.

The bundle E will also generally be assumed to possess a (fibrewise) inner product com-

patible with the covariant derivative, the Clifford action, and (in the chiral case) the grading.

This induces inner products on the bundles E±. However it is sometimes of interest to work

instead with a nondegenerate pairing of E+ and E−. I will not consider this possibility ex-

plicitly,5 although all the constructions work in this case, which in many ways is like the

nonchiral case.

5.2 Historical remarks. After the Cauchy-Riemann operator, perhaps the first Dirac oper-

ator to be introduced was the quaternionic ∇ operator of Hamilton and Tait (a Dirac operator

in 3 dimensions). The associated function theory of quaternions was not explored until the

work of Fueter [33] in the thirties. The Dirac operator in (3, 1)-dimensional space-time was

introduced by Dirac [28], who also took the key step of identifying the spinor transformation

law with respect to which the operator is conformally invariant (see below). Brauer and Weyl

generalised his construction to arbitrary dimensions [18]. Perhaps the earliest works on the

function theory of Dirac operators in Euclidean space of arbitrary dimension are Bosshard [16]

and Haefeli [42], but more intensive studies began in the sixties, when Dirac operators were

rediscovered by Delanghe [26], Gay and Littlewood [34], Hestenes [45], Iftimie [50], and Stein

and Weiss [76]. Around the same time, the importance of the Dirac operator in differen-

tial geometry was made evident by the Atiyah-Singer index theorem [5] and the work of

Lichnerowicz [58].

5Except in the occasional footnote.
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5.3 Examples.

Let E be the bundle ΛT ∗M . The action of the Clifford algebra on itself induces a Clifford

module structure on the fibres of E. The Levi-Civita connection then induces a (generalised)

Dirac operator on E, which is easily seen to be the d + δ operator, where d is the exterior

derivative, and δ = −d∗ is the exterior divergence. This will be called the Hodge-Dirac

operator.

In the case that M is a spin manifold, there is an extremely important special case of the

Dirac operator construction. For if E is a (possibly graded) Clifford module for Cl n, then by

restriction it is a representation of Spin(n) and therefore may be attached to M using the

spin structure to give spinor bundles E± (which are isomorphic in the nonchiral case). The

Levi-Civita connection induces a compatible covariant derivative, and hence there is a Dirac

operator, which will be called the Dirac operator on M (associated to the Clifford module

E). The significance of Dirac operators, as opposed to generalised Dirac operators, is that

they are conformally invariant in a very interesting way.

5.4 Definitions. LetM be a conformal spin manifold, so thatM has a principal Spin(n)×R+

bundle Γ(M), and let E be a Clifford module. Then associated to Γ(M) are the following

vector bundles:

(i) the tangent bundle, TM ∼= Γ(M) ×ρ1 Rn,

where ρ1 is the standard representation of Spin(n)×R+ on Rn (i.e., (a, λ) : x 7→ λaxa−1)

(ii) the weightless tangent bundle, TM ⊗ L ∼= Γ(M) ×ρ2 Rn,

where ρ2 is the spin representation with R+ acting trivially (i.e., (a, λ) : x 7→ axa−1)

(iii) the Clifford bundle, Cl(M) ∼= Γ(M) ×ρ3 Cln,

where ρ3 is the extension of ρ2 to Cln (i.e., the adjoint action of Spin(n) on Cln)

(iv) the density bundle with weight w, Lw ∼= Γ(M) ×µw R,

where µw is the action (ψ, λ) : α 7→ λ−wα

(v) the spinor bundles with weight w, E±

w
∼= Γ(M) ×σw E

±,

where σw is the action (a, λ) : ψ 7→ λ−waψ.

Because ρ3 extends ρ2, and acts by algebra automorphisms on Cln, it is clear that Cl(M)

is a bundle of algebras, whose fibre Cl(M)x is the Clifford algebra of TxM ⊗ Lx with its

normalised inner product. Ln is the density bundle of M , which is the bundle of n-forms on

M because M is oriented, and L1 = L is the 1-density bundle. The Clifford action on E is

spin invariant, and so, for each w, Ew is a bundle of modules for Cl(M), and therefore there

is a Clifford action cw : T ∗M ⊗ E∓

w → E±

w+1. If E is equipped with an inner product such

that vectors are self-adjoint, then this inner product is spin invariant and so the pointwise

inner product of a section of Ew1 with a section of Ew2 is a section of Lw1+w2 , tensored with
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a trivial bundle (e.g. C or Cln) if the inner product is not real valued.

It follows from the above that, using the Levi-Civita covariant derivative of a metric in

the conformal class, the Dirac operator may be defined as an operator from E−

w to E+

w+1 with

conformally invariant symbol cw. Furthermore, provided that the weight w is chosen correctly,

the Dirac operator itself is independent of the choice of Levi-Civita covariant derivative, and

is therefore canonically associated to the conformal spin structure.

To see this, suppose D and D̃ are Levi-Civita covariant derivatives on the tangent bundle

resulting from a metric g(. , .) and a conformally equivalent metric e2σg(. , .) respectively,

where σ is a smooth real-valued function.

5.5 Lemma. The covariant derivatives are related by the formula

D̃XY = DXY + dσ(X)Y + dσ(Y )X − g(X ,Y )∇σ,

where ∇σ is the gradient of σ with respect to g(. , .).

Proof: Simply apply the product rule for directional differentiation to the formula for the

Levi-Civita covariant derivative. Note that the last term can also be written using the other

metric, provided that the gradient is also taken with respect to this metric.

5.6 Corollary. The difference D̃ −D ∈ C∞(M,T ∗M ⊗ End(TM)) is given by

D̃X −DX = dσ ⊗X − g(X , .) ⊗∇σ + dσ(X)I ∈ co(TM) ⊆ End(TM),

where co(TM) = Γ(M)×ρ co(n) and ρ is the adjoint action of Spin(n)×R+ on its Lie algebra.

From this transformation rule for the Levi-Civita covariant derivative, it is easy to estab-

lish the following important result (which appears, for example, in Hitchin [47]).

5.7 Theorem. The Dirac operator does not depend upon the choice of metric in the confor-

mal equivalence class. More precisely cw ◦ (D̃E − DE) = 0 iff w = n−1
2 , where D̃E , DE are

the induced covariant derivatives on Ew.

Proof: The tangent bundle is attached to M using the action of Spin(n) × R+ on Rn given

by v 7→ λava−1, and so the action of its Lie algebra spin(n)⊕R (obtained by differentiating)

is v 7→ ξv− vξ+µv (where ξ ∈ Cl 2n
∼= spin(n) and µ ∈ R). Hence the element of spin(M)⊕R

defined by D̃X −DX is 1
4(X∇σ − (∇σ)X) + dσ(X). Now the spinor bundle Ew comes from

the representation ψ 7→ λ−waψ, with derivative ψ 7→ ξψ − wµψ. Therefore

(
D̃E

X −DE
X

)
φ =

1

4
c
(
X∇σ − (∇σ)X

)
φ− wdσ(X)φ =

1

2
c
(
X∇σ − g(∇σ ,X)

)
φ−wdσ(X)φ,

and so (contracting the X variable with cw)

cw ◦
(
D̃E −DE)φ =

1

2
cw
(
ndσ − dσ

)
φ− wcw(dσ)φ =

(
n− 1

2
−w

)
cw(dσ)φ.
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This is zero for all σ iff w = n−1
2 .

Note. It is quite remarkable that the weights which appear out of the above calculations

are n−1
2 and n+1

2 : for, as observed in 5.4, the inner product on E induces a product between

sections of Ew1 and Ew2 giving sections of Lw1+w2 , and so the product of two sections of

En−1
2

is a section of Ln−1, and the product of a section of E n−1
2

with a section of En+1
2

is

a section of Ln. This is interesting because the line bundles Ln and Ln−1 are precisely the

line bundles required for integration over the manifold and its boundary, as described in

the next section.

The aim now is to develop the analytical properties of generalised Dirac operators, in

such a way that in the case of the Dirac operator, the formulae obtained are transparently

conformally invariant. To do this some notation will be useful.

5.8 Notation. In the conformally invariant case, E± will be used for the weight n−1
2 , and

Ê± for the weight n+1
2 (so the Dirac operator acts from E− to Ê+). The Ln or Ln−1 valued

pairing of spinors will be denoted (. , .). In the case of generalised Dirac operators, it will be

assumed that the bundle of Clifford modules has a compatible inner product, and (. , .) will

denote this inner product, multiplied by the natural section of the appropriate (trivialised)

density bundle. From time to time it will be necessary to have a metric on the manifold.

The hatted and unhatted bundles are identified by such a metric, as they are for generalised

Dirac operators. Finally, for brevity, the chiral notation will sometimes be omitted.

6 Integration and the Green formula

Following Berline, Getzler and Vergne [12], I will define integration in terms of densities,

rather than n-forms, although they are equivalent in the orientable case. The divergence

formula below is the density version of Stokes theorem.

6.1 Definition/Proposition. Let M be an n-manifold and C∞
c (M,Ln) the space of smooth

sections of Ln with compact support. Then there is a unique linear functional
∫

M
: C∞

c (M,Ln) → R

which is invariant under diffeomorphisms and agrees in local coordinates with the Lebesgue

integral. If ρ ∈ C∞
c (M,Ln) then

∫
M ρ =

∫
x∈M ρx will be called the integral of ρ. Furthermore

if X is a vector field and div(X ⊗ ρ) is defined to be the Lie derivative LXρ, then the

Divergence Formula holds:
∫

M
div(X ⊗ ρ) =

∫

∂M
〈X, ρ〉,
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where the boundary integrand is the contraction of X with ρ along ∂M , a section of Ln−1

over ∂M which may be defined as follows. Let v be any outward pointing tangent vector

field along ∂M , and α the section of T ∗M along ∂M such that α(v) = 1 and kerα = T (∂M ).

Then 〈X, ρ〉x = αx(Xx)ρx(vx,−)|∂M . Note that if M is a Riemannian manifold then the

contraction may be written g(X , ν)ρ(ν,−), where ν is the outward unit normal. Also note

that if D is a torsion-free covariant derivative then div(X ⊗ ρ) is the trace of D(X ⊗ ρ).

6.2 Green Formula. The Dirac operator is formally skew-adjoint, in the sense that the

following Green Formula (integration by parts) holds:

∫

M

(
6∇+φ , ψ

)
+

∫

M

(
φ , 6∇−ψ

)
=

∫

∂M
(c(ν)φ , ψ) .

Here φ, ψ are (compactly supported) sections of E−, E+ (of weight n−1
2 ), and ν is the (weight-

less) outward normal vector.6

Proof: First note that both sides are well defined, since the products
(
6∇+φ , ψ

)
and

(
φ , 6∇−ψ

)

are sections of Ln, whereas the product of c(ν)φ and ψ is a section of Ln−1 (since in the

conformally invariant case, ν is weightless). To establish the equality, suppose 6∇ = c ◦ D,

where D is compatible with the pairing of spinor fields and with Clifford multiplication

c = cn−1
2

. The result will follow from the divergence formula applied to the vector field

density (c(.⊗ φ) , ψ). Now since both (. , .) and c are covariant constant,

D (c(.⊗ φ) , ψ) = (c(.⊗Dφ) , ψ) + (c(.⊗ φ) , Dψ)

= (c(.)Dφ , ψ) + (φ , c(.)Dψ) .

The divergence is obtained by taking trace of this equation. To calculate the trace of the

right hand side, observe that 6∇φ = c(Dφ) = tr c(.)Dφ. Thus the resulting equation is:

div (c(.⊗ φ) , ψ) = ( 6∇φ , ψ) + (φ , 6∇ψ) .

The theorem is now immediate from the divergence formula, since contracting (c(. ⊗ φ) , ψ)

with ν gives the boundary integrand (c(ν)φ , ψ).

6.3 Corollary (Cauchy’s Theorem). If 6∇φ = 6∇ψ = 0 on M , then
∫
∂M (φ , c(ν)ψ) = 0.

If the manifold has empty boundary, then it is possible to give a more direct meaning to

the skew-adjointness property implied by the Green formula. More generally, one can work

with spaces of compactly supported sections which vanish on the boundary. These spaces

will be denoted by C∞
0 . A very general way to define an adjoint operator is as the transpose

between dual spaces. This motivates the introduction of distributions.

6In the case of a pairing of E
+

and E
−

, there are separate Green formulae for 6∇
+

and 6∇
−

.
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6.4 Definition. The space of distributional sections of a bundle E, denoted D(M,E) is de-

fined to be the continuous dual of C∞
0 (M,E∗⊗Ln) with respect to the C∞-topology induced

by the family of seminorms sup
y∈M

|Dkf(y)| for k ∈ N, where metrics for TM and E and a

covariant derivative on E have been chosen (the topology is independent of these choices and

C∞
0 (M,E∗⊗Ln) is the underlying topological vector space of a complete metric space). The

elements of D(M,E) are called distributions and are thought of as being (generalised) func-

tions on M with values in E, since any s ∈ C∞(M,E) determines a functional
∫
y∈M 〈s(y) , .〉,

where 〈. , .〉 is the Ln valued contraction of E∗⊗ Ln with E. Similarly the continuous dual

of C∞
0 (M,E) is the space D(M,E∗⊗ Ln). For each y ∈ intM and θy ∈ E∗

y, the functional

θy ◦ δy : f 7→ θy(f(y)) is continuous and so is a distribution. Thus the delta function δy is in

D(M,E∗⊗ Ln) ⊗Ey.

6.5 Proposition. In the case of a spinor bundle, (E−)∗⊗Ln ∼= Ê−, so the dual of C∞
0 (M,E−)

is D(M, Ê−), with C∞(M, Ê−) embedded into D(M, Ê−) as the linear functionals
∫
M (φ , .),

and similarly for the positive spinors.7 Therefore the Dirac operators 6∇± : C∞
0 (M,E∓) →

C∞
0 (M, Ê±) are formally skew-adjoint, in the sense that the adjoint (transpose) of 6∇+, when

restricted to the smooth spinor fields (of weight n−1
2 ) vanishing on the boundary, is −6∇−.

Proof: The first part is established as follows: certainly there is a pairing of E− ⊗ L−n and

Ê− = E− ⊗L. Choosing a metric identifies the two spaces with a single inner product space,

and the pairing becomes the inner product, so the pairing is nondegenerate. The second part

of the proposition now follows from the Green formula, since the boundary term in the Green

formula is zero.

Therefore 6∇+ : C∞(M,E−) → C∞(M, Ê+) ⊆ D(M, Ê+) extends to a linear operator

D(M,E−) → D(M, Ê+) (which may also be thought of as (−6∇−)∗, the transpose of the

formal adjoint).

The following simple result illustrates how a formal adjoint provides analytical information

about an operator.

6.6 Proposition. Let A : V → W be a linear map between inner product spaces and let A∗

be adjoint to A i.e. 〈Av ,w〉 = 〈v ,A∗w〉. Then the orthogonal complement of imA in W

is kerA∗. If W is complete and kerA∗ is closed (the latter holds, for example, if A∗ is

continuous or the kernel is finite dimensional) then W = kerA∗ ⊕ imA.

Proof: w ∈ (imA)⊥ iff 〈v ,A∗w〉 = 〈Av ,w〉 = 0 for all v ∈ V . Taking v = A∗w shows that

this holds iff A∗w = 0. For the last part, consider the bounded quotient map between Hilbert

spaces W →W/ kerA∗. Its adjoint is injective with image (kerA∗)⊥ = imA.

7In the case of a pairing of E
+

and E
−

, (E
−

)∗⊗ Ln ∼= Ê
+
.
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There are two difficulties with this proposition. Firstly, the smooth sections do not form

a Hilbert space with respect to the L2-norm, and secondly, the proposition does not state

whether the image is closed. To remove these difficulties, some Hilbert spaces of sections

need to be defined and the elliptic theory of the Dirac operator must be studied.

7 Elliptic theory for the Dirac operator

The Dirac operator belongs to a class of operators called elliptic operators, which are

‘almost’ invertible. More precisely, a kth order differential operator from E to F is elliptic iff

its symbol SkT ∗⊗E → F defines an invertible map E → F for each nonzero tangent vector

in T . The symbol of a scalar second order elliptic differential operator is therefore a metric

on M , and such operators have been very thoroughly studied as the basic examples of elliptic

operators, because there are no scalar first order elliptic operators, except on one dimensional

manifolds. There are, though, plenty of first order (nonscalar) elliptic operators, and they

can sometimes be easier to analyse. The Clifford algebra formalism is ideally suited for

studying invertible actions of nonzero tangent vectors, and the first order operators obtained

are precisely the Dirac operators. Because of the Clifford relation x2 = |x|2, the square of

a Dirac operator turns out to be a second order elliptic operator with scalar principal part.

This relationship between first and second order operators enhances the understanding of

both. It is also the key to the analysis of Dirac operators. For most of this section, M will

be a Riemannian manifold i.e., if necessary a metric in the conformal class will be used.

The following theorem is now very well known [36] [56] [69], although the simple coordinate-

free formulation of the proof given below does not seem to appear in the literature. However,

despite the apparent simplicity of this theorem, it will prove to be extremely powerful tool.

7.1 Theorem (Bochner-Weitzenböck). Let 6∇ be the generalised Dirac operator c ◦ DE,

where DE is compatible with the Clifford action and inner product on E. Then

6∇2 = ∆E + c(2) ◦RE ,

where ∆E = trDE◦DE is the covariant Laplacian on E, REφ is the curvature Alt(DE◦DEφ)

and c(2) is the action of Λ2T ∗M on E.8

Proof: The compatibility of DE with c means that DE ◦ c = (id ⊗ c) ◦ DE and therefore

6∇2 = c ◦ (id ⊗ c) ◦ DE ◦ DE . The result now follows by splitting into antisymmetric and

symmetric parts, since on the one hand, c ◦ (id ⊗ c)(Alt(DE ◦ DEφ)) = c(2)(REφ), while

8Formulas of this form have come to be known as Weitzenböck formulas, although their importance stems

from the work of Bochner, see e.g. [13].
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on the other hand, because c ◦ (id ⊗ c)( 1
2 (α ⊗ β + β ⊗ α) ⊗ φ) = g(α , β)φ, it follows that

c ◦ (id ⊗ c)(Sym(DE ◦DEφ)) = tr(DE ◦DEφ).

The operator trDE appearing in the above formula is often called the divergence (on

spinors). It is related to the covariant derivative as follows.

7.2 Definition/Proposition. The linear differential operator (DE)∗ : T ∗M ⊗E → E de-

fined by the formula (DE)∗ = − trDE is the formal adjoint of DE in the sense that

〈φ , trDE(α⊗ ψ)〉 + 〈DEφ , α⊗ ψ〉 = div(〈φ , ψ〉]α).

7.3 Corollary to 7.1. There is the following equation between pointwise inner products:

〈6∇φ , 6∇ψ〉 + div〈6∇φ , c(.)ψ〉 = 〈−6∇2φ , ψ〉 = 〈DEφ ,DEψ〉 − 〈c(2) ◦REφ , ψ〉 − div〈DEφ , ψ〉.

The Bochner-Weitzenböck formula will now be applied to the case of the Dirac operator

associated to a Clifford module E, with the induced covariant derivative.

7.4 Theorem (Lichnerowicz [58]). The square of the Dirac operator is given by the for-

mula 6∇2 = ∆E − 1
4κ, where κ is the scalar curvature of the metric.

Proof: Since the covariant derivative on the bundle of spinors is associated to the Levi-Civita

connection via the spin representation, the curvature RE is given in an orthonormal basis by

the formula REφ = −1
2

∑
k<l g(Rek , el)c(ekel), where R is the curvature of the Levi-Civita

connection. Hence c(2) ◦ RE is given by

−
∑

i<j

c(eiej)
1

2

∑

k<l

g(Rei,ej
ek , el)c(ekel) = −

1

8

∑
g(Rei,ej

ek , el)c(eiejekel).

By the Bianchi symmetry (first Bianchi identity with zero torsion), terms with i, j, k distinct

cancel, and so (writing Rijkl for g(Rei,ej
ek , el)) the formula becomes − 1

8

∑
(Rijilc(eiejeiel) +

Rijjlc(eiejejel)) = −1
8

∑
(Rjiilc(ejel) + Rijjlc(eiel)), since e2i = e2j = 1 and Rijil = −Rjiil.

Exchanging i and j in the first term and noting that Rijjl = Rljji, gives − 1
4

∑
Rijjlc(eiel) =

−1
4

∑
Rijji = −1

4κ.

7.5 Corollary (Lichnerowicz vanishing theorem). Let M be a boundaryless Rieman-

nian spin manifold with nonnegative scalar curvature. Then every Dirac harmonic function

is parallel, and identically zero if the scalar curvature is somewhere positive.

Proof: Observe that

∫

M
〈Dφ ,Dφ〉 +

1

4

∫

M
κ〈φ , φ〉 =

∫

M
〈−6∇2φ , φ〉,

which is zero if φ is Dirac harmonic. Since κ is nonnegative, Dφ = 0 from which the result

follows.
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This vanishing theorem is already a clue as to the relevance of the Bochner-Weitzenböck

formula to the analysis of the Dirac operator. Notice that a similar vanishing theorem can

be proved for generalised Dirac operators, with stronger curvature assumptions. This kind

of result goes back to Bochner [13].

In order to proceed further, the context for differential operators on manifolds needs to

be introduced.

7.6 Definition. For k ∈ N, the k-jet at y ∈M of a section s ∈ C∞(M,E), written jk(s)y, is

the projection of s onto the quotient space J k(E)y = C∞(M,E)/Zk(y,E), where Zk(y,E) =

{s : s(y) = ds(y) = ... = dks(y) = 0}. A linear map A : C∞(M,E) → C∞(M,F ) is said to be

a differential operator of order k iff jk(s)y = 0 =⇒ As(y) = 0. In fact the spaces J k(E)y are

fibres of a vector bundle Jk(E), jk(s) is a section of this vector bundle and A is a differential

operator of order k iff it is given by a bundle homomorphism J k(E) → F . Heuristically,

jk(s)y encodes the derivatives of s at y up to order k, and so a differential operator of order

k is an operator depending only on the local values of the first k derivatives of a section.

Note also that a differential operator A is continuous with respect to the C∞-topology and

thus induces an transpose operator A∗ : D(M,F ) → D(M,E). Given metrics on E and F ,

this restricts to an adjoint for A on smooth sections, which is a differential operator whose

transpose extends A to distributions.

7.7 Definition. Let E be a vector bundle associated to Γ(M). Choose a metric in the

conformal class, which defines a covariant derivative D : C∞(M,E) → C∞(M,T ∗M⊗E). Also

choose a metric onE and define spaces of sections Lp(M,E), for 1 6 p 6 ∞, consisting of those

(not necessarily smooth) sections s : M → E with ||s||Lp = (
∫
y∈M |s(y)|p)1/p <∞. Define the

Sobolev space Lp
j(M,E) to consist of those sections s in Lp(M,E) such that As ∈ Lp(M,E)

for all differential operators A of order k. This space does not depend on the metric and

neither does its topology, which (using a metric) is defined by a norm:

||s||Lp
j =




k∑

j=0

||Djs||Lpp




1/p

Furthermore L2
j is a Hilbert space.

A linear map A : C∞(M,E) → C∞(M,F ) is said to have order 6 k iff it extends to

distributions and is continuous from Lp
j (M,E) to Lp

j−k(M,E) for j > k and 1 6 p 6 ∞. A

differential operator of order k has order 6 k provided that the associated bundle homomor-

phism is bounded (which will always be the case on a compact manifold).

These tools will now be used, together with Bochner-Weitzenböck, to begin the elliptic

analysis of the Dirac operator. For the remainder of this section M will be compact and
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boundaryless. Most of the properties of elliptic operators follow from a Sobolev norm in-

equality called an elliptic estimate. One of the great features of Dirac operators is that this

estimate is very easy to establish. Note that the proof below (based on Roe [69]) involves no

technical coordinate chart computation, no Fourier analysis, and no parametrix machinery.

7.8 Proposition (G̊arding’s inequality/elliptic estimate). Choose a metric in the con-

formal class. Then there are constants Cj for j ∈ N such that for any φ ∈ C∞(M,E), the

inequality ||φ||L2
j+1 6 Cj

(
||φ||L2

j + ||6∇φ||L2
j

)
holds.

Proof: Firstly, it is clear from 7.1 that ||Dφ||2 6 const.
(
||6∇φ||2 + |

∫
M 〈c(2)REφ , φ〉|

)
, where

the unlabelled norms are L2-norms. Since ||φ||L2
1
2

= (||φ||2 + ||Dφ||2) this gives the result

for j = 0. Now proceed by induction on j. To estimate ||φ||L2
j+1 it suffices to estimate

||DXφ||L
2
j for an arbitrary vector field X. By the induction hypothesis, this is bounded by

Cj−1
(
||DXφ||L

2
j−1 + ||6∇DXφ||L

2
j−1

)
. Since both DX and [ 6∇, DX ] = 6∇DX −DX 6∇ = c ◦DDX

are first order order operators, the norms ||DXφ||L
2
j−1, ||DX 6∇φ||L2

j−1 and ||[ 6∇, DX ]φ||L2
j−1 are

bounded by L2
j -norms of φ and 6∇φ, so the required estimate follows.

7.9 Corollary. φ, 6∇φ ∈ L2
j(M,S) =⇒ φ ∈ L2

j+1(M,S), and so if φ ∈ L2(M,E) and 6∇φ is

smooth, then φ ∈ L2
j (M,E) for all j.

The following basic result of Sobolev space theory allows the above regularity result to

be considerably extended.

7.10 Sobolev Embedding Theorem. If j − k > n
p then Lp

j (M,E) embeds continuously

into Ck(M,E) (this is the space of k-times continuously differentiable sections with the C k-

topology of uniform convergence in derivatives up to order k).

7.11 Corollary. For 1 6 p 6 ∞, C∞(M,E) =
∞⋂

j=1
Lp

j(M,E).

7.12 Local Elliptic Regularity. Suppose that φ ∈ L2(M,E) and 6∇φ is (represented by) a

smooth function on an open subset U of M . Then φ is smooth on U .

Proof: It suffices to prove that for any j > 0, and for any smooth bump function ρ with

support in U , ρφ is in L2
j (M,E). This may be done by induction on j (elliptic bootstrapping).

Suppose ρφ ∈ L2
j(M,E) for all ρ and, fixing some arbitrary ρ, let ρ̃ be a bump function which

is identically 1 on suppρ. Then 6∇(ρφ) = c(dρ)ρ̃φ+ ρ 6∇φ is in L2
j (M,E) since all derivatives

of dρ are bounded. Hence ρφ ∈ L2
j+1(M,E) by the elliptic estimate.

A related result is the following:

7.13 Proposition. Let U be an open subset of M , and suppose 6∇φj = 0 on U and φj → φ

in L2(K,E) for all compact subsets K of U . Then φj → φ locally uniformly in all derivatives
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on U , and hence 6∇φ = 0 on U .

Proof: It suffices to show the uniform convergence in all derivatives of ρφj for all smooth

functions ρ supported in U . By uniqueness of limits in L2 and the Sobolev embedding, it

suffices to show that ρφj is Cauchy in L2
j for all such ρ. Note that ρφj is smooth on M by

local elliptic regularity, and that 6∇(ρφj) = c(dρ)φj since 6∇φ = 0 on U . The result follows

from the elliptic estimate by induction on j, just as in the proof of local elliptic regularity.

Now not only does the elliptic estimate provide local regularity, but it also allows the

closedness of the image to be established, thanks to the following important result from

Sobolev space theory.

7.14 Theorem (Rellich-Kondrachov). For j > 0, the inclusion L2
j+1(M,E) → L2

j(M,E)

is compact.

A simple proposition from functional analysis applies to this situation.

7.15 Proposition. Let U, V,W be Banach spaces with ι : U → V a compact embedding and

A : U →W a continuous linear map. Suppose there is an elliptic estimate ||f ||U 6 C(||f ||V +

||Af ||W ). Then A has a finite dimensional kernel and a closed image.

Proof: The inclusion of kerA into V is continuous, and also for f ∈ kerA, ||f ||U 6 C||f ||V ,

so the U and V norms are equivalent on the closed subspace kerA of U . By the compactness

of the inclusion, the unit ball in kerA has compact closure in V and hence is compact in

U . Therefore kerA is finite dimensional, and so kerA has a closed complement U1 in U (for

example if U is a Hilbert space, U1 = (kerA)⊥ is such a complement). So U = kerA ⊕ U1

and A|U1
: U1 → imA is bijective and continuous. U1 is a Banach space, so it suffices to show

that A is an isomorphism, which will follow if ||f ||U 6 const.||Af ||W for f ∈ U1. Suppose this

does not hold, so that there exist fn ∈ U1 with 1 = ||fn||U > n||Afn||W (and so Afn → 0).

Then by the compactness of the inclusion of U into V there is a convergent subsequence of

fn in V , and by the elliptic estimate

||fn − fm||U 6 C(||fn − fm||V + ||Afn −Afm||W )

this subsequence is cauchy in U1 and therefore converges to f in U1. Now A : U1 → V is

continuous and injective, so Af = 0 and hence f = 0, contradicting ||fn||U = 1.

Applying this proposition to the Dirac operator, with U = L2
1(M,E−), V = L2(M,E−)

and W = L2(M,E+) (using Rellich-Kondrakov and G̊arding’s inequality) gives:

7.16 Corollary. 6∇+ : L2
1(M,E−) → L2(M,E+) has a finite dimensional kernel and a closed

image, and similarly for 6∇− : L2
1(M,E+) → L2(M,E−).
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The following result for smooth spinors is now easily established.

7.17 Proposition. 6∇+ : C∞(M,E−) → C∞(M,E+) has a closed image and C∞(M,E+) =

ker 6∇− ⊕ im 6∇+. The analogous decomposition holds for the negative spinors.

Proof: If 6∇+φ = ψ and ψ ∈ C∞(M,E+) then φ ∈ C∞(M,E−) by elliptic regularity, and so

im 6∇+|C∞ = im 6∇+ ∩ C∞(M,E+). Also ker 6∇− ⊆ C∞(M,E+). The result now follows from

the skew adjointness property in 6.5, and 6.6.

This gives a straightforward proof of the Hodge Decomposition:

7.18 Corollary. In the case of the d+ δ operator, the above induces the decomposition

C∞(M,ΛT ∗M) = im d⊕ (ker d ∩ ker δ) ⊕ im δ.

Finally in this section, the elliptic analysis of the Dirac operator will be reexpressed in

the conformally invariant notation.

7.19 Proposition. 6∇+ : C∞(M,E−) → C∞(M, Ê+) has a closed image and the orthogonal

space (annihilator) of im 6∇+ with respect to the pairing of C∞(M,E+) and C∞(M, Ê+) is

ker 6∇−. The same holds for the negative spinors.

8 Unique continuation and invertibility

The previous section was concerned with the local analysis of the Dirac operator. The

main analytical result was the elliptic estimate. In order to study the boundary value be-

haviour of the Dirac operator, it will be useful to work with a globally invertible operator. In

this section, I will discuss ways of obtaining such operators, using another analytical property

called unique continuation. M will denote a compact manifold with (nonempty) boundary.

8.1 Definition. An operator A on (sections of) a vector bundle is said to have the (strong)

unique continuation property iff for any section s over a connected open set Ω with As = 0,

the vanishing of s to infinite order at some point in Ω implies that s is identically zero on Ω.

It is fairly easy to see that elliptic operators with analytic coefficients have analytic solu-

tions, and therefore the unique continuation property holds. In the C∞ context, proofs that

a particular operator has the unique continuation property are rather technical, involving

“Carleman-type” estimates. One of the most important examples is the following.

8.2 Unique Continuation Theorem (Aronszajn [2]). Let ∆ be a second order elliptic

differential operator whose principal part is a scalar differential operator. Then ∆ has the

unique continuation property.
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The square of a Dirac operator is an example of such an operator, and therefore the Dirac

operator itself has the unique continuation property. In fact, only a weaker property will be

needed:

8.3 Definition. The operator A is said to have the (weak) unique continuation property iff

for any section s over a connected open set Ω with As = 0, the vanishing of s on some open

subset of Ω implies that s is identically zero on Ω.

Booß and Wojciechowski [15] give a direct proof that Dirac operators have the weak

unique continuation property. I will not reproduce any proofs here, but instead, following

[15], I will use unique continuation to deduce a uniqueness result for the Dirichlet problem.

8.4 Theorem. Let M be a connected manifold with boundary and φ a Dirac harmonic spinor

which vanishes on ∂M . Then φ is identically zero. More generally, if φ is Dirac harmonic

on one side of a connected neighbourhood of a point in a hypersurface and vanishes on the

hypersurface, then it vanishes on that side.

Proof: After extending the manifold M smoothly beyond its boundary, the proofs of these

two facts are essentially the same. Simply extend φ by zero to the other side of the boundary

or hypersurface, so that it becomes an L2 solution of the Dirac operator vanishing on an

open set. Then φ is smooth by elliptic regularity, and so vanishes identically by unique

continuation.

There are several ways of making use of this result. One of the most convenient is to

deduce an invertible extension property for the Dirac operator on a manifold with boundary.

Henceforth, all manifolds will be connected.

8.5 Theorem (see [15]). Let M be a compact Riemannian manifold with nonempty bound-

ary and a Dirac operator 6∇ : E− → E+. Then there is a closed manifold M̃ containing M

as a submanifold of the same dimension, and an extension of 6∇ to a Dirac operator on M̃

which is invertible.

Proof: First of all extend M (if necessary) to M ′ by adding a collar so that the metric is

a product metric near the new boundary. Now let M+ and M− be two copies of M ′ with

outward normals ν+ and ν−, and choose a normal coordinate u on M± as shown in the

following diagram.
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-1 1 2 3-2-3 0

As the diagram suggests the closed manifold M̃ is now formed by gluing together the

product collars using the u coordinate. More precisely, for −1 6 u 6 1, x ∈ M ′ as a point

in M+ with coordinates (u, y) is identified with x̂ ∈ M ′, the point in M− with coordinates

(u, y). Next the spinor bundles and Dirac operator may be extended to so that they are

independent of the normal coordinate along the product collar. The spinor bundles may

then be glued together by identifying φ ∈ E+

x on M+ with ||c(ν)φ ∈ E−

x̂ on M−, where ||

denotes the natural parallel translation in the normal direction on M ′. Similarly E− on M+

is identified with E+ on M−. If ξ = aν + η is a tangent vector to M ′ at x, then c(ξ)φ ∈ E−

x

is identified with ||c(ν)c(ξ)φ = c(||ξ̂)||c(ν)φ in E+

x̂ , where ξ̂ = aν − η. But ||ξ̂ is −ξ under the

glueing. Hence Clifford multiplication c on M+ is identified with −c on M−. To summarise

the bundles Ẽ+ = E+ ∪
c(ν)

E− and Ẽ− = E− ∪
c(ν)

E+ are spinor bundles on M̃ with Clifford

multiplication acting between them. The corresponding Dirac operator ˜6∇+ : Ẽ− → Ẽ+ is

given by 6∇+ on M+ and −6∇− on M−. The formal adjoint is then ˜6∇− = 6∇− ∪ (−6∇+).

It remains to verify invertibility. A section φ̃ of Ẽ− is a pair of sections φ−, φ+ of E− over

M+ and E+ over M−, with φ+ = ||c(ν)φ− on the product collar in M ′. Suppose ˜6∇+φ = 0.

Then 6∇+φ− = 0 over M+ and 6∇−φ+ = 0 over M−. Now let M ′′ be the manifold in M ′ whose

boundary is the hypersurface u = 0 of the product collar. Then

0 =

∫

M ′′

(
6∇

+
φ

−
, φ

+)
+

∫

M ′′

(
φ

−
, 6∇

−
φ

+)
=

∫

∂M ′′

(
c(ν)φ

−
, φ

+)
,

by the Green formula. But this last integral is ||φ−|∂M ′′ ||
2 and so φ±|∂M ′′ = 0. Hence by

uniqueness for the Dirichlet problem, φ− = 0 on M+. Similarly φ+ = 0 and so φ̃ = 0. The

same argument applies to the adjoint Dirac operator, hence both kernels vanish, which is

enough to ensure that ˜6∇+ (and also ˜6∇−) is invertible.

Remark. Note that the invertible Dirac operator constructed by the above theorem is a

genuine Dirac operator on a genuine spinor bundle. The change in sign of the Clifford action

38



on M− occurs because M− is given the opposite orientation to M+. Hence although the

proof above used a metric, the Dirac operator on M̃ is conformally invariant if the Dirac

operator on M is.

This construction of an invertible Dirac operator on a closed manifold will be extremely

useful in studying the noninvertible operator on the manifold with boundary. However,

sometimes the manifold M is naturally given as a submanifold of a closed manifold, and

the Dirac operator on this closed manifold will not in general be invertible. Of course to

understand the Dirac operator on M , the rest of the closed manifold can be forgotten and

the previous construction, although artificial, may be used. There are at least two other

approaches. One is to introduce a larger manifold with boundary containing M (such as

the closed manifold with an open set Ω removed) and work with sections vanishing on the

boundary of this larger manifold. The second is to perturb the Dirac operator on an open

set as in the following result:

8.6 Theorem. Let M ⊆ M̃ be a codimension 0 submanifold of a closed Riemannian mani-

fold, Ω be an open subset of M̃ rM , and 6∇ a (nonchiral) Dirac operator on M̃ . Then there

are invertible operators 6∇± : C∞(M̃ ,E) → C∞(M̃ , Ê) which both agree with 6∇ on M̃rΩ and

differ on Ω by an operator of order 6 0 (in fact, the difference is a smoothing operator). 6∇−

is minus the formal adjoint of 6∇+.

Proof: Given the unique continuation theorem, this is a straightforward construction in

linear algebra. Let V = {φ ∈ C∞(M̃,E) : suppφ ⊆ Ω}. Then the linear map C∞(M̃,E) →

C∞(M̃ ,E)∗ given by φ 7→
∫
M̃ 〈φ , .〉 must define a surjection from V to (ker 6∇)∗, since otherwise

there would be a nonzero element ψ ∈ ker 6∇ with
∫
M̃ 〈φ , ψ〉 = 0∀φ ∈ V ; such a ψ would have

support in M̃rΩ, contradicting unique continuation. Now choose a splitting of this surjection

(a finite dimensional choice), which defines a subspace K ⊆ V isomorphic to (ker 6∇)∗ and

hence complementary to im 6∇ since the pairing of im 6∇ with ker 6∇ is zero by the Green

formula. There is a projection map PK of C∞(M̃,E) onto K given by PKφ =
∑∫

M̃ 〈fj , φ〉fj

for any orthonormal basis ofK. Define 6∇±φ = 6∇φ±PKφ. Now if 6∇±φ = 0, then 6∇φ = ∓PKφ,

so PKφ ∈ (ker 6∇)⊥ ∩K = {0} and therefore 6∇φ = 0 so φ ∈ ker 6∇ ∩ kerPK = {0}. Hence the

injectivity of 6∇± is established. Now PK is self adjoint, so the adjoint of 6∇+ is −6∇−. Finally,

the image of 6∇± is closed (factor out K and compare with 6∇), and so the operators 6∇± are

invertible and differ from 6∇ only on Ω, and by an operator of finite rank (order −∞).

Remark. The above result also holds in the chiral case, since the chiral Dirac operators

may be assembled into a nonchiral Dirac operator on E+ ⊕ E−. In any case though, the

resulting operator is only a Dirac operator on M̃rΩ, and so some of the results stated below
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will require modification on Ω. For ease of exposition, however, I will assume henceforth

that the Dirac operator on M is the restriction of an invertible Dirac operator on a closed

manifold M̃ .

The invertibility of 6∇ (between Sobolev spaces or spaces of smooth functions) implies

that its transpose −6∇ is invertible (between the dual spaces of the Sobolev spaces, or on

distributions).

9 The Cauchy integral formula on a manifold with boundary

Sufficient background is now in place to begin the study of the behaviour of 6∇ at the

boundary of M , by means of the restriction map r0 : C∞(M̃,E−) → C∞(∂M,E−). The

following definition is a special case of a definition of Seeley [73].

9.1 Definition. The Cauchy integral is the operator

C
+

= ( 6∇
−
)∗−1 ◦ r∗0 ◦ c(ν) : C∞(∂M,E

−
) → D(M̃,E

−
),

where (i) c(ν) : C∞(∂M,E−) → C∞(∂M,E+) is the action of the (weightless) unit normal,

(ii) r∗0 : C∞(∂M,E+) → D(M̃ , Ê+) is defined by r∗0φ(ψ) =
∫
∂M (φ , r0ψ), and

(iii) ( 6∇−)∗−1 : D(M̃, Ê+) → D(M̃,E−) is the inverse of the transpose ( 6∇−)∗ = −6∇+.

Of course there is a corresponding Cauchy integral C− for E+. The fact that r0 is bounded

from L2
1(M̃ ,E) to L2(∂M,E) and that 6∇−1 is bounded from L2

1(M̃ ,E)∗ to L2(M̃ ,E) gives:

9.2 Proposition. The Cauchy integral extends to a bounded linear map from L2(∂M,E) to

L2(M,E).

This simple result will not be used until much later. Instead some more informative

expressions for the Cauchy integral on smooth functions will be developed, starting with:

9.3 Theorem (Cauchy integral formula). The Cauchy integral is given by the formulas

Cφ(ψ) =

∫

∂M
(c(ν)φ , ( 6∇

−
)−1ψ) =

∫

M
(φ , ψ) +

∫

M
( 6∇

+
φ , ( 6∇

−
)−1ψ),

where in the last expression φ has been extended to M . Hence if φ is Dirac harmonic on M

then C(r0φ) = φ as distributions on intM . Also note that 6∇+(Cφ) = 0 on M̃ r ∂M .

Proof: The first expression is a matter of unravelling the definition:

Cφ(ψ) =
(
( 6∇−)∗−1 ◦ r∗0 ◦ c(ν)φ

)
(ψ) =

(
(r∗0 ◦ c(ν))φ

)(
( 6∇−)−1ψ

)
=

∫

∂M

(
c(ν)φ , ( 6∇−)−1ψ

)
.

The second expression then follows from the Green formula, and hence if 6∇+φ = 0, C(r0φ) and

φ agree on test functions ψ. For the last part it must be shown that ( 6∇+◦Cφ)(ψ) = 0 for any
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test function ψ ∈ C∞(M̃ , Ê+) with support in intM . But the operator 6∇+ on distributions

is given by −( 6∇−)∗, so ( 6∇+ ◦ Cφ)(ψ) = −r∗0(c(ν)φ)(ψ) = −
∫
∂M (c(ν)φ , r0ψ) = 0 since

r0ψ = 0.

Remark. The important aspect of the Cauchy integral formula is that it gives a direct

expression of the fact that a Dirac harmonic function is determined by its boundary values.

The Cauchy integral operator itself is of little use unless the operator 6∇−1 is described more

concretely. In particular, since Cφ smooth away from ∂M (by elliptic regularity), it should

be possible to obtain an expression for its point values. This will be done next.

9.4 Definition. Recall that for each x ∈ M̃ there is a delta function δx ∈ D(M̃, Ê−) ⊗ E−

x .

The fundamental solution of 6∇+ at x is defined by G+

x = ( 6∇+)∗−1δx ∈ D(M̃,E+)⊗E−

x . Now

( 6∇+)∗ is the action of −6∇− on distributions, and so 6∇−G+

x = 0 outside {x}. Hence over
{
(x, y) ∈ M̃ × M̃ : x 6= y

}
, the fundamental solution is represented by the Green function

G+(x, y) = G+

x (y) ∈ E+

y ⊗E−

x , which is smooth and Dirac harmonic in y.

Likewise 6∇− has a fundamental solution G−.

The following is a simple consequence of the above definition, and will be improved later.

9.5 Proposition. If ψ ∈ C∞(M̃, Ê±) then (( 6∇±)−1ψ)(x) = G±

x (ψ). If also ψ = 0 near x

then

(( 6∇
±
)−1ψ)(x) =

∫

y∈M̃

(
G

±
(x, y) , ψ(y)

)
.

Proof: G±

x (ψ) = (( 6∇±)∗−1δx)(ψ) = δx(( 6∇±)−1ψ) = (( 6∇±)−1ψ)(x). The second part follows

immediately because the fundamental solution is represented by the Green function away

from the diagonal.

9.6 Proposition. For x 6= y, G−(y, x)τ = −G+(x, y) where τ denotes the transposition iso-

morphism E−

x ⊗E+

y
∼= E+

y ⊗E−

x . Hence both Green functions are smooth in both variables.

Proof: It follows from the Green formula that
∫
M̃

(
( 6∇+)−1φ , ψ

)
+
∫
M̃

(
φ , ( 6∇−)−1ψ

)
= 0. By

the previous proposition this may be written:

∫

y∈M̃

( ∫

x∈M̃

(
G

+
(y, x) , φ(x)

)
, ψ(x)

)
+

∫

x∈M̃

(
φ(x) ,

∫

y∈M̃

(
G

−
(x, y) , ψ(y)

))
= 0.

Since this holds for all φ, ψ with disjoint support, the result follows.

It is now possible to describe the Cauchy integral operator slightly more explicitly.

9.7 Proposition. Away from ∂M , Cφ is represented by the smooth function

Cφ(x) =

∫

∂M

(
−G

+

x , c(ν)φ
)
.
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Proof: For ψ supported away from ∂M ,

Cφ(ψ) =

∫

y∈∂M

(
c(ν)φ(y) ,

∫

x∈M̃

(
G

−
(y, x) , ψ(x)

))

=

∫

y∈∂M

∫

x∈M̃

(
ψ(x) ,

(
G

−
(y, x)τ , c(ν)φ(y)

))

=

∫

x∈M̃

∫

y∈∂M

(
ψ(x) ,

(
−G

+
(x, y) , c(ν)φ(y)

))
,

using 9.6 and the continuity of the integrand. Since this holds for arbitrary ψ supported

outside ∂M , the result follows.

9.8 Corollary (1). In the oriented 1-dimensional vector space Ln−1
x ,

(Cφ(x) , Cφ(x)) 6

(∫

∂M
(φ , φ)

)(∫

∂M
(Gx , Gx)

)

x
,

where the last integral is contracted to lie in Ln−1
x .

Therefore the Cauchy integral extends to a continuous linear map from the (conformally

invariant) Hilbert space L2(∂M,E) to C∞(intM,E).

Proof: This is just the Cauchy-Schwarz inequality for the Ex-valued pairing of Gx and φ,

dressed up in conformally invariant language. It immediately follows that the pointwise

Cauchy integral is continuous, but also since
∫
∂M (Gx , Gx) is smooth for x ∈ intM , it is in

L2 on compact subsets. Now the Cauchy integral is Dirac harmonic, and so the continuity

(on the dense subspace of smooth boundary functions) follows from 7.13.

9.9 Corollary (2). If φ is smooth on M and 6∇+φ = 0 on intM then

φ(x) =

∫

∂M

(
−G+

x , c(ν)φ
)

for x ∈ intM . Hence the Cauchy integral on boundary values of smooth Dirac harmonic

functions is an evaluation map.

This is the Cauchy integral formula for Dirac harmonic functions. Its relationship with

the classical formula may be seen by computing the Green function in Rn. Such computation

is also essential in order to understand the behaviour of the Green function on a general

manifold more concretely.

9.10 Proposition. The fundamental solution on Rn ⊆ Sn is represented by the Green func-

tion G(x, y) = 1
ωn

x−y
|x−y|n , where ωn is the area of Sn−1 and x−y acts from Ê+ to E−, or from

Ê− to E+.

Proof: It must be verified that Gx( 6∇φ) = φ(x). Writing the left hand side as (a principal

value of) an integral gives

lim
r→0

∫

y∈M̃rBr(x)
(G(x, y) , 6∇φ(y)) = lim

r→0

∫

y∈∂Br(x)
(c(−ν)G(x, y) , φ(y)) ,
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since G(x, y) = 1
ωn

x−y
|x−y|n is Dirac harmonic in y for y 6= x (a straightforward verification).

Here ν = y−x
|x−y| is the outward normal on ∂Br(x), and so −c(ν)G(x, y) = 1

ωn|x−y|n−1 . Therefore

the above integral is the average of φ over a small sphere centred at x, which tends to φ(x)

as r → 0, since φ is continuous.

Remark. It is interesting to note that on Sn, the fundamental solution is a conformal

inversion of a constant solution in the following sense. By the vanishing theorem 7.4,

constant spinors on Rn do not extend to Dirac harmonic functions on Sn. Thus, if a

constant spinor ψ on Rn is transformed by the conformal map x 7→ x/|x|2 of Sn, the result

is a Dirac harmonic function on Sn r {0}. Using the transformation law for spinors, this

function is easily seen to be x
|x|nψ i.e. the fundamental solution at 0. This gives an easy

way of seeing that this fundamental solution is Dirac harmonic away from the singularity.

The most important aspect of the above calculation is that the fundamental solution for

the Dirac operator on Euclidean space is represented by its Green function i.e., it has only

a pole (of order n− 1) on the diagonal not a more singular distribution. This is of interest

more generally because of the next result, which is the nearest I will get to constructing a

parametrix for the Dirac operator.

9.11 Proposition. The fundamental solution of a Dirac operator on a Riemannian manifold

is represented by a Green function which is asymptotic to the Euclidean Green function in

the sense that in a normal coordinate chart,

G(x, y) =
1

ωn

x− y

|x− y|n
+ o

(
1

|x− y|n−2

)
.

In particular G(x, y)dist(x, y)n−1 is bounded. (The notation o(rk) indicates a function van-

ishing to order k at r = 0, i.e., the function multiplied by r−k vanishes at r = 0.)

Proof: In a Riemannian normal coordinate chart, gij(x) = δij+o(r), where r = |x|. Trivialise

the spinor bundles using radial parallel transport, so that the symbol of the Dirac operator

on M̃ differs from the Euclidean Clifford multiplication by a term vanishing to order 1. The

connection on M̃ differs from the flat connection by a 1-form vanishing at the origin. Hence if

the Dirac operator is applied to the Euclidean Green function, the delta function is obtained

with an error term on o(r−(n−1)). Applying 6∇−1 to this term gives the result.

9.12 Corollary (Mean Value Inequalities). If φ Dirac harmonic near x, then in a nor-

mal coordinate chart at x, and for all r sufficiently small,

|φ(x)| 6
C

rn−1

∫

∂B(x,r)
|φ|.
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Integrating rn−1|φ(x)| from 0 to r gives

|φ(x)| 6
nC

rn

∫

B(x,r)
|φ|.

Proof: This is immediate from the Cauchy integral formula, and the above observation that

|G(x, y)| |x − y|n−1 is bounded.

Remark. On Euclidean space, C = 1
ωn

, and the above inequalities are obtained from

equalities for φ(x). See Gilbert and Murray [36] for some of the consequences of these

equalities.

Proposition 9.11 also allows proposition 9.5 to be improved.

9.13 Proposition. If ψ ∈ C∞(M̃, Ê±) then

(( 6∇
±
)−1ψ)(x) = lim

r→0

∫

y∈M̃rBr(x)

(
G

±
(x, y) , ψ(y)

)
,

where Br(x) denotes the ball of radius r with respect to a choice of metric near x.

Proof: This is immediate from 9.10 and the asymptotic behaviour of the Green function

and the area of small spheres in M .

This completes the basic analysis of the Dirac operator. In the next section, the boundary

value behaviour of the Cauchy integral will be studied in more detail.

10 The Cauchy transform

Firstly in the section, some abstract functional analysis (taken from Folland [32]) for

integral kernels will be presented. Here V,W denote finite dimensional inner product spaces.

10.1 Proposition. Let Ω be an open subset of Rm and K(x, y) a L(V,W )-valued function

on Ω × Ω.

(1) If
∫
y∈Ω |K(x, y)| and

∫
x∈Ω |K(x, y)| are bounded functions of x and y respectively then

the formula TKf(x) =
∫
y∈ΩK(x, y)f(y) defines a bounded linear map TK from L2(Ω, V )

to L2(Ω,W ).

(2) If K ∈ L2(Ω×Ω,L(V,W )) then TK is a Hilbert-Schmidt operator, and hence is compact.

Proof: For the first part, consider the estimate

|TKf(x)| 6

∫

y∈Ω
|K(x, y)|

1
2 |K(x, y)|

1
2 |f(y)| 6

(∫

y∈Ω
|K(x, y)|

) 1
2
(∫

y∈Ω
|K(x, y)| |f(y)|2

) 1
2

.

Now ∫

x∈Ω

∫

y∈Ω
|K(x, y)| |f(y)|2 6

(
sup
y∈Ω

∫

x∈Ω
|K(x, y)|

)
||f ||L22
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and so

||f ||L2
6

(
sup
x∈Ω

∫

y∈Ω
|K(x, y)|

) 1
2
(

sup
y∈Ω

∫

x∈Ω
|K(x, y)|

) 1
2

||f ||L2.

For the second part, let fi, gj be orthonormal bases for the separable Hilbert spaces L2(Ω, V )

and L2(Ω,W ), so that hij(x, y) = 〈fi(x) , .〉 ⊗ gj(y) defines an orthonormal basis for L2(Ω ×

Ω,L(V,W )). Then the matrix of TK is

∫

x∈Ω
〈fi(x) , (TKfj)(x)〉 =

∫

x∈Ω

∫

y∈Ω
fi(x)K(x, y)fj(y) =

∫

x,y∈Ω×Ω
〈K(x, y) , hij(x, y)〉.

Hence the Hilbert-Schmidt norm of TK equals the L2-norm of K, and (using the matrix

representation), TK may be written as a limit of operators of finite rank, so it is compact.

10.2 Lemma. Let A be an L∞ function on Rm × Rm, supported in {(x, y) : |x − y| < ε}.

Then for α < m ∫

x∈Rm

|A(x, y)|

|x− y|α
6

ωm

m− α
||A||∞εm−α,

and similarly for the integral over y.

Proof: The integral is bounded by ||A||∞ multiplied by

∫

|x−y|<ε

1

|x− y|α
dx = ωm

∫ ε

0
rm−1−α dr =

ωm

m− α
εm−α

for α < m.

10.3 Proposition. Let Ω be a bounded open subset of Rm and K(x, y) a L(V,W )-valued

function on Ω × Ω such that for some α < m, K(x, y)|x − y|α is bounded. Then TK is a

compact operator, and K is called an integral kernel of order α.

Proof: For any ε > 0 write K(x, y) = Kε(x, y)+K∞(x, y) where Kε is supported in |x−y| <

ε and K∞ is bounded. Let A(x, y) = |Kε(x, y)|. Then by the above results the norm of TKε

is a multiple of εm−α, and because Ω and K∞ are bounded, K∞ is in L2. Hence K may be

approximated in norm by compact operators, and so is compact.

Of course, this result immediately generalises to integral kernels on vector bundles over

compact manifolds. For integral kernels of order α = m the corresponding integral operator

will not be compact, but it may at least be bounded. Such operators are called singular

integral operators, since it is usually necessary to take a principal value of the integral.

Two manifolds of interest in this section are M̃ and ∂M , of dimensions n and n− 1. The

Green function is an integral kernel of order n− 1. Hence the inverse of the Dirac operator,

which involves the Green function on M̃ , is of course a compact operator. One consequence

of this is that it is not strictly necessary to take the principal value in the integral of 9.13.
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By contrast, on ∂M , the Green function can only define a singular integral operator. One of

the main goals of this section is to show that it does.

The first step is to use 9.13 to improve the Cauchy integral formula.

10.4 Proposition. The Cauchy integral of the restriction of φ ∈ C∞(M̃,E−) is given, for

x ∈ intM , by the following formula:

Cφ(x) = φ(x) −

∫

M

(
G

+

x , 6∇
+
φ
)
.

Proof: By 9.3, the Cauchy integral paired with a test function ψ supported in intM , is

given by

Cφ(ψ) =

∫

M
(φ , ψ) +

∫

M

(
6∇

+
φ , ( 6∇

−
)−1ψ

)
.

Substituting the formula obtained in 9.13 for the inverse of 6∇−, and changing the order of

integration gives

Cφ(ψ) =

∫

M
(φ , ψ) −

∫

x∈M

(∫

M

(
G

+

x , 6∇
+
φ
)
, ψ(x)

)
,

which establishes the result.

10.5 Corollary (Borel-Pompieu representation theorem). Any smooth spinor field

on M is given by the formula

φ(x) =

∫

∂M

(
−G

+

x , c(ν)φ
)
+

∫

M

(
G

+

x , 6∇
+
φ
)

on intM .

This formula shows that the Cauchy integral may be understood in terms of the integration

of the Green function over M (rather than M̃). The next result (and most of the results in

the remainder of this section) is based on Bell [11], and establishes that the Green function

provides a fundamental solution for the Dirac operator on intM .

10.6 Proposition. For ψ ∈ C∞(M,E) and x in intM let

φ(x) =

∫

y∈M
(G(x, y) , ψ(y)) .

Then 6∇φ = ψ on intM .

Proof: Let χ be a bump function which is zero on a neighbourhood U of x0 and identically

1 on a neighbourhood of ∂M . Then for x ∈ U ,

φ(x) =

∫

y∈M
(G(x, y) , χ(y)ψ(y)) +

∫

y∈M
(G(x, y) , (1 − χ(y))ψ(y)) .

To calculate 6∇φ(x) observe that the first integral Dirac harmonic near x0 (since χ vanishes

on a neighbourhood of the singularity of the Green function). The second integral extends

by zero to all of M̃ , and so by the previous proposition it equals 6∇−1((1 − χ)ψ
)
, and hence

6∇φ(x) = (1 − χ(x))ψ(x) = ψ(x).
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Unfortunately this argument does not provide information about the boundary values of

φ(x). To do this some technical tools are needed to analyse the boundary of M . In particular,

a defining function ρ for ∂M needs to be chosen. This is a function on M̃ such that ρ = 0 and

dρ(ν) > 0 on ∂M where ν is an outward normal vector. Such a function is easily constructed

using a partition of unity. The following lemma is the key to Bell’s approach [11] to the

Cauchy integral in 2 dimensions, and also the key to the analysis presented here.

10.7 Lemma. Let ψ be a spinor field on M̃ . Then for each k > 0 there is a spinor field φk

which vanishes on ∂M , but such that 6∇φk and ψ agree to order k on ∂M i.e., 6∇φk − ψ =

ρk+1θk for some spinor field θk.

Proof: Let χ be a smooth function which is identically 1 on a neighbourhood of ∂M but

vanishes on a neighbourhood of the critical points of ρ and define c(dρ)−1 to be zero on the

critical points. Write φ0 = ρθ̃0 so that 6∇φ0 = ρ 6∇θ̃0 + c(dρ)θ̃0. Hence if θ̃0 = χc(dρ)−1ψ

then 6∇φ0 − ψ = ρθ0 with θ0 = 6∇θ̃0 + (χ − 1)ψ. Now, continuing by induction on k, write

φk = φk−1 + ρk+1θ̃k. Then 6∇φk = 6∇φk−1 + ρk+1 6∇θ̃k + (k + 1)ρkc(dρ)θ̃k = ψ + ρkθk−1 +

ρk+1 6∇θ̃k + (k + 1)ρkc(dρ)θ̃k. Defining θ̃k = 1
k+1χc(dρ)

−1θk−1 gives 6∇φk − ψ = ρk+1 6∇θ̃k +

(χ− 1)ρkθk−1 = ρk+1θk for some θk, which proves the lemma.

10.8 Proposition. For ψ ∈ C∞(M,E) the integral

φ(x) =

∫

y∈M
(G(x, y) , ψ(y)) .

extends to a smooth function on all of M . More precisely, for each k > 0 there is a smooth

function φk vanishing on ∂M such that 6∇φk and ψ agree to order k on ∂M , and such that

the formula φ(x) = φk(x) +
∫
y∈M (G+(x , y), (ψ − 6∇φk)(y)) defines a L2

k+1 (in fact Ck+1)

extension of φ from intM to M̃ . (Of course the extension is somewhat arbitrary on M̃ rM .)

Proof: The existence of such φk follows from the lemma, and the formula follows by extend-

ing ψ− 6∇φk by zero to M̃ , giving a Ck integrand on M̃ . It is therefore in L2
k and so applying

6∇−1 gives a function is L2
k+1. The fact that this is Ck+1 follows either from Lp estimates

and the Sobolev inequality, or by changing variables in local coordinates and differentiating

under the integral sign.

10.9 Corollary. The Cauchy integral of a smooth function is smooth on M . More precisely,

extensions of Cφ to M̃ are given by φ(x) − φk(x) −
∫
M

(
G+

x , 6∇
+φ− 6∇+φk

)
, where φk is as

above.

This leads to the following important definition:

10.10 Definition. The Cauchy transform on ∂M is the linear map

C
±

: C∞(∂M,E
∓
) → C∞(∂M,E

∓
)
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given by restricting the Cauchy integral to the boundary.

Since C∞(∂M,E−) has a natural inner product, it is natural to ask whether the Cauchy

transform has a formal adjoint.

10.11 Proposition. Define (C+)∗ψ = ψ − c(ν)C−
(
c(ν)ψ

)
. Then (C+)∗ is formally adjoint

to C+. The analogous result holds for C−.

Proof: By extending ψ to M , and using the definition of the Cauchy transform.

∫

∂M

(
C

+
φ , ψ

)
=

∫

x∈∂M

(
φ(x) −

∫

y∈M

(
G

+
(x, y) , 6∇

+
φ(y)

)
, ψ(x)

)

=

∫

∂M
(φ , ψ) −

∫

x∈∂M

∫

y∈M

( (
G

+
(x, y) , 6∇

+
φ(y)

)
, ψ(x)

)

(∗)
=

∫

∂M
(φ , ψ) −

∫

y∈M

∫

x∈∂M

(
6∇

+
φ(y) ,

(
−G

−
(y, x) , ψ(x)

))

=

∫

∂M
(φ , ψ) −

∫

y∈M

(
6∇

+
φ(y) , C

−(
c(ν)ψ

)
(y)
)

=

∫

∂M
(φ , ψ) −

∫

y∈∂M

(
c(ν)φ(y) , C

−(
c(ν)ψ

)
(y)
)

which establishes the result, provided that the change of order of integration at (*) is justified.

The application of Fubini (or Tonelli) at this point is not immediate: it is necessary to look

back at the explicit construction of the Cauchy transform to see that 6∇+φ should really be

replaced by 6∇+φ − 6∇+φk. Since this vanishes on the boundary (to order k > 1), it reduces

the order of the pole of the Green function, giving a locally integrable function on ∂M , and

so Tonelli’s theorem applies. (Alternatively observe that for k > n − 1 the integrand is

continuous.)

Now the space of boundary values of smooth functions φ onM with 6∇±φ = 0 is a subspace

of C∞(∂M,E∓) so let H± be its closure in the boundary L2-norm, and P± the orthogonal

projection onto H±. At present Cφ has only been defined for smooth φ, but for such φ the

following formula is now straightforward. It will be seen shortly that it holds for all φ in L2.

10.12 Theorem (Kerzman-Stein Formula). Cφ = P (φ+ (C − C ∗)φ).

Proof: Simply check φ+Cφ−C∗φ = Cφ+c(ν)C
(
c(ν)φ

)
. Now Cφ is in H and c(ν)C

(
c(ν)φ

)

is in H⊥ by Cauchy’s theorem, and so the theorem is proven.

Remark. Booß and Wojciechowski [15] base their analysis of the Dirac operator on a very

similar result, namely that P + = 1 − c(ν) ◦ P− ◦ c(ν). However, their proof of this fact

involves some delicate estimates based on Seeley [73].

The beauty of the Kerzman-Stein formula is that C−C ∗ is a much better behaved operator

than C. To see this, the analogue of a the classical Plemelj formula will be established. First
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of all, a simple proposition (c.f. Folland [32]) summarising the behaviour of the Cauchy

integral is needed.

10.13 Proposition. If φ ∈ C∞(M̃,E−) is Dirac harmonic on a neighbourhood of M , then

∫

∂M
(−Gx , c(ν)φ) =





0 for x ∈ M̃ rM

φ(x) for x ∈ intM

and finally for x ∈ ∂M ,

lim
r→0

∫

∂MrBr(x)
(−Gx , c(ν)φ) =

1

2
φ(x).

Proof: The Cauchy integral is zero outside M by Cauchy’s theorem, and the interior integral

is φ(x) by the Cauchy integral formula, so it remains to calculate the final singular integral.

Choose a metric near x (if necessary). Since the boundary is differentiable at x, for any

ε > 0 there is a δ > 0 such that the image Y of Tx∂M under the exponential map is close to

∂M in the sense that for all y ∈ Y ∩Bδ(x), dist(y, ∂M ) < εr, where r = dist(x, y). Hence

M ∩Br(x) = 1
2Br(x), with an error of order ε for r < δ. Now the integral over ∂M r Br(x)

can be replaced by the integral over ∂(M rBr(x)) provided the integral over M ∩ ∂Br(x) is

subtracted. The integral over ∂(M rBr(x)) vanishes by Cauchy’s theorem, because Gx and

φ are both Dirac harmonic on M r Br(x). (The boundary can easily be made smooth with

only a small error term.) It remains to estimate lim
r→0

∫
M∩∂Br(x) (Gx , c(ν)φ), where ν is the

inward normal to Br(x). Using normal coordinates and the Euclidean Green function this is

easily seen to be 1
2φ(x).

The singular integral in the above proposition is a special case of the following:

10.14 Definition. The Hilbert transform H+ on C∞(∂M,E−) is given by the singular inte-

gral

H
+
φ(x) = 2 lim

r→0

∫

∂MrBr(x)
(−Gx , c(ν)φ) .

Of course it is not immediate that H+φ exists as a smooth function on M . That it does

follows from the next result:

10.15 Theorem (Plemelj Formula). C+φ = 1
2(φ+ H+φ).

Proof: To verify this formula at a point x ∈ ∂M , observe that for x̃ ∈ M̃ r M close to x

the Green function G(x̃, x) is nondegenerate and so (contracting with a spinor in E x̃) there

exists φ0 such that 6∇φ0 = 0 on M and φ0(x) = φ(x). Therefore |φ(y)−φ0(y)| 6 const.|y−x|

for y near x in local coordinates on ∂M . Therefore C(φ−φ0)(x) =
∫
∂M (−Gx , c(ν)(φ− φ0))

because the integrand is locally integrable. Hence

Cφ(x) = Cφ0(x) + lim
r→0

(∫

∂MrBr(x)
(−Gx , c(ν)φ) −

∫

∂MrBr(x)
(−Gx , c(ν)φ0)

)
.
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Now Cφ0(x) = φ0(x) = φ(x) and by the lemma, the second integral converges to 1
2φ0(x) =

1
2φ(x). Hence the first integral converges and the result follows.

It is now time to prove the analogue of the theorem of Kerzman and Stein [53]:

10.16 Theorem. C − C∗ is a compact operator on the inner product space C∞(∂M,E).

Proof: It suffices to prove that C −C∗ is given by an integral kernel of order n− 2. By the

Plemelj formula 2(Cφ − C∗φ) = Hφ + c(ν)H
(
c(ν)φ

)
. This is given (at x) by the (a priori

singular) integral:

lim
r→0

∫

y∈∂MrBr(x)

(
(c(νy)Gx(y) , φ(y)) + (Gx(y)c(νx) , φ(y))

)
.

Hence it must be shown that

(
c(νy)G(x, y) +G(x, y)c(νx)

)
dist(x, y)n−2

is bounded, which is only in doubt for x close to y. To compute the limiting behaviour as

y approaches x, introduce normal coordinates for M at x, and note that it suffices to work

with the Euclidean Green function and the Euclidean distance function, since the error terms

are of lower order. Thus the function to be computed as y → x is:

(
c(νy)(x− y) + (x− y)c(νx)

)

ωn|x− y|2.

Now to second order, a point y on a geodesic (in ∂M) starting at x in direction u ∈ Tx∂M

is given by y = x + εu − 1
2ε

2〈u ,Duν〉νx + o(ε2), where νx is the normal at x. The ε2 term

involves the second fundamental form, written here in terms of the Weingarten map Dν. Of

course this also appears in the variation of ν, namely νy = νx + εDuν + o(ε). The limit as

y → x may now be computed as:

lim
ε→0

(νx + εDuν)(−εu+ 1
2ε

2〈u ,Duν〉νx) + (−εu+ 1
2ε

2〈u ,Duν〉νx)νx

ωnε2u2

= lim
ε→0

−(νxu+ uνx) + ε(〈u ,Duν〉 − (Duν)u)

εωnu2
.

This limit exists, since νxu+ uνx = 2〈νx , u〉 = 0, and is given by

u(Duν) − (Duν)u

2u2
.

Although this limit depends on the direction of u, its existence means that the required

expression is bounded, and so the integral kernel is not singular, and C − C ∗ is a compact

operator.
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10.17 Corollary (to the Proof). If A(x, y) denotes the integral kernel of C − C ∗ then

dist(x, y)nA(x, y) vanishes at y = x and is twice differentiable as a function of y at y = x.

The first derivative vanishes, and the second is given by

D2
u,vA =

1

2

(
(Su)v − v(Su) + (Sv)u − u(Sv)

)
,

where Su = Duν is the Weingarten map (shape operator) applied to u.

Remark. Booß and Wojciechowski [15] observe that P − C is a compact operator, which

is essentially equivalent to the Kerzman-Stein result, since by the Kerzman-Stein formula,

P−C = P (C−C∗). Again, though, they rely upon the pseudodifferential operator methods

of Seeley [73]. Here the leading order term of the integral kernel for C−C ∗ has been obtained

in an elementary and explicit way. Note that it depends only on the tracefree part of the

second fundamental form, and so is conformally invariant.

10.18 Theorem. The Cauchy transform extends to a bounded operator on L2(∂M,E−), with

image H, and L2-adjoint C∗. Hence by the Kerzman-Stein theorem, it is essentially self-

adjoint.

Proof: Since C−C∗ is compact, it extends to a bounded operator on L2(∂M,E−). Therefore

P (I + (C − C∗)) is also a bounded operator. By the Kerzman-Stein formula, this defines an

extension of the Cauchy transform, and the image is H by definition. It is now immediate

that the adjoint of C is C∗ since they are formally adjoint on the dense subspace of smooth

spinor fields.

10.19 Corollary. The Hilbert transform is a bounded operator on L2(∂M,E−).

Proof: By the Plemelj formula, H+φ = 2C+φ− φ.

It immediately follows that the Kerzman-Stein and Plemelj formulae are both valid for

arbitrary L2 spinors on the boundary.

However, it is probably worth pointing out here that neither the Kerzman-Stein, nor the

Plemelj formula are intrinsic to M , in that they both rely on the choice of Green function

coming from a closed manifold upon which the Dirac operator is (hopefully) invertible. Of

course this is no problem when there is a natural choice of such a manifold (for example, a

domain in Rn is a submanifold of Sn), but in general the analysis of M should be studied

in its own right, not as a submanifold of M̃ . Now the Hilbert space H is a (conformal)

invariant attached to M , and hence so is the orthogonal projection P . These capture the

intrinsic analysis of M , and the above work establishes three important properties of H and

P . Firstly, functions in H have well defined interior values, given by the Cauchy integral.

51



Secondly, there is the following important theorem, first observed by Booß and Wojciechowski,

who refer to it as “twisted orthogonality of the boundary data”.

10.20 Theorem. The spaces H+ and c(ν)H− are orthogonal complements in L2(∂M,E−).

Proof: By Cauchy’s Theorem, these spaces are orthogonal. Now φ ∈ H⊥ implies that for

all ψ, 0 = 〈Cψ , φ〉 = 〈ψ ,C∗φ〉 and so φ = c(ν)C
(
c(ν)φ

)
by the definition of C∗. Thus

φ ∈ c(ν)H.

Booß and Wojciechowski [15] use this result to study global elliptic boundary value prob-

lems for the Dirac operator (and its square).

The third intrinsic result is a regularity result for P .

10.21 Theorem. If φ is smooth on ∂M , then so is Pφ.

Proof: By the Kerzman-Stein formula PC = C and P (I − C ∗) = 0. Therefore C, I − C∗

have orthogonal images and so

||(I + C − C∗)φ||2 = ||Cφ||2 + ||(I − C∗)φ||2.

This is zero iff Cφ = 0 and C∗φ = φ, which only holds if 〈φ , φ〉 = 〈φ ,C∗φ〉 = 〈Cφ , φ〉 = 0,

and so F = I+(C−C∗) is injective. But (C−C∗) is compact, and so F is Fredholm of index

zero on L2, and hence is invertible. Now F and F ∗ both map smooth functions to smooth

functions, and hence F is an invertible map on smooth functions. The result now follows

because P = CF−1.

As a consequence of these results, it is natural to define two integral kernels canonically

associated to M , the Green kernel, and the Szegő kernel of M . To motivate the definitions,

observe that with respect to M the Green function Gx is only really defined up to a Dirac

harmonic function on M . However, theorem 10.20 allows a natural choice to be made, namely

the unique such function9 Gx whose boundary values are in H⊥. For x ∈ intM , the boundary

value of Gx is the orthogonal projection of Gx onto H⊥. Hence Gx = Gx+φx is the orthogonal

decomposition of Gx, with φx(y) Dirac harmonic in y, and so for y ∈ ∂M , c(νy)Gx(y) =

c(νy)Gx(y) + c(νy)φx(y) is also an orthogonal decomposition. Since −c(νy)Gx(y) ∈ H, it

extends to a Dirac harmonic function of y in intM , the Szegő kernel S(x, y) of M .

The Green kernel is the integral kernel inverting the natural global elliptic boundary

problem on M namely 6∇φ = ψ with φ|∂M ∈ H⊥. The Szegő kernel may be viewed as the

integral kernel of the (interior values of the) orthogonal projection P , i.e., it gives the Cauchy

integral of functions in H, but not the general Cauchy integral or transform. More precisely,

φ 7→ Cφ(x) (x ∈ intM) is a continuous linear functional on the Hilbert space H. Sx is the

9In the case of a domain in the plane, it is essentially the Garabedian kernel.
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element of H representing this linear functional (Riesz representation theorem). The Cauchy

kernel −c(ν)Gx also represents this linear functional, but is not in H. In fact, whereas on

the whole of L2(∂M,E), the Cauchy kernel represents Cφ(x), the Szegő kernel represents

C(Pφ)(x).

Finally, note that the Green kernel has a singularity on the diagonal in M ×M , whereas

the Szegő kernel is Dirac harmonic (in both variables) on intM and so only has a singularity

on the boundary.

At the risk of contradicting myself, I should perhaps point out that sometimes it is of

interest to study the analysis on M as a submanifold of some closed manifold M̃ . In this

situation the Green function on the closed manifold is once again an interesting object. It

is also of interest to look at the other half of M̃ as another manifold with boundary. It

is then straightforward to compare the Cauchy and Hilbert transforms obtained. For more

information on this see [15] and [73].

11 Analytical applications

The first result concerns the extension of Dirac harmonic functions to submanifolds. Such

removable singularity results are known to exist for arbitrary differential operators, but the

proof below is interesting, because it is a simple application of the Cauchy integral formula,

exactly as in complex analysis.

11.1 Proposition (Removable singularities). Let S be a compact submanifold of M of

codimension k > 2 and suppose ψ is a smooth function on M r S which is Dirac harmonic

on intM r S. Then if ψ(x)dist(x, S)k−1 → 0 as x→ S, ψ has a smooth extension to S and

is Dirac harmonic on intM .

Proof: The idea is to extend ψ to S using the Cauchy integral formula. To do this the

boundary of M must be nonempty, but this is not really a restriction, since there is certainly

a manifold with boundary containing S. Let Sε be a ε-tubular neighbourhood of S in M so

that the area of ∂Sε is bounded by a constant times εk−1 (S has finite volume). Then for

x ∈ intM r S choose δ 6 1 such that x ∈ int(M r Sδ). Now for any ε < δ,

ψ(x) =

∫

∂M∪∂Sε

(Gx , c(ν)ψ)

by Cauchy’s integral formula onMrSε. But, for fixed x, Gx is bounded on ∂Sε independently

of ε, and so the integrand is of order o(ε−(k−1)). But the area of ∂Sε is O(εk−1) and so the

integral over ∂Sε can be made arbitrarily small for small ε. Now the rest of the expression is
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independent of ε, and so

ψ(x) =

∫

∂M
(Gx , c(ν)ψ) .

But this formula defines a Dirac harmonic extension of ψ to S.

Note that the above proof is essentially identical to the proof of the standard removable

singularities result of complex analysis in the plane.

11.2 Corollary. If instead of the asymptotic behaviour of ψ, it is only known that ψ ∈ Lp,

then the same result holds, provided that p > k/(k − 1) i.e., k > p/(p− 1).

The deduction of this corollary is in fact slightly technical, in that it involves a delicate

use of the mean value inequality on the tubular neighbourhood of S, and so it will be omitted.

Such removable singularity results are quite classical for arbitrary differential operators, see

for example Bochner [14].

These results suggest that a Dirac harmonic spinor which does not extend to a surface

of codimension > 2 has some sort of “pole” there. Indeed it is possible to develop a simple

residue theory for Cauchy integrals using the Leray-Norguet residue. This has already been

done in the flat case by Delanghe, Sommen and Souček in [27], and the generalisation to

arbitrary manifolds is completely straightforward.

11.3 Definition. Let S be a compact oriented codimension k submanifold of an oriented

manifold M , and α a p-form on M r S with p > k− 1. Then the Leray-Norguet residue of α

is the cohomology class on S represented by a (p−(k−1))-form r(α) which may be constructed

as follows: let U be a tubular neighbourhood of S in M and define by r(α) = π∗ι
∗α where ι∗

is the pullback by the inclusion ∂U → M and π∗ is the pushforward (integration along the

fibres) by the fibration π : ∂U → S.

Note that although r(α) depends upon the choice of tubular neighbourhood, its cohomol-

ogy class does not.

In order to define the residue of a spinor field, another definition is needed.

11.4 Definition. For S a submanifold of M , the space H(S) of Dirac harmonic spinors

on S is defined to be the direct limit of the spaces of smooth Dirac harmonic spinors on

neighbourhoods of S in M . Hence a Dirac harmonic spinor on S is a germ of a Dirac

harmonic spinor on a neighbourhood of S.

The residue of a spinor field φ on M rS can now be defined to be the functional on H(S)

given by

(Res φ)(ψ) =

∫

S
r (c(.)φ , ψ)
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where ψ is extended to a tubular neighbourhood U of S and (c(.)φ , ψ) is the (n− 1)-form on

U defined by the action of Λn−1TM on spinors. Its residue is therefore an (n−k)-form which

may be integrated on S. The flavour of this definition is slightly at odds with my earlier use

of weighted vector fields in the divergence theorem, but it is a simple matter to translate the

differential form language into the dual language of weighted multivectors (in which case it

is only necessary for S to be cooriented in M).

Of course the residue is carefully defined so that the following theorem holds:

11.5 Residue Theorem. Suppose φ is Dirac harmonic on M rS and ψ is Dirac harmonic

on M . Then
∫

∂M
(c(ν)φ , ψ) = (Res φ)([ψ]),

where [ψ] is the germ of ψ along S.

This formalises the idea that the bad behaviour of φ is local to S. As a simple example,

observe that the residue of the Green function Gx on the submanifold {x} is just the delta

function δx. The above theorem may then be regarded as a reformulation of the Cauchy

integral formula.

The next result is deeper, in that it relies upon the orthogonal decomposition of the space

of boundary functions.

11.6 Theorem. For ψ ∈ C∞(M, Ê+) and χ ∈ C∞(∂M,E−) the equation 6∇φ = ψ on M ,

φ = χ on ∂M , has a solution iff
∫
M (ψ, θ) =

∫
∂M (c(ν)χ, θ) for all smooth Dirac harmonic θ

on M .

Proof: By the Green formula, this compatibility condition on (ψ, χ) is necessary. Conversely,

extend ψ to M̃ and let φ0 = 6∇−1ψ. It suffices to show that φ0 − χ is a boundary value of a

Dirac harmonic function. By 10.20, it suffices to show that φ0 −χ is orthogonal to c(ν)H on

the boundary i.e., for all Dirac harmonic θ,
∫
∂M (φ0 − χ , c(ν)θ) = 0. By the Green formula,

this is precisely the compatibility condition.

This is the prototype for the theory of (global) elliptic boundary value problems. Booß

and Wojciechowski [15] use the twisted orthogonality of the boundary data to present a

comprehensive survey of elliptic boundary value problems for Dirac operators. I will not

repeat their work here, but instead, following Lax [57], I will use the above existence result

to deduce an approximation property for the Dirac operator.

11.7 Theorem. Let Ω be an open subset of M . Then any Dirac harmonic function on Ω

may be approximated (locally uniformly in all derivatives) by restrictions of Dirac harmonic

functions on M .
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Proof: By 7.13 it suffices to prove approximation in L2 for any Ω0 compactly contained in

Ω. Let V1 be the space of Dirac harmonic functions on Ω and V2 the space of restrictions

of Dirac harmonic functions on M . To show that V2 is dense in V1 in L2(Ω0, E
−), suppose

ψ ⊥ V2 and show that ψ ⊥ V1. To do this solve the (adjoint) equation

6∇−φ =




ψ on Ω0;

0 on M r Ω0.

Now the compatibility condition holds with χ = 0, and so there is a solution φ with φ = 0 on

the boundary of M . By unique continuation, φ = 0 on M r Ω0. Now by the Green formula

on any smoothly bounded domain Ω1 sandwiched between Ω and Ω0, and using any Dirac

harmonic θ on Ω:

0 =

∫

∂Ω1

(c(ν)φ , θ) =

∫

Ω1

(
6∇

−
φ , θ

)
+

∫

Ω1

(
φ , 6∇

+
θ
)

=

∫

Ω0

(ψ , θ)

and so ψ is orthogonal to V2 as required.

Using this and the local properties of the Cauchy integral gives:

11.8 Theorem (Solvability of the Dirac equation). For x ∈ M , ξ ∈ Ex and α ∈ ker c

6 T ∗
x ⊗Ex there is a Dirac harmonic φ on M with φ(x) = ξ and Dφ(x) = α.

Proof: First show that for any such ξ, α there is a Dirac harmonic function on a neighbour-

hood of x with φ(x) close to ξ and Dφ(x) close to α. To do this let ψ be any spinor field

with ψ(x) = ξ and Dψ(x) = α, so 6∇ψ(x) = 0. Now let Br(x) be a small ball around x, and

form the Cauchy integral for y ∈ Br(x)

φ(y) =

∫

∂Br(x)
(−Gy , c(ν)ψ) = ψ(y) −

∫

z∈Br(x)
(Gy(z) , 6∇ψ(z)) .

Now since 6∇ψ(z) vanishes at x it may be written locally as (z − x)χ(z) for some bounded

spinor field χ. Hence for y close to x the integrand is approximated by χ(z)
|z−x|n−2 , and so the

integral over Br(x) is order r2, with derivative of order r. Therefore by choosing r small

enough, both φ(x) and its covariant derivative can be made arbitrarily close to those of ψ.

Next by the above approximation theorem 11.7, the same holds for Dirac harmonic spinors

on M . Now apply this approximation result to a basis for Ex ⊕ ker c. By making the

approximation sufficiently good, the corresponding Dirac harmonic spinors will also form a

basis. Hence, by the linearity of the Dirac operator, the result follows.

This result is in marked contrast to the case of a closed manifold, on which the Dirac

equation has a finite dimensional solution space if any solutions at all.

I will finish this section by showing how the analysis of the Dirac operator generalises

Hardy space theory in complex analysis. The aim here is to show that H really is a space
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of boundary values of suitably well behaved Dirac harmonic functions on intM . To do this,

using a metric near ∂M , introduce the normal geodesic flow from the boundary (a local 1-

parameter family of diffeomorphisms), which identifies ∂M × [0, δ] with a neighbourhood of

∂M in M , for some small δ. Trivialise E in the normal direction by using parallel transport

along normal geodesics. Let Mε = M r (∂M × [0, ε]) and let rε denote the restriction map

from functions on M to functions on ∂M given by restricting to ∂M ε and identifying with

∂M .

The limiting behaviour of Dirac harmonic functions is given by the following result.

11.9 Theorem. Let φ be smooth on M and Dirac harmonic on the interior. Then

∫

∂Mε

(φ , φ) 6 K

∫

∂M
(φ , φ) ,

for some constant K independent of φ and ε.

Proof: The integral I(ε) over ∂M ε is smooth with respect to ε, for ε ∈ [0, δ]. It will be shown

that I ′(ε) 6 λI(ε), for a constant λ independent of φ and ε. Integrating this inequality from

0 to ε gives I(ε) 6 eλεI(0) 6 eλδI(0). It therefore remains to estimate I ′(ε). To do this

identify ∂M ε with ∂M and let vol ε be the volume form on ∂M ε pulled pack to ∂M . Observe

that the outward normal to ∂M ε is identified with the outward normal at ∂M . Therefore

d

dε

∫

∂Mε

(φ , φ) =
d

dε

∫

∂M
(rεφ , rεφ) vol ε

=

∫

∂Mε

−2 (Dνφ , φ) +

∫

∂Mε

(φ , φ)
vol ′ε
vol ε

=

∫

Mε

−2 div (Dφ , φ) +

∫

∂Mε

(φ , φ)
vol ′ε
vol ε

.

The second integral can be bounded in terms of I(ε). Now by the Bochner-Weitzenböck

formula, the integrand in the first integral is −2 (Dφ ,Dφ) + 2
(
c(2)Rφ , φ

)
6 const. (φ , φ).

But φ on Mε is given by its Cauchy integral, which is L2 bounded as observed in 9.2, and so

the first integral is also bounded in terms of I(ε).

11.10 Corollary. The Cauchy integral of a function φ in H (which exists as an L2 Dirac

harmonic function on intM by 9.2) is a smooth function ψ on intM with rεψ bounded in

L2(∂M,E) independent of ε. Furthermore rεψ → φ in L2 as ε→ 0.

Proof: Approximate φ by restrictions of smooth Dirac harmonic functions φk. It is imme-

diate then that the L2 estimate applies to φ. Therefore it also applies to φ−φk and so in the

estimate

||rεCφ− φ|| 6 ||rεC(φ− φk)|| + ||rεφk − φk|| + ||φk − φ||,
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the first term is bounded by K||φ− φk||. Hence like the last term it can be made arbitrarily

small for large k. Now ||rεφk − φk|| approaches zero with ε since it is a continuous function

of ε > 0 (φk being continuous on M).

Conversely there is the following result.

11.11 Proposition. Suppose that ψ is Dirac harmonic on intM and that
∫
∂M (rεψ , rεψ) is

bounded independent of ε. Then ψ is a Cauchy integral of a function φ on the boundary, and

φ ∈ H.

Proof: Since, every bounded sequence in L2 has a weakly convergent subsequence (Banach-

Alaoglu), there is a sequence of values of ε converging weakly to a function φ in L2(∂M,E).

Now ψ is Dirac harmonic on intM and so

Cφ− ψ = Cφ− Cε(ψ|∂M ε
)

= C(φ− rεψ) + C(rεψ) − Cε(ψ|∂Mε
)

The first term can be made arbitrarily small by weak convergence, while the remaining terms

are small for fixed x in intM because the Green function Gx on ∂M ε converges uniformly to

the Green function on ∂M . To see that φ ∈ H it suffices to show that
∫
∂M (φ , c(ν)θ) = 0 for all

θ smooth onM and Dirac harmonic on the interior. But this follows from
∫
∂Mε

(ψ , c(ν)θ) = 0,

by taking a weakly converging subsequence, and using the uniform convergence of the Green

function on ∂Mε.

Note that although weak convergence of a subsequence was used in the above proof, it

immediately follows that rεψ → φ in norm (i.e., strongly!).

Thus H is the space of L2 boundary values of Dirac harmonic functions on the interior,

and the Cauchy integral is an isomorphism between H and the space of Dirac harmonic

functions in the interior with bounded L2-norm near the boundary.

12 An application in conformal geometry

The analytical results will now be applied to the particular case of the conformally invari-

ant Dirac operator on a manifold with boundary. The aim is to show that the Cauchy integral

formula defines a conformally invariant metric on the interior of M , which is complete and

has negative scalar curvature. This was established by Hitchin [48] in the Euclidean case,

using arguments which easily generalise to arbitrary spin manifolds with boundary. However,

in order to show that the conformally invariant metric has negative (rather than nonpositive)

scalar curvature, the solvability of the Dirac equation is needed, and this relies upon the full

analytical theory developed above. Also, the results at the end of section 11 give a more
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concrete description of the conformally invariant Hilbert space as a Hardy space, rather than

an abstract L2 closure. Finally the analytical results give more detailed information about

the Szegő kernel, which is intimately related to the conformally invariant metric.

Recall from 9.8 that the Cauchy integral evaluated at x is bounded from the inner product

space C∞(∂M,E) to Ex. Now for Dirac harmonic spinors (smooth up to the boundary)

the Cauchy integral reproduces the function, and hence this map can be thought of as the

evaluation map evx. Taking the closure in L2 gives a bounded linear map evx : H → Ex.

Now because Ex has an Ln−1
x -valued inner product, the norm squared of ev x is an element

of Ln−1
x . This would normally be defined by ||ev x||

2 = sup{(evx(φ), evx(φ)) :
∫
∂M (φ , φ) 6 1}

(the so called operator norm), but in order to ensure that these norms fit together to give a

smooth section of Ln−1, an equivalent norm will be used here, namely the Hilbert-Schmidt,

or L2-norm.

12.1 Definition. Let ev ∗
x : E∗

x → H be the adjoint (transpose) of evx. Then the Hilbert-

Schmidt norm of evx is defined by ||evx||HS
2 = tr(ev ∗

x ◦ evx), where ev∗
x ◦ evx ∈ End(H) ⊗

Ln−1
x .

12.2 Proposition. The Hilbert-Schmidt norm is finite and if φk form an orthonormal basis

of smooth sections for the separable Hilbert space H, then ||ev x||HS
2 =

∑
(φk , φk)x, where

(. , .)x denotes the value of the pairing of spinor fields at x.

Proof: The Hilbert-Schmidt norm is finite because ev ∗
x ◦ evx has finite rank. The second

part follows from the definition of the trace of an endomorphism of H, namely tr(T ) =
∑
〈Tφk, φk〉.

12.3 Proposition.
∑

(φk , φk) converges in C∞(M,Ln−1) and so ||evx||HS
2 defines a smooth

section ||ev ||2 of Ln−1.

Proof: Since Gx(y) is smooth for x ∈ intM and y ∈ ∂M , evx is continuous in x, and

hence so is its Hilbert-Schmidt norm. Thus by Dini’s Theorem
∑

(φk , φk)x converges locally

uniformly in x, and hence locally in L2. Now using the elliptic estimate, it follows (as in the

proof of 7.13) that the convergence is locally in L2
k for all k. Therefore the convergence is in

C∞(M,Ln−1) by the Sobolev Embedding.

Remark. This almost establishes the main result of this section, since ||ev ||2 is a canonical

section of Ln−1 defined purely in terms of the conformal structure. It remains to establish

that it is a trivialisation of Ln−1 i.e. it is nonvanishing. To do this, it must be shown that

given any x ∈M , there is a Dirac harmonic spinor which does not vanish at x. This follows

from the solvability of the Dirac equation, but more explicitly, the fundamental solution
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provides such a spinor.

12.4 Proposition. Given any x ∈ int(M) there is y ∈ M̃ rM with Gy(x) 6= 0.

Proof: This is immediate from 9.6, for if Gx is zero on all of M̃ r M , it must be zero on

Mr{x} by unique continuation. This contradicts the fact that it is the fundamental solution

at x.

12.5 Theorem. ||ev ||2 is a trivialisation of Ln−1 over int(M) defined purely in terms of the

conformal structure of M , and so gives rise to a conformally invariant metric on int(M) and

inner product on E, denoted 〈. , .〉.

Proof: Since Gy is Dirac harmonic on M , there is, for each x, a Dirac harmonic spinor which

does not vanish at x, so ||ev ||2 is a nonvanishing section of Ln−1. The trivialisation of Ln−1

is obtained by identifying this section with 1 in the trivial bundle R.

12.6 Corollary. If φk form an orthonormal basis for H, then
∑
〈φk , φk〉 = 1.

In terms of the Szegő kernel, the trivialisation at Ln−1
x is the contraction of S(x, x), and

the metric is [g]〈S(x, x)〉
2

n−1 , where the angle brackets denote the contraction and [g] is the

conformal structure. Hence S(x, x) 6= 0.

12.7 Proposition. The conformally invariant metric has negative scalar curvature.

Proof: Let φk form an orthonormal basis for H, consisting of smooth sections. Then by the

Lichnerowicz formula 7.4 applied at x ∈ int(M) the following holds for each k:

〈Dφk , Dφk〉x +
1

4
κ(x)〈φk , φk〉x = div〈Dφk , φk〉(x).

But 〈Dφk , φk〉 + 〈φk , Dφk〉 = d〈φk , φk〉, so if the inner product is real-valued:

〈Dφk , Dφk〉x +
1

4
κ(x)〈φk , φk〉x =

1

2
∆〈φk , φk〉(x).

(In fact this holds even if the inner product isn’t real valued, for the left hand side is real-

valued, and so the difference 〈Dφk , φk〉 − 〈φk , Dφk〉 must be in the kernel of the divergence,

since its real part vanishes.) Now sum this formula over k. Since
∑
〈φk , φk〉x = 1 (locally

uniformly in all derivatives), the second term is summable, and the third term sums to

∆1 = 0. Thus
1

4
κ(x) = −

∑
〈Dφk , Dφk〉x 6 0.

Therefore scalar curvature is negative at a point x iff there is a Dirac harmonic spinor on M

with nonvanishing covariant derivative at x. But such a spinor field exists by the solvability

of the Dirac equation 11.8.
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Discussion. It now remains to discuss the completeness of the metric on the interior. Since

M is compact, it is complete in any metric in the conformal class. To show that a metric on

the interior is complete, it suffices to show that this metric blows up sufficiently fast close to

the boundary with respect to any metric (on all of M) in the conformal class. Therefore fix

a metric in the conformal class and calculate the norm of the evaluation map with respect

to this metric to see if it blows up close to the boundary. Certainly ||ev x||
2 is less than

|
∫
∂M (Gx, Gx)|, but here a lower bound is needed. To do this recall that Gx has a pole of

order n − 1 at x. Now let y be a point on ∂M and ε > 0 be so small that y is the closest

point to x, z = y ± εν(y) (so x ∈ M and z ∈ M̃ r M). Now Gz is Dirac harmonic on M

and so Gz(x) = evx(gz) =
∫
∂M (c(ν)Gx, Gz). Now ||evx||

2 > |Gz(x)|
2
/
|〈Gz , Gz〉|. But the

denominator is |
∫
∂M (Gz, Gz)|, which can be seen to have order 1/εn−1, while the numerator

is clearly of order 1/ε2n−2. Thus ||evx||
2 > const./εn−1, and so the corresponding section of

L2 is grows as fast as 1/ε2, which is sufficient to ensure completeness by standard arguments.

As an example, I will compute the conformally invariant metric on the unit ball in Sn

using the representation of Möbius transformations by Clifford matrices.

12.8 Proposition. On the unit ball in Sn with the standard conformal structure, the metric

defined by the evaluation map (expressed in terms of the flat metric δij) is given by:

gij(z) =
1

ω
2/(n−1)
n (1 − |z|2)2

δij .

This metric is called the Poincaré metric, and is well known to be complete with constant

negative scalar curvature.

Proof: In terms of the flat metric and an orthonormal basis for H, ||ev x||
2 =

∑
|φk(x)|

2 =
∑

|〈c(ν)Gx , φk〉|
2 = ||

∑
〈c(ν)Gx , φk〉φk||

2, which is the L2-norm of the projection of c(ν)Gx

onto H. Now c(ν)g0 = 1
ωn

on the boundary of the unit ball (since ν(y) = y), which is the

boundary value of a constant spinor and hence lies in H. Therefore ||ev 0||
2 =

∫
Sn−1 1/ω2

n =

1/ωn, so gij(0) = δij/ω
2

n−1
n . Now the conformal transformation of Sn defined by x 7→ x+z

zx+1

preserves the unit ball and sends 0 to z. Its derivative at 0 is h 7→ (1 − |z|2)h. In order for

this to be an isometry of the conformally invariant metric, gij(z) must be as stated.

Alternatively, the Szegő kernel can be obtained directly, by observing that for |x| <

1, |y| = 1 the Cauchy kernel is

−c(νy)Gx(y) =
y(y − x)

ωn|y − x|n
=

1 − yx

ωn|1 − yx|n
,

which extends to a Dirac harmonic function of y for |y| < 1. Therefore −c(ν)Gx is a boundary

value of a Dirac harmonic spinor, and so the Szegő kernel for |x| 6 1, |y| 6 1 (and if |x| =
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|y| = 1 then x 6= y) is

S(x, y) =
1 − yx

ωn|1 − yx|n
.

The formula S(x, x)2/(n−1) gives again the Poincaré metric.

It is interesting to see the form of this kernel in the conformal chart on Sn which maps

the unit disc to a half plane en > 0. Using either the transformation law for spinors, or

an analogous observation concerning the Cauchy kernel on the boundary 〈y , en〉 = 0, the

following formula for the Szegő kernel is obtained:

S(x, y) =
enx+ yen

ωn|enx+ yen|n
.

This immediately gives the half space model for the hyperbolic metric.

It is possible to carry out further calculations along these lines, but I will stop here.

13 Further directions

There are several directions suggested by the above research. Firstly, the analysis of

the Dirac operator on arbitrary spin manifolds is clearly way behind the work done in the

Euclidean and two dimensional cases. It would certainly be of interest to pursue this analysis

in its own right, but I think it would be particularly fruitful to focus on the links with

conformal geometry and index theory.

As an explicit example of this, the conformally invariant metric on the interior of M with

boundary has an asymptotic expansion near the boundary whose coefficients may give rise to

conformal invariants of the inclusion i : ∂M →M . One way to obtain such invariants might be

to compute the conformally invariant metric on the other side of the boundary (assuming M

is a submanifold of a closed manifold). The difference between the two asymptotic expansions

may be finite, or at least have an interesting leading order term. This set up closely resembles

the η-invariant for global elliptic boundary value problems. This is not the only link with

index theory. Indeed, as is well known, the indices of chiral Dirac operators provide numerical

invariants for compact manifolds. In particular the (conformal) Dirac operator and the

Hodge-Dirac operator give rise to the Â genus and the signature of the manifold. Other

genera are obtained from twisted Dirac operators. Now the Hodge-Dirac operator decomposes

into the exterior derivative and its formal adjoint acting between irreducible components of

the exterior algebra. Similarly, other twisted Dirac operators may be decomposed into first

order operators between irreducible components, some of which may be overdetermined. It

might be interesting to see what integrability obstructions arise.
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Part III

Curvature for First Order Differential

Operators

14 Introduction

The theory of first order linear differential operators is well understood, and makes an

appearance in a very wide range of applications. The parts of the theory used, and the

form it takes, will depend upon the context, and taking the right approach is often crucial.

In investigations of the theory of the integrability of differential equations, for example by

Goldschmidt and Spencer (see [74]), a number of very useful ideas have emerged. The purpose

of this Part is to explore these ideas in a form adapted to explicit applications rather than

general theory. In particular, one of the main ideas used in the above-mentioned work is the

notion of integrability obstructions for a differential equation. In a general context, it can be

shown that many equations have prolongations with no integrability obstructions, and so it

is natural to start from the hypothesis that the obstructions vanish, and then try to prove

that the equations are integrable. In a more explicit situation however, the main interest is to

calculate the obstructions, which will be invariants of the differential operator, and interpret

their geometrical meaning.

My aim is to present the theory of second order obstructions for first order differential

equations in such a way that their meaning can be interpreted easily in examples with little or

no use of unilluminating coordinate expressions. Most of the ideas herein are taken from the

papers [37] [38] and [74] of Goldschmidt and Spencer respectively. The notions of prolongation

and obstruction used here are simply special cases of very natural and general ideas used in

these papers. I have chosen to concentrate on the first and second order theory for several

reasons. Firstly, the general results are more accessible when presented in a simpler context,

and can be illustrated more easily with examples. Secondly, it is only at low order that

explicit calculations are normally feasible. Finally, the examples feed back into the theory,

suggesting new ideas which allow the theory to be pushed a little bit further. In particular, the

notion of a split differential equation is defined, because such equations are seen to be typical

examples. Furthermore this extra piece of information attached to a differential equation

allows its properties to be more easily understood. The culmination of all of this is Theorem

16.8, in which it is proven that the second order obstruction is a composite of two first order

differential operators. This theorem is of much use in interpreting the geometrical content of
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a curvature obstruction in specific examples. To illustrate this, the final section is entirely

devoted to such examples, one of which is the fairly recent notion of a partial connection (see

for example [35]).

My original motivation for studying integrability obstructions was in order to analyse

the obstructions for differential equations arising from the twistor transforms of Part IV.

As will be seen there, the methods of this Part do indeed provide a useful tool in that

context. However, the theory here, I believe, is also of interest in its own right, and so in the

final section, I shall also put my approach in the wider context of differential equations and

geometrical structures.

15 Definitions and first order theory

In this section the basic theory of first order differential operators will be discussed. Jet

bundles will be described only briefly, simply to fix notation. More detail on the theory of

jets can be found in [72] for example.

15.1 Preliminaries on jet bundles. Let M be a manifold and E a vector bundle on M .

Then the 1-jet bundle of E is the bundle J 1E whose fibre at x is the quotient space (J 1E)x =

C∞(M,E)/{s : s(x) = dsx = 0}. The equivalence class of a section s at x is called its 1-jet

at x, denoted j1xs. (J1E)x thus encodes the possible values of a section and its first derivative

at x, and there is a natural projection π1,0
E : J1E → E with kernel T ∗⊗E. This is called the

1-jet sequence of E. There is also a map j1 : C∞(M,E) → C∞(M,J1E) assigning to a section

s, the section j1s which gives the 1-jet of s at each point of M . Furthermore, any bundle

homomorphism φ : E → F has a prolongation j1φ : J1E → J1F . Higher order jet bundles

are defined analogously; only the 2-jet bundle J 2E = C∞(M,E)/{s : s(x) = dsx = d2sx = 0}

with its projection π2,1
E : J2E → J1E will be needed here. Also, the 0-jet bundle of E is, of

course, defined to be E itself.

15.2 Definitions. A first order linear differential equation on a vector bundle E → M is a

subbundle R1 of the 1-jet bundle J 1E. A local solution to the equation R1 is a section s of

E over an open subset of M such that j1s is a section of R1. Roughly speaking, R1 is said

to be integrable if it has sufficiently many local solutions. In particular, at any x ∈ M , the

local solutions are required to span the fibre Ex.

Remark. Differential equations onE arise as kernels of the bundle homomorphisms J 1E →

F induced by first order differential operators from E to F . Hence in the above definition,

there is a slight regularity assumption on the differential operator, namely that this kernel
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has constant rank. Given this assumption, the bundle F can be replaced by the image

(quotient) F 1 of the differential equation.

15.3 Example. The basic example of a first order differential operator is a connection on E.

This is given by a splitting of the the 1-jet sequence, and hence by a subbundle R1 of J1E

which is isomorphic to E under the projection π1,0
E : J1E → E. Therefore R1 is the space of

“flat” or “constant” 1-jets with respect to the connection. The integrability of this space is

equivalent to the flatness of the connection. It is well known that flatness is characterised by

the vanishing of the curvature (hence the name). My main aim is to seek an analogue of this

type of curvature for more general first order differential equations.

The first obstruction to integrability is the obstruction to finding a 1-jet of a solution at

a point x, whose 0-jet at x is a given point in the fibre Ex. In other words, to what extent

does π1,0
E : R1 → E fail to be surjective? The kernel of this map is g 1 = T ∗⊗ E ∩R1, which

is also the kernel of the symbol of the differential operator σ : T ∗⊗ E → F 1. By using the

image factorisations, and introducing the cokernel K 1 of the symbol, an exact square can be

constructed.

15.4 First order square. The following commutative diagram is exact:

0 0 0

0 - g1
?

- R1
?

- imR1
?

- 0

0 - T ∗⊗E
?

- J1E

?

- E
?

- 0

0 - imσ
?

- F 1
?

- K1
?

- 0

0
?

0
?

0
?

Proof: The only sequence whose exactness is in question is the right hand column. This

follows from exactness of the rest of the diagram and commutativity of the other three

squares.

Hence K1 characterises the extent to which both the symbol and the map of interest

π1,0
E |

R1 fail to be surjective.

15.5 Definition. The differential equation R1 is said to be transitive iff the map R1 → E is

surjective. By the above this holds iff the symbol map σ is surjective iff K 1 = 0.
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Transitivity is a basic and important property of a first order differential equation. The

above shows that transitivity can be understood at the symbol level, at least once F 1 is

known. Since my main focus is on second order (curvature-like) obstructions, the differential

equation will usually be assumed to be transitive. This is often the case in practice, and has

the highly significant advantage that the second order obstructions can be understood at the

symbol level (R1 is quite hard to visualise and compute with, whereas g 1 is a simple algebraic

object). The sequence

0 → g1 → T ∗⊗E → F 1 → 0

will be called the symbol sequence and g 1 the symbol kernel.

15.6 Examples.

A connection on E is just a transitive first order differential operator with symbol kernel

g1 = 0 and hence F 1 = T ∗⊗E.

Let H be a subbundle of T . Then a partial connection on E (along H) is a transitive first

order differential operator with symbol sequence

0 → H0 ⊗E → T ∗⊗E → H∗⊗E → 0.

This is very similar to a connection, but one can only differentiate along “horizontal” tangent

vectors X ∈ H.

A first order differential operator from E → F is said to be elliptic iff for each ξ 6= 0 in

T ∗, the map σξ : E → F 1 is an isomorphism. There is a vast theory on elliptic operators,

including results which show that they have plenty of local solutions. Hence one should verify

that any integrability obstructions vanish in this case.

Let M be a Riemannian manifold (although only the conformal structure is needed), and

E a bundle of spinors. The symbol of the Dirac operator is given by Clifford multiplication,

and so the Dirac operator is elliptic. However, by splitting the symbol sequence

0 → ker Cliff → T ∗⊗E → E → 0

using the metric, another example, the twistor operator, E → kerCliff 6 T ∗⊗E is obtained.

This will be studied in more detail later.

Let M be a (semi)Riemannian manifold with metric g. Killing’s equation is the equation

given by the differential operator k : ξ 7→ Lξg on T , with symbol sequence

0 → so(T ) → T ∗⊗ T → sym(T ) → 0.

The Levi-Civita connection is compatible with this equation, in the sense that Dξ ∈ so(T )

for ξ ∈ ker k. This gives an alternative description of Killing’s equation, and also decomposes

R1 into a direct sum so(T ) ⊕ T .
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Remark. A connection on E is said to be compatible with a differential equation R1 iff

the differential operator defined by the connection and the symbol has kernel R1. If R1 is

not transitive there will be no compatible connection. In the transitive case, a compatible

connection is a splitting of the inclusion g 1 → R1.

16 Second order theory and curvature

16.1 Definition. Using the natural embedding j2
xs 7→ j1x(j1s) of J2E into J1(J1E), define

the second order prolongation of R1 to be the bundle R2 given by the intersection of J 1R1

and J2E in J1(J1E).

This definition is a little bit subtle. At a point x ∈ M , R2
x consists of 2-jets (at x) of

sections of E which are also 1-jets (at x) of sections of R1. This space is in general larger

that the space of 2-jets (at x) of sections of E whose 1-jet is a section of R1 (which would be

2-jets of solutions of the differential equation). But it is in general smaller than the space of

2-jets (at x) of sections of E whose 1-jet at x is in R1
x.

The second integrability obstruction measures the extent to which the natural projection

R2 → R1 fails to be surjective. The kernel of this projection is g 2 = S2T ∗⊗E ∩T ∗⊗ g1. To

understand this second obstruction, the map R2 → J1R1 induced by the inclusion of J 2E

into J1(J1E) will be considered. This leads to the construction of another exact square.

16.2 Second order square. The following commutative diagram is exact:

0 0 0

0 - g2
?

- R2
?

- imR2
?

- 0

0 - T ∗⊗R1
?

- J1R1
?

- R1
?

- 0

0 - T ∗∧R1
?

- F 2
?

- K2
?

- 0

0
?

0
?

0
?

Proof: As in the first order case, this is a purely formal argument.

16.3 Definition. The (second order) curvature of R1 is the map R1 → K2 in the above dia-

gram. K2 is then the image of the curvature. The curvature decomposes into two pieces: the

map Ωg1 : g1 → R1 → K2 will be called the symbol curvature and the map E → K 2/ im Ωg1

will be called the curvature endomorphism.
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In order to justify this terminology, firstly K 2 will be identified as a subquotient of a

bundle of 2-forms, and secondly it will be shown that this map can be calculated in a similar

way to the curvature of a connection.

16.4 Proposition. (1) The bundle F 2 is a subbundle of T ∗∧ J1E.

(2) If R1 is transitive then
T ∗∧J1E

T ∗∧R1
∼=

Λ2T ∗⊗E

T ∗∧ g1
, where T ∗∧ g1 =

T ∗⊗ g1

g2
.

Proof: The first part is a consequence of the isomorphism T ∗∧ J1E = T ∗⊗J1E/S2T ∗⊗E ∼=

J1(J1E)/J2E and the fact that R2 = J1(J1E)∩ J1R1. The second part follows from the

simple observation that transitivity means J 1E/R1 ∼= T ∗⊗E/g1.

16.5 Corollary. K2 is a subbundle of
T ∗∧ J1E

T ∗∧R1
, or

Λ2T ∗⊗E

T ∗∧ g1
if R1 is transitive.

Henceforth the term curvature will refer to the map from R1 into this larger space, with

image K2. Note how the space in which curvature takes its values becomes more computable

in the transitive case (in fact it is a Spencer cohomology group; see for example [37]).

The above construction of the curvature involved the first order differential operator on

J1E given formally by the quotient of J 1(J1E) by J2E. This operator is called the jet

derivative and sends fj1s to df ∧ j1s. It is transitive, and so, in order to compute the second

order curvature, a connection on J 1E compatible with the jet derivative will be used. Such a

connection can be constructed from a connection D = DE on E and a torsion free connection

D on T ∗. The connection on E induces a direct sum decomposition J 1E = T ∗⊗E ⊕E, but

the obvious induced connection on this direct sum is not compatible with the jet derivative,

since it does not split the inclusion of S2T ∗⊗ E into J2E, because of the curvature RE of

DE . Fortunately, this is easily repaired.

16.6 Proposition. The differential operator on (T ∗⊗E) ⊕E defined by

D(α, s) = (Dα−
1

2
REs,Ds− α)

is a connection on J1E compatible with the jet derivative.

Proof: This is a connection on J 1E since it differs from the obvious connection by a zero

order operator. It is compatible with the jet derivative since if (α, s) = j 1s, then D(α, s) is

in S2T ∗⊗E.

In the transitive case, the symbol curvature can now be computed relatively easily by

choosing a compatible connection on E and a torsion free connection on T ∗. Then the

induced connection D on T ∗⊗E is the projection of the connection compatible with the jet

derivative. The symbol curvature Ωg1 is therefore obtained from the sequence

J1g1 → J1(T ∗⊗E)
D
−→ T ∗⊗ T ∗⊗E

skew
−−−→ Λ2T ∗⊗E →

Λ2T ∗⊗E

T ∗∧ g1
.
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This will be illustrated in the examples in the next section.

The curvature endomorphism is not quite so easy to handle, since the domain of the

curvature is still the less computable space R1. However, an extra piece of structure (which

one often has in examples), can be used to render the entire second order picture more

manageable.

16.7 Definition. A first order differential equation is said to be split iff the inclusion of R1

into J1E is provided with a one-sided inverse which maps T ∗⊗E onto g1. If the equation is

transitive, it is split iff the symbol sequence

0 → g1 → T ∗⊗E → F 1 → 0

comes equipped with a splitting F 1 → T ∗⊗ E. F 1 will then be identified with its image in

T ∗⊗E.

Remark. In the case of a connection g 1 = 0 and so the inverse of the isomorphism T ∗⊗E →

F 1 is the required splitting. Of course if an equation is not split, one can choose a splitting,

for example, by introducing a metric on T ∗⊗E.

Although the notion of a split equation is independent of transitivity, it becomes more

natural in the transitive case. In any case, though, the projection J 1E → R1 may be used

to extend the domain of the curvature from R1 to all of J1E, so that it becomes a first order

differential operator on E, which will be called the curvature operator. The symbol of the

curvature operator factors through the symbol curvature, and the curvature endomorphism

is then the transitivity obstruction for this new differential equation. The background is now

prepared for the main result, which states that the curvature operator factors through the

original differential operator. This seems somewhat surprising at first, since formally, the

curvature operator vanishes on F 1 not R1 (its complement!). The point is, though, that the

prolongation of the curvature operator does vanish on R2 = J1R1 ∩ J2E.

16.8 Theorem. For a first order split differential operator D : E → F 1, the curvature opera-

tor is minus the composite of D with F 1 → J1E → T ∗∧ J1E →
T ∗∧ J1E

T ∗∧R1
(the middle arrow

being the jet derivative).

Proof: First it will be shown that the composite, which is a priori second order, vanishes on

the inverse image of F 1 (by π2,1
E ) in J2E, and hence is a first order operator which factors

through R1. Formally, the composite is given by the following sequence:

J2E → J1(J1E)
j1D
−−→ J1F 1 → J1(T ∗⊗E) → J1(J1E) → T ∗∧ J1E →

T ∗∧ J1E

T ∗∧R1
.
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Because the differential equation is split, the map j1D is the projection obtained by subtract-

ing the J1R1 component. Now suppose ψ ∈ J 1(J1E) satisfies π1,0
J1Eψ ∈ F 1. Then ψ differs

from an element of J1F 1 by an element χ ∈ T ∗⊗ R1. Now if ψ is also in J2E, then the jet

derivative applied to ψ + χ annihilates ψ leaving only an element of T ∗∧R1, which maps to

zero in the quotient.

The second part of the proof is to check that the induced operator on R1 is the curvature,

as defined previously. To do this choose any lift of a local section φ of R1 to J2E 6 J1(J1E).

At each point this will differ from j1φ by an element of T ∗⊗ T ∗⊗ E. Hence if the section

j1φ of J1R1 is subtracted, only a further correction in T ∗⊗ g1 is required to give a section

of J1F 1. The original lift of φ is annihilated by the jet derivative, and the term in T ∗⊗ g1

maps to zero in the final quotient space, leaving only the image of −j1φ, which proves the

theorem.

16.9 Corollary. If D is split transitive, choose a compatible connection on E and a torsion

free connection on T ∗, which give rise to a connection D on T ∗ ⊗ E. Then the curvature

operator is minus the composite of D itself with the differential operator given formally by

J1F 1 → J1(T ∗⊗E)
D
−→ T ∗⊗ T ∗⊗E

skew
−−−→ Λ2T ∗ ⊗E →

Λ2T ∗⊗E

T ∗∧ g1
.

Of course, this formula is directly analogous to the usual calculation of the curvature of a

connection. Note also that the choice of torsion free connection on T ∗ is irrelevant, since only

its skew symmetric part, the exterior derivative, enters into the computation. Therefore, the

above formula really involves only the exterior covariant derivative on E.

Finally in this section, there is one important case in which the curvature of a differential

operator can be reduced to the curvature of a connection. This is given by the following

theorem.

16.10 Theorem. Suppose R1 is a first order linear differential equation such that g 2 = 0

and that T ∗∧R1 is provided with a complement in T ∗∧ J1E. Let d be the jet derivative, and

Ω be the curvature, thought of as taking values in the complement of T ∗∧R1 rather than the

quotient. Then for a section ψ of R1, dψ − Ωψ lies in T ∗∧R1 6 T ∗∧ J1E. Since the wedge

product is injective on T ∗⊗R1, this is a connection.

Proof: This is immediate from the original definition of the curvature as the quotient of the

jet derivative.

In the transitive case, it suffices to give a complement for T ∗∧ g1 in Λ2T ∗⊗E. Of course

if there are no second order obstructions, then T ∗∧R1 = T ∗∧ J1E, and the only remaining

hypothesis of the above theorem is g 2 = 0. Killing’s equation satisfies these conditions, as

will be seen in the next section.
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17 Examples

Now the above theory will be applied to a few examples, in order to demonstrate the

understanding of curvature obstructions it provides. Firstly, the case of an elliptic equation

will be dealt with.

17.1 Proposition. Suppose R1 is an elliptic differential equation. Then T ∗∧ g1 = Λ2T ∗⊗E.

Proof: It must be shown that the projection T ∗⊗g1 → Λ2T ∗⊗E is surjective. By the rank-

nullity theorem, it suffices to prove that the kernel K = T ∗⊗g1 ∩S2T ∗⊗E is sufficiently small.

Now if the rank of T is n and the rank of E (and also F 1) is k, then dimΛ2T ∗⊗E = 1
2n(n−1)k.

Since the symbol is surjective, dimT ∗⊗ g1 = n(n − 1)k, and so it is required to prove that

dimK 6
1
2n(n − 1)k (the opposite inequality automatically holds). This holds because

ellipticity implies 〈ξ〉 ⊗ 〈ξ〉 ⊗E ∩T ∗⊗ g1 = 0. More precisely, let e1, . . . en be a basis for Tx,

with dual basis ε1, . . . εn, and let Lx = ⊕n
i=1〈εi〉⊗〈εi〉⊗Ex. Then dimLx = nk and if α ∈ Lx

then α(ei, .) ∈ g1
x ∩ 〈εi〉 ⊗ Ex for all i, so α = 0 and hence T ∗⊗ g1 ∩L = 0. This shows that

K ∩L = 0 and so dimK 6
1
2n(n− 1)k as required.

It is straightforward to check out the case of a connection. This is a mapD : J 1E → T ∗⊗E

splitting the 1-jet sequence. Hence F 1 = T ∗⊗E, g1 = g2 = 0 and T ∗∧ g1 = 0. A compatible

connection on E is the connection D itself. It is now clear that the formula in 16.9 is the

usual formula for the curvature of a connection.

The twistor equation

Let M be a conformal n-manifold, and E−, E+ bundles of (possibly chiral) spinors as-

sociated to the conformal structure (with conformal weights − 1
2 and 1

2) such that T ∗ acts

from E− to E+. Let F 1 = kerCliff : T ∗⊗ E− → E+ and D be the composite of a covariant

derivative on E− (induced by a metric in the conformal class) and the orthogonal projection

onto kerCliff. This is the split transitive twistor operator, and is independent of the choice

of the metric. g1 is a copy of E+ in T ∗⊗E−. For simplicity I shall drop the +/− superscripts

for the rest of this analysis. I shall also assume henceforth that n > 2

The important calculation is the following.

17.2 Proposition. For the twistor equation (and n > 2), g 2 = T ∗⊗ g1 ∩ S2T ∗⊗E is zero.

Proof: Let e1, . . . en be be an orthonormal basis for Tx with dual basis ε1, . . . εn, and suppose
∑

i,j εi ⊗ εj ⊗ ψij is an element of g2. Then
∑

j εj ⊗ ψij is of the form
∑

j εj ⊗ eiφj where

eiφj must be symmetric in i and j. Now for i 6= j, e2
i = e2j = 1 and eiej = −ejei, and so

ejφj = ejeieiφj = ejeiejφi = −eiφi. But for n > 2 this implies φi = 0 ∀i.
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17.3 Corollary. The wedge product mappings T ∗⊗ g1 → T ∗∧ g1 and T ∗⊗R1 → T ∗∧R1 are

both injective. Therefore
Λ2T ∗⊗E

T ∗∧ g1
∼=

T ∗⊗ F 1

S2T ∗⊗E
where S2T ∗⊗ E is embedded into T ∗⊗ F 1

by projecting along T ∗⊗ g1 (N.B. this space is definitely not equal to T ∗∧F 1, although it is

a quotient of this latter space).

The following result is now easily deduced:

17.4 Proposition. The symbol curvature of the twistor operator is zero.

Proof: For α =
∑

i εi ⊗ eiφ ∈ g1 and a covariant derivative on T ∗⊗E, it is easy to calculate

that Dα =
∑

i,j εj ⊗ εi ⊗ eiDej
φ (because Clifford multiplication is covariant constant). But

this is in T ∗⊗ g1 and so is zero in the quotient.

Remark. If Clifford multiplication were not covariant constant (as happens on a hyper-

surface for example), then the symbol curvature would measure this. As in the case of a

partial connection, the symbol curvature really does measure the curvature of the symbol

(only).

The vanishing of the symbol curvature means that the curvature operator is an endomor-

phism. Obtaining an explicit geometrical interpretation requires some detailed calculation.

Fortunately, such calculation is not essential in order to understand the twistor equation,

since the conformal inner product on Λ2T ∗⊗ E provides a complement to T ∗∧ g1, and so

theorem 16.10 applies. Therefore there is actually a connection on the bundle R1. As is well

known, the curvature of this connection (in dimensions > 4) is given by the Weyl curvature

of the conformal structure.

Killing’s Equation

Let M be a (semi)Riemannian manifold and consider Killing’s equation ξ 7→ Lξg =

symmDξ, with g1 = so(T ).

17.5 Proposition. For Killing’s equation, g 2 = T ∗⊗ so(T ) ∩ S2T ∗⊗ T is zero. Hence, the

map skew : T ∗⊗ so(T ) → Λ2T ∗⊗ T is bijective, with inverse β 7→ α, where

2g(α(X)Y,Z) = g(β(X,Y ), Z) + g(β(Z,X), Y ) + g(β(Z, Y ), X).

Proof: This is every Riemannian geometer’s favourite calculation.

17.6 Proposition. For Killing’s equation, the second order curvature obstruction vanishes,

and there is a unique extension of (φ, ξ) in J 1T = so(T ) ⊕ T to a 2-jet in R2, whose highest

order part is X,Y 7→ 1
2

(
R(X, ξ)Y +R(Y, ξ)X

)
.
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Proof: The obstruction vanishes because T ∗∧ g1 = Λ2T ∗⊗ T , and the extension is unique

because g2 = 0. To calculate the correct 2-jet, suppose φ = j1ξ. Then skewDφ = Rξ and so,

since Dφ is a section of T ∗⊗ so(T ), it is given by

DXφ(Y ) =
1

2

(
R(X,Y )ξ −R(ξ,X)Y −R(ξ, Y )X

)
= R(X, ξ)Y.

The symmetric part of this is the highest order part of the 2-jet.

17.7 Theorem. There is a connection on Killing’s equation given by

DX(φ, ξ) = (DXφ−R(X, ξ), DXξ − φ(X)).

A parallel section of Killing’s equation is a Killing vector field.

Proof: The existence of the connection is given by 16.10. Since the second order curvature

of Killing’s equation vanishes. The connection is given by the jet derivative R1 → T ∗∧J1E

composed with the isomorphism T ∗∧ J1E → T ∗⊗ R1, induced by the inverse Λ2T ∗⊗ E →

T ∗⊗ so(T ). The formula is now an easy computation. If φ = Dξ then ξ satisfies Killing’s

equation. Conversely, a solution of Killing’s equation also satisfies DXDξ = R(X, ξ) by the

proof of 17.6.

17.8 Theorem. The curvature of the connection on Killing’s equation is given by R(φ, ξ) =

DξR− φ(R), where

φ(R)(X,Y )Z = φ(R(X,Y )Z) −R(φ(X), Y )Z −R(X,φ(Y ))Z −R(X,Y )φ(Z)

is the natural action of so(T ). Hence (φ, ξ) defines an infinitesimal Killing vector field at a

point if DξR = φ(R) there. Killing’s equation is integrable iff the connection if flat iff M has

constant curvature.

Partial connections

Recall that a partial connection is given by a subbundleH of T and a map J 1E → H∗⊗E

whose symbol is induced by the natural projection T ∗→ H∗ (with kernel H0, the annihilator

of H). The symbol sequence is

0 → H0 ⊗E → T ∗⊗E → H∗⊗E → 0,

i.e., F 1 = H∗⊗E, g1 = H0 ⊗E and partial connections are always transitive. A splitting of

a partial connection is nothing more than a complementary subbundle to H in T .

A simple calculation gives the following:
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17.9 Proposition. g2 = S2H0 ⊗E and so

T ∗∧ g1 = H∗∧H0 ⊗E ∼= Λ2
HT

∗⊗E,

which is the space of 2-forms (with values in E) vanishing on Λ2H. Consequently the

codomain for the curvature is Λ2H∗⊗E.

The symbol curvature can be calculated without a splitting. It is the map ΩH : H0⊗E →

Λ2H∗⊗E given on sections X,Y of H, by

ΩH(X,Y )α⊗ s = DX(α⊗ s)(Y ) −DY (α⊗ s)(X) = α(DXY −DYX)s = α([X,Y ])s,

where α ∈ H0 ∼= (T/H)∗. Therefore ΩH(X,Y ) is given by the action of [X,Y ] mod H, and

so it is the Frobenius curvature of H, which measures its failure to be integrable (i.e. the

tangent bundle of a foliation). If it is integrable, then a partial connection is just a connection

along the leaves of a foliation. Hence, when studying partial connections, one usually makes

some sort of non-integrability assumption.

To calculate the full curvature operator, a splitting πH : T → H and a compatible con-

nection on E will be chosen. Applying 16.9 gives the formula

DXDY s−DYDXs−DπH [X,Y ]s

for the curvature applied to a section s of E and sections X,Y ofH. It is clear that the symbol

of this operator applied to α⊗ s and X,Y is α([X,Y ] − πH [X,Y ]) ⊗ s, which clearly factors

through the symbol curvature. For further information on partial connections in general see

Ge [35]. Here I would like to focus on partial connections on contact manifolds, which (in

a complexified version) may be of particular interest in the twistor theory of quaternionic

manifolds [71].

For contact manifolds, H has codimension 1, and satisfies the “maximal” non-integrability

condition that the Frobenius curvature X ∧Y 7→ [X,Y ] mod H defines a non-degenerate

skew form on H. Therefore H has even rank 2m and the manifold M has dimension 2m+ 1.

The lowest possible dimension for a contact manifold is therefore 3, and in fact S 3 is an

example.

An important consequence of the non-degeneracy of the Frobenius curvature comes from

the following:

17.10 Theorem (Lefschetz). Let ω be a nondegenerate skew form on a vector space V

of dimension 2m. Define L : Λ(V ∗) → Λ(V ∗) by L(α) = ω∧α. Then Lp : Λm−p(V ∗) →

Λm+p(V ∗) is an isomorphism for each p > 0.
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Idea of proof: Introduce a compatible inner product on V . Then one finds that [L,L∗] =

H =
∑

p(m−p)Πp where Πp is the projection onto p-forms. It is then easy to see that [L,H] =

2L and [L∗,H] = −2L∗, and so L,L∗,H span a Lie subalgebra of EndΛ(V ∗) isomorphic to

SL(2,R) (or SL(2,C)). The result then follows from the study of the “root strings” of this

representation.

17.11 Corollary. L : Λk−1(V ∗) → Λk+1(V ∗) is injective for k 6 m, and surjective for k > m.

This is useful in contact geometry, because ηH : T → T/H and ΩH : Λ2H → T/H together

generate a differential ideal in Λ(T ∗) (this can be seen by locally trivialising the line bundle

T/H, and showing that ΩH = dηH in the trivialisation). Writing LH for the wedge product

by the (twisted) 2-form ΩH , the exterior derivative then gives rise to differential operators

dH :
ΛkH∗

imLH
→

Λk+1H∗

imLH
,

and

dH : (kerLH)k → (kerLH)k+1,

where the superscripts denote the k and k+1 form components. The first differential operator

is only interesting for k < m (otherwise the spaces all vanish) and the second for k > m.

Rumin [70] has observed that there is a second order differential operator

DH :
ΛmH∗

imLH
→ (kerLH)m+1,

linking these two complexes into a single complex. This operator has come to be known as

the Rumin operator, and the complex is called the Rumin complex. Rumin [70] shows that

its cohomology is isomorphic to the deRham cohomology of M (by proving local exactness).

Now given a partial connection on E, is it possible to twist this complex with E, and so

obtain a sequence of differential operators associated to the partial connection? The answer is

yes, but with the small proviso that the “twisted Rumin operator” is not canonically defined

unless the curvature endomorphism of the partial connection vanishes.

More precisely, it is well known (see [35]) that the two halves of the complex can be

constructed for partial connections: one simply picks any extension of the partial connection

∇ to a connection ∇̃ on E and uses the exterior covariant derivative d∇̃. It is easy to see

that this induces operators on the two halves of the complex independent of the choice of ∇̃.

For the Rumin operator, the first part of Rumin’s construction goes through without

change:

17.12 Proposition. For
∑
αj ⊗ sj ∈ ΛmH∗⊗E there is a unique lift

∑
α̃j ⊗ sj ∈ ΛmT ∗⊗E

such that
∑
d∇̃α̃j ⊗ sj ∈ Λm+1T ∗

H ⊗E for any choice of ∇̃.
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Proof: To do this pick any lifts α̂j ∈ ΛmT ∗ and recall that LH is an isomorphism onto

Λm+1H∗⊗E. Then it is easy to see that

∑
α̃j ⊗ sj =

∑
α̂j ⊗ sj − ηH ∧H L−1

H (d∇̃
∑

α̂j ⊗ sj|H )

is the required lift.

Following the rest of Rumin’s construction would lead one to define

D̃∇̃(
∑
αj ⊗ sj) =

∑
d∇̃α̃j ⊗ sj.

Unfortunately, this doesn’t quite work, since in the presence of curvature, it isn’t in kerLH

and doesn’t vanish on imLH . However, using the decompositions

ΛmH∗ = kerLH ⊕ imLH

Λm+1T ∗
H = kerLH ⊕ imLH

it is straightforward to project D̃∇̃ so that descends to a second order differential operator

D∇̃ between the appropriate bundles. This leaves just one problem: D∇̃ depends on the

choice of ∇̃. Any two such ∇̃ differ by ηH ⊗Φ ∈ H0 ⊗EndE, and it is easy to compute that

the difference in the twisted Rumin operators is given by α ⊗ s 7→ ηH ∧H P (α) ⊗ Φs, where

P is the projection onto kerLH in ΛmH∗.

The computation of the curvature of a partial connection ∇ given above allows this

problem to be understood. Indeed a lift ∇̃ is a compatible connection on E, with curvature

R̃, and so the curvature endomorphism of the partial connection is

s 7→ (R̃s)|H mod imLH .

In particular it vanishes if R̃|H is a 2-form on H in the image of LH . Now the difference in

the lifted curvatures R̃ for two lifts ∇̃ is given by ΩH ⊗ Φ, and so if R̃|H is in the image of

LH , for some ∇̃ then it is true for all, and there is a unique choice of ∇̃ such that R̃|H = 0.

R̃ may then be viewed as a higher order integrability obstruction of ∇.

In three dimensions, the image of LH is all of Λ2H∗, and so the curvature endomorphism

is always zero. Hence one always has unique twisted Rumin operator, and a natural third

order curvature R̃. This has already been observed by Rumin, but here it is found as part of

the more general picture that when second order integrability obstructions vanish, one can

hope to easily compute the third order ones.

18 The wider context

I have examined the general theory of integrability for linear differential equations in

the simpler context of second order obstructions for first order differential equations. The
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resulting theory is still very general, since it applies to any first order linear equation, but

it is hoped that it is more accessible and amenable to calculation than the full theory as

described in [74].

In particular, a formally integrable equation comes with a resolution of its solution sheaf,

called the Spencer resolution (in fact two related resolutions are defined). However, to the

best of the author’s knowledge, no attempt has been made to generalise (in a wide context)

the exterior covariant derivative sequence induced by a connection with possibly nonzero

curvature. Such a sequence will only be a complex if some curvature obstructions vanish.

Theorem 16.8 provides the first two differential operators in such a sequence, namely

E → F 1 →
T ∗∧ J1E

T ∗∧R1
,

and indeed the obstruction to it being a complex (at F 1) is the second order curvature

obstruction for the (split) differential equation. In the transitive case the sequence may be

rewritten as a sequence of Spencer cohomology groups:

E →
T ∗⊗E

g1
→

Λ2T ∗⊗E

T ∗∧ g1
.

It is therefore natural to conjecture that these first two terms really are part of a longer

sequence of differential operators, and that if sufficiently many curvature obstructions vanish,

this sequence will be a complex. The example of the twisted Rumin complex suggests the

form such a sequence might take.

Returning now to the twistor and Killing’s equation, I would like to finish with some

comments about the context for these equations. This is the context of geometrical structures

on manifolds. The existence of the local twistor connection, and the connection on Killing’s

equation are both already known from a number of different points of view. The most

well-established of these is Cartan’s method of equivalence (see for example [19]). In this

context, the connections are constructed as Cartan connections (parallelisations) on principal

L0-bundles, where L0 is a Lie group associated to the geometrical structure. These are

equivalently connections on a produced principal L-bundle, where L/L0 is a homogeneous

model space of the same dimension as the manifold. See Guillemin and Sternberg [41] and

Kobayashi [54] for this theory.

Killing’s equation and the twistor equation are natural equations associated to Rieman-

nian and conformal geometry respectively. The connection on Killing’s equation is then the

connection induced by the Levi-Civita connection on the principal L-bundle. For Riemannian

geometry, L0 can be taken to be SO(n) and then L is SO(n)n Rn. Killing’s equation is then

the bundle associated to the adjoint representation. Similarly, in conformal geometry, there

is a Cartan normal connection on a principal L0-bundle, and the local twistor connection is
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just a linear representation of the produced connection on the principal L-bundle. There will

also be a connection on the prolongation of the conformal Killing equation, which will be the

bundle associated to the adjoint representation.

Similar methods apply to any geometrical structure of finite type. In [7] Baston constructs

an analogue of the local twistor connection for geometrical structures associated to simple

graded Lie algebras of depth 1. The study of such structures goes back to Ochiai [64], who

shows they admit a Cartan normal connection, provided that the torson vanishes. Although

from the point of view of the general method of equivalence, Baston’s construction is not

surprising, it is both direct and illuminating. Notwithstanding the beautiful theory of exte-

rior differential systems [19], from the point of view of analysis, a covariant derivative is a

much easier object to handle than a Cartan connection. By constructing directly a covariant

derivative on the bundle associated to an irreducible representation of a simple graded Lie

algebra, Baston is able to study invariant differential operators on the classes of manifolds he

considers. It would be interesting to extend his methods to more general geometrical struc-

tures. For example Tanaka [77] constructs a Cartan normal connection for simple graded

Lie algebras of arbitrary depth (and unlike Ochiai, he does not make any torsion vanishing

assumptions). This includes several interesting classes of contact structures, including the

case of a CR structure. Morimoto [61] has generalised these methods still further. In all

these cases, it would be interesting to compute directly both the “local twistor” connection

associated to an irreducible representation, and the connection associated to the adjoint rep-

resentation, which will be a prolongation of the infinitesimal automorphism equation. This is

the (linear) Lie equation of the geometrical structure. The study of the corresponding non-

linear Lie equation (for local automorphisms) is central to the integrability and equivalence

problems [55] [67].

Invariant differential operators, as computed by Baston [7], are also interesting in the con-

text of the methods I have presented here. This is because they are associated to Bernstein-

Gel’fand-Gel’fand (BGG) resolutions on the model space, as described, for example in [8].

In particular, this is the underlying algebra behind the Rumin complex. From an algebraic

point of view, it is not actually surprising that one needs a second order differential operator

to complete the Rumin complex, nor is it surprising that the cohomology is isomorphic to

the deRham cohomology. For BGG resolutions in general may be thought of as deRham

resolutions adapted to a particular geometric structure (see [8] for this point of view). They

are more efficient, in the sense that the bundles involved have lower rank, but the price to

pay is that some of the differential operators in the resolution may have order greater than

1. The Rumin complex fits this model precisely.

In summary, the methods of this Part only scrape the surface of a number of interacting
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areas of mathematics. However, as with Baston’s work, the advantage of the methods I have

described is that they produce some of the results of more general theories very directly.

For example, the connection on Killing’s equation is surely a pertinent tool for Riemannian

geometry and general relativity, yet it seems to be seldom used. A more direct approach

may be helpful in this regard. It would be interesting to see how far such direct methods

can be pushed. In particular, the three ways I have mentioned for viewing a connection on a

geometrical structure (the Cartan connection, the infinitesimal automorphism equation, and

the local twistor connection) are closely related, and their construction should reflect this.

Looking at geometrical structures and differential equations from all points of view may not

immediately give new results, but may provide a framework in which new results suggest

themselves.
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Part IV

Twistor Geometry in Even Dimensions

Twistor geometry provides a way of describing differential equations and their solutions on

some manifold in terms of the geometry of an associated complex manifold, called the twistor

space. It has been most thoroughly developed in the context of 4 dimensional conformal

geometry [30], but the same ideas apply in much wider contexts (see e.g. [29] [63] [62] [65] [71]).

However, some of the constructions applied to the 4 dimensional case become uninteresting

in higher dimensional conformal geometry. A particular example is the Ward correspondence

between certain holomorphic vector bundles on the twistor space and vector bundles with

connection. In 4 dimensions the Ward correspondence is at the heart of the solution of the

self-dual Yang-Mills equations in terms of linear algebra (the ADHM construction), but in

higher dimensions, the connections obtained from the direct generalisation are always flat

and therefore of little interest. For this reason, it is natural to seek broader analogues of the

Ward correspondence which are more interesting in higher dimensions. One possibility is to

look at quaternionic manifolds instead of conformal manifolds [59], but here my aim will be

to study the higher dimensional conformal case.

I will focus on the case of the 6-sphere (or rather its complexification), both as a pointer

towards twistor transforms in higher even dimensional conformal geometry, and also because 6

dimensional geometry has a number of features of its own related to triality. One motivation

for seeking analogues in 6 dimensions of the self-dual Yang-Mills equations, is that such

equations might shed light on the 4 dimensional theory by dimensional reduction. There is

also a more direct link between 4 and 6 dimensions, namely that the fibres of the twistor space

in 6 dimensions are twistor spaces of 4-spheres. Thus the internal geometry of 6 dimensional

twistor theory is 4 dimensional twistor geometry. Following Manin and Minh [60], I shall

study a class of holomorphic vector bundles, first considered by Atiyah and Hitchin, which

respect this relation between 4 and 6 dimensional twistor geometry, in that, restricted to

each internal space, they become 4 dimensional mathematical instantons. This leads to

an interaction between 6 dimensional geometry and the moduli space of instantons in 4

dimensions.

As well as looking down at 4 dimensions, 6 dimensional twistor geometry looks up towards

8 dimensional geometry. Indeed the 6 dimensional complex quadric is a homogeneous space

for SO(8,C), and so is relevant as an internal space in 8 dimensions. Manin and Minh suggest

that such models might be physically interesting, since (for example) it has been suggested

that triality for SO(8) may be related to the symmetries of particle physics.
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My work in this area is purely on the analysis and geometry. My aim has been to analyse

the differential equations induced by the holomorphic vector bundles of “instanton type”

on twistor space, with a view to providing a one to one correspondence between a class of

interesting differential equations and a class of holomorphic vector bundles, generalising the

correspondence between self-dual connections and mathematical instantons. One expects that

the differential equations will satisfy an equation analogous to the self-duality of a connection,

and from this obtain an inverse construction of the original holomorphic vector bundles. This

aim has not yet been fulfilled, although some progress towards it has been made.

In their paper, Manin and Minh studied one of the differential equations induced by a

bundle of instanton type, and showed that the bundle on the correspondence space could

be reconstructed from the symbol of the differential operator. However, they were unable

to find conditions on this differential operator enabling them to reconstruct the flat relative

connection on the correspondence space, and hence characterise the differential equations

arising from the twistor construction.

The main progress I have made on this problem is to provide a setting in which the equa-

tions arising from twistor constructions can be characterised to second order. In particular, I

have shown that for the class of differential equations studied by Manin and Minh, the second

order integrability obstructions provide no useful information, at least in an important special

case. This is in marked contrast to the 4 dimensional situation, in which the integrability

condition for a connection is that its curvature should be self-dual. I have also obtained other

differential equations induced by bundles of instanton type, and studied their integrability

properties. Finally, I have set these individual constructions in the context of the moduli

space of instantons. This approach, although technically more difficult, is geometrically more

natural, and I believe that it will ultimately illuminate the other constructions.

In the first two sections I shall outline the necessary background for even dimensional

twistor geometry. This material is all quite standard; a recent reference is Inoue [51], but

see also [6], [49], [79] for the 4 dimensional theory, and [29] [63] for more general contexts. I

mainly work in the context of higher dimensional conformally flat geometry, using the alge-

braic point of view of [8] [29]. In section 19, I introduce the twistor equation on a conformal

manifold and sketch its relationship with the twistor space. My point of view on the twistor

equation comes from Hitchin [48] [49] and Baston [7], whereas the description of the twistor

space in terms of almost complex structures comes from Atiyah, Hitchin and Singer [6] and

O’Brian and Rawnsley [63]. I provide no proofs, since there are plenty in the literature, and

in any case I will be concentrating on the conformally flat case where the theory is more alge-

braic. In section 20, I discuss the algebraic and geometrical background for even dimensional
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conformally flat geometry in more detail. Here the main reference is Eastwood [29], and the

book of Baston and Eastwood [8]. At the end of the section I turn to the specific case of the

6 dimensional complex quadric Q6, and describe its geometry, emphasising the consequences

of triality. Manin and Minh give a similar, albeit brief, treatment of this material—see also

Wong [80]. In addition to triality, I shall emphasise the internal geometry of Q6, and its

relationship to 4 dimensional twistor geometry.

In section 21 I present the background for the constructions of later sections. Following

Baston and Eastwood [8], I present twistor transforms in the very general context of double

fibrations. I begin the section by summarising the geometry of such double fibrations, as

described in [8] and also in Ward and Wells [79]. I then turn to the study of sheaves. Here I

take a slightly different approach to [8], and sketch the derived category approach to sheaves

on locally ringed spaces. This is standard material, taken from Kashiwara and Schapira [52]

and Hartshorne [43], and I have consequently glossed over some (minor) technicalities for

conciseness. My main purpose is to demonstrate that this approach is very natural in this

context, since it permits infinitesimal constructions to be carried out at a truly infinitesimal

level.

The final part of section 21 lies very much at the heart of this work. Here I define the

notion of a twistor transform of a holomorphic vector bundle, and show how differential

operators then arise. I relate these differential operators to the general analysis of Part III,

and show how certain cohomology groups may be interpreted as integrability obstructions

for the associated differential equations.

Section 22 on mathematical instantons in 4 dimensions is again standard material, which

I include because the ADHM construction is central to the analysis of bundles of instanton

type in 6 dimensions.

Section 23 brings together the material from the previous 4 sections in order to study

twistor transforms of mathematical instanton bundles on the 6 dimensional complex quadric.

After setting up the relevant cohomological apparatus, I turn to the twistor transform bundle

H1(F (−1)) studied by Manin and Minh. I summarise their results, and show that for rank 2k

bundles of charge k (an important critical case for mathematical instantons), the second order

integrability obstruction is unconstrained by the geometry of the twistor space, contrary to

expectation. I also show that for bundles of charge k = 1, the differential operator obtained

is a partial connection. The explicit description of the symbol leads to an explicit description

of the curvature, which I then relate to the twistor construction. Motivated by the need to

find an equation on the horizontal bundle of this partial connection, I turn to the twistor

transform bundle H0(F (1)). I study the general properties of this twistor transform for rank

2k bundles of charge k, and then focus once more on the k = 1 case where explicit calculations
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are again possible. The result of this analysis is that the differential operator on H 0(F (1))

is indeed constrained, but not enough to provide the inverse construction sought.

In the final section 24 I turn to the moduli space of mathematical instantons as a natural

framework for considering bundles of instanton type. Indeed a bundle of instanton type may

be viewed as a map from (a piece of) the 6 dimensional complex quadric into the moduli space

of mathematical instantons. This map will satisfy some differential constraint coming from

the geometry of the twistor space, and related to the twistor transform H 1(EndF ). About

a single point in the quadric, this map may be viewed as a deformation of a mathematical

instanton. This point of view links the differential equation to the Atiyah class of the bundle

on the correspondence space, and so provides an infinitesimal inverse construction. Unfor-

tunately, explicit characterisations are much harder to obtain, even for k = 1. I conclude

by suggesting the results that one might hope to obtain, and possible paths towards the full

inverse construction that the theory still lacks.
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19 The twistor equation

Let M be a conformal spin manifold, and E± bundles of spinors induced by a graded

Clifford module E = E+ ⊕ E−.

Given a choice of metric in the conformal class, the Levi-Civita connection may be used

to introduce two first order differential operators on E− with conformally invariant symbols:

• The Dirac operator 6∇ with symbol sequence

0 → ker c→ T ∗⊗E
−
→ E

+
→ 0.

• The twistor operator D̄ with the inverse symbol sequence

0 → E
+
→ T ∗⊗E

−
→ ker c→ 0,

where the splitting E+ → T ∗⊗E− is given by s 7→
∑
εi ⊗ eis, where ei is a conformal

frame and εi is the dual coframe.

The Dirac operator is conformally invariant if E− is attached with conformal weight n−1
2 ,

whereas for the twistor operator the conformal weight must be − 1
2 ; see Fegan [31] for a unified

point of view. (Note also that the weights must be different, for otherwise one could add the

two operators together and obtain a conformally invariant connection.) From now on, the

focus will be on the twistor equation and so E− will have conformal weight − 1
2 and E+ will

have conformal weight 1
2 . Formally the twistor operator is a splitting of the middle column

in the following exact square:

0 0

0 - ker c
?

- ker c
?

- 0

0 - T ∗⊗
?

E− - J1E−

?

- E−

?

- 0

0 - E+

?

- T −

?

- E−

?

- 0

0
?

0
?

0
?

where the (local) twistor bundle T − is the pushout extension (or, using the twistor operator,

the subbundle of J1E− consisting of formal solutions of the twistor equation D̄s = 0).
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Aside. Hidden in the ± notation there is a question of orientation. For there is another twistor

operator, which acts from E+ (with weight − 1

2
) to E− (with weight 1

2
). The choice of one operator

over the other is effectively a choice of orientation, but the way the ± sign is associated with the

orientation is a matter of convention. I will take the position that the operator from E− to E+ is

the “positive” one, even though I denote the associated equation by T − (since it is an extension

of E−). In all constructions I will use this positive equation and its solutions. I will assume that

the associated orientation is defined by the convention that the twistor space constructed from T −

relates to anti-self-dual maximal totally null subspaces (another reason for the minus sign). This

convention is chosen so that the positive twistor constructions are related to self-dual objects (since

their anti-self-dual parts vanish). In particular in 4 dimensions, the positive twistor equation will

be integrable iff the curvature is self-dual (meaning that it vanishes on anti-self-dual 2-planes).

Of course these sign conventions are not at all important, and indeed a virtually identical theory

applies to the negative twistor equation, simply by flipping all the signs and introducing an “anti”

in front of all self-dual objects. It is important, however, to be consistent; my choice of sign

conventions is simply a means to that end!

I will now restrict attention to even dimensional manifolds and the complex irreducible spinor

bundles E±. The twistor equation then has an important interpretation, relating to the

following definition.

19.1 Definition. Let P (E−)∗ be the subvariety of pure spinors in the dual space of E− (these

are the spinors annihilated by maximal null subspaces of the complex tangent bundle). Then

the twistor fibration over M is defined to be the bundle P(P (E−)∗).

The reason for looking at projectivised pure spinors is that they correspond to maximal

totally null subspaces of the complex tangent space. In the real case, these correspond to

orthogonal complex structures: the orthogonal linear maps J : TM → TM with J 2 = −1.

(See e.g. Lawson and Michelsohn [56] or Inoue [51].) Therefore, in the real case the fibre

of the twistor fibration at x may be identified with the space of (orientation preserving)

orthogonal complex structures on TxM . For current purposes, the important aspect of the

above definition is that the twistor fibration is a bundle over M whose fibre at x is a projective

subvariety of P((E−

x )∗). These fibres will be identified in the next section. Note, though, that

in 4 and 6 dimensions, any nonzero spinor is pure and so the fibres are CP1’s and CP3’s

respectively, establishing the link with [6] and [80].

Now any element of E−

x determines a linear functional on (E−

x )∗, and therefore a section

of O(1) over P((E−

x )∗). The fibrewise O(1) fit together to give a line bundle over twistor

fibration, and any (local) section of E− determines a section of this line bundle over (an open

subset of) the twistor fibration, which is automatically holomorphic in the vertical direction

(since it’s homogeneous of degree 1).
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IfM is a real manifold, then the projectivised pure spinor bundle has a tautological almost

complex structure (as described, for example, in [6] or [63]). This almost complex structure is

integrable iff the twistor equation is integrable. In 4 dimensions, this holds iff M is self-dual,

whereas in higher dimensions the twistor equation is integrable iff M is conformally flat. In

the integrable case, the twistor fibration over a real manifold will be called its twistor space.

The line bundle O(1) over the twistor space is holomorphic, and its sections are precisely

those sections induced by solutions to the twistor equation.

From the twistor perspective, however, it is often more convenient and natural to work

in the complex category i.e., complex manifolds equipped with holomorphic conformal struc-

tures, and I will be more interested in that case here. In this case holomorphic sections of

E− automatically induce holomorphic sections of O(1) over the twistor fibration (whether

they satisfy the twistor equation or not). So what then is the interpretation of holomorphic

solutions to the twistor equation?

As in the real case (see [6]), the twistor equation determines a subbundle of TP(P (E−)∗),

but this is now a complex subbundle with no real structure. The integrability of the twistor

equation is equivalent to the Frobenius integrability of this subbundle. Hence, in the inte-

grable (conformally flat) case, the twistor equation gives rise to a foliation of the twistor

fibration by complex submanifolds, and the solutions to the twistor equation are the sections

of O(1) which are constant along the leaves. The twistor space may then be defined to be

the leaf space, which is a complex manifold. The twistor fibration is then a complex fibre

bundle over both M and its twistor space and so is an example of a double fibration.

Since these constructions requires the real or complex manifold M to be conformally

flat (in dimension greater that 4), for local purposes, it suffices to study even dimensional

quadrics.

20 Twistor geometry of even dimensional quadrics

20.1 Definition. Let V be a (real or complex) vector space with a (symmetric) inner prod-

uct. Then the quadric of V is the space of null lines in V . This is the subvariety of P(V )

defined by the equation z.z = 0.

The focus here will be on the real quadric Sn in P(Rn+1,1) and the complex quadric Qn in

P(Cn+2), although it is also of interest to consider other quadrics, particularly the Lorentzian

quadrics Sn−1,1 in P(Rn,2). Also, n will be taken to be even, say n = 2m. In fact it turns out

that these quadrics (be they complex or real of arbitrary signature) all have the same twistor

space.
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As quadrics, the manifolds Sn and Qn have a natural conformal structure. A useful way

to describe them is as follows. Choose a point (null line) x in Sn or Qn and represent it

as a sum of orthogonal vectors u, v with u.u = 1, v.v = −1. Observe that the subgroup of

SO(2m+2,C) or SO(2m+1, 1,R) fixing u is SO(2m+1) and this acts transitively on Sn or

Qn, whereas the subgroup fixing u and v is SO(2m), which is the isotropy representation of

SO(2m+ 1) on the tangent space at x. Hence

Sn = SO(2m+ 1,R)/SO(2m,R)

Qn = SO(2m+ 1,C)/SO(2m,C)

This is of course not the conformally invariant way of describing these manifolds, which are

more naturally quotients of SO(2m+ 2,C) or SO(2m+ 1, 1,R) by a parabolic subgroup (see

below), but I mention it because of the following interesting result.

20.2 Proposition. The diagrams

U(m) - SO(2m+ 1) GL(m,C) - SO(2m+ 1,C)

and

U(m+ 1)
?

- SO(2m+ 2)
?

GL(m+ 1,C)
?

- SO(2m+ 2,C)
?

are pullbacks.

This is just a version of the Hopf fibration U(m+1)/U(m) ∼= S2m+1 and its complexifica-

tion. Here, though, I will be more interested in the isomorphism of the horizontal quotients

in the first diagram, i.e., SO(2m+ 1)/U(m) ∼= SO(2m+ 2)/U(m+ 1).

Recall that the twistor space of Sn is the space of orthogonal almost complex structures

on Sn. Now the space of complex structures on TxS
n is diffeomorphic to SO(2m)/U(m)

and so the twistor bundle is diffeomorphic to SO(2m+1)/U(m). Consequently the following

result is obtained:

20.3 Proposition. The fibres of the twistor space of S2m+2 are diffeomorphic to the (entire)

twistor space of S2m.

This result relates the twistor geometry of Sn to the twistor geometry of Sn−2 and Sn+2.

The fibres of the twistor space over Sn are twistor spaces for Sn−2, and the entire twistor

space is a typical fibre of the twistor space for Sn+2. In short I shall say

20.4 Slogan. Twistor geometry in dimension n relates to the moduli of twistor geometry in

dimension n− 2 and the internal space of twistor geometry in dimension n+ 2.

Since the real quadric is conformally flat, the almost complex structure on the twistor

space is integrable, and so the twistor space is a complex manifold. This is also immediate
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from the above proposition, since the fibres of the twistor space over Sn+2 are certainly

complex manifolds, and hence so is the twistor space for Sn. Indeed it can be shown that it

is the complex homogeneous space given by the quotient of SO(2m + 2,C) by the parabolic

subgroup whose reductive part is GL(m+ 1,C). This space will also be the twistor space of

the complex quadric Qn, but it will no longer be a fibration over Qn, but rather part of a

double fibration, with the twistor fibration over Qn as the correspondence space. I will next

describe the construction of this double fibration.

Recall that the quadric Qn was constructed as the space of null lines in T = C2m+2

(with its usual conformal structure). It will be convenient to make use also of the standard

metric (or volume form) on T. An irreducible complex spinor representation for the (even)

Clifford algebra (and hence the Spin group) will have complex dimension 2m. A particular

such vector space may be constructed from the twistor equation. More precisely, since Qn

is conformally flat, the twistor equation is integrable, and so defines a trivialisation of the

local twistor bundle T − (since any solution to the twistor equation on Qn is determined by

its 1-jet at any point). The corresponding vector space T− is then an irreducible complex

spinor representation for Spin(2m+ 2,C).

20.5 Definition. Let P (T−)∗ be the subvariety of pure spinors in the dual space of the T−

(these are the spinors annihilated by maximal null subspaces of T). Then the twistor space

of Qn is defined to be the space P(P (T−)∗).

Points in the twistor space therefore correspond to maximal totally null subspaces of

T, which in turn correspond to maximal totally null projective submanifolds of Qn, called

α-planes. In fact only half of the maximal totally null subspaces are obtained (the anti-

self-dual subspaces), the other half correspond to projectivised pure spinors in the “other”

representation T+ obtained by changing orientation. The corresponding submanifolds are

called β-planes. Since there is an obvious symmetry between α- and β-planes, I will not pay

much attention to the latter.

It is immediate from this definition and 19.1 that the twistor space of Qn is a typical

fibre of the twistor fibration over Qn+2, but it remains to check that it really is related to the

twistor fibration over Qn. This follows from the fact that the fibres of (E−)∗ are all subspaces

of (T−)∗, and that the pure spinors correspond. In order to see this, it is convenient to separate

the cases n ∼= 2 mod 4 and n ∼= 0 mod 4. In the former case, (E−)∗ ∼= E+ and (T−)∗ ∼= T−;

and so the required inclusion is the inclusion of the symbol kernel of the twistor equation. In

the latter case (E−)∗ is isomorphic to E− with weight 1
2 , and (T−)∗ ∼= T

+ and again there is

a conformally invariant inclusion (the symbol kernel of the negative twistor equations). The

fact that pure spinors correspond can be seen by representing a point x of Qn by a pair of unit
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vectors, one timelike and one spacelike, so that there is a corresponding isotropy inclusion of

Spin(2m,C) into Spin(2m+ 2,C). The projectivised pure spinors in (E−

x )∗ form a projective

submanifold of the twistor space, called the twistor submanifold corresponding to the point

x in Qn.

The twistor space as a generalised flag variety Baston and Eastwood [8] give a more

algebraic description of the double fibration for the group Spin(2m + 2,C), using the fact

that the quadric Q2m, its twistor space, and the correspondence space, are all quotients of

Spin(2m+ 2,C) by parabolic subgroups, or equivalently orbits in a projectivised representa-

tions. There is a convenient way of denoting such “generalised flag varieties” using Dynkin

diagrams. The Dynkin diagram for Spin(2m+ 2,C) is

•
• • · · · • •

•

which has m+ 1 nodes.

The three extreme nodes are associated to the representations T, T− and T+ (and the

corresponding parabolic subgroups). Consequently the double fibration may be written:

×
× • · · · • •

•

×
• • · · · • •

•

�

µ

•
× • · · · • •

•

ν
-

Baston and Eastwood give a simple recipe for computing the fibres of such fibrations:

20.6 Recipe. For a fibration of generalised flag varieties, the fibres are obtained by deleting

from the Dynkin diagram for the total space all crossed nodes and incident edges shared with

the base space, and then removing all components with no crosses.

Applying this recipe to the double fibration for Spin(2m+ 2,C), it is immediate that the

fibres of ν are isomorphic to the twistor space of Spin(2m,C), whereas the fibres of µ are

m+ 1 dimensional projective spaces. This gives a very appealing way of seeing Slogan 20.4.

20.7 Triality. The main reason I have introduced the Dynkin diagram notation is because

it draws attention to a special feature of 6 dimensional twistor theory. For in this case, the

underlying group of conformal transformations is SO(8,C) with Dynkin diagram:

•
• •

•

The order 3 symmetry of this diagram is reflected by the existence of an order 3 automorphism

of SO(8,C) interchanging the representations T, T− and T+. In short these representations

are essentially the same. This is called triality.
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From a less sophisticated point of view, triality is a simple consequence of the fact that

these three representations are all 8 dimensional complex inner product spaces, but it is quite

striking that it appears in such a visual way in the abstract theory of Lie algebras. In recent

years, triality has been receiving a great deal of attention from theoretical physicists, for

example, as the origin of the symmetry groups of particle physics. I will not address such

matters, but instead will look at the implications in twistor theory.

Triality in 6 dimensional twistor theory The main consequence of triality here is that

the twistor space of Q6 is also a 6 dimensional complex quadric. I shall refer to the original

quadric as the “geometrical” or “physical” Q6, and the twistor space as the “twistor” Q6. In

this subsection I will describe some of the geometry of the 6 dimensional double fibration in

more detail.

The symmetry created by triality can be a source of confusion and notational difficulties.

I shall try and avoid this by describing everything in terms of the space (T−)∗ used in the

definition of the twistor space. In 6 dimensions, (T−)∗ ∼= T− is an 8 dimensional complex

inner product space, and the twistor Q6 is the corresponding quadric of null lines, a subvariety

of PT−. I will use O(−1) to denote the tautological line bundle of PT− and its projective

subvarieties.

The physical Q6 is of course the space of null lines in T, but it may be understood in

terms of T− using its spinor bundles. In 6 dimensions there is a pairing of the complex

spinor bundles E+ ⊗ E− → C and so (E−)∗ ∼= E+. Thus the inclusion E+ → T− defines the

correspondence between a point in the physical Q6 and a null P3 in the twistor space. It also

identifies the physical Q6 with a component of the space of null 4-planes in T−. Thinking

of the physical Q6 in these terms, I will denote its positive spinor bundle by τ , which is

the restriction of the tautological 4-plane bundle of the flag variety F 4(T−). The negative

spinor bundle is then τ ∗. The line bundle of the conformal structure on the physical Q6

will be denoted L. It is the “same” line bundle as O(−1) on the twistor space. Finally,

the correspondence space is the subvariety of the flag variety F 1,4(T−) given by the positive

totally null 4-planes.

In summary, to a point x in the physical Q6 is associated a 4 dimensional vector space

τx, and P(τx) is a null 3-plane in the twistor space. Conversely, a point z in the twistor space

corresponds to an anti-self-dual null P3 in the physical Q6, called an α-plane. This α-plane

passes through x iff z ∈ P(τx), and the space of such pairs is the correspondence space of the

double fibration.

The bundle τ may be used to describe most of the geometry of Q6 as follows:

• Since τ has weight 1
2 , Λ4τ ∼= L2.

90



• The Clifford action of cotangent vectors from τ ∗ to τ is skew-symmetric, and so the

cotangent space of the physical Q6 is Λ2τ .

• 3-forms of weight +1 also act from τ ∗ → τ , but this time the action is symmetric. It

defines an isomorphism between the bundle of weight +1 self-dual10 3-forms and S2τ .

• The conformal structure on the cotangent bundle is given by the wedge product Λ2τ ×

Λ2τ → Λ4τ .

I will finish this section by putting the physical Q6 under the microscope, and looking at a

single point x. There is a whole microcosm of geometry associated with this single point. In

particular there are the following two objects:

• The tautological spinor bundle at x, τx, and the corresponding submanifold P(τx) of

the twistor space.

• The cotangent space at x, given by Λ2τx, and the corresponding 4 dimensional Klein

quadric Q4
(x), consisting of the null lines in Λ2τx, which are equivalently the decompos-

able 2-forms.

Since an element of Q4
(x) corresponds to a 2-plane in τx i.e., a projective line in P(τx), it is clear

that in this microscopic universe is a 4 dimensional twistor correspondence between a physical

space Q4 and its twistor space P3. This further highlights the observation (Slogan 20.4) that

the internal geometry of 6 dimensional twistor theory is 4 dimensional twistor geometry.

21 Direct image sheaves and twistor transforms

Let X and Z be manifolds and Y a submanifold of X × Y such that the projections ν, µ

are smooth fibrations (which are required to be surjective submersions). Then the diagram

Y

Z
�

µ

X

ν
-

is called a double fibration. This is the general context for twistor transforms. There are

several important vector bundles which can be defined on the correspondence space Y , the

most important of which is the normal bundle, which is given by an exact sequence

0 → TY → TX×Z → N → 0.

10To see these forms should be viewed as self-dual rather than anti-self-dual, one has to consider the action

of the weightless complex volume form, which is +1 on τ , and −1 on τ ∗. S2τ∗
x is then identified with the space

of anti-self-dual 3-forms.
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Note that TX×Z
∼= ν∗TX ⊕ µ∗TZ . Also of importance are the relative tangent spaces, or

vertical bundles, which are tangent spaces to the fibres of the projections, fitting into exact

sequences

0 → TY/X → TY → ν∗TX → 0

0 → TY/Z → TY → µ∗TZ → 0.

Now TY/X∩TY/Z = 0 and so the map TY/X → µ∗TZ is injective (and similarly for TY/Z). The

quotient µ∗TZ/TY/X is isomorphic to the normal bundle N . Thus there is an exact square

0 0

0 - TY/Z

?

- TY/Z

?

- 0

0 - TY/X

?

- TY

?

- ν∗TX

?

- 0

0 - TY/X

?

- µ∗TZ

?

- N
?

- 0

0
?

0
?

0
?

and the significance of N may be illustrated by its four interpretations:

1. It is the normal bundle to Y in X × Z.

2. The images of fibres of µ in X have normal bundle N .

3. The images of fibres of ν in Z have normal bundle N .

4. There is an exact sequence 0 → TY/X ⊕ TY/Z → TY → N → 0.

Twistor transforms from Z to X arise by pulling back objects from Z to Y (using µ) and

then applying some sort of direct image operation by ν. Associated to the direct image of a

pullback there will be a differential equation, corresponding to the fact that the pullback is

(in some sense) constant along the fibres of µ.

More precisely, associated to the fibration of Y over Z there is a differential operator

called the relative exterior derivative. This is the projection of the exterior derivative onto

1-forms along the fibres. Provided the fibres are connected, a function is constant along

the fibres iff its relative exterior derivative is zero. Similarly, if the fibres are connected and

simply connected, then a vector bundle on Y is a pullback from Z iff it possesses a flat relative

connection.
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Henceforth the fibres of Y over Z will be assumed to be connected and simply connected.

Such an assumption will not be necessary for the fibres of Y over X, but instead it will be

convenient to assume that the map ν is proper.

In order to establish some of the formal properties of the direct images, an abstract

framework is needed. As observed in Hitchin [49], it is very convenient to use the formalism

of infinitesimal neighbourhoods of a submanifold (see Griffiths [40]). The natural context for

this is the framework of locally ringed spaces, sheaves of modules, and functors categories of

sheaves. I will describe these well-known concepts only briefly.

21.1 Definition. Let X be a topological space. Then a sheaf of abelian groups on X is a

(contravariant) functor F from the open set lattice of X to the category of abelian groups,

satisfying an important property given below. F(U) is called the space of sections of F over

U , and Fx = limU3x F(U) is called the stalk of F at x, its elements being germs of sections

at x. The stalks fit together to form a topological space over X, called the stalk space, where

the stalks are given the discrete topology. The fundamental property of a sheaf is that F(U)

is naturally isomorphic to the space of continuous sections of the stalk space of F over U .

Hence a sheaf may be defined by its sections or by its stalks, but the sheaf property must

be checked. Analogously, one can define a sheaf of (commutative) rings on X, and if R is a

sheaf of rings on X, the notion of a sheaf of R-modules is also defined. Both of these cases

are subcategories of sheaves of abelian groups.

In almost all instances X will be a complex manifold, and the sheaves considered will be

sheaves of sections of holomorphic vector bundles on X. Given a holomorphic vector bundle

F over X, the sheaf of holomorphic sections of F will be denoted F . Note that the stalk F x

and the fibre Fx are not the same. Elements of the stalk space give complete information

about local sections, whereas elements of the fibre give only the point value. There is of course

a natural evaluation map F x → Fx. This map may also be written as a tensor product, as

will be seen shortly.

21.2 Definition. A (locally) ringed space is a topological space X equipped with a sheaf of

rings O = OX such that each stalk Ox has a unique maximal ideal mx. A morphism of locally

ringed spaces (Y,OY ) → (Z,OZ) is a pair (f, f ]) where f : Y → Z is a continuous map and

f ] : OZ → OY is a map over f of sheaves of local rings (so that f ]
x : OZ,f(x) → OY,x is a local

ring homomorphism i.e. f ]
x(mZ,f(x)) = mY,x). Note the reverse direction of f ].

Again, the locally ringed spaces considered here will generally be complex manifolds and

the sheaf of rings on X will be the sheaf of holomorphic functions on X (although the same

ideas also apply to smooth manifolds). The morphisms are then holomorphic maps. For any

93



point x ∈ X, the maximal ideal mx consists of those germs of holomorphic functions which

vanish at x. It is therefore the kernel of the evaluation map Ox → C. The one point space

{x} is a ringed space with sheaf C, and the evaluation map is the sheaf map corresponding to

the inclusion of {x} into X. Now m2
x consists of those germs which vanish to first order at x,

and so Ox/m
2
x is the space J1

x(X,C) of 1-jets of holomorphic functions. This corresponds to

an inclusion of a “thickened” point at x in X. Similar ideas work for higher order jets, and

also for thickened submanifolds: one simply takes an appropriate power of the ideal sheaf of

functions vanishing on the submanifold. It is for this purpose that I have introduced ringed

spaces, the aim being to study the infinitesimal behaviour of various holomorphic vector

bundles. It will therefore also be essential to have ways of transforming sheaves of modules

between ringed spaces (such as thickened submanifolds of various orders).

21.3 Definitions. Let f : Y → Z be a morphism of ringed spaces and F a sheaf of OY -

modules on Y . Then the direct image f∗F is the sheaf on Z defined by (f∗F )(U) = F (f−1U).

If G is a sheaf of OZ -modules on Z then the inverse image f−1G is the sheaf on Y defined

by (f−1F )x = F f(x). These two processes are adjoint functors between sheaves of rings (or

abelian groups) on Y and Z.

The morphism f ] may be thought of as a morphism of sheaves of rings f−1OZ → OY

over Y , or equivalently a morphism OZ → f∗OY over Z. Hence any OY -module becomes an

f−1OZ -module, and any f∗OY -module becomes an OZ -module. Therefore f∗F is naturally

a sheaf of OZ -modules. However, the inverse image f−1G is only a sheaf of f−1OZ -modules,

and so a further operation is required. Therefore define the pullback sheaf f ∗G to be the

sheaf on Y defined by the tensor product f ∗G = f−1G ⊗f−1OZ
OY . f∗ and f∗ are adjoint

functors between sheaves of OY and OZ modules on Y and Z.

The reason for the name “pullback sheaf” is of course that the pullback of the sheaf

associated to a holomorphic vector bundle F is the sheaf associated to the pullback bundle.

If f is a fibration then f−1F is the subsheaf of f ∗F consisting of holomorphic sections

which are locally constant along the fibres of f . On the other hand if f is an inclusion of

a submanifold then f ∗F is a quotient of f−1F , since the latter contains extra information

about the behaviour of sections of F in a neighbourhood of the submanifold. In the simplest

case of the inclusion of a point f−1F is the stalk of F , whereas f ∗F is the (sheaf of sections

of) the fibre. Hence the evaluation map is given by a tensor product. If f is the inclusion

of a first order thickened point, then f ∗F is O1
xF = J1

x(X,F ), and similarly for higher order

points. More generally for a submanifold f : W ↪→ X, thickened to order k, the bundle with

sheaf f ∗F will be denoted Ok
WF . For k = 0 this is just the usual restriction (pullback) of F

to W , while in general it should be thought of as the kth order jet bundle of F in normal
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directions to W . In particular:

21.4 Proposition. There is an exact sequence

0 → Sk+1N∗⊗O0
WF → Ok+1

W F → Ok
WF → 0,

called the jet sequence on W .

The proof is essentially identical to the case when W is a point.

The next result is slightly harder (see [52], [43]).

21.5 Proposition. Suppose

Ŷ
h

- Y

X̂

f̂
?

g
- X

f
?

is a commutative diagram of morphisms of ringed spaces, and F is a sheaf of OY -modules on

Y . Then there is a natural morphism of sheaves on X̂:

θ : g∗f∗F → f̂∗h
∗F .

Furthermore, if the diagram is a pullback square and f, f̂ are proper maps and g] is a suitable

morphism of sheaves of rings (see below), then θ is an isomorphism.

Proof: The existence of the map θ is purely formal: h∗F is a sheaf of OŶ -modules, and func-

toriality implies that f∗h∗h
∗F = g∗f̂∗h

∗F ; the transpose of the identity map with respect to

the adjunction for g∗ then gives a natural morphism g∗f∗h∗h
∗F → f̂∗h

∗F , and precompos-

ing with the unit of the adjunction for h gives θ. Of course θ ought to be an isomorphism,

but the hard part of the proposition is finding conditions under which it is. In order to

do this, the sheaves will be identified at the stalk level. Now (f∗F )x = limU3x(f∗F )(U) =

limf−1U F (f−1U), where the open sets f−1U are neighbourhoods of the fibre f−1(x). If f

is a closed map, then for any neighbourhood V of f−1(x), with f(V ) ⊆ W and W open,

the set U = W r
(
f−1(W ) r V

)
is an open neighbourhood of x with f−1U ⊆ V , and so

(f∗F )x = limV 3f−1(x) F (V ). If i is the inclusion of the fibre, then this shows that (f∗F )x

consists of those global sections of i−1F which extend to a some neighbourhood of f−1(x).

But the fibre is a manifold, and so the extensions defined by the germs may be patched

together. Omitting the restriction map i−1, this gives (f∗F )x = F (f−1(x)).

If the diagram is a pullback then the fibres of f̂ may be identified with the fibres of

f . Also, the (opposite) diagram of sheaves of rings must be a pushout, and so OŶ =
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h−1OY ⊗
f̂−1g−1OX

f̂−1OX̂ . Unravelling all of these functors and tensor products gives, for x̂ ∈ X̂

(g∗f∗F )x̂ = F (f−1g(x̂)) ⊗
OX,g(x̂)

OX̂,x̂

(f̂∗h
∗F )x̂ = f̂∗

(
h−1F ⊗

f̂−1g−1OY

f̂−1OX̂

)

=
(
f̂∗h

−1F ⊗
g−1OY

OX̂

)
x

= F (f−1g(x̂)) ⊗
OX,g(x̂)

OX̂,x̂

where the penultimate equality requires that OX̂ be a sufficiently nice (flat) g−1OX -module

(via g]), and also that the map f̂ be proper. Slightly more precisely, the tensor product by

OX̂ over g−1OX needs to be an exact functor on an suitable category of modules (see [52]

for details).

This proposition will be applied to the case when Y → X is a fibration, and X̂ is a

thickened point x of X. In this case OX̂,x is an ideal in OX,x, and so is not a flat module, but

this will not cause any problems, since I will only consider direct image sheaves which are

vector bundles (locally free), and of course the fibrations I use are always be locally trivial.

The aim behind the use of this proposition is to obtain differential equations on the

direct images of certain bundles on Y . However, I will also need to take higher order direct

images (fibrewise cohomology groups), and the above proposition will need to be extended.

In order to do this I will introduce higher order direct images and cohomology in the context

of derived categories and functors. The advantage of this method is that it avoids the use

of spectral sequences, such as the Leray spectral sequence, and allows infinitesimal results

to be established directly, rather than as a consequence of local results (obtained for Stein

manifolds, for example).

I will take the point of view that the theory of derived categories and functors is purely

formal, and will therefore give only heuristic definitions; I hope that the formal constructions

(i.e., abstract nonsense) underlying them will be fairly clear. A concise, but rather dry,

reference is [52].

21.6 Definitions. Let C be a category of sheaves of abelian groups on a manifold. Then the

derived category RC of C is the category obtained in the following two steps from the category

C• of complexes of sheaves in C.

Step 1: Identify morphisms which are chain homotopic.

Step 2: Adjoin formal inverses of quasi-isomorphisms (morphisms which are isomorphisms

in cohomology).

Hence the objects of the derived category are complexes of sheaves i.e., sequences (F n, dn)n∈Z
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where dn : F n → F n+1 is a morphism of sheaves and dn+1◦dn = 0. Only complexes with F n =

0 for n < 0 will be considered here. The nth cohomology of F • is Hn(F •) = ker dn/ im dn−1.

A morphism of complexes f : F • → G• is a sequence of morphisms fn : F n → Gn such

that the obvious squares commute i.e., dn ◦ fn = fn+1 ◦ dn. Such a sequence induces maps

Hn(f) : Hn(F •) → Hn(G•). f and g are said to be chain homotopic iff there is a sequence

hn : F n → Gn−1 such that fn − gn = hn+1 ◦ dn + dn−1 ◦ hn. It is easy to see that if

fn is homotopic to zero then Hn(f) is zero, and so the equivalence classes of morphisms

induce well defined maps in cohomology. The morphisms in the derived category consist

of these equivalence classes, together with formal inverses for those classes [f ] such that

Hn([f ]) is an isomorphism for all n. The objects (complexes) in the derived category are

therefore isomorphic iff they have isomorphic cohomology. Finally note that there is a functor

Q : C• → RC, which is the identity on objects, and assigns to a morphism of complexes its

equivalence class.

Certain functors between categories of sheaves naturally induce “derived functors” be-

tween the derived categories. Naturality of the induced derived functor means that it can be

characterised by a universal property.

21.7 Definition. Let A : C → D be an additive functor. Then A induces a functor between

the categories of complexes, and hence a functor Q ◦ A• : C• → RD. Consider pairs (A, η)

where A : RC → RD is a functor on the derived category, and η : Q ◦A• → A◦Q is a natural

transformation between functors C• → RD. These pairs are the objects of a comma category,

and a derived functor of A is an initial object in this category.

Conspicuously absent from the above definition is any question of the existence of a de-

rived functor, and for a general functor A, there may indeed be no derived functor. However,

it does follow from the above that when they exist, derived functors are unique up to natural

isomorphism and so any construction with the required properties will do. One particular

case in which the derived functor exists is when the original functor is exact, i.e., maps exact

sequences to exact sequences. In this case, the induced functor on complexes of sheaves re-

spects the cohomology and so maps quasi-isomorphisms to quasi-isomorphisms, which implies

that it extends directly to a functor between the derived categories. The inverse image of

sheaves is an example of such a functor.

However, the direct image functor f∗ only preserves kernels, not necessarily cokernels; it

is said to be left exact. It is in this case that the derived functor involves some interesting

cohomology. Although f∗ is only left exact it will map an exact sequence of sheaves (zero in

negative degrees) to an exact sequence provided that sheaves in the sequence are sufficiently

nice (e.g. “injective” sheaves). Hence to compute Rf∗ of a complex, one should replace the
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complex by a complex of nice sheaves with the same cohomology, and then apply f∗ to these

sheaves. The most important case is Rf∗(F ), where F is a single sheaf in degree zero (the

rest of the complex being zero). In this case a complex I • isomorphic to F in cohomology is

given by an exact sequence

0 → F → I0 → I1 → · · · ,

which is called a resolution of F . As long as every F has an nice resolution, there is no

problem constructing the derived functor. The fibrewise cohomology groups or higher degree

direct images of F are then the “components” Rif∗(F ) = H iRf∗(F ) in the derived category11.

If f is the unique map Y → {·} then f∗ is the global section functor, and the ith component

(cohomology) of Rf∗(F ) is simply called the ith cohomology group of F , written H i(Y, F ).

For a general morphism f : Y → X of ringed spaces, a higher order direct image Rif∗(F )

will have fibres over Y denoted by H i(Yx, F ), which explains the term “fibrewise cohomology

groups”. For example, if F is the sheaf associated to a (holomorphic) vector bundle, then the

direct image sheaves may not be bundles. However, the fibrewise cohomology groups show

that there is an underlying fibration and in order to have a bundle, it suffices to check the

constancy of the rank.

The pullback map has the opposite problem: since it is the composite of the inverse image

with a tensor product of modules, it is only right exact in general. However, I will only ever

apply this functor to locally free sheaves (which are “projective”), and it is exact on this

subcategory.

Proposition 21.5 may now be extended to direct images of higher degree (provided they are

locally free), by using the naturality of derived functors and exactness of pullback functors.

The natural map

Rθ : g∗(Rf∗)F → (Rf̂∗)h
∗F ,

will be an isomorphism if θ is. (Of course I am assuming the existence of injective resolutions

here, but the categories of sheaves I shall work with all have plenty of injective objects, so

this is not a problem.)

The final piece of sheaf theory which will be needed is the long exact sequence of coho-

mology groups. This is the main tool for computing direct image sheaves.

21.8 Proposition. Suppose f : Y → X is a fibration and

0 → F → G→ H → 0

11In the derived category a complex is isomorphic to the complex of zero maps between its cohomology

groups, and this is the only way to give a well defined meaning to the components of the complex.
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is an exact sequence of (locally free) sheaves. Then there is a long exact sequence

0 → f∗F → f∗G→ f∗H
δ
−→R1f∗F → R1f∗G→ R1f∗H

δ
−→R2f∗F → · · ·

Furthermore the construction of the long exact sequence is natural (functorial).

The proof of this proposition involves constructing the connecting map δ by means of

simple homological algebra (such as the snake lemma). In the context of derived categories,

it is most natural to introduce triangulated categories and functors (see [52]), but I will not

do this here, since it would take me too far afield. The long exact sequence is of course very

well known in a variety of contexts.

Instead, I will now return to the differential equations on direct image sheaves of pullback

bundles. Recall that the context for this is a double fibration:

Y

Z
�

µ

X

ν
-

Twistor transforms for holomorphic vector bundles

21.9 Definition. Let F be a holomorphic vector bundle on Z. Then the twistor transforms

of F are the direct image sheaves (Riν∗)µ
∗F . Under constant rank conditions, these will be

vector bundles on X.

Remark. It will also be important to consider twistor transforms of F tensored with

natural line bundles on Z. These will all be referred to as twistor transforms of F .

The twistor transform bundles have differential equations defined on them, induced by

the relative connection

DY/Z : J1(µ∗F ) → T ∗
Y/Z ⊗ µ∗F

on the pullback bundle over Y . Taking the quotient by T ∗
Y/X (since directions along the fibres

over X are not involved) allows the relative connection to be interpreted as an operator on

O1
Y/Xµ

∗F , which is the first order neighbourhood sheaf of µ∗F on the fibres of Y over X

given by the extension

0 → (ν∗TX)∗⊗ µ∗F → O1
Y/Xµ

∗F → µ∗F → 0.

Note that over x ∈ X, O1
Y/Xµ

∗F is O1
Yx
µ∗F i.e., the restriction of F to the thickened fibre.

The relative connection then becomes an operator with (reduced) symbol sequence:

0 → N∗⊗ µ∗F → (ν∗TX)∗⊗ µ∗F → T ∗
Y/Z ⊗ µ∗F → 0.
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Now taking direct images, and using the result that

(Riν∗)O
1
Y/Xµ

∗F = J1((Riν∗)µ
∗F ),

gives the first part of the following:

21.10 Theorem. The differential operator on E = (Riν∗)µ
∗F induced by the relative con-

nection is the map J1E → (Riν∗)(T
∗
Y/Z ⊗ µ∗F ), whose symbol sequence is given at x ∈ X by

the image factorisation of

· · · → H i(Yx, N
∗⊗ µ∗F ) → T ∗

X,x ⊗Hi(Yx, µ
∗F ) → H i(Yx, T

∗
Y/X ⊗ µ∗F ) → · · ·

which is part of the long exact sequence in cohomology. Note also that the differential operator

is transitive iff the map H i(Yx, µ
∗F ) → H i+1(Yx, N

∗⊗µ∗F ) (again in a long exact cohomology

sequence) is zero.

The proof of this theorem is simply to take take the long exact sequences associated with

the following exact square (where the pullbacks have been omitted).

0 0 0

0 - N∗⊗
?

F - O1
Z|XF

?

- F
?

- 0

0 - T ∗
X ⊗

?

F - O1
Y/XF

?

- F
?

- 0

0 - T ∗
Y/Z ⊗ F

?

- T ∗
Y/Z ⊗ F

?

- 0
?

0
?

0
?

(Here O1
Z|XF denotes the differential equation induced by the relative connection on F over

Y ; restricted to Yx it is the first order neighbourhood sheaf of F on the image of Yx in

Z.) The obstruction to transitivity is then the obstruction to extending a cohomology class

in H i(Yx, µ
∗F ) to a class in H i(Yx,O

1
Yx
µ∗F ) (the first order neighbourhood of the fibre).

This is given by the connecting map in the long exact sequence and takes its values in

Hi+1(Yx, N
∗⊗ µ∗F ). Note that the ambiguity of the extension (when it exists) is given by

Hi(Yx, N
∗⊗ µ∗F ).

Finally, in this section, I will sketch the second order curvature theory for this differ-

ential operator. This is related to the obstruction to extending a cohomology class in

Hi(Yx,O
1
Yx
µ∗F ) to one in H i(Yx,O

2
Yx
µ∗F ) (the second order neighbourhood of the fibre).

This obstruction arises by taking the long exact sequence of

0 → S2N∗⊗ µ∗F → O2
Z|Xµ

∗F → O1
Z|Xµ

∗F → 0.
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Recall that for a differential equation R1 the second order curvature is obtained as a map

from R1 to the Spencer cohomology group Λ2T ∗⊗E/T ∗∧ g1. In the present context this map

is constructed from the following diagram:

21.11 Proposition. The following square is exact and commutative:

0 0 0

0 - S2N∗
?

- S2T ∗
X

?

- QK
?

- 0

0 - T ∗
X ⊗

?

N∗ - T ∗
X ⊗

?

T ∗
X

- T ∗
X ⊗ T ∗

Y/Z

?

- 0

0 - T ∗
X ∧

?

N∗ - Λ2T ∗
X

?

- Λ2T ∗
Y/Z

?

- 0

0
?

0
?

0
?

The construction of this exact square is a matter of simple linear algebra. The space QK

is best described by its position in the square as the quotient and kernel of the two short

exact sequences. Note that the middle column of the diagram is a pullback from X and so

is exact in cohomology even when twisted by a nontrivial bundle F . (Alternatively observe

that it is a split exact sequence.) The first column may be understood as part of another

exact square:

0 0

0 - S2N∗
?

- S2N∗
?

- 0

0 - N∗⊗
?

N∗ - T ∗
X ⊗

?

N∗ - T ∗
Y/Z ⊗N∗

?

- 0

0 - Λ2N∗
?

- T ∗
X ∧

?

N∗ - T ∗
Y/Z ⊗N∗

?

- 0

0
?

0
?

0
?

21.12 Theorem. Tensoring the exact square in 21.11 with F and taking long exact sequences

in cohomology gives rise to maps

Hi(S2N∗⊗ µ∗F )
(∗)
−→ S2T ∗

X ⊗Hi(µ∗F ) ∩ T ∗
X ⊗Hi(N∗⊗ µ∗F )

and

Hi(T ∗
X ∧N∗⊗ F ) → Λ2T ∗

X ⊗Hi(F ).
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These induce a map from H i+1(S2N∗⊗ F ) to the Spencer cohomology group. Applying this

map to the connecting map

Hi(O1
Z|Xµ

∗F ) → H i+1(S2N∗⊗ F ).

gives the second order curvature of the differential operator on H i(F ).

This theorem is fairly self-explanatory. The second order curvature must factor through

the connecting map, since this is the obstruction to extending a 1-jet of a solution to a 2-jet.

The bundle T ∗∧ g1 will be obtained from the image of T ∗
X ⊗Hi(N∗⊗ F ) in Λ2T ∗

X ⊗Hi(F ).

There is a slight complication coming from the fact that the map (∗) may not be surjective

(at least for i > 0), but the nature of this difficulty will be clear in the examples.

The techniques of this section can be summarised by the relationships between the coho-

mology groups of F and the differential equations on X. Suppose that the twistor transform

under consideration is the fibrewise cohomology H i(Yx, µ
∗F ), denoted H i(F ) for brevity.

Then:

• The differential equation is R1
Hi(F ) = Hi(O1

Z|XF ), where O1
Z|XF is the first order

neighbourhood sheaf of F on Yx in Z given by the extension

0 → N∗⊗ F → O1
Z|XF → F → 0.

• The symbol kernel g1
Hi(F ) is the image of

Hi(N∗⊗ F ) → T ∗
X ⊗Hi(F ).

• The first order (transitivity) obstruction is the connecting map

Hi(F ) → H i+1(N∗⊗ F ).

• The second order symbol kernel g 2
Hi(F ) contains the image of

Hi(S2N∗⊗ F ) → T ∗
X ⊗Hi(N∗⊗ F ) = T ∗

X ⊗ g1
Hi(F ).

• The second order (curvature) obstruction is the connecting map

Hi(O1
Z|XF ) → H i+1(S2N∗⊗ F ).

• Hi+1(S2N∗⊗F ) is mapped to a subbundle of
Λ2T ∗

X ⊗Hi(F )

T ∗
X ∧ g1

Hi(F )

by means of the sequence

T ∗
X ⊗Hi(N∗⊗ F ) → H i(T ∗

X ∧N∗⊗ F ) → H i+1(S2N∗⊗ F ),

and the map

Hi(T ∗
X ∧N∗⊗ F ) → Λ2T ∗

X ⊗Hi(F ).
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The fact that the second order curvature takes values in a subbundle of the usual Spencer

cohomology group is one manifestation of the constraints imposed on the bundle F by the

geometry of the twistor space, as reflected in the nontriviality (in general) of the normal

bundle N . However, in some cases the constraints may not appear at second order, since

there is no reason to suppose that the subbundle of the Spencer cohomology group is proper.

However, the long exact sequence construction of 21.12 does at least show the following:

21.13 Proposition. The inverse image of H i+1(S2N∗⊗ F ) in Λ2T ∗
X ⊗ Hi(F ) lies in the

kernel of the map to H i(Λ2T ∗
Y/Z ⊗ F ).

Indeed one expects this to be an equality, as will be seen in examples.

22 Instanton bundles on P3

In this section I will review the Ward correspondence in 4 dimensional twistor geometry,

and some of the properties of the instanton bundles with which it deals. This material is

all very well-known (see [3], [79]) and I include it here for two reasons. Firstly, the Ward

correspondence presents a model on which to base higher dimensional twistor transforms of

holomorphic vector bundles. Secondly, the 6 dimensional analogue which I will study in the

next section relies heavily on the properties of instanton bundles in 4 dimensions. Such a

reliance ties in with the idea that the internal geometry of 6 dimensional twistor theory is 4

dimensional twistor geometry.

I will work in the complex category throughout this section. The real case is obtained by

introducing real structures, but I will not do this here. Hence the “geometric” or “physical”

space will be the 4 dimensional complex quadric Q4. Its twistor space is P3, and the corre-

spondence space is a P1 bundle over Q4 and a P2 bundle over P3. I will call (the images of)

the P1’s in P3 twistor lines. They are parameterised by Q4. Similarly the P2’s descend to

totally null submanifolds of Q4 called α-planes.

22.1 Definition. An instanton on (an open subset of) Q4 is a holomorphic vector bundle

with a connection whose curvature is self-dual. Equivalently, the connection is flat over each

α-plane (see [79]).

Normally the term “instanton” is reserved for a real form of these bundles, equipped with

a structure group such as SU(2), and having finite action with respect to the Yang-Mills

functional, but since I will not be considering these, it will be convenient to broaden the

definition.

I will now briefly describe the Ward correspondence for these bundles, as an example of
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a twistor transform. Hence let X denote an open subset of Q4 whose intersection with each

α-plane is connected and simply connected, let Z denote the corresponding union of twistor

lines, and Y the correspondence space. Let σ denote the 2 dimensional complex spinor bundle

on X such that Y = P(σ).

22.2 Theorem (The Ward Correspondence). There is a 1-1 correspondence between in-

stantons on X and holomorphic vector bundles on Z whose restriction to each twistor line in

Z is trivial.

This correspondence is obtained by associating to a holomorphic vector bundle F on Z

the twistor transform ν∗µ
∗(F ) on Q4 whose fibre at x ∈ Q4 is H0(P1

(x), F ). The inverse

construction of F from an instanton is obtained by defining Fz to be the space of flat sections

of the instanton over the corresponding α-plane.

The fact that the above twistor transform produces instantons can be established by

studying the conormal bundle, exactly as described in the previous section. In turns out that

in this case N ∗ ∼= σ(−1) and so H0(P1, N∗⊗ F ) and H1(P1, N∗⊗ F ) are both zero on each

twistor line P1 in Z. From this it is immediate that differential operator on the direct image

sheaf H0(P1, F ) (of global sections along the twistor lines) is a connection. The rest of the

proof involves characterising the connections which arise as being precisely the instantons.

In order to obtain a real instanton on a real form of Q4 it suffices to construct an instanton

on any open subset X of Q4 which is a neighbourhood of the real form. It turns out, however,

that the conditions on the holomorphic vector bundle F are generic in the sense that F will be

trivial on every twistor line, except for some “jumping lines” parameterised by an exceptional

subvariety in Q4 (on which the instanton will acquire singularities). This global version of

the Ward correspondence will be the model and tool for the twistor transforms of the next

section. More precisely, the bundles I will consider are the following:

22.3 Definition. A mathematical instanton bundle of rank l and charge k on P3 is a holo-

morphic vector bundle F of rank l satisfying the following conditions

• For every x in P3 there exists a twistor line (linear P1) through x over which F is trivial.

• dimH1(F (−1)) = k

• H0(F (j)) = 0 for j 6 −1, H1(F (j)) = 0 for j 6 −2

• H3(F (j)) = 0 for j > −3, H2(F (j)) = 0 for j > −2

Often F will also be assumed to possess no (nonzero) global sections.

These are the bundles that give rise to instantons (with singularities) on Q4, and there

is a famous and important description of them in terms of linear algebra, called the ADHM
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construction. This characterises instantons by means of a “monad”. In order to describe this

monad construction, I will first recall some elementary projective geometry.

The Euler Sequence. Suppose P3 = P(τ), and let τ also denote the rank 4 trivial bundle

over P3. Then there is an exact sequence of bundles over P3

0 → T ∗(1) → τ∗→ O(1) → 0

called the Euler sequence, which induces an isomorphism between τ ∗ and H0(O(1)). The dual

Euler sequence is

0 → O(−1) → τ → T (−1) → 0,

and this induces an isomorphism between τ and H 0(T (−1)).

22.4 Proposition (Serre Duality on P3). The canonical bundle on P(τ) is O(−4)⊗Λ4τ∗.

Therefore, for any holomorphic vector bundle F on P3 = P(τ),

Hi(P3, F )∗∼= H3−i(P3, F ∗(−4)) ⊗ Λ4τ∗

by Serre duality.

Proof: The canonical bundle is the top exterior power of the cotangent bundle. By the

Euler sequence this is Λ3
(
(τ/O(−1))∗⊗O(−1)

) ∼= Λ4(τ∗(−1)).

Remark. In the context of 4 dimensional twistor theory, it is natural to choose a volume

form on τ and hence trivialise Λ4τ . In the next section, however, the space τ will be replaced

by a bundle with fibres τx parameterised by a 6 dimensional quadric. A trivialisation of

Λ4τ will then correspond to a choice of metric, which is an unnatural thing to do — indeed

there does not exist such a choice globally, since in the holomorphic context, Λ4τ will be a

nontrivial line bundle.

22.5 Definition. The monad of F is given by the vector spaces

F1 = H1(F (−1)), F0 = H1(T ∗⊗ F ), F−1 = H1(Λ2T ∗⊗ F (1)),

and the linear maps

F−1 ⊗ τ → F0 → F1 ⊗ τ∗,

obtained by contraction of the cup product with τ ∼= H0(T (−1)).

By the Euler sequence, these maps induce bundle homomorphisms (over P3)

F−1(−1)
α
−→ F0

β
−→ F1(1),
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whose composite is zero. Furthermore α is injective and β is surjective.

Conversely given such a sequence of bundle homomorphisms (where F±1 are k dimen-

sional, and F0 has dimension 2k + l) a vector bundle F on P3 may be constructed as the

cohomology ker β/ imα. The fundamental property of the monad description is that these

constructions are mutually inverse.

22.6 Duality and tensor products. A mathematical instanton bundle F is intended to

capture the properties of a self-dual connection on S4. It should therefore be expected that

F ∗ and tensor products of F, F ∗ are also mathematical instantons. Indeed it is clear from

Serre duality that if F is a rank l instanton of charge k then so is F ∗. It is easily seen that

the monad of F ∗ is

F∗
1(−1)

β∗

−→ F∗
0

α∗

−→ F∗
−1(1).

Taking the tensor product gives EndF = F ∗⊗ F . Generically, this will also be an mathe-

matical instanton bundle, although it will, of course, always have global sections. Whenever

necessary, I will make this genericity assumption. Furthermore, I will also assume that F

and F ∗ are isomorphic, though I will usually not assume that a distinguished isomorphism

(bilinear form) has been chosen. EndF is automatically isomorphic (naturally!) to its dual.

The importance of the bundle EndF comes from consideration of the deformations of

mathematical instanton bundles. Indeed it is classical that the moduli space of instantons

will be, near a generic instanton F , a manifold of dimension H 1(EndF ), and indeed this

space will be the tangent space at F (the space of first order infinitesimal deformations).

The formal aspects of this is easy to see: a deformation of F on P3 is a holomorphic vector

bundle on P3 × C, equal to F on P3 × {0}. To first order, this is given by the first order

neighbourhood sheaf F 1 which is an extension

0 → N∗
triv ⊗ F → F 1 → F → 0

with trivial conormal bundle. Equivalence classes of such extensions are given by their Atiyah

class, which is the element of H1(EndF ) obtained by applying the connecting homomorphism

to the identity in H0(EndF ) (i.e., tensor the above exact sequence with F ∗ and consider the

long exact sequence in cohomology).

In the next section I will be interested in deformations of F with nontrivial conormal

bundle. In the final section I shall relate such deformations to the moduli space.
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23 Holomorphic bundles of instanton type on Q6

I will now turn to the study of 6 dimensional twistor theory. Twistor theory in 4 di-

mensions generalises very well to even dimensional conformally flat geometry, as shown for

example in the book [8] of Baston and Eastwood. For example, these authors demonstrate

that cohomology groups on the twistor space correspond to solutions of zero rest mass field

equations. There is, however, one important way in which higher dimensional twistor theory

is unsatisfactory at present, namely the theory of twistor transforms for holomorphic vector

bundles. Baston and Eastwood describe a direct generalisation of the Ward correspondence,

but observe that it is not interesting, since it only produces flat connections.

More precisely, recall that instantons in 4 dimensions are described by holomorphic vec-

tor bundles on (a suitable open subset of) P3 which are trivial on the twistor lines. The

most obvious generalisation to 6 dimensions is to consider holomorphic bundles on (a piece

of) twistor space which are trivial on the twistor P3’s. Unfortunately any such bundle is

holomorphically trivial. Therefore one would like to find other classes of holomorphic vector

bundles on the twistor space for which there are more interesting twistor constructions.

One such alternative was proposed by Atiyah and Hitchin in the early 80’s, and studied

by Manin and Minh in [60]. The class of holomorphic vector bundles these authors consider

are the following:

23.1 Definition. A holomorphic vector bundle F is said to be of instanton type iff its re-

striction to each twistor P3 is a mathematical instanton bundle.

In this definition F is a bundle over a suitable open subset of the twistor Q612. More

precisely, let X be an open subset of the physical Q6 (which will be assumed to be suitably

convex where necessary), and let Y denote the inverse image of X in the twistor bundle. Let

Z be the image of Y in the twistor Q6.

23.2 Notation. For x ∈ X let P3
(x) be the corresponding submanifold P(τx) of twistor space.

This is the projection of the fibre Yx into Z, which I will use to identify Yx with P3
(x). For a

bundle F on a neighbourhood of P3
(x), the restriction of F to P3

(x) will be denoted by O 0
(x)F ,

and its higher order neighbourhood sheaves on P3
(x) (in Z) will be denoted O 1

(x)F,O
2

(x)F, . . .

(The first of these is essentially the bundle denoted by O1
Z|XF in section 21.)

Z is the union of P3
(x) for x ∈ X and is an open subset of the twistor Q6. F is then a

bundle on Z whose restriction O 0
(x)F to each P3

(x) (for x ∈ X) is a mathematical instanton

bundle.

12I will not address any global questions here, although similar bundles have been studied on P2n+1 by

Spindler and Trautmann [75]
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Remark. The above definition fits in very well with the point of view that at each point

x ∈ X there is a microscopic 4 dimensional twistor correspondence between the Klein

quadric Q4
(x) in Λ2τx and its twistor space P3

(x). A bundle of instanton type induces a

mathematical instanton on each P3
(x), for which there is “microscopic” Ward correspondence,

giving rise to an instanton with singularities on Q4
(x).

It is useful to introduce a class of bundles over Y to which the pullbacks of bundles of

instanton type belong:

23.3 Definition. A holomorphic vector bundle F̃ on Y is will be called a fibrewise instanton

iff its restriction (which I will also write F̃ ) to each fibre Yx is a mathematical instanton.

As an immediate consequence this definition, there is a monad description of F̃ on each

fibre Yx given by

Ex = H1(Yx, F̃ (−1)),

Vx = H1(Yx, T
∗
Yx

⊗ F̃ )

Wx = H1(Yx,Λ
2T ∗

Yx
⊗ F̃ (1)),

(which are the fibres of direct image bundles on X) and monad maps

αx : Wx(−1) → Vx

βx : Vx → Ex(1)

(which are bundle homomorphisms over Yx, parameterised by x ∈ X).

Thus if U(x) = Vx/ imαx then there is an exact sequence of bundles over Yx:

0 → F̃ → U(x) → Ex(1) → 0.

If F̃ = µ∗F is the pullback of a bundle F on Z, then the monad spaces become

Ex = H1(P3
(x),O

0
(x)F (−1)),

Vx = H1(P3
(x), T

∗
P3
(x)

⊗O 0
(x)F )

Wx = H1(P3
(x),Λ

2T ∗
P3
(x)

⊗O 0
(x)F (1)).

The bundles E, V,W and the monad maps between them will be constrained by the condition

that µ∗F is a pullback. This is reflected by the existence of a flat relative connection on µ∗F ,

which gives rise to differential operators on some of the direct image bundles.

In particular the bundle E is a twistor transform of F (−1) from Z to X and will have a

differential operator defined on it. The aim of this section is to study such twistor transforms
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from Z to X, and their associated differential operators. According to the recipe in section 21,

the first step is to identify the normal bundle and calculate some cohomology groups.

Identifying N on X is straightforward: since X is a conformal manifold there is a holo-

morphic line bundle L and a metric on TX ⊗ L. From this it is easy to see that there is an

isomorphism of exact sequences over Y

0 - N∗ - T ∗
X

- T ∗
Y/Z

- 0

0 - TY/Z ⊗ L2
?

- TX ⊗ L2
?

- N ⊗ L2
?

- 0

The upper sequence is the identification of N as the normal bundle to the α-planes in X

parameterised by points in the twistor space. The lower sequence is its twisted dual. Because

of this isomorphism, the all-important sequence associated to the inclusionN ∗→ T ∗
X becomes:

0 → N∗→ T ∗
X → N ⊗ L2 → 0.

On P3
(x) = Yx this sequence becomes

0 → N∗
(x) → T ∗

X,x → N(x) ⊗ L2
x → 0,

which may also be viewed as the skew-symmetric square of the (twisted) Euler sequence on

P3
(x) by identifying T ∗

X,x with Λ2τx and N(x) ⊗ L2
x with (Λ2N∗

(x))(2).

N is also the normal bundle to the twistor P3’s in Z. Because of triality, the twistor

space is also a complex quadric and so Z also has a holomorphic conformal structure. More

precisely, it is the space of null lines in T−, and so the conformal structure is given by a metric

on TZ(−1), where O(−1) is the tautological bundle. Therefore T ∗
Z
∼= TZ(−2) and there is an

isomorphism of short exact sequences over P3
(x):

0 - N∗
(x)

- T ∗
Z

- T ∗
P3
(x)

- 0

0 - T
P3
(x)

(−2)
?

- TZ(−2)
?

- N(x)(−2)
?

- 0

where N(x) denotes the normal bundle to P3
(x) in Z. One consequence of this is that Λ2(N(x) ⊗

L2
x) ∼= N∗

(x)(2) ⊗ L2
x (which follows from the identification of the canonical bundle on P3

(x)).

It also allows the normal and conormal bundle cohomology to be calculated from the

Euler sequence on P3
(x).

23.4 Normal and conormal bundle cohomology. From the (twisted) Euler sequence

0 → N(x) → τ∗x(1) → O(2) → 0
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and its dual

0 → O(−2) → τx(−1) → N ∗
(x) → 0

the following tables of vanishing cohomology groups for mathematical instantons on P3
(x) are

obtained:

· · · - Hp−1(F (j+2)) - Hp(N(x) ⊗ F (j)) - Hp(F (j+1)) ⊗ τ ∗x
- Hp(F (j+2)) -

p = 0 j 6 −2 j 6 −2 j 6 −3
p = 1 j 6 −3 j 6 −3 j 6 −3 j 6 −4
p = 2 j 6 −4 j > −2 j > −3 j > −4
p = 3 j > −4 j > −4 j > −4 j > −5

· · · - Hp(F (j−2)) - Hp(F (j−1)) ⊗ τx - Hp(N∗
(x) ⊗ F (j)) - Hp+1(F (j−2)) -

p = 0 j 6 1 j 6 0 j 6 0 j 6 0
p = 1 j 6 0 j 6 −1 j 6 −2 j > 0
p = 2 j > 0 j > −1 j > −1 j > −1
p = 3 j > −1 j > −2 j > −2

Proof: The vanishing of certain cohomology groups of F (j) on P3
(x) is purely a matter of

the definition of a mathematical instanton, and all of the remaining vanishing results follow

immediately, apart from the fact that H1(N∗
(x) ⊗F (j)) and H2(N(x) ⊗F (j)) vanish for j 6 −2

and j > −2 respectively. These bonus vanishing results (which are dual to each other) are

consequences of the exact sequence

0 → N∗
(x) → T ∗

X,x → N(x) ⊗ L2
x → 0

on P3
(x), whose long exact sequence relates the cohomology of N ∗

(x) to that of N(x). This gives

the vanishing results stated, and also the final isomorphism in the corollary below.

This result applies equally to bundles of instanton type on Z, and fibrewise instantons on

Y (by thinking of P3
(x) as Yx etc.), but I shall use the notation of the former in the following.

23.5 Corollary (1). There are the following isomorphisms between cohomology groups:

H1(P3
(x), N

∗
(x) ⊗O 0

(x)F ) ∼= H1(P3
(x),O

0
(x)F (−1)) ⊗ τx

H1(P3
(x), N

∗
(x) ⊗O 0

(x)F (−1)) ∼= H2(P3
(x),O

0
(x)F (−3))

H2(P3
(x), N(x) ⊗O 0

(x)F (−3)) ∼= H1(P3
(x),O

0
(x)F (−1))

H2(P3
(x), N(x) ⊗O 0

(x)F (−4)) ∼= H2(P3
(x),O

0
(x)F (−3)) ⊗ τ ∗x

H1(P3
(x), N(x) ⊗O 0

(x)F (−2)) ∼= H2(P3
(x), N

∗
(x) ⊗O 0

(x)F (−2)) ⊗ L−2
x

where the final isomorphism is induced by the short exact sequence in the proof of 23.4.
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23.6 Corollary (2). For j > 0 the following sequence of cohomology groups over P3
(x) is

exact:

0 → H0(N(x) ⊗O 0
(x)F (j − 2)) → H0(O 0

(x)F (j − 1)) ⊗ τ ∗x → H0(O 0
(x)F (j))

→ H1(N(x) ⊗O 0
(x)F (j − 2)) → H1(O 0

(x)F (j − 1)) ⊗ τ ∗x → H1(O 0
(x)F (j)) → 0.

In particular, the cup product map H1(O 0
(x)F (j − 1)) ⊗ τ ∗x → H1(O 0

(x)F (j)) is surjective for

j > 0 i.e., the H1 cohomology groups of F are generated by H1(O 0
(x)F (−1)).

23.7 Corollary (3). In the critical j = 0 case, the exact sequence becomes

0 → H0(O 0
(x)F ) → H1(N(x) ⊗O 0

(x)F (−2)) → H1(O 0
(x)F (−1)) ⊗ τ ∗x → H1(O 0

(x)F ) → 0.

from which it follows that

dimH1(O 0
(x)F ) − dimH0(O 0

(x)F ) = 2k − l.

23.8 Corollary (4). The following sequence of cohomology groups is exact:

0 → H0(O 0
(x)F ) ⊗ τx → H0(N∗

(x) ⊗O 0
(x)F (1))

→ H1(O 0
(x)F (−1)) → H1(O 0

(x)F ) ⊗ τx → H1(N∗
(x) ⊗O 0

(x)F (1)) → 0,

and it follows that

dimH1(N∗
(x) ⊗O 0

(x)F (1)) − dimH0(N∗
(x) ⊗O 0

(x)F (1)) = k − l.

These last two corollaries are obviously particularly useful when O 0
(x)F is assumed to have

no nonzero global sections.

The property of the H1 cohomology groups of F given in Corollary (2) is related to the

monad construction, and motivates the choice of H 1(P3
(x),O

0
(x)F (−1)) as an interesting direct

image sheaf. This is essentially the direct image considered by Manin and Minh in [60]

(although for some reason they chose to use the dual version H 2(O 0
(x)F (−3))), and is the first

direct image I will consider.

Firstly, though, in order to analyse the second order obstructions, the cohomology of

S2N∗
(x) will be investigated. The key to this is the symmetric square of the Euler sequence,

which gives:

0 → τx(−3) → S2τx(−2) → S2N∗
(x) → 0.

This leads to another table of vanishing cohomology groups:

- Hp(F (j−3)) ⊗ τx - Hp(F (j−2)) ⊗ S2τx - Hp(S2N∗⊗ F (j)) - Hp+1(F (j−3)) ⊗ τx

p = 0 j 6 2 j 6 1 j 6 1 j 6 1
p = 1 j 6 1 j 6 0 j 6 −2 j > 1
p = 2 j > 1 j > 0 j > 0 j > 0
p = 3 j > 0 j > −1 j > −1
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As in the case of the conormal bundle, these vanishing results are all immediate, except

for H1(S2N∗
(x) ⊗ O 0

(x)F (j)), which is established from the symmetric square of the inclusion

N∗
(x) → T ∗

X,x. I will not need to use this fact, but will instead note that there are isomorphisms:

H1(S2N∗
(x) ⊗O 0

(x)F (1)) ∼= H1(O 0
(x)F (−1)) ⊗ S2τx

H1(S2N∗
(x) ⊗O 0

(x)F ) ∼= H2(O 0
(x)F (−3)) ⊗ τx

and an exact sequence

0 → H1(S2N∗
(x) ⊗O 0

(x)F (−1)) → H2(O 0
(x)F (−4)) ⊗ τx → H2(O 0

(x)F (−3)) ⊗ S2τx

→ H2(S2N∗
(x) ⊗O 0

(x)F (−1)) → H3(O 0
(x)F (−3)) ⊗ τx.

The bundle S2τx is the bundle of self-dual 3-forms. Hence just as in the case of twistor

theory in 4 dimensions, the differential equations which arise from twistor constructions have

a second order curvature which is in some sense self-dual. It will be seen in examples that

this may or may not have implications for the differential operator.

I will now turn to the first such example.

The twistor transform H1(O 0
(x)

F (−1)).

23.9 Proposition. The differential operator on H 1(O 0
(x)F (−1)) is transitive.

Proof: H2(N∗
(x) ⊗O 0

(x)F (−1)) = 0.

23.10 Proposition. The symbol sequence of the differential operator on H 1(O 0
(x)F (−1)) is

the given by the image factorisation of central map in the following exact sequence:

0 → H0(N(x) ⊗O 0
(x)F (−1)) ⊗ L2

x → H1(N∗
(x) ⊗O 0

(x)F (−1))

→ H1(O 0
(x)F (−1)) ⊗ T ∗

X,x → H1(N(x) ⊗O 0
(x)F (−1)) ⊗ L2

x → 0.

In particular, if H0(N(x)⊗O 0
(x)F (−1)) = 0 then the symbol sequence is given by the short exact

sequence remaining. By 23.4, this will be the case if O 0
(x)F has no nonzero global sections on

P3
(x).

Proof: This is the long exact sequence associated to

0 → N∗
(x) → T ∗

X,x → N(x) ⊗ L2
x → 0,

tensored with O 0
(x)F (−1), so the result follows from theorem 21.10.

Remark. From this exact sequence it follows that

dimH1(N(x) ⊗O 0
(x)F (−1)) − dimH0(N(x) ⊗O 0

(x)F (−1))

= dimH1(F (−1)) ⊗ T ∗
X,x − dimH1(N∗

(x) ⊗O 0
(x)F (−1)) = 5k.
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One of the reasons this particular twistor transform is natural and easy to analyse is that the

symbol sequence (at x) is closely related to the monad construction of F (on P3
(x)). Recall

that the monad of O 0
(x)F may be given in terms of a complex of maps

Wx ⊗ τx → Vx → Ex ⊗ τ∗x,

where

Wx = H1(Λ2T ∗
P3
(x)

⊗O 0
(x)F (1)) = H1(Λ2N∗

(x) ⊗O 0
(x)F (−3)) = H1(N∗

(x) ⊗O 0
(x)F (−1)) ⊗ L−2

x

Vx = H1(T ∗
P3
(x)

⊗O 0
(x)F ) = H1(N(x) ⊗O 0

(x)F (−2))

Ex = H1(O 0
(x)F (−1)).

Since the composite map Wx ⊗ τx → Ex ⊗ τ∗x is zero, the induced map Wx → Ex ⊗ τ∗x ⊗ τ∗x

has its image in Λ2τ∗x.

23.11 Proposition. The symbol kernel map (tensored with L−2
x )

H1(N∗
(x) ⊗O 0

(x)F (−1)) ⊗ L−2
x → H1(O 0

(x)F (−1)) ⊗ TX,x

is the monad map Wx → Ex ⊗ Λ2τ∗x (up to a normalisation constant).

Proof: Heuristically, this result is obvious, in that both maps are related to the skew-

symmetric square of the Euler sequence. Manin and Minh [60] give a detailed proof in

coordinates. Rather than repeat this here, I will make some remarks which help to show

further why this result is true. Firstly observe that the symbol kernel is the kernel of the cup

product

H1(O 0
(x)F (−1)) ⊗H0(N(x)) → H1(N(x) ⊗O 0

(x)F (−1)).

(using the fact that TX,x
∼= Λ2τ∗x

∼= H0(N(x)).) The monad map Vx → Ex ⊗ τ∗x is also the

kernel of a cup product, this time from H1(O 0
(x)F (−1)) ⊗ τ ∗x to H1(O 0

(x)F ) (where of course

τ∗x = H0(O(1)). Tensoring with τ ∗x gives the monad composite

Wx → Vx ⊗ τ∗x → Ex ⊗ τ∗x ⊗ τ∗x,

with skew-symmetric image. The result is then related to the fact that H 1(N(x) ⊗O 0
(x)F (−1))

maps onto the kernel of the cup product H1(O 0
(x)F ) ⊗ τ∗x → H1(O 0

(x)F (1)).

This is really a result about fibrewise instantons on Y , since it involves only the symbol of

the differential operator, which comes from the symbol of the relative connection. A fibrewise

instanton F̃ on Y does not need to possess a relative connection in order for this symbol to

be defined. The proposition then asserts that one of the direct images of this symbol map is

the monad map. This has an important consequence, which is the main result of Manin and

Minh’s paper:
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23.12 Theorem. [60] The fibrewise instanton F̃ on Y may be recovered from the symbol

map on the direct image H1(Yx, F̃ (−1)) (provided that the fibres of F̃ have no nonzero global

sections).

Proof: The proof is simply that the symbol gives enough information to reconstruct the

fibrewise monad of F̃ . From the map W → E⊗Λ2τ∗, one only has to define V = (W ⊗ τ)
/
K

where K is the kernel of the induced map W ⊗ τ → E ⊗ τ ∗ (see [9]).

It remains to characterise the condition that F̃ = µ∗F for some F on Z. Assuming

that the fibres of Y over Z are connected and simply connected (as I always will), this it is

equivalently the existence of a flat relative connection on F̃ which must be characterised. One

necessary condition of course, is that there should be a differential operator on H 1(Yx, F̃ (−1))

with the appropriate symbol, but this will not be sufficient.

The statement of the above theorem is slightly incomplete, in that Manin and Minh

also characterise the possible symbols that can occur given that F̃ is a fibrewise instanton.

Indeed, the map Wx → Ex ⊗ Λ2τ∗x may be interpreted in terms of the 4 dimensional twistor

correspondence between mathematical instantons on P3
(x) and self-dual connections over Q4

(x),

the space of null lines in Λ2τx = T ∗
X,x. Here points in Q4

(x) correspond to P1’s in P3
(x), and

singularities of the self-dual connection correspond to jumping lines of O 0
(x)F (on which it fails

to be trivial). This is precisely what the bundle homomorphism γx : Wx → Ex(1) over Q4
(x)

encodes. In fact if Θx : Λ2τx → W ∗
x ⊗ Ex is the obvious transpose of γx, then for [p] ∈ Q4

(x)

the following are equivalent (see Atiyah [3]):

• [p] ∈ suppker γx = supp coker γx (a divisor in Q4
(x)).

• Θx[p] is not injective/surjective/bijective.

• O 0
(x)F is not trivial on P1

[p] ⊆ P3
(x).

• If p = ξ ∧ η then there’s a holomorphic section of O 0
(x)F vanishing at [ξ] but not [η] in

P1
[p].

Now since by assumption, through every [ξ] ∈ P3
(x) there is a P1

[p] on which O 0
(x)F is trivial,

it follows that for every ξ ∈ τx there is an η in τx such that p = τ ∧ η is not in the divisor

suppker γx i.e., Θx[p] is an isomorphism. Now [ξ] ∈ P3
(x) corresponds to an α-plane (piece of a

null P3) through x in X. The tangent space to this α-plane has an annihilator in T ∗
X,x given

by those vectors in Λ2τx which are divisible by ξ. Hence the generic triviality property of F

implies:

23.13 Proposition. For any ξ ∈ τx there is an η ∈ τx such that ξ ∧ η is not a characteristic

vector i.e., the map Ex → Wx ⊗ Λ2τ∗x
evξ∧η
−−−→Wx is an isomorphism.
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In particular, if k = 1 so that Wx and Ex are 1 dimensional, then if Θx[p] is not an

isomorphism, it must be the zero map, and so the kernel of Θx determines a 5 dimensional

subspace Hx of TX,x
∼= Λ2τx ⊗ L−2

x which cannot contain the tangent space of an α-plane.

The symbol kernel is then Wx
∼= H0

x⊗Ex, and the differential operator is a partial connection.

I will look at this case in detail shortly.

Firstly, however, I will consider the second order theory. As described in section 21 this

is obtained from the connecting map obstruction taking values in H 2(S2N∗
(x) ⊗ O 0

(x)F (−1)).

It is expected that this will restrict the second order curvature of the differential operator.

Unfortunately the restriction may turn out to be vacuous, essentially because H 1(N∗
(x) ⊗

O 0
(x)F (1)) may vanish. More precisely, by theorem 21.12 one should consider the following

diagram of cohomology groups (on P3
(x)

∼= Yx, omitting almost all of the subscripts!):

0 0 - H0(N∗⊗F (1))⊗L2

0 - H1(S2N∗⊗F (−1))

?

- S2T ∗
X
⊗H1(F (−1))

?

- H1(QK⊗F (−1))

?

0 - T ∗
X
⊗H1(N∗⊗F (−1))

?

- T ∗
X
⊗T ∗

X
⊗H1(F (−1))

?

- T ∗
X
⊗H1(N⊗F (−1))⊗L2

?

H0(N∗⊗F (1))⊗L2

?

- H1(T ∗
X
∧N∗⊗F (−1))

?

- Λ2T ∗
X
⊗H1(F (−1))

?

-

(∗)
-

H1(N∗⊗F (1))⊗L2

?

H1(QK⊗F (−1))

?

- H2(S2N∗⊗F (−1))

?

- 0
?

0
?

As stated in Theorem 21.12, the image of the map (∗) is T ∗
X ∧ g1

H1(F (−1)) (note though that

H1(S2N∗
(x) ⊗O 0

(x)F (−1)) may not quite be all of g2
H1(F (−1)), but the rest of the second order

symbol kernel is factored out when the map to Λ2T ∗
X ⊗H1(O 0

(x)F (−1)) is applied). Therefore

H1(S2N∗
(x) ⊗ O 0

(x)F (−1)) can only map to a proper subbundle of the Spencer cohomology

group only if H1(N∗
(x) ⊗ O 0

(x)F (−1)) 6= 0. I now wish to demonstrate that this cohomology

group vanishes in an important special case.

Instantons of critical rank I will assume throughout the rest of this section that O 0
(x)F is

a mathematical instanton bundle of rank 2k and charge k with no (nonzero) global sections

over P3
(x) (and similarly for O 0

(x)F
∗). This is a generic restriction, and such bundles form

a significant class of charge k bundles, since rank 2k is the highest rank n at which there

are irreducible Sp(n,C) or SL(n,C) instantons of charge k (see [6]). The prototype for such
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bundles is the 1-instanton, which is a rank 2 bundle of charge 1—such a bundle automatically

carries a conformal symplectic form.

By 23.7 this is equivalent to the vanishing condition H 0(O 0
(x)F ) = H1(O 0

(x)F ) = 0, from

which it immediately follows (see 23.6, 23.7 and 23.8) that:

23.14 Proposition. For instantons of critical rank,

H0(N(x) ⊗O 0
(x)F (−1)) = 0

H0(O 0
(x)F (1)) ∼= H1(N(x) ⊗O 0

(x)F (−1))

H1(O 0
(x)F (j)) = 0 for all j > 0

H1(N(x) ⊗O 0
(x)F (−2)) ∼= H1(O 0

(x)F (−1)) ⊗ τ ∗x

H1(S2N∗
(x) ⊗O 0

(x)F (−1)) = 0

H2(S2N∗
(x) ⊗O 0

(x)F (−1)) ∼= H2(O 0
(x)F (−3)) ⊗ S2τx ∼= H1(N∗

(x) ⊗O 0
(x)F (−1)) ⊗ S2τx

H0(N∗
(x) ⊗O 0

(x)F (1)) ∼= H1(O 0
(x)F (−1))

H1(N∗
(x) ⊗O 0

(x)F (1)) = 0.

One great technical advantage with instantons of critical rank is that the monad con-

struction simplifies, thanks to the above isomorphism of Vx with Ex ⊗ τ∗x. From this (and

the dual result) it immediately follows that the map Wx ⊗ τx → Ex ⊗ τ∗x is an isomorphism,

and so the reconstruction of the monad from the map Wx → Ex ⊗ Λ2τ∗x is straightforward.

Recall from the beginning of this section that the monad gives rise to an exact sequence

0 → O 0
(x)Fz → (U(x))z → Ex ⊗O(1)z → 0,

where (U(x))z is the quotient of Vx by the image of Wx ⊗O(−1)z. Now if Vx is identified with

Wx ⊗ τx then (U(x))z ∼= Wx ⊗ τx/z where z is the tautological line. Furthermore, z ⊗ τx/z is

isomorphic to TxP3
[z] ⊗ L2

x = (N∗
(x))z where P3

[z] is the α-plane corresponding to z. Therefore,

the monad construction reduces to the following:

23.15 Proposition. There is an exact sequence (over P3
(x))

0 → O 0
(x)F → N∗

(x)(1) ⊗Wx
(∗)
−→ Ex(1) → 0

where (N ∗
(x))z is the annihilator of the α-plane corresponding to z, which is a subspace of T ∗

X,x,

and (∗) is the map induced by the monad map Λ2τx → W ∗
x ⊗Ex.

In the 1-instanton case, the map (∗) becomes a little more explicit, as will be seen later.

Returning now to the second order questions which motivated the consideration of in-

stantons of critical rank, it follows from the final identification in Proposition 23.14 that the
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second order integrability obstruction is free to take values in the whole Spencer cohomology

group of the differential equation on H1(O 0
(x)F (−1)).

This perhaps explains some of the difficulty experienced by Manin and Minh in finding

conditions on the differential equation with the given “admissible symbol” which ensure

it arises as a twistor transform. In short, these conditions may not arise as second order

integrability obstructions.

1-instantons and H1(O 0
(x)

F (−1))

To see what is happening in more detail, I will restrict attention to bundles of charge

k = 1. (Of course, if k = 1, one may as well assume the rank of F is 1 or 2, since otherwise it

will have global sections, and will be given by an extension of a lower rank bundle. Since line

bundles can easily be described as elements of cohomology groups, it is the rank 2 case—the

1-instanton case—which is more interesting, and this is the case I am considering here.)

Remark. Tensoring a 1-instanton with a rank k trivial bundle gives a bundle of rank 2k

and charge k. All results about 1-instantons also apply to these rather special charge k

bundles. This does at least provide an example of a higher charge bundle where everything

is explicit. However, this example is not at all generic.

As observed above, for 1-instantons, the differential operator onH 1(O 0
(x)F (−1)) is a partial

connection.

The second order diagram may now be written

0

0 - S2T ∗
X,x ⊗Ex

?

- · · ·

0 - T ∗
X,x ⊗H0

x ⊗Ex

?

- T ∗
X,x ⊗ T ∗

X,x ⊗Ex

?

- · · ·

(H0
x)2 ⊗Ex

- H1(T ∗
X,x ∧N

∗
(x) ⊗ F (−1))
?

- Λ2T ∗
X,x ⊗Ex

?

-

(∗) -

0

S2τx ⊗H0
x ⊗Ex

?

0
?

0
?

The curvature of a partial connection takes values in Λ2H∗
x ⊗ Ex, which is the quotient of

Λ2T ∗
X,x ⊗Ex by the image of (∗). It is not hard to see from this diagram that the map from
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the space of self-dual 3-forms to this space of 2-forms on Hx is an isomorphism. In fact, using

the identification of Λ2H∗
x ⊗ Ex with the space Λ3

HT
∗
X,x ⊗H0

x ⊗ Ex of “horizontal” 3-forms,

there is an obvious isomorphism obtained by restricting the orthogonal projection on 3-forms.

It is likely that these two isomorphisms are the same (up to a constant factor perhaps).

It seems, therefore, that in the 1-instanton case, the partial connection is not the ideal

differential operator for producing an inverse construction, although it may be that some-

thing interesting happens at third order. Instead of following this line, I will look for other

differential equations which seem more promising.

Firstly, it is worth considering more carefully what is being sought. Manin and Minh

have successfully reconstructed the fibrewise instanton F̃ on the correspondence space Y by

means of the fibrewise monads. It remains to reconstruct the flat relative connection.

As observed above, the monad for 1-instantons can be written down quite explicitly as

an exact sequence

0 → F → N∗
(x)(1) ⊗Wx → Ex(1) → 0,

where the map from N ∗
(x) → W ∗

x⊗Ex is induced by the quotient map of Λ2τx by H∗
x
∼= Hx⊗L

2
x

(using the conformal structure). Consequently F is recovered as (Hx ∩ TxP3
[z])⊗Wx(1) ⊗L2

x

(note that Wx
∼= Ex ⊗ L−1

x ). To summarise:

23.16 Theorem. If Hx arises from a twistor transform of a 1-instanton, then there is a flat

connection on (Hx ∩ P3
[z]) ⊗Ex ⊗ Lx over each α-plane P3

[z].

In a sense this provides an inverse construction, but it is not a very interesting character-

isation, since it is a much too direct restatement of the existence of a flat relative connection

of µ∗F (−1). The goal is to seek characterisations which are more intrinsic to differential

operators on X.

Now, in this 1-instanton case, the cohomology group H 0(O 0
(x)F (1)) (the first nonvanishing

direct image sheaf of global sections) is related to the bundle Hx of the partial connection.

In order to obtain an equation on the partial connection, one possibility is to consider this

direct image sheaf as a twistor transform. This will be done next. It will be seen that this

time, there are some constraints on the second order integrability obstructions.

The twistor transform H0(O 0
(x)

F (1)).

23.17 Proposition. The differential operator on H 0(O 0
(x)F (1)) is transitive and has symbol

kernel H1(O 0
(x)F (−1)).

This proposition is immediate from 21.10 and the identifications in 23.14 for rank 2k

instantons of charge k.
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Next, one can write down the second order curvature diagram for this twistor transform:

0 0

0 - S2T ∗
X
⊗H0(F (1))

?

- H0(QK⊗F (1))

?

0 - T ∗
X
⊗H0(N∗⊗F (1))

?

- T ∗
X
⊗T ∗

X
⊗H0(F (1))

?

- T ∗
X
⊗H0(N⊗F (1))⊗L2

?

0 - H0(T ∗
X
∧N∗⊗F (1))

?

- Λ2T ∗
X
⊗H0(F (1))

?

-

(∗)
-

H0(N∗⊗F (3))⊗L2

?

H0(QK⊗F (1))

?

- H1(S2N∗⊗F (1))

?

- 0
?

0
?

Now H0(N∗
(x) ⊗O 0

(x)F (3)) is not expected to vanish in general, so this diagram suggests that

quite a strong constraint is placed on the second order curvature of the differential operator

by the geometry of the twistor construction.

In order to analyse and interpret this constraint, it will once again be expedient to focus

on 1-instantons, when everything becomes more explicit. In this case the differential operator

on H1(O 0
(x)F (−1)) is a partial connection along a 5 dimensional subspace Hx of the tangent

space, and H1(N(x) ⊗O 0
(x)F (−1)) ⊗ L2

x
∼= H∗

x ⊗Ex. Hence H0(O 0
(x)F (1)) ∼= Hx ⊗Ex.

The differential operator on Hx ⊗Ex is easily seen to have symbol sequence

0 → [TX,x
⊥
−→ Hx] ⊗Ex → T ∗

X,x ⊗Hx ⊗Ex → (T ∗
X,x ⊗Hx)tf ⊗Ex → 0,

where [TX,x
⊥
−→ Hx] denotes the span of the orthogonal projection, and ()tf denotes the

natural complementary space of “trace-free” maps from TX,x to Hx.

This is a rather unusual looking differential equation. If the differential operator is denoted

by D then the Leibniz rule for D is

D(fX ⊗ s) = fD(X ⊗ s) + (df ⊗X ⊗ s−
1

5
df(X)p⊗ s),

where p : TX,x → Hx is the orthogonal projection. Thus D is almost a connection. The hope

is that restricted to subbundles of Hx it may induce a connection.

Interpreting the meaning of the second order curvature of such a differential equation will

not be straightforward. The methods of Part III allow the curvature map to be computed

using compatible covariant derivatives. Understanding the expression produced requires extra

work. Here I will look only at the symbol curvature, since the symbol kernel is the obstruction

to the differential operator being a connection.
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First of all, note that g2
H0(F (1)) = 0 (which fits in with the vanishing of H0(S2N∗

(x) ⊗

O 0
(x)F (1)) in the above diagram), and so the wedge product (skew-symmetrisation map) from

T ∗
X ⊗ g1

H0(F (1)) to Λ2T ∗
X ⊗H0(O 0

(x)F (1)) is injective.

Trivialise the line bundle E (locally) with a flat connection. Now choose a compatible

covariant derivative on H, and extend it to a covariant derivative DH on TX using any

connection on H⊥. This connection will not in general be torsion free, but subtracting the

torsion gives another covariant derivative D = DH + C on TX . The symbol curvature of D

can now be obtained by differentiating the element p ∈ T ∗
X ⊗H of the symbol kernel by the

tensor product connection D̃ = D ⊗ DH. Now by construction DHp = 0 and so the only

nonzero term is the contraction of C with p. Computing this term and skew-symmetrising

gives (Alt D̃p)(X,Y ) = p(C(X,Y )) (where C is minus the torsion of DH). The symbol

curvature applied to p is this 2-form modulo 2-forms (with values in H) of the form α∧ p.

Using the conformal structure of X, this curvature can be converted into a trilinear form,

namely

X,Y,Z 7→ 〈p(C(X ,Y )) mod {α∧ p}, Z〉.

The constraint on the symbol curvature would therefore seem to be that this form is alter-

nating (it is automatically skew in X,Y ), and self-dual.

From this one can deduce that the subspace Hx ∩ TxP3
[z] of Hx is preserved by the skew-

symmetrised connection, but this is not quite enough to provide the flat connection needed.

Continuing in this vein, it is possible (in principle at least) to study all sorts of differential

operators, and compute their integrability obstructions. I will not do this, however, since it

seems to me that none of these equations will tell the whole story. Instead I will seek a more

natural context in which to analyse the twistor transforms of bundles of instanton type. This

context is provided by the map to the moduli space of mathematical instantons.

24 The moduli space of instantons and 6 dimensional twistors

In the previous section some particular twistor transforms of F were considered. Their

theory is still somewhat unsatisfactory, since I have not been able to characterise the equations

which arise as twistor transforms in order to give a satisfactory inverse construction. The

problem, in my view, is that these twistor transform constructions are somewhat ad hoc.

Why take a particular direct image sheaf of a particular twist? There are infinitely many

possibilities. One possible way out of this impasse is to look again at the moduli space of

instantons as a unifying perspective for the twistor transforms of bundles of instanton type.

24.1 The map to the moduli space. If F̃ is a fibrewise instanton on Y , then associated
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to each point x ∈ X there is the mathematical instanton F |Yx
. This defines a holomorphic

map from the open subset X of Q6 to the moduli space M of rank l, charge k instantons.

Conversely, any such map will determine a holomorphic vector bundle F̃ on Y up to gauge

equivalence.

If F̃ is a pullback of a bundle of instanton type on Z, then there will be some constraints

on the map to the moduli space. Hence the question of whether F̃ descends to Z should

be answerable in terms of what special properties the map from X to the moduli space has.

Indeed one hopes to find differential equations characterising the maps θ : X → M which arise

from bundles on Z. The most obvious way such an equation might occur is as a condition

on the derivative dθx : TX,x → TM,θ(x).

Since I am studying only local (indeed infinitesimal) questions, I will restrict attention to

a point x ∈ X over which F(x) = F̃ |Yx
is generic, in the sense that EndF(x) is a mathematical

instanton, and the moduli space is a manifold (of the expected dimension—see below) at

F(x). If X is a small enough neighbourhood of x, then the map θ to the moduli space will be

a smooth map between manifolds with θ(x) = F(x).

One way to view this situation is as a deformation of F(x), parameterised by X. The

tangent space to the moduli space is then the space of all possible infinitesimal deformations.

As observed at the end of section 22, infinitesimal deformations of F(x) are parameterised by

elements of H1(EndF(x)), so this is the tangent space to the moduli space at F(x) (its rank

being the expected dimension). Hence the derivative at x of the map to the moduli space,

dθx : T ∗
X → H1(EndF(x))

is the map parameterising the infinitesimal deformations by T ∗
X .

Now if F̃ = µ∗F then the deformation of F(x) is constrained by the geometry of Z.

This constraint is given by the flat relative connection on F̃ , which induces a flat relative

connection on End F̃ .

Now the tangent space to the moduli space at F(x) is the fibre at x of the twistor transform

(R1ν∗)(µ
∗ EndF ). Hence the relative connection on End F̃ induces a differential equation on

this bundle, whose symbol kernel will be a subbundle of T ∗
X,x ⊗ TM,θ(x). Therefore the map

to the moduli space satisfies this differential equation, in the sense of the following theorem:

24.2 Theorem. For bundles of instanton type, the derivative of the map to the moduli space

is an element of the subspace of Hom(TX,x, TM,θ(x)) ∼= T ∗
X,x ⊗ H1(P3

(x),EndO 0
(x)F ) given by

the following exact sequence over P3
(x):

0 → T ∗
X,x ⊗H0(EndO 0

(x)F ) → H0(N(x) ⊗ EndO 0
(x)F ) ⊗ L2

x

→ H1(N∗
(x) ⊗ EndO 0

(x)F ) → T ∗
X,x ⊗H1(EndO 0

(x)F ) → H1(N(x) ⊗ EndO 0
(x)F ) ⊗ L2

x → 0
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Proof: The map to the moduli space must satisfy the differential equation onH 1(EndO 0
(x)F ),

since the subbundle of J 1
x(TM) associated to this equation is the first order neighbourhood

sheaf of F on P3
(x) in Z, representing the infinitesimal behaviour of µ∗F on Y .

By Theorem 21.10, the symbol of this equation is the image factorisation (at T ∗
X ⊗

H1(EndF )) of the long exact sequence associated to

0 → N∗
(x) ⊗ EndO 0

(x)F → T ∗
X,x ⊗ EndO 0

(x)F → N(x) ⊗ L2
x ⊗ EndO 0

(x)F → 0

There is therefore only one minor point to verify: namely the vanishing ofH 0(N∗
(x)⊗EndO 0

(x)F )

and H2(N∗
(x) ⊗ EndO 0

(x)F ). But these are vanishing results for mathematical instantons, of

which EndF is an example, by assumption.

There is another interpretation of this result (which perhaps clarifies it a little) in terms

of the Atiyah class of F̃ on Y . Assuming X (and all the pieces of α-planes in X) to be

contractible, the only obstructions to F̃ admitting a (relative) connection will be along the

fibres of Y over X. Along the fibres, F̃ is a nontrivial bundle, but here I am interested in

differentiation in conormal directions. The conormal bundle to Yx in Y is ν∗T ∗
X , and so the

appropriate relative Atiyah class is that associated to the exact sequence

0 → ν∗T ∗
X ⊗ F̃ → O1

Y/X F̃ → F̃ → 0,

namely the image of the identity section under the connecting map

H0(Yx,EndF(x)) → ν∗T ∗
X ⊗H1(Yx,EndF(x)).

Now if F̃ = µ∗F then it is automatically trivial along the fibres of Y over Z i.e., in the

T ∗
Y/Z

∼= N ⊗ L2 directions. Therefore the quotient class in H 1(Yx, N(x) ⊗ EndF(x)) ⊗ L2
x

associated to the exact sequence

0 → T ∗
Y/Z ⊗ F̃ → J1

Y/Z F̃ → F̃ → 0

(where J1
Y/Z denotes the jet bundle along the fibres) vanishes, and the Atiyah class takes its

values in the image of

H1(Yx, N
∗

(x) ⊗ EndF(x)) → T ∗
X,x ⊗H1(Yx,EndF(x)).

This is precisely what the differential equation on the map to the moduli space is saying.

This gives, in some sense, an infinitesimal inverse construction, since if one knows that the

map to the moduli space satisfies this equation, then one knows that the relative Atiyah class

takes values in H1(Yx, N
∗

(x) ⊗ EndF(x)) (i.e., the obstruction in H1(Yx, N(x) ⊗ EndF(x)) ⊗ L2
x

vanishes) and so there exists a relative connection on F̃ over Yx. The space of possible such

connections is H0(Yx, N(x) ⊗ EndF(x)) ⊗ L2
x.
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Unfortunately, this space is hard to compute. Even in the critical rank case, where

most of the dimensions can be found in terms of k, I have only been able to show that

dimH1(N ⊗ EndF(x)) − dimH0(N ⊗ EndF(x)) = 8k2.

For 1-instantons the exact sequence of the above theorem gives dimH 0(N⊗EndF(x)) > 6,

while the monad inclusion F ∗
(x) → N∗(1) ⊗ E∗

x shows that dimH0(N ⊗ EndF(x)) 6 21.

Generically, one expects spaces of global sections to have minimal dimension, and so it is

natural to conjecture that 6 is this minimal dimension, but if this is true, then H 1(N ⊗

EndF(x)) is only 14 dimensional, which still leaves a lot of freedom (16 dimensions out of 30)

for the derivative of the map to the moduli space. For 1-instantons a more explicit approach

may still be possible, though. Indeed, as is well known, the moduli space in this case is

(complexified) hyperbolic 5-space. Its tangent space at F(x) is H1(EndF(x)) ∼= Hx ⊗ H0
x ⊗

E∗
x ⊗Ex.

Closely related to this are some of the final comments in Manin and Minh’s paper. They

ask, for example, whether it is possible for the obstruction in H 1(Yx, N(x) ⊗ EndF(x)) ⊗ L2
x

to ever be nonzero. Amongst arbitrary F̃ on Y , it seems to me to be perfectly possible that

there will be bundles with nonzero obstructions. These will then definitely not be pullbacks

from Z.

Manin and Minh also ask whether the affine map from the space of relative connections

to the space of differential operators with “admissible symbol” is injective. In the light of my

work on these questions, I would suggest that this may not be the right question, since the

twistor transform H1(O 0
(x)F (−1)) may not be the best place from which to reconstruct F .

As mentioned above, the relative connections along Yx form an affine space modelled on the

H0(N(x) ⊗EndF(x))⊗L2
x. The derivative of the map to the moduli space lies in the image of

H1(N∗
(x) ⊗EndF(x). The exact sequence of Theorem 24.2 is a manifestation of the fact that a

change of relative connection does not affect the map to the moduli space. It should change

the differential equation on H1(End F̃ ), but it is not clear how.

Thus even the infinitesimal (first order) inverse construction is not entirely satisfactory.

Furthermore, such an inverse construction is incomplete in two important ways. Firstly the

symbol of the differential equation on H1(EndF ) has not been characterised, and secondly,

nor has the flatness of the relative connection.

Manin and Minh suggest that to proceed further one may need to introduce a real struc-

ture. The approach I prefer to take is related, in that I make genericity assumptions which

real instantons satisfy, such as the vanishing of cohomology groups, or the existence of skew

(or symmetric) forms, but it should not be necessary to leave the complex category except

for interpretation.

A more careful study of the monad construction for EndF (or one of its subbundles)
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may well be the next step, since then one could study twistor transforms related to these

bundles using the methods I have applied to F . More speculatively, one of the difficulties

in generalising the Ward correspondence (and indeed twistor theory) to 6 dimensions is that

self-duality happens at the level of 3-forms, whereas curvature usually arises as some sort of

2-form. Thus one might look for geometric objects whose curvature invariants are 3-forms,

for example the gerbes of Giraud as described in Brylinski [20]. It might be possible to find

such an object at the heart of the above constructions. I shall not do this here, but it remains

an interesting line of future research.
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