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Abstract

Two geometric structures on a conformal 2-manifold are defined: Möbius
structures, which provide a non-integrable version of the classical notion of a
complex projective structure, and Einstein-Weyl structures, which have been
extensively studied in higher dimensions. These structures are related and a
classification of Einstein-Weyl structures on compact Riemann surfaces is given.

Conformal 2-manifolds possess a fascinatingly rich and elegant theory which can be
viewed in many ways: it is the theory of Riemann surfaces in complex analysis, or of
complex curves in algebraic geometry. In this paper, a purely differential geometric
point of view will be taken, the aim being to introduce two geometric structures
that a conformal 2-manifold might be equipped with, and to study the relationship
between them. These structures are closely related to the projective and affine
structures of Riemann surface theory.

The first structure can be viewed as a nonintegrable or nonholomorphic version of
a complex projective structure, and will be called a Möbius structure. An integrable
or flat Möbius structure on a conformal 2-manifold induces a complex projective
structure: the manifold possesses an atlas whose transition functions are complex
Möbius transformations. However, contrary to common usage [11], the Möbius
structures discussed herein are not necessarily integrable: they possess a curvature,
analogous to the Cotton-York tensor of a conformal 3-manifold, whose vanishing is
equivalent to integrability. Möbius structures are also different from real projective
structures, in much the same way as conformal and real projective structures differ
in higher dimensions. (In one dimension, Möbius and real projective structures do
coincide and are always integrable.)

The other topic of interest here is Einstein-Weyl geometry [3, 10, 16]. This is
the geometry of a conformal manifold equipped with a compatible (or conformal)
torsion free connection, such that the symmetric tracefree part of the Ricci ten-
sor of this connection vanishes. These manifolds generalise Einstein manifolds in a
natural way, and have been investigated in some detail recently (see [2, 6, 10] and
references therein). In [13], Pedersen and Tod posed the problem of classifying com-
pact two dimensional Einstein-Weyl manifolds—the possible geometries of compact
three dimensional Einstein-Weyl manifolds have been classified (locally) by Tod [15].
However, the definition just given of an Einstein-Weyl manifold is vacuous in the
two dimensional case and Pedersen and Tod did not offer an alternative definition.
One of the main goals of this paper is to give explicitly such a definition and present
a classification of the compact orientable examples.

1



In the first section the conformal and complex analytic descriptions of surfaces
are summarised and compared. In particular the Cauchy-Riemann equations on
various complex line bundles are identified as conformally invariant differential op-
erators. The aim here is both to illustrate the special features of two dimensional
conformal geometry, and to relate it to the higher dimensional case. In section 2,
Möbius structures are defined, together with the corresponding notion of Schwarzian
derivative, which generalises a definition of Osgood and Stowe [12]. The relation-
ship with the usual Schwarzian derivative of complex analysis is discussed and it is
shown that a flat Möbius structure is a complex projective structure. In section 3,
Einstein-Weyl structures on surfaces are introduced, and compared to the higher di-
mensional geometries. The definition is equivalent to a contracted Bianchi identity
for the compatible torsion free connection. More precisely, a conformal surface with
compatible covariant derivative D is Einstein-Weyl iff

DscalD − 2 divD FD = 0,

where divD = tr D, scalD is the scalar curvature of D, and FD is the Faraday 2-form
of D, which is the curvature of D on an associated real line bundle.

After presenting this definition, I then show that the standard theory of the
Gauduchon gauge [5, 6, 15] continues to work in two dimensions, an observation
which leads to the following result.

Theorem. Let M be a compact orientable surface which is Einstein-Weyl. Then
if the genus of M is greater than one, the Einstein-Weyl structure is defined by a
compatible metric of constant curvature.

Since metrics of constant curvature on compact surfaces are well understood, it
remains to classify the Einstein-Weyl structures on the sphere and the torus. This
classification is carried out in the final section. The solutions come in one parameter
families with the constant curvature metrics as limits.

It is a pleasure to thank Henrik Pedersen for stimulating discussions and for
helpful comments on a preliminary version of this paper.

1 Natural bundles and operators on a conformal surface

The elegance of analysis on a conformal 2-manifold M is largely due to the fact
that M is equivalently (if oriented) a complex 1-manifold. This will be viewed,
half-jokingly, as a twistor correspondence for two dimensional conformal geometry:
the twistor space of an oriented conformal 2-manifold is the manifold itself, thought
of as a holomorphic curve. In the unoriented situation, the twistor space could be
taken to be the oriented double cover.

In this section some of the bundles and differential operators arising naturally
on a conformal surface will be discussed, together with the corresponding (i.e., the
same!) objects on the twistor space. Firstly, however, the notion of a density will
be reviewed, since this will be crucial in the sequel.

1.1 Definition. Let V be a real n-dimensional vector space and w any real number.
Then a density of weight w or w-density on V is a map ρ : (ΛnV )r0 → R such that
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ρ(λω) = |λ|−w/nρ(ω) for all λ ∈ R∗ and ω ∈ (ΛnV ) r 0. The space of densities of
weight w is denoted Lw = Lw(V ).

Lw naturally carries the representation λ.ρ = |λ|wρ of the centre of GL(V ) or
equivalently the representation A.ρ = |det A|w/nρ of GL(V ). Note also:

• Lw is an oriented one dimensional linear space with dual space L−w, and L0

is canonically isomorphic to R.

• The absolute value defines a map from ΛnV ∗ to L−n. If V is oriented then the
(−n)-densities can be identified with the volume forms.

• The densities of L−1 ⊗ V are canonically isomorphic to R.

Suppose M is any manifold. Then the density line bundle Lw = Lw
TM of M is

defined to be the bundle whose fibre at x ∈ M is Lw(TxM). Equivalently it is the
associated bundle GL(M)×GL(n) L

w(n) where GL(M) is the frame bundle of M and
Lw(n) is the space of w-densities of Rn. The density bundles are oriented (hence
trivialisable) real line bundles, but there is no preferred trivialisation.

Sections of L = L1 may be thought of as scalar fields with dimensions of length.
This geometric dimensional analysis may also be applied to tensors:

1.2 Definition. The tensor bundle Lw ⊗ (TM)j ⊗ (T ∗M)k (and any subbundle,
quotient bundle, element or section) will be said to have weight w + j − k, or
dimensions of [length]w+j−k.

The notion of density also allows one to define a conformal structure, not as an
equivalence class of inner products, but a genuine inner product:

1.3 Definition. A conformal structure on a manifold M is an L2 valued inner
product on TM . More precisely it is a section c ∈ C∞(M,L2 ⊗ S2T ∗M) which is
everywhere positive definite. It will always be assumed that c is normalised in the
sense that |det c| = 1.

If c is viewed as a metric on the weightless tangent bundle L−1 ⊗ TM , then the
normalisation condition means that the trivialisation of the densities of L−1 ⊗ TM
determined by the metric equals the canonical one. The conformal inner product of
tangent vector fields X, Y will be denoted 〈X, Y 〉, and is a section of L2.

Now let M be an oriented conformal 2-manifold. The isomorphism SO(2) ∼= U(1)
means that M has a preferred almost complex structure J , namely the section of
SO(TM) given by a positive rotation of π/2 in each tangent plane. Equivalently,
the unique positive normalised weightless 2-form on M is ω(X, Y ) = 〈JX, Y 〉, and
c + iω is a Hermitian form on TM with values in L2 ⊗ C.

As is well known, any conformal 2-manifold is conformal flat (the existence of
isothermal coordinates), so the almost complex structure J is integrable and TM is
a holomorphic line bundle.

1.4 Notation. When tensoring a vector bundle with some Lw (over R), the tensor
product sign will often be omitted. The tensor product of complex line bundles
L1,L2 over C will be denoted L1 · L2, and the conjugate line bundle to L will be
denoted L as usual. Note that L2 = L⊗L (over R) whereas for complex line bundles
L, L2 will denote L · L.
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Sections of the complex line bundle TM−p ·TM−q = T ∗Mp ·T ∗M q are often called
(p, q)-differentials (for p, q ∈ Z). If q = 0 there is a ∂ operator T ∗Mp → T ∗Mp ·T ∗M
whose kernel consists of the holomorphic sections.

The Hermitian form c+iω is easily seen to be an isomorphism TM ·TM → L2⊗C
(and so TM ∼= L2T ∗M ). More generally there are the following correspondences
between complex and conformal geometric objects:

T ∗M0 · T ∗M0 = C R⊕ L−2Λ2TM ∼= R⊕ L2Λ2T ∗M ∼= co(TM)

T ∗M · T ∗M Area differentials L−2 ⊕ Λ2T ∗M

TM · T ∗M Beltrami differentials Sym0 TM ∼= L−2S2
0TM

T ∗M Abelian differentials T ∗M

T ∗M2 Quadratic differentials S2
0T ∗M

T ∗Mp = TM−p Sp
0T ∗M = S−p

0 TM

Here Sp
0 denotes the subbundle of the pth symmetric power consisting of tensors

which are tracefree with respect to the conformal structure, and Sym0 TM denotes
the bundle of symmetric tracefree endomorphism of TM .

The holomorphic (p, 0)-differentials correspond to solutions of conformally in-
variant first order differential equations on M . For the Abelian differentials, the ∂
operator is given by the d + δ operator, taking values in the area differentials.

More generally, to understand natural differential operators on a conformal man-
ifold M of any dimension, it is convenient to introduce the class of torsion free co-
variant derivatives which are compatible with the conformal structure. These are
characterised by the following result.

1.5 The Fundamental Theorem of Conformal Geometry. [16] On a confor-
mal manifold M there is an affine bijection between covariant derivatives on L1 and
torsion free connections on TM preserving the conformal structure. More explicitly,
the covariant derivative on TM is determined from the one on L1 by the Koszul
formula

2〈DXY, Z〉 = DX 〈Y, Z〉+ DY 〈X, Z〉 −DZ 〈X, Y 〉
+ 〈[X, Y ], Z〉 − 〈[X, Z], Y 〉 − 〈[Y, Z], X〉,

where X, Y, Z are vector fields and the conformal inner products are sections of L2.

1.6 Definition. A covariant derivative on L1 is called a Weyl derivative, and will
be identified with the induced connection on TM . A Weyl derivative admitting a
global nonzero parallel section is said to be exact. A compatible metric g induces a
global section of L1 and hence an exact Weyl derivative Dg.

There is no preferred choice of Weyl derivative and so it is important to know
how different choices are related.

Suppose that D and D̃ = D + γ are two Weyl derivatives on L1, where γ is a
1-form and suppose D̃ = D + Γ on Lw−1TM , for some co(TM)-valued 1-form Γ.
Then Γ is given in terms of γ by the linearised Koszul formula:

ΓX = wγ(X)id + γ M X, where (γ M X)(Y ) = γ(Y )X − 〈X, Y 〉γ.
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Here free use is being made of the natural isomorphism ] : T ∗M → L−2TM given by
the conformal structure.

One may then compute the curvatures of D and D̃ on Lw−1TM . They are easily
seen to be related by the formula:

RD̃,w
X,Y = RD,w

X,Y + w dγ(X, Y )id

+
(
DXγ − γ(X)γ + 1

2〈γ, γ〉X
)
M Y

−
(
DY γ − γ(Y )γ + 1

2〈γ, γ〉Y
)
M X.

The dγ term comes from the curvature of the Weyl derivative on L1. This is a
real 2-form FD, which (motivated by the links with classical electromagnetism) will
be called the Faraday curvature.

Because Weyl derivatives have Faraday curvature, taking the trace of RD,w does
not necessarily produce a symmetric tensor: the skew part is a multiple of the
Faraday curvature which depends on w. Consequently it turns out to be more
natural to work with the normalised Ricci tensor of D (also called the Rho tensor):

rD = rD
0 + 1

2n(n−1)scalDid − 1
2FD.

Here scalD is the scalar curvature of D (which is a section of L−2) and rD
0 is the

normalised symmetric tracefree Ricci tensor rD
0 = 1

n−2 sym0 RicD.
The symmetric tracefree part of the Ricci tensor vanishes automatically in two

dimensions and so, although rD
0 at present makes no sense in dimension two, there

is some hope that, once defined more carefully, it won’t be infinite. This will be
carried out in the next section.

The reason for the factor 1/(n− 2) in higher dimensions is that

RD,w
X,Y = WX,Y + wFD(X, Y )id − rD(X) M Y + rD(Y ) M X,

where W is the Weyl curvature of the conformal structure.
The dependence of the normalised Ricci tensor on D is given as follows.

1.7 Proposition. If D and D̃ = D + γ are Weyl derivatives on (Mn, c) then:

rD̃
0 = rD

0 − sym0 Dγ + (γ ⊗ γ − 1
n〈γ, γ〉id)

scalD̃ = scalD − 2(n− 1) tr Dγ − (n− 1)(n− 2)〈γ, γ〉

rD̃ = rD − (Dγ − γ ⊗ γ + 1
2〈γ, γ〉id).

Some examples of differential operators defined using a Weyl derivative D will
now be given, and the above formulae can be used to understand the dependence of
the operator on the choice of D.

Firstly, consider sections X of the bundle Lw−1TM (for some w ∈ R). Then X 7→
sym0 DX defines a first order differential operator on this bundle. (As before sym0

denotes the symmetric tracefree part.) If the Weyl derivative D is replaced by D+γ,
then this operator changes by the zero order term (w−1) sym0(γ⊗X). The operator
is therefore conformally invariant for w = 1: it is the conformal Killing operator
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X 7→ LXc and its solutions are the conformal vector fields. In two dimensions there
is a “twistor correspondence”: a vector field is conformal iff it is holomorphic. A
similar story applies to many other first order differential operators [4].

Secondly, consider sections λ of Lw. Comparing the dependence of trc D2λ on
D with that of the scalar curvature scalD leads to the conclusion that for w =
(2− n)/2 the operator tr D2 − n−2

4(n−1)scalD is independent of the choice of D. This
is the conformal Laplacian. In two dimensions, the scalar curvature term is not
needed, since tr D2 is invariant on ordinary functions. A function is harmonic iff its
differential is holomorphic.

2 Möbius structures

The geometry of Weyl derivatives on conformal 2-manifolds is impoverished by the
absense of a symmetric tracefree Ricci tensor analogous to rD

0 . The aim of this
section is to repair this by introducing Möbius structures, which provide a notion of
conformal structure in two dimensions more closely analogous to the higher dimen-
sional case.

Firstly, by way of motivation, the one dimensional case will be considered. A
1-manifold automatically carries a conformal structure in the conventional sense,
but it is more natural to define a conformal (or Möbius) 1-manifold as a 1-manifold
equipped with a (real) projective structure. One definition of a real projective
structure on an n-manifold is a SL(n + 1, R)-connection on J1Ln/(n+1) such that
the formal 1-jets of parallel sections are holonomic. This connection is equivalently
given by a Hessian: a second order linear differential operator from Ln/(n+1) to
S2T ∗M ⊗ Ln/(n+1) whose symbol is the identity.

On a 1-manifold this Hessian becomes a Laplacian from L1/2 to L−3/2. Higher
dimensional conformal manifolds automatically possess a Laplacian from L(2−n)/2

to L(−2−n)/2, namely the conformal Laplacian mentioned at the end of the previous
section. The fact that there is no such operator in one dimension is related to the
absence of scalar curvature. The solution is to introduce a choice of Laplacian as
extra structure.

In two dimensions, however, the Laplacian does make sense, but there is an-
other second order operator, the conformal tracefree Hessian, which exists in higher
dimensional conformal geometry, but has no two dimensional analogue.

To find this operator, consider the tracefree Hessian sym0 D2 defined by a Weyl
derivative D. As an operator on Lw this depends upon D. More precisely, if D̃ =
D + γ on L1 and µ is a section of Lw, then

sym0 D̃2µ = sym0 D2µ

+ 2(w − 1) sym0 γ ⊗Dµ + w(sym0 Dγ)µ + w(w − 2)γ ⊗0 γ µ.

For w = 1 the first order term in this expression vanishes, and the zero order
term is identical to the change in the normalised tracefree Ricci tensor rD

0 given
in 1.7. The following well known fact is therefore obtained [1, 7]: the operator
sym0 D2 + rD

0 (acting on sections of L1 over a conformal manifold of dimension
n > 2) is independent of the choice of the Weyl derivative D.
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2.1 Definition. A Möbius structure on a conformal manifold M is a (smooth)
second order linear differential operator H from L1 to S2

0T ∗M ⊗ L1 such that for
some Weyl derivative D, the operator H− sym0 D2 is zero order.

The calculations made above show that this condition on H is independent of
D, that sym0 D2 is a Möbius structure for any Weyl derivative D, and also give:

2.2 Proposition. On a conformal manifold of dimension n > 2 there is a canonical
Möbius structure H = sym0 D2 + rD

0 .

On a two dimensional Möbius manifold, the difference H−sym0 D2 will be called
the normalised tracefree Ricci tensor rD

0 of D with respect to H.
In higher dimensions, Möbius structures other than the canonical one are some-

times of interest. For example, in [12], Osgood and Stowe implicitly study the
Möbius structure sym0(Dg)2 where g is a Riemannian metric on M . This is the
canonical structure of the induced conformal structure iff g is Einstein. The gener-
alisation to Einstein-Weyl geometry will be explained in the next section.

Firstly, though, these remarks require further justification, and the definition of
a Möbius structure given here needs to be related to more classical notions. An
initial step in this direction is the following easy fact.

2.3 Proposition. Möbius structures (compatible with a given conformal structure
on M) form an affine space modelled on the smooth sections of S2

0T ∗M . In two
dimensions, this is the space of smooth quadratic differentials.

Now define the Schwarzian derivative of a conformal vector field X or a conformal
diffeomorphism θ to be the Lie derivative LXH or the difference θ∗H−H. Since the
Lie derivative or pullback of a density is first order in X or θ and H is a second order
operator, it follows that the Schwarzian derivative is third order in X or θ. Also,
since the conformal structure is preserved, the Schwarzian derivative is a quadratic
differential. A conformal vector field or diffeomorphism with vanishing Schwarzian
will be called Möbius.

In [12], Osgood and Stowe define a Schwarzian derivative of a conformal dif-
feomorphism with respect to a metric g. It is obtained by applying the operator
f 7→ (Dgdf − df ⊗ df)0 to the conformal scale factor of the diffeomorphism (cal-
culated with respect to g). It is elementary to check that this definition coincides
with the definition given here when H = sym0(Dg)2. The connection with Einstein
geometry is very clear in [12]: Osgood and Stowe show, among other things, how
the Schwarzian derivative provides a beautiful setting for the work of Brinkmann on
conformal mappings of Einstein manifolds (see also W. Kühnel’s article in [11] for
an exposition of this).

Möbius structures can be used to reinterpret and generalise these results, but
here the focus will be on the two dimensional case, since in higher dimensions it
seems natural to work with the canonical Möbius structure, making the choice of
Möbius structure less interesting.

In fact there is a canonical Möbius structure also in two dimensions, but the
construction is deep and global in contrast to the simple local formula in higher
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dimensions. To see this, it is first necessary to look at the basic example of a
Möbius structure on a domain in the Riemann sphere.

The complex affine structure on the conformal plane identifies it, up to a choice
of origin and real axis, with C. Using this it is straightforward to write down a
Möbius structure as follows.

If λ = fµ is a section of L1, where f is a function and µ is a constant section,
then:

Hλ =
d2f

dz2
µdz2.

Here d/dz denotes the complex linear part of the derivative (which will also be
denoted by a prime) and dz2 is a constant quadratic differential.

The claim is that this Möbius structure is invariant under Möbius transforma-
tions: more precisely, the Schwarzian derivative defined above reduces to the usual
Schwarzian derivative of holomorphic functions. To see this, suppose θ is a holo-
morphic diffeomorphism between open subsets of C. Then θ∗λ = (|θ′|λ) ◦ θ−1 and
so:

(θ∗H)λ = θ∗
(
H(θ∗λ)

)
= |θ′|−1(θ′)2

(
(|θ′|f) ◦ θ−1

)′′ ◦ θ µ dz2.

Since θ is holomorphic, (θ′)′ = 0 and so (after applying the chain rule) it is only
necessary to compute (θ′)−1/2θ′

(
(θ′)−1

(
(θ′)1/2f

)′)′. A calculation then gives

(θ∗H)λ = Hλ + 1
2S(θ)λ,

where S(θ) =
(

θ′′

θ′

)′ − 1
2

(
θ′′

θ′

)2 is the usual Schwarzian. This proves the claim.
It now follows that any complex projective curve has a canonical Möbius struc-

ture. A Möbius structure which arises in this way will be called integrable. Now the
universal cover of any conformal surface is conformally diffeomorphic to the sphere,
the plane or the disc (The Uniformisation Theorem) and the conformal transfor-
mations of these spaces are all Möbius. It also follows that any conformal surface
admits a preferred integrable Möbius structure, although this structure depends on
the global properties of the surface.

Not all Möbius structures are integrable, however. They possess a curvature
analogous to the Cotton-York tensor of a conformal 3-manifold.

In general the Cotton-York tensor of a Weyl derivative D on a conformal manifold
is defined by the formula CD = dDrD, where rD is the normalised Ricci tensor viewed
as a covector valued 1-form. More precisely:

CD
X,Y = (DXrD)(Y, .)− (DY rD)(X, .)

A painful computation of dD+γrD+γ leads to the well known fact that CD+γ
X,Y =

CD
X,Y −WX,Y γ. Note that the same calculation applies in the two dimensional case,

provided rD
0 is interpreted as the normalised tracefree Ricci tensor with respect to

a fixed Möbius structure. Since there is no Weyl curvature in dimensions two and
three, the Cotton-York tensor is an invariant of the Möbius or conformal structure
in these dimensions.

In dimension three or more the second Bianchi identity implies that CD is trace-
free:

∑
CD

X,ei
ei = 0, where ei is a weightless orthonormal basis. More explicitly, this

contracted Bianchi identity is given by the following.
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2.4 Proposition. On any Weyl manifold of dimension n > 2,

divD
(
rD
0 − 1

2nscalDid + 1
2FD

)
= 0,

where divD = trc ◦D and in particular, divD FD =
∑

i(DeiF
D)(ei, .).

In two dimensions there is no such Bianchi identity and the Cotton-York tensor
CD, far from being tracefree, is necessarily tracelike. Hence the Cotton-York tensor
of a Möbius 2-manifold may equivalently be viewed as a 1-form of weight −3.

2.5 Definition. Let M be a conformal surface with Möbius structure H. Then
the (Cotton-York) curvature of M is the section CH of L−2T ∗M ∼= T ∗M · T ∗M2

defined by CH = divD
(
−rD

0 + 1
4scalDid − 1

2FD
)
, where D is any Weyl derivative,

and rD
0 = H− sym0 D2. The Möbius structure is said to be flat iff CH = 0.

The tensor inside the divergence is rD(JX, JY ).
If a Möbius structure H is replaced by H+Φ where Φ is a quadratic differential,

then for any fixed D, rD
0 (H+Φ) = rD

0 (H)+Φ and so CH+Φ = CH−div Φ. Note that
the divergence is independent of D on quadratic differentials and may be identified
with the ∂ operator. Therefore flat Möbius structures form an affine space modelled
on holomorphic quadratic differentials.

The operator H is equivalently given by a subbundle R2 of J2L, which are the
2-jets of formal solutions. If a Möbius structure is flat then this differential equation
H is completely integrable. The proof of this is a straightforward exercise in the
formal theory of differential equations [14] and is sketched in the appendix. The inte-
grability in this case means that R2 carries a flat connection whose parallel sections
correspond to local solutions of H. This is completely analogous to the integrability,
in higher dimensions, of conformal structures with vanishing Cotton-York or Weyl
curvature in higher dimensions—for similar proofs in the higher dimensional case,
see [1, 7]. Alternatively, Möbius structures could be defined using Cartan connec-
tions, reducing integrability questions to the method of equivalence. However, I feel
that a description of a geometric structure in terms of a Cartan connection should
be a theorem rather than a definition, and the construction of a connection on R2

essentially establishes this theorem.
It remains to check that an integrable Möbius structure induces a complex pro-

jective structure. This is a consequence of the following observations.

• The local solutions of H parallelise R2.

• R2 possesses a natural Lorentzian quadratic form on each fibre which is pre-
served by parallel transport.

• The symbol of R2 defines a null line in each fibre and this section of the bundle
of null lines is not parallel, but in fact a local diffeomorphism into the space
of parallel null lines.

The Lorentzian structure is induced by the scalar curvature: for any positive section
µ of L1, the scalar curvature of the corresponding metric defines a function scalµµ2

on M . At each point, this function only depends on the 2-jet of µ and so makes sense
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as a quadratic form on J2L. The other properties are more or less straightforward:
for further details again see [1, 7]. The space of null lines in a Lorentzian vector
space is the sphere with its natural Möbius structure and these local diffeomorphisms
provide the required complex projective charts.

3 Einstein-Weyl geometry in two dimensions

3.1 Definition. Let (M, c, D) be a Weyl manifold of dimension greater than two.
Then M is said to be Einstein-Weyl iff rD

0 = 0, i.e., the symmetric tracefree part of
the Ricci tensor vanishes.

In other words, a Weyl derivative D on a conformal manifold is Einstein-Weyl
iff sym0 D2 is equal to the canonical Möbius structure. In two dimensions there is
no canonical Möbius structure, but since the conformal structure is integrable, it is
natural to require instead that sym0 D2 is an integrable Möbius structure.

3.2 Definition. Let (M, c, D) be a Weyl manifold of dimension two. Then M is
said to be Einstein-Weyl iff the Möbius structure sym0 D2 is flat.

A 2-manifold is usually said to be Einstein iff it has constant scalar curvature,
since this follows from the contracted Bianchi identity in higher dimensions. The
above defintion generalises this to the Einstein-Weyl case.

3.3 Proposition. Suppose M is Einstein-Weyl. Then DscalD − n divD FD = 0
(here the trace is with the first entry of FD).

For n > 2 this is immediate from the contracted Bianchi identity 2.4 (see [13, 6]),
whereas in two dimensions, it is equivalent to the vanishing of the Cotton-York tensor
of the Möbius structure sym0 D2.

3.4 Corollary. A Weyl manifold (M, c, D) of dimension two is Einstein-Weyl if
and only if DscalD − 2 divD FD = 0. Equivalently, the section 1

2scalD − FD of
L−2(R⊕ L−2Λ2TM) ∼= L−2 ⊗ C is holomorphic with respect to D.

Much of the theory of Einstein-Weyl manifolds, as described for instance in [2, 6],
applies to the two dimensional case without substantial change. In some cases the
two dimensional proof is simpler, an important such example being the existence of
a Gauduchon gauge.

3.5 Definition. Let (M, c, D) be a Weyl manifold. Then a compatible metric g is
called a Gauduchon metric or gauge iff D = Dg + ωg with trc Dgωg = 0.

In two dimensions the divergence on 1-forms is conformally invariant and a
Gauduchon gauge is a coclosed representative for the space of 1-forms ω with D−ω
exact.

3.6 Theorem. A compact two dimensional Weyl manifold admits a Gauduchon
gauge, unique up to homothety.

Proof. This is an immediate consequence of the Hodge decomposition for 1-forms in
two dimensions.
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A remarkable feature of the Gauduchon gauge on a compact Einstein-Weyl man-
ifold is that the Gauduchon 1-form is dual to a Killing field of the Gauduchon met-
ric [15]. This is closely related to the existence of a Gauduchon constant [6] gener-
alising the constant scalar curvature on an Einstein manifold. The two dimensional
formulation is as follows.

3.7 Theorem. Let M be a compact Weyl 2-manifold with D = Dg + ωg in the
Gauduchon gauge. Then scalD = scalg and if D is Einstein-Weyl then ]gω

g is a
Killing field.

Conversely if M is any Weyl manifold with D = Dg + ωg such that ]gω
g is a

Killing field, then D is Einstein-Weyl iff the section κ = scalg − 4|ωg|2 of L−2 is
constant (with respect to Dg).

Proof. The Cotton-York tensor is an invariant of H = sym0 D2 and so computing it
in terms of D and g gives:

1
4DscalD − 1

2 divD FD = CH = divg
(
−rg

0 + 1
4scalgid

)
,

where rg
0 = sym0 D2 − sym0(Dg)2 (acting on L1). This implies

1
4DscalD − 1

2 divD FD =2〈sym0 Dgωg, ωg〉+ 1
4Dg

(
scalg − 4|ωg|2

)
+ 2(divg ωg)ωg − divg(sym0 Dgωg).

(*)

If D is Einstein-Weyl and g is a Gauduchon metric then the left hand side is zero
and divg ωg = 0. Contracting the remaining terms with ωg leads to the equation:

divg
(
〈sym0 Dgωg, ωg〉 − 1

4scalgωg
)

= 2| sym0 Dgωg|2.

Integration then shows that sym0 Dgωg = 0 and so ]gω
g is Killing. Conversely,

substituting sym Dgωg = 0 into (*) shows that the Einstein-Weyl condition in these
circumstances is equivalent to the constancy of κ.

3.8 Corollary. Let M be a compact orientable conformal surface and suppose D is
Einstein-Weyl. Then either D is defined by a compatible metric of constant curvature
or the genus of M is less than two.

Proof. If D is not given by a compatible metric then the Gauduchon 1-form is dual
to a nonzero conformal vector field. Such vector fields are precisely the holomorphic
ones, and only exist globally on the Riemann sphere and each torus.

Each conformal structure on S1×S1 has a family of flat Weyl structures (which
are therefore Einstein-Weyl) parameterised by conformal vector fields. The only
conformal vector fields on a torus are the translations with respect to the flat metric
g (unique up to homothety). Any such Killing field K gives rise to a Dg-parallel
1-form ω = g(K, .) and D = Dg + ωg is flat. Each such D induces a flat Möbius
structure, equal to that induced by Dg −ωg, and so the flat Weyl structures (which
may also be viewed as affine structures) form a branched 2-fold covering of the flat
Möbius structures (the projective structures).

In the next section, some less classical examples will be found.
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4 Classification of compact Einstein-Weyl geometries

Let M be a compact Riemann surface with a Weyl derivative D. Then D = Dg +ωg

where Dg is the Weyl derivative of a compatible metric g, and ωg is a 1-form with
div ωg = 0, a condition which uniquely determines ωg from M,D (the metric g
being unique up to homothety). The Einstein-Weyl equation for this structure is
equivalent to the following two conditions:

• ]gω
g is a Killing field of g

• Dg(scalg − 4|ωg|2) = 0.

The Killing field is identically zero precisely when D = Dg and g is a metric of
constant curvature.

The aim of this section is to find all Einstein-Weyl structures D = Dg + ωg with
g admitting a nontrivial Killing field K such that ]gω

g = AK for some constant A.
In this situation it is no longer necessary to assume M is compact, and constant
curvature metrics with symmetry arise when A = 0.

The Einstein-Weyl equations may be integrated locally as follows. Suppose that
K is nonvanishing on an open subset U of M diffeomorphic to a domain in C. Since
K is holomorphic, isothermal coordinates x + it may be chosen locally such that
K = ∂/∂t. The Gauduchon metric is then of the form g = v2(dx2 + dt2), and
ωg = Av2 dt2 where v is an unknown function of x. If v = ef then

scalD = scalg = −2 div(df) = −2f ′′e−2fµ−2
g

where µg is the trivialisation of L1 determined by g. The Einstein-Weyl equation
now reduces to an ordinary differential equation for f , namely

f ′′e−2f + 2A2e2f = B,

which readily integrates to give

v−2dv2 = (−A2v4 + Bv2 + C)dx2.

Therefore the Einstein-Weyl structure is locally of the form

g = P (v)−1dv2 + v2dt2

ω = Av2 dt,

P (v) = −A2v4 + Bv2 + C,where

and A,B, C are arbitrary constants. Integrating the equation v′(x)2 = P (v)v2 gives
the solution in the original isothermal coordinates, but it is perhaps simpler to
introduce a new coordinate r by v′(r)2 = P (v). The metric is now

g = dr2 + v(r)2dt2

and v(r) is an elliptic function since P is a quartic polynomial. In order to have a real
solution v(r) it is necessary that P (v) is somewhere nonnegative. These solutions
are given by the following Jacobian elliptic functions and their limits.

v(r) =

{
λ cn(µr + α, k) or λ sd(µr + α, k) if C > 0 (1)
λ dn(µr + α, k) or λ nd(µr + α, k) if C < 0 (2),
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where α is a constant of integration and λ, µ, k are constants depending on A,B, C.
The Einstein-Weyl structure remains unchanged if v is rescaled and r is affinely
reparameterised, provided t is rescaled appropriately, and so the solutions in fact
only depend (locally) on one parameter.

The two forms of the solution given in each case above are equivalent by period
translation, but behave differently in the limit k → 1 when the (real) period becomes
infinite: cn and dn both reduce to sech, whereas sd and nd reduce to sinh and
cosh. The sech solution corresponds to C = 0 and gives a nonexact Einstein-Weyl
structure on R2 or S1 × R, whereas the hyperbolic solutions arise when A = 0 and
the Einstein-Weyl structure is the hyperbolic metric. In the limit k → 0, cn→ cos,
sd→ sin, while dn,nd→ 1. These limits therefore give the spherical metric and the
flat Weyl structure.

It remains to consider when these solutions are defined on a compact surface
(necessarily of genus less than two, since only these admit metrics with Killing
fields). If w ranges over a half-period of cn or sd, (1) gives a one parameter family
of global solutions on S2, whereas dn and nd are periodic and nonvanishing, and
so the solutions in (2) are defined on each torus S1 × S1. The constant solutions
correspond to the flat Weyl structures discussed at the end of the previous sec-
tion. The non-constant solutions are more complicated, but are interesting from the
point of view of Einstein-Weyl geometry, since in four or more dimensions compact
Einstein-Weyl manifolds with nontrivial Faraday curvature necessarily have finite
fundamental group.

5 Appendix: Integrability of Möbius structures

In this appendix, I sketch the proof that the subbundle R2 of J2L, corresponding to
a Möbius structure H, carries a natural connection whose curvature is given by the
Cotton-York tensor of H. The proof is not central to the main thrust of the paper,
and will perhaps seem rather obscure to readers not familiar with the formal theory of
differential equations. The calculations are purely formal, because Möbius geometry
is a geometry of “finite type” much like conformal geometry in higher dimensions
(see [9])—indeed, to emphasise the common framework, I will only specialise to the
two dimensional case at the end of the proof. It is possible to convert the following
into detailed and explicit calculations bypassing this conceptual framework, but I
will not attempt that here.

The symbol g2 of R2 is the line bundle of tracelike tensors in S2T ∗⊗ L and R2

is an extension of J1L by g2. The induced first order equation on L is trivial and
so one sets g1 = T ∗⊗ L.

The prolongation of R2 is the bundle R3 = J1R2 ∩J3L ⊆ J1J2L, which may
be viewed as a third order differential equation on L, or a first order differential
equation on the bundle R2. It is the latter point of view which will be pursued. The
corresponding differential operator is the restriction of the jet derivative to R2 ⊆
J2L, i.e., the first order operator from J2L to T ∗∧ J2L := (T ∗⊗ J2L)

/
(S3T ∗⊗ L)

characterising the holonomic sections of J2L.
Since the prolongation g3 = (T ∗⊗ g2)∩ (S2T ∗ ⊗ g1) of the symbol is zero, the

natural map from T ∗⊗ R2 to T ∗ ∧ J2L is injective. The first obstruction to the
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integrability of R2 is the failure of the jet derivative to have its image in this bundle.
This obstruction therefore takes its values in (T ∗∧ J2L)

/
(T ∗⊗R2), which may be

identified with the symbol cohomology group (T ∗∧ S2T ∗⊗L)
/
(T ∗∧ g2). If the first

obstruction vanishes then R3 defines a connection on R2 and since the higher symbol
cohomology groups vanish, there are no further obstructions and the connection is
flat [8]. The local parallel sections are holonomic sections of R2 and hence R2 is
integrable. It therefore remains to show that the first integrability obstruction is
given by the Cotton-York curvature.

The computation of the integrability obstruction is most easily carried out by
introducing an exact Weyl derivative D on L. Using the induced covariant derivative
on T ∗ (which is not flat in general), D defines an isomorphism

J2L ∼= (S2T ∗⊗ L)⊕ (T ∗⊗ L)⊕ L

and covariant derivatives on the summands. A covariant derivative on J2L may
then be defined by the formulae:

D(φ, α, λ) = (Dφ−RD · α, Dα− φ,Dλ− α),

where 3(RD·α)X(Y, Z) = (RD
X,Y α)(Z)+(RD

X,Zα)(Y ). The reason for this definition is
that if (φ, α, λ) is holonomic then is covariant derivative is (D3λ−RD ·Dλ, 0, 0) which
is a section of S3T ∗⊗ L, hence in the kernel of the symbol of the jet derivative. It
follows that the jet derivative in general is given by the symbol applied to D(φ, α, λ).

Now suppose (φ, α, λ) is a section of R2. Applying the jet derivative and remov-
ing the tracelike part gives(

−D(rD
0 λ)−RD.α (mod S3T ∗⊗ L), Dα− φ,Dλ− α

)
.

since the tracefree part of φ is equal to −rD
0 ⊗λ which is the tracefree part of −rD⊗λ

since FD = 0. Modulo the section ((Dλ− α)⊗ (−rD
0 ), Dα− φ,Dλ− α) of T ∗⊗R2

this is equivalent to(
−(DrD

0 )λ− α⊗ rD
0 −RD.α (mod S3T ∗⊗ L), 0, 0

)
.

This integrability obstruction depends only on the 1-jet (α, λ) and so is given by a
first order operator on L. It is now straightforward to see that the symbol of this
operator is the Weyl curvature, and that in two and three dimensions it reduces to
the Cotton-York curvature tensor.
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