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Abstract. All local solutions of the two dimensional Einstein-Weyl equations
are found, and related to the compact examples obtained in [1].

1. Introduction

Einstein-Weyl geometry has received much attention in recent years [2, 4], par-
ticularly in three dimensions [5, 7], where Einstein-Weyl structures arise as sym-
metry reductions of the self-duality equations for four dimensional conformal struc-
tures [6]. An Einstein-Weyl structure on an n-manifold M , with n > 3, consists of
a conformal structure together with a compatible (i.e., conformal) torsion-free con-
nection D such that the symmetric trace-free part of the Ricci tensor of D vanishes.
When D is the Levi-Civita connection of a compatible Riemannian metric then this
metric is Einstein. As with Einstein metrics, the two dimensional story is somewhat
exceptional. A conformal surface with compatible torsion-free connection D is said
to be Einstein-Weyl [1] iff

DscalD − 2 divD FD = 0,

where divD = tr D is the divergence on 2-forms, FD is the Faraday 2-form of D,
which is the curvature of D on a natural real line bundle L1, and scalD is the scalar
curvature of D viewed as a section of L−2 := (L1)∗⊗ (L1)∗. If FD = 0, then D is
locally the Levi-Civita connection of a metric of constant scalar curvature.

The idea of studying the two dimensional case was first suggested in [7], in
which Pedersen and Tod proposed the goal of classifying the compact examples.
This classification was carried out in [1]. Pedersen and Tod also claimed that the
local solutions should depend on a single holomorphic function of one variable. The
main aim of this paper is to show that this is true for the definition above and to
obtain all the solutions explicitly in terms of this holomorphic function.

Theorem 1.1. Let D be an Einstein-Weyl structure in two dimensions. Then
there is a local complex coordinate ζ = x + iy and a holomorphic function h such
that D = Dg + ω, where g = dx2 + dy2 is the flat metric and

ω =
1

h− ζ
dζ +

1
h− ζ

dζ.

The notation used in this paper follows [1]. In particular Lw is the real line
bundle associated to the representation A 7→ |det A|w/2 of GL2(R), so that L−2

may be identified with Λ2T ∗M once an orientation is chosen. A conformal structure
on M may be viewed as a metric on TM with values in L2. A Weyl derivative is a
covariant derivative D on L1. Each choice of compatible metric g trivialises L1. If
the corresponding trivial Weyl derivative is denoted Dg, then D = Dg +ω for some
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connection 1-form ω. It is well known that Weyl derivatives on a conformal manifold
correspond bijectively to compatible torsion-free connections. For instance, Dg

corresponds to the Levi-Civita connection of g.
I prove theorem 1.1 in section 2. In the following sections I discuss the extent

to which the solutions are genuinely distinct Einstein-Weyl structures, explain the
geometry behind the solutions and show how the compact examples arise when h
is a (possibly degenerate) Möbius transformation. I end the paper, with a brief
discussion of the “twistor theory” of Möbius structures.

2. Local solution of the two dimensional Einstein-Weyl equations

The two dimensional Einstein-Weyl condition is, a priori, nonlinear, but may in
fact be linearised. In order to do this I shall make use of the relationship between
Weyl structures and Möbius structures [1].

Definition 2.1. A Möbius structure on a conformal manifold M is a (smooth)
second order linear differential operator H from L1 to S2

0T ∗M ⊗ L1 such that for
some Weyl derivative D, the operator H− sym0 D2 is zero order.

A Möbius structure is a possibly non-integrable and unoriented version of a
complex projective structure. More precisely, a Möbius structure H possesses a
tensorial invariant CH ∈ C∞(M,L−2 ⊗ T ∗M) called the Cotton-York tensor of H,
by analogy with the three dimensional case. The Möbius structure is integrable
(i.e., given locally by the trace-free Hessian in a suitable chart) iff CH = 0 (see [1]).
In this case, if M is oriented and φ is a local orientation preserving conformal
diffeomorphism then φ∗H−H can be identified with the Schwarzian derivative of
φ, and so the Möbius structure defines a complex projective structure.

In general the Cotton-York tensor of H may be computed using an arbitrary
Weyl derivative D. The result is:

CH = divD
(
rD
0 − 1

4scalDid + 1
2FD

)
,

where rD
0 = H− sym0 D2. From this, the following result is immediate.

Proposition 2.2. A Weyl structure D in two dimensions is Einstein-Weyl if and
only if the trace-free Hessian sym0 D2 is locally the trace-free Hessian in some
conformal chart.

Consequently, if D is Einstein-Weyl, there is locally a flat metric g such that
sym0 D2 = sym0(Dg)2. If D = Dg + ω, then sym0 Dgω − ω ⊗0 ω = 0. Solving this
will give all local solutions of the Einstein-Weyl equation.

Although this equation is still nonlinear, its resemblance to the Riccati equation
suggests a way of linearising it. To do this, let ζ be a local complex coordinate
such that g = dζ dζ and write ω = fdζ + fdζ for some complex-valued function
f . Then the equation for ω becomes f ′ = f2, where f ′ denotes the complex
linear part of df . This is the Riccati equation if f is holomorphic. Substituting
f = −u−1u′ (which is always possible locally) gives u′′ = 0 and so u′ = h0 for some
holomorphic function h0. Hence u = h0(ζ − h), where h is also holomorphic, and
so f = −u−1u′ = 1/(h− ζ).

This proves Theorem 1.1.
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3. Gauge transformations

In order to show that the Einstein-Weyl solutions of Theorem 1.1 depend in an
essential way on a single holomorphic function, it is necessary to ask to what extent
the solutions are equivalent under a change of complex coordinate ζ.

An initial observation is that the scalar curvature and Faraday curvature of D
are given by the real and imaginary parts of h′/(h− ζ)2. In particular, D is flat if
and only if h is constant, and so most of the solutions are non-trivial.

More generally, note that the complex coordinate ζ has been partially fixed by
requiring that the trace-free Hessian induced by this coordinate chart is the Möbius
structure determined by D. Hence, the only remaining freedom in ζ is the freedom
to apply Möbius transformations.

If ζ = φ(z) = (az + b)/(cz + d) with ad− bc 6= 0, then

dζ dζ =
∣∣∣∣ ad− bc

(cz + d)2

∣∣∣∣2 dz dz.

After rescaling the metric, the Einstein-Weyl structure is given by the new holomor-
phic function h̃ = φ

−1◦h◦φ, where φ(z) = (az+b)/(cz+d). Thus the Einstein-Weyl
structure determines h up to conjugation by a Möbius transformation.

4. Geometry of Weyl connections

The transformation law for h may be traced back to the fact that it defines a
Weyl derivative D. If J1L1 denotes the bundle of 1-jets of L1, then D is a section
of the affine subbundle A(M) of L−1 ⊗ J1L1 given by the splittings of the 1-jet
projection J1L1 → L1. This affine bundle is modelled on T ∗M .

A Möbius structure on M , as a second order linear differential operator on L1,
defines a vector subbundle E(M) of the 2-jet bundle J2L1. Since this operator
is given in coordinates by the trace-free Hessian plus a zero order term, the 1-jet
projection E(M) → J1L1 is surjective, and its kernel, which is the intersection of
E(M) with S2T ∗M⊗L1, is the line bundle L−1, embedded as the trace-like tensors.

If µ is a nonvanishing section of L1 and g is the compatible metric corresponding
to this trivialisation, then scalgµ2 is a function whose value at x depends quadrat-
ically on (j2µ)x. This turns out to define a natural metric of signature (3, 1) on
E(M) such that the distinguished line L−1 is null and is the only null line in the
kernel of the projection from E(M) to L1 (see [1], and also [3] for more details in
the analogous higher dimensional case). Consequently, there is a natural sphere
bundle S2(M) over M , namely the space of null lines in E(M), and this sphere
bundle has a distinguished section. The complement of this section is an affine
bundle and this affine bundle is canonically isomorphic to A(M) by projecting each
null line into J1L1. Therefore a Weyl connection is a section of S2(M) which does
not meet the distinguished section.

Now suppose that the Möbius structure is integrable. Then E(M) also possesses
a canonical flat connection compatible with the Lorentzian structure. This flat
connection identifies S2(M) locally with M × S2, and the distinguished section
gives the developing map from (open subsets of) M to S2. A complex coordinate
ζ on M compatible with the Möbius structure identifies this sphere of parallel
sections with C ∪ {∞}, so that ζ itself corresponds to the distinguished section of
S2(M). The function h arising in Theorem 1.1 is therefore the local coordinate
representation of an antiholomorphic section of S2(M). The expression 1/(h − ζ)
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may be viewed as stereographic projection from S2(M) onto A(M). It is well
defined for h(ζ) 6= ζ and sends poles of h to the origin of A(M) determined by the
Levi-Civita connection of g.

In fact, if the Weyl connection D is viewed as a section of A(M), its covariant
derivative (as a section of T ∗M ⊗ V (A(M)) = T ∗M ⊗ T ∗M) can be identified with
rD
0 + 1

4scalDid − 1
2FD, where rD

0 = H− sym0 D2 (cf. [3]). Hence D is holomorphic
iff it is flat, and antiholomorphic (with respect to H) iff H = sym0 D2. The appar-
ent nonlinearity of the Einstein-Weyl condition arises from the fact that the flat
connection on A(M) is not affine. Nevertheless, it identifies A(M) locally with an
open subset of M ×S2, and so the condition for a section to be antiholomorphic is
in fact linear.

5. The compact examples

In [1], the local forms of the Einstein-Weyl structures on compact surfaces were
found. In this section I will show that these solutions are obtained when h is a
(possibly degenerate) Möbius transformation.

The solutions are given explicitly in terms of a compatible metric and connection
1-form as follows:

g = P (v)−1dv2 + v2dt2

ω = Av2 dt,

P (v) = −A2v4 + Bv2 + C,where

and A,B, C are arbitrary constants, constrained only by the condition that P (v)
should be somewhere positive. In [1], I showed that these Einstein-Weyl structures
are defined on S2 (for C > 0) or T 2 (for C < 0) by writing v as a elliptic function
of x so that v′(x)2 = P (v). If instead, one substitutes v2 = 1/u and rescales g and
t by 2, then the Einstein-Weyl structure becomes

g =
1
u

(
du2

−A2 + Bu + Cu2
+ dt2

)
ω =

A dt

2u
.

Now for C > 0 introduce a new coordinate r by u′(r)2 = (−A2 +Bu+Cu2)/(Cr2).
This is readily integrated to give

u(r) =
(B2 + 4A2C)− 2Br2 + r4

4Cr2
.

Rescaling so that the metric is dr2 + r2dt2 leads to the solution of Theorem 1.1
given by h(ζ) = (B − 2iA

√
C)/ζ. Notice that h(ζ) = ζ iff ζζ = (B − 2iA

√
C).

Hence if A
√

C 6= 0, the solution is globally defined on S2.
For C < 0 introduce instead a coordinate θ by u′(θ)2 = (−A2+Bu+Cu2)/(−C).

This integrates to give

u(θ) =
B +

√
B2 + 4A2C sin θ

−2C
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and the Einstein-Weyl structure becomes

g =
1

B +
√

B2 + 4A2C sin θ

(
dt2 + dθ2

)
ω =

A
√
−C dt

B +
√

B2 + 4A2C sin θ
,

which is globally defined on T 2 (for C < 0 and B2 + 4A2C > 0). After rescaling so
that the metric is e2t(dt2+dθ2), the solution h(ζ) = i(B+2A

√
−C)ζ/

√
B2 + 4A2C

of Theorem 1.1 is obtained.
More generally if h is an orientation reversing Möbius transformation, then the

Weyl connection is well defined away from the fixed points of this transformation.
Hence the elliptic elements, apart from the simple inversions (which have an invari-
ant circle), give solutions globally defined on S2 (equivalent to one of the solutions
above). The hyperbolic elements, with two fixed points, correspond to the solutions
on T 2 (they are periodic solutions on a cylinder). The remaining cases occur as
limits. For instance the simple inversions, such as ζ 7→ 1/ζ, give the hyperbolic
metric.

6. Twistor theory

The twistor space of a conformal 2-manifold M is its orientation double cover,
viewed as a complex curve Σ. This is a rather trivial two dimensional analogue of
the four dimensional theory (see, for instance, [4]). Note that Σ has a real structure
given by the nontrivial involution in each fibre and that M may be recovered from
Σ as the moduli space of real pairs of points. The full moduli space of (unordered,
distinct) pairs of points in Σ is MC =

(
Σ × Σ r ∆(Σ)

)
/S2. This complex surface

has a natural conformal structure: a tangent vector to MC at {x1, x2} consists of a
pair of tangent vectors to Σ (at x1 and x2), and it is null if one of these components
vanishes. Hence Σ is (locally) the space of null geodesics in MC. Of course MC is
the natural space in which real analytic functions on M may be written f = f(z, z)
with f holomorphic in two variables.

Although this notion of twistor space has no real content, it does provide a formal
way to distinguish an integrable Möbius structure in two dimensions from a one
dimensional complex projective structure. The former is a trace-free Hessian L1 →
S2

0T ∗M⊗L1, whereas the latter is a second order operator L → (T ∗Σ)2⊗L (on a line
bundle L with L2 = TΣ) whose symbol is the identity. The two are easily related:
(T ∗Σ)2 is the pullback of S2

0T ∗M , and since TΣ⊗ TΣ is (the pullback of) L2 ⊗C,
it follows that L ⊗ L can be identified with L1 ⊗ C. The projectivisation of J1L
corresponds to S2(M), and the complex projective structure defines a connection
J1L → J2L 6 J1(J1L) which projectivises to the flat connection on S2(M) induced
by the integrable Möbius structure.

A more satisfying twistorial description would encode the Möbius structure in
pure holomorphic geometry. Nevertheless, I hope the näıve twistor theory given
here at least provides some light entertainment.
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