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Abstract. This paper concerns the existence and explicit construction of ex-
tremal Kähler metrics on total spaces of projective bundles, which have been
studied in many places. We present a unified approach, motivated by the the-
ory of hamiltonian 2-forms (as introduced and studied in previous papers in the
series) but this paper is largely independent of that theory.

We obtain a characterization, on a large family of projective bundles, of the
‘admissible’ Kähler classes (i.e., those compatible with the bundle structure in a
way we make precise) which contain an extremal Kähler metric. In many cases
every Kähler class is admissible. In particular, our results complete the classi-
fication of extremal Kähler metrics on geometrically ruled surfaces, answering
several long-standing questions.

We also find that our characterization agrees with a notion of K-stability
for admissible Kähler classes. Our examples and nonexistence results therefore
provide a fertile testing ground for the rapidly developing theory of stability for
projective varieties, and we discuss some of the ramifications. In particular we
obtain examples of projective varieties which are destabilized by a non-algebraic
degeneration.

In this paper we give a systematic overview of some explicit constructions of
extremal Kähler metrics on projective bundles and relate our constructions to the
theory of stability for algebraic varieties.

There has been a great deal of interest recently in the relation between extremal
Kähler metrics, especially constant scalar curvature (CSC) Kähler metrics, and
stability: initiated by ideas going back to Yau [56], there are conjectures [53, 15]
that the existence of an extremal or CSC Kähler metric, in an integral Kähler
class Ω on a compact complex manifold M , should be equivalent to an algebraic
geometric stability condition on the Kodaira embeddings of M into P (H0(M,Lk)∗)
for k � 1, where c1(L) = Ω/2π.

Our own interest in constructions of extremal Kähler metrics has been renewed
and stimulated not only by these developments, but also by a unifying principle,
which we shall explain and apply here, underlying explicit examples of such metrics
on projective bundles obtained in [8, 27, 30, 31, 34, 47, 54]. In short these examples
have in common the presence of a hamiltonian 2-form of order 1.

The general theory of hamiltonian 2-forms has been developed in our previous
papers [4, 5]. A main feature of the Kähler metrics admitting a hamiltonian 2-form
is the appearance of hidden symmetries, which, in the compact case, results in a
rigid hamiltonian torus action of dimension the order of the hamiltonian 2-form.
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Motivated by a non-existence result proved in Appendix A.2, in this paper we
focus our attention to the case when this order is 1. Under some mild addi-
tional hypotheses, the resulting manifolds are biholomorphic to projective bun-
dles of the form P (E0 ⊕ E∞) → S, where E0, E∞ are projectively flat hermit-
ian holomorphic vector bundles over a compact Kähler manifold S. The latter
is locally a Kähler product

∏
a∈A Sa where A is the finite set of distinct con-

stant eigenvalues of the hamitonian 2-form, ηa say, and each Sa has complex
dimension equal to the multiplicity of ηa; furthermore, for each a in A there
is an associated 2-form ωa on S (with ±ωa being the component of the Kähler
form of S on Sa and ± is chosen so that ηa ωa is positive definite) such that
c1(E∞)/rk(E∞)− c1(E0)/rk(E0) =

∑
a∈A[ωa/2π].

Complex projective bundles of this form will be referred to as admissible bundles
or admissible manifolds. Likewise, the Kähler metrics, forms and classes arising on
admissible manifolds according to the general theory of hamiltonian 2-forms will
be called admissible. By their very definition, admissible Kähler metrics admit a
natural isometric hamiltonian S1-action whose generator is denoted byK. Section 1
is mainly devoted to make precise the above notions and conventions.

As in the first constructions of extremal Kähler metrics by E. Calabi in [7], the
search for admissible extremal Kähler metrics in a given admissible class Ω on an
admissible 2m-manifold involves a polynomial of degree equal to or less than m+2,
here denoted by FΩ, which we call the extremal polynomial of Ω. This polynomial
plays a pivotal role in the whole paper. Our first main result can be stated as
follows.

Theorem 1. Let M = P (E0⊕E∞) → S be an admissible manifold, where the base
S is a local Kähler product of CSC metrics (±ga,±ωa). Then there is an extremal
Kähler metric in an admissible Kähler class Ω if and only if the extremal polynomial
FΩ is positive on (−1, 1). This condition always holds if Ω is ‘sufficiently small’ ;
if it does, there is an admissible extremal Kähler metric in Ω, which is CSC if and
only if the Futaki invariant FΩ(K) vanishes (i.e., FΩ has degree ≤ m+ 1).

The admissible Kähler classes containing an extremal Kähler metric form a
nonempty open subset of all such classes, and those containing a CSC Kähler
metric form a real analytic hypersurface which is nonempty if c1(E∞)/rk(E∞) −
c1(E0)/rk(E0) is strictly indefinite (i.e., the definite forms ωa on Sa do not all have
the same sign).

Geometrically, an admissible Kähler class is sufficiently small if the base S is large
(low curvature) compared to the fibres (high curvature). Thus the above theorem
asserts the existence of extremal Kähler metrics with curvature concentrated in the
fibres, which agrees with the results in [32, 45]. Note also that by the uniqueness
theorem of Chen–Tian [10, 11], ‘the’ extremal Kähler metric in Ω (if it exists) is
unique up to automorphism.

Section 2 is devoted to the proof of Theorem 1. This involves several new ingredi-
ents of independent interest and relies in a crucial way on a recent results of Chen–
Tian [10, 11], quoted in this paper as Theorem 4. First of all, we consider what
implications the existence of an extremal Kähler metric has for admissible bundles,
Kähler classes and metrics. In §2.1, we apply the Matsushima–Lichnerowicz crite-
rion [36, 41] to obtain information about the automorphism group of an admissible
bundle when the base metric on S is CSC. In §2.2, we use this information to show
that, for any admissible Kähler class Ω, the so-called extremal vector field of Ω is
a multiple of the canonical hamiltonian Killing vector field K and we compute the
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Futaki invariant FΩ(K). In §2.3, we provide an explicit formula for the Mabuchi–
Guan–Simanca (modified) K-energy functional relative to the natural S1-action on
the space of admissible Kähler metrics in Ω, and show that it is determined by
the extremal polynomial FΩ which has as a leading coefficient a nonzero multiple
of FΩ(K). By using the Chen–Tian Theorem 4, we deduce that if Ω contains an
extremal Kähler metric, then FΩ must be nonnegative on (−1, 1). In the bound-
ary case, when FΩ is nonnegative with zeroes on (−1, 1), we show non-existence of
extremal Kähler metrics in Ω via a delicate limiting argument involving the LeBrun–
Simanca stability theorem [35], the general theory of hamiltonian 2-forms [5], and
the uniqueness of extremal Kähler metrics modulo automorphisms established in
[11].

In §2.4, we apply Proposition 1 of section 1 to give a constructive proof of the ex-
istence part of Theorem 1, unifying and generalizing work of Calabi, Guan, Hwang,
Hwang–Singer and the fourth author [8, 27, 30, 31, 54].

In section 3 we present further existence and nonexistence results for extremal
and CSC metrics by computing the extremal polynomial on various examples and
testing its positivity on (−1, 1). In many of these examples, every Kähler class
on M is admissible (see Remark 2) and, therefore, Theorem 1 describes precisely
which Kähler classes do contain an extremal Kähler metric. This is the case when
M = P (O⊕L) → S is an admissible geometrically ruled complex surface (meaning
here that the degree of L is non-zero); the extremal polynomial FΩ(z) is then a
quartic divisible by 1 − z2. We thus obtain a complete resolution of the existence
question for extremal Kähler metrics on these complex surfaces. This, combined
with an observation from [2], fills in the missing step in the complete classification
of extremal Kähler metrics on all geometrically complex ruled surfaces, which can
be specifically stated as follows.

Corollary 1. Let M = P (E) → S be a geometrically ruled complex surface, where
E is a rank 2 holomorphic vector bundle over a compact Riemann surface S of
genus g. If M admits an extremal Kähler metric, then one of the following two
cases holds:

• E is polystable: then M = P (E) admits a locally-symmetric CSC Kähler in
each Kähler class;

• M = P (O ⊕ L) → S is admissible, the Kähler cone is a cone on an open
interval (a, b); the extremal Kähler metrics are precisely those of [7, 30, 54],
which are admissible and locally cohomogeneity one, with Kähler classes
parameterized by a cone on a subinterval (a, c), with c = b if and only if S
has genus 0 or 1.

We refer the reader to [2] for more details. We also note that Ross–Thomas [45]
and G. Székelyhidi [50, 51] independently obtained similar results for rational
Kähler classes on ruled surfaces, by using a different approach relying on recent
works of S. Donaldson [15, 17, 18].

Our results provide a fertile testing ground for the conjectures relating extremal
and CSC Kähler metrics to stability, and we explore this in section 4. In §4.2 we
relate our results to those of Ross–Thomas [45] and Hong [32]: in particular, we
show that there are CSC metrics on projective bundles P (E) → S for which E is
only (slope) polystable with respect one Kähler class on S up to scale.

In §4.4 we relate Theorem 1 to the notions of K-polystability [15, 52] or relative
K-polystability [50] for Kähler classes, which are conjectured to be equivalent to
the existence of a CSC or extremal Kähler metric in a given class. Actually, to be



4 V. APOSTOLOV, D. CALDERBANK, P. GAUDUCHON, AND C. TØNNESEN-FRIEDMAN

precise, we use a closely related notion of (relative) slope K-polystability defined
by Ross–Thomas in [45], which is stronger than just specializing the notion of K-
polystability in the sense [15] to certain test configurations: the notion of (relative)
slope K-polystability used here might more properly be referred to as analytic
(relative) slope K-polystability, and is the notion relevant to assigning a sign of
the Futaki invariant on analytic test configurations (while the original definitions
of [53, 15] require only algebraic test configurations). By generalizing a beautiful
calculation of G. Székelyhidi [50] for ruled surfaces, we establish the following result.

Theorem 2. Let Ω be an admissible integral Kähler class on M = P (E0⊕E∞) →
S, where S is CSC. If Ω is slope K-polystable, it contains a CSC Kähler metric,
and if it is relatively slope K-polystable, it contains an extremal Kähler metric.

It is natural to ask if (relative) K-polystability in the sense of [15, 50] implies
the existence of a CSC (or extremal) Kähler metric in Ω. We find that this is
true if dimS ≤ 4, but for dimS ≥ 6, we are only able to show that the extremal
polynomial is positive on (−1, 1) ∩Q.

Before our work, it was believed that K-polystability implies slope K-polystability
in general, but the proof in [45, 46] only shows that it implies slope K-semistability,
the gap being closely related to the issue of positivity (versus nonnegativity) of the
extremal polynomial at irrational points in (−1, 1).

To show that this is a genuine problem, we end with some examples, on projective
line bundles over a product of three Riemann surfaces, of integral admissible Kähler
classes Ω such that FΩ is positive on (−1, 1)∩Q but has an irrational repeated root in
(−1, 1). We find these examples intriguing, since by Theorem 1, these Kähler classes
do not contain an extremal Kähler metric, so they should be unstable. However,
even though they are projective varieties, the degeneration that demonstrates this
instability is not algebraic. While we cannot prove that there is no other algebraic
test configuration which would detect this instability, it is difficult to imagine how
such a test configuration could be constructed. Thus, presumably, our examples are
algebraically (relative) K-polystable but analytically only (relative) K-semistable.
This suggests that the non-algebraic degenerations implicit in the use of slope K-
polystability may be essential to relate stability to existence of CSC and extremal
Kähler metrics. 1

We would like to thank Claude LeBrun for helpful comments, Richard Thomas
for discussions concerning [45, 46], and the referee for useful suggestions.
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1. Admissible bundles and Kähler metrics

This section is devoted to introducing the main ingredients of the general theory
of hamiltonian 2-forms which we will use in this paper, and giving the precise
definitions of the geometric entities mentioned in the introduction.

1.1. Hamiltonian 2-forms. A hamiltonian 2-form [4] on a Kähler manifold (M,J, g, ω),
of real dimension 2m > 2 is a real (1, 1)-form (i.e., a J-invariant 2-form) φ such
that

2∇Xφ = d trφ ∧ (JX)[ − (Jd trφ) ∧X[

for all X ∈ TM (where X[(Y ) = g(X,Y ) for Y ∈ TM and trφ = 〈ω, φ〉g). The
momentum polynomial of φ is then defined to be

p(t) := (−1)m pf(φ− tω) = tm − (trφ) tm−1 + · · ·+ (−1)m pf φ,

where the pfaffian is defined by φ ∧ · · · ∧ φ = (pf φ)ω ∧ · · · ∧ ω. The reason φ
is called hamiltonian is that for any t ∈ R, p(t) is a hamiltonian for a Killing
vector field K(t) := J gradg p(t) (this is not difficult to show [4, §2]). The integer
` = maxx∈M dim span{K(t)x : t ∈ R} (with 0 ≤ ` ≤ m) is called the order of φ.

We do not wish to impose the study of hamiltonian 2-forms on the reader of this
paper, since we only need the general theory as motivation for the classes of complex
manifolds and metrics that we shall study. We therefore now state a classification
result which reduces the theory of hamiltonian 2-forms of order 1 to an Ansatz for
metrics on projective bundles. This result follows easily from [4, 5], as we explain
in Appendix A, where we also explain why we restrict attention to the order 1 case.

Theorem 3. Let (M, g, J, ω) be a compact connected Kähler 2m-manifold with a
hamiltonian 2-form φ of order 1. Then:

• there is an effective isometric hamiltonian S1 action on M generated by a vector
field K = J gradg z such that the stable quotient of M by the induced holomorphic
C× action is a compact connected complex manifold Ŝ of real dimension 2(m− 1);
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• without loss, the image of the momentum map z is [−1, 1], and there are Kähler
manifolds Sa of dimension 2da and real numbers xa, indexed by a ∈ Â ⊂ N∪ {∞},
such that Ŝ is covered by

∏
a∈Â Sa and 0 < |xa| ≤ 1 with equality iff a ∈ {0,∞};

• z is a Morse–Bott function [1] on M with critical set z−1({−1, 1}), M0 :=
z−1((−1, 1)) is a principal C×-bundle over Ŝ, and on each Sa there is a (1, 1)-
form ωa (which is the pullback of a tensor on Ŝ) such that either +ωa or −ωa is
positive definite (with the sign chosen so that ωa/xa is positive definite), and thus
gives rise to a Kähler metric on Sa, accordingly denoted by ±ga, such that the
Kähler structure on M0 is

(1) g =
∑
a∈Â

1 + xaz

xa
ga +

dz2

Θ(z)
+ Θ(z)θ2, ω =

∑
a∈Â

1 + xaz

xa
ωa + dz ∧ θ,

where θ is a connection 1-form (θ(K) = 1) with dθ =
∑

a∈Â ωa, and Θ is a smooth
function on [−1, 1] satisfying

Θ > 0 on (−1, 1),(2)

Θ(±1) = 0, Θ′(±1) = ∓2;(3)

• if 0 ∈ Â then x0 = 1, S0 = CP d0 and g0 is the Fubini–Study metric of scalar
curvature 2d0(d0 + 1), otherwise we set d0 = 0; likewise, if ∞ ∈ Â then x∞ = −1,
S∞ = CP d∞ and −g∞ is the Fubini–Study metric of scalar curvature 2d∞(d∞+1),
otherwise we set d∞ = 0; we also put A = Âr {0,∞} ⊂ Z+;

• the blow-up M̂ of M along z−1({−1, 1}) is C×-equivariantly biholomorphic to
M0 ×C× CP 1 → Ŝ and Ŝ is a fibre product of flat projective unitary CP d0- and
CP d∞-bundles over a Kähler manifold S covered by

∏
a∈A Sa.

If we assume that Ŝ = P (E0) ×S P (E∞) → S for projectively-flat hermitian vec-
tor bundles E0, E∞ → S, then these bundles can be chosen so that M is C×-
equivariantly biholomorphic to P (E0 ⊕E∞) → S, and we therefore have c1(E∞)−
c1(E0) =

∑
a∈A[ωa/2π], where c1(E) = c1(E)/ rankE.

The final assumption of this theorem is automatic if π1(S) = 1, when Ŝ =
CP d0 × S × CP d∞ and there is a line bundle L → S with c1(L) =

∑
a∈A[ωa/2π]

such that M is C×-equivariantly biholomorphic to P (O⊗Cd0+1⊕L⊗Cd∞+1) → S.
We shall use this theorem as an Ansatz for constructing extremal Kähler metrics

on projective bundles of the form P (E0 ⊕ E∞) → S. For this we shall use the
following elementary computation [27, 30, 4].

Proposition 1. Let g be a Kähler metric of the form (1) on M0 and write F (z) =
Θ(z)pc(z) with pc(z) :=

∏
a∈Â(1+xaz)da. Then g is extremal, with Scalg a constant

affine function of z, iff

• there is a polynomial P of degree ≤ #Â+ 1 such that

(4) F ′′(z) =
(∏

a∈Â
(1 + xaz)da−1

)
P (z);

• for all a, ±ga has constant scalar curvature Scal±ga = ±2dasa where

(5) P (−1/xa) = 2dasaxa

∏
b∈Â\{a}

(
1− xb

xa

)
.

The metric g then has constant scalar curvature iff P has degree ≤ #Â.
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Compared to [4, 5], we have rescaled F (z) and pc(z) by
∏

a∈Â x
da
a : this is conve-

nient as pc(z) is then positive on (−1, 1). Thus Θ is positive on (−1, 1) if and only
if F is. Also if Θ(z) satisfies (3), then F (z) = Θ(z)pc(z) satisfies

(6) F (±1) = 0, F ′(±1) = ∓2pc(±1).

In the following subsections we study metrics of the form (1) and show that the
conditions of Theorem 3 are sufficient for the compactification of such metrics on
a projective bundle M = P (E0 ⊕ E∞) → S.

1.2. Admissible projective bundles. We use Theorem 3 (including the final
assumption) as motivation for the class of compact complex manifolds we will study.
A projective bundle of the form M = P

(
E0 ⊕ E∞

) p→ S will be called admissible
or an admissible manifold if:

• S is a covered by a product S̃ =
∏

a∈A Sa (for A ⊂ Z+) of simply-connected
Kähler manifolds (Sa,±ga,±ωa) of real dimensions 2da, with (ga, ωa) being pull-
backs of tensors on S; here and henceforth, with slight abuse of notation, the signs
± before the Kähler structure (±ga,±ωa) on the complex manifold Sa mean that
either +ωa or −ωa is a positive definite (1, 1)-form which defines a Kähler metric
denoted by +ga or −ga, respectively. We will use the notation ±ωa (rep. ±ga) to
denote the positive definite form (resp. the Riemannian metric) on Sa.

• E0 and E∞ are holomorphic projectively-flat hermitian vector bundles over S of
ranks d0 + 1 and d∞ + 1 with c1(E∞)− c1(E0) = [ωS/2π] and ωS =

∑
a∈A ωa.

The second condition (cf. [33]) means that we can fix hermitian metrics on E0 and
E∞ whose Chern connections have tracelike curvatures Ω0 ⊗ IdE0 and Ω∞ ⊗ IdE∞

satisfying Ω∞ −Ω0 =
∑

a∈A ωa. We normalize the induced fibrewise Fubini–Study
metrics (g0, ω0) and (−g∞,−ω∞) on P (E0) and P (E∞) to have scalar curvatures
2d0(d0 + 1) and 2d∞(d∞ + 1).

We collect a few remarks and notations that we will use. We omit pullbacks by
obvious projections in these remarks.

(i) We sometimes let the index a take values in N ∪ {∞} by setting da = 0 for
a /∈ A ∪ {0,∞} (so that Sa is a point and ωa = 0). This range will be assumed
unless otherwise stated. We set Â := {a : da > 0} so that A = Â ∩ Z+.

(ii) The pullbacks of E0 and E∞ to S̃ are of the form E0⊗Cd0+1 and E∞⊗Cd∞+1,
where L := E−1

0 ⊗E∞ =
⊗

a∈A La for line bundles La → Sa with c1(La) = [ωa/2π].

(iii) e0 := P (E0⊕ 0) and e∞ := P (0⊕E∞) denote the ‘zero’ and ‘infinity’ subbun-
dles of M , covered by S0 × S̃ and S̃ × S∞, where S0 = CP d0 and S∞ = CP d∞ .

(iv) The blow-up of M along e0∪e∞ is M̂ := P (O⊕L̂)
p̂→ Ŝ, where Ŝ = P (E0)×S

P (E∞) → S and L̂ = O(1)E0 ⊗ O(−1)E∞ , using the (fibrewise) hyperplane and
tautological line bundles; we have c1(L̂) = [ωŜ/2π], where ωŜ =

∑
a ωa. If d0 > 0

or d∞ > 0 we say a blow-down occurs.

(v) ê0 and ê∞ denote the zero and infinity sections of M̂ . The pullback of L̂ to
S0 × S̃ × S∞ is L0 ⊗ L⊗ L∞, where L0 = O(1) → S0 and L∞ = O(−1) → S∞.

(vi) Ŝ has a family of local Kähler product metrics gŜ(z) with Kähler forms zωŜ +∑
a ωa/xa and we set gŜ = gŜ(0). (Note that gŜ is not compatible with ωŜ—the

latter is symplectic, but not a Kähler form in general.) We let gS(z) and gS = gS(0)
denote the induced local Kähler product metrics on S.
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We summarize the set-up with the following diagram of bundles and a blow-up:

M̂ = P (O ⊕ L̂) - Ŝ = P (E0)×S P (E∞)

M = P (E0 ⊕ E∞)
?

- S,
?

the universal cover (omitting pullbacks) of this diagram being:

P (O ⊕ L̂) - CP d0 × S̃ × CP d∞

P (O ⊗ Cd0+1 ⊕ L⊗ Cd∞+1)
?

- S̃ =
∏

a∈A Sa.

?

Remark 1. The existence of the line bundle L̂ → Ŝ with c1(L̂) = [ωŜ/2π] implies
that ωŜ is integral in the sense that [ωŜ/2π] is in the image of H2(Ŝ,Z) in H2(Ŝ,R).
When Ŝ is a global Kähler product (i.e., we can write M = P (O ⊗ Cd0+1 ⊕ L ⊗
Cd∞+1) → S =

∏
a∈A Sa), this integrality condition means that each ωa is integral,

i.e., the compact manifolds (Sa,±ga,±ωa) are Hodge.
We write ωa = qaαa for an integer qa 6= 0, where αa is a primitive integral Kähler

form on Sa, so that qa is a nonzero integer with the same sign as (ga, ωa), and q0 = 1
and q∞ = −1. We now compare [ωa/2π] to the first Chern class c1(K−1

a ) = [ρa/2π]
of the anticanonical bundle of Sa, by writing [ρa] = pa[αa] + [ρa]0, for a rational
number pa, where [ρa]0 · [αa]da−1 = 0. Since any line bundle P with first Chern
class [αa/2π] is ample, Pda+1 ⊗ Ka is nef by a result of Fujita [25] (see also [12,
Theorem 8.3]), from which it follows easily that pa ≤ da + 1. If Sa is a Riemann
surface of genus ga, then pa = 2(1− ga) ≤ 2.

We set sa = pa/qa. When ±ga is CSC, we have Scal±ga = ±2dasa, where the
sign is that of qa, so the scalar curvature of ±ga has the same sign as pa. Thus, in
the case of a CSC Hodge manifold Sa, the Fujita inequality pa ≤ da + 1 is (since
|qa| ≥ 1) equivalent to Scal±ga ≤ 2da(da + 1).

The conditions of Theorem 3 are also sufficient for the compactification of metrics
of the form (1) on an admissible projective bundle M = P (E0 ⊕ E∞) → S, where
z : M → [−1, 1] with e0 = z−1(1) and e∞ = z−1(−1), and θ is a connection 1-form.
Before discussing this, we introduce the Kähler classes to which they belong.

1.3. Admissible Kähler classes and canonical metrics. Suppose that M =
P (E0 ⊕ E∞) → S is an admissible bundle. We say that a Kähler class Ω on M is
admissible if there are constants xa, with x0 = 1, x∞ = −1, such that the pullback
of Ω to M̂ has the form ∑

a

[ωa]/xa + Ξ̂

up to scale, where the 2-forms ωa are viewed as pullbacks to M̂ of the corresponding
forms on Ŝ (induced by the local product Kähler structure

∏
a Sa) and Ξ̂ is Poincaré

dual to 2π[ê0 + ê∞]. Thus Ξ̂ = 2πc1(V M̂), where V M̂ = O(2)O⊕L̂ ⊗ p̂∗L̂ and
O(−1)O⊕L̂ is the (fibrewise) tautological bundle of M̂ = P (O⊕L̂). (The first Chern
class [ωŜ/2π] of L̂ itself pulls back to M̂ to give the Poincaré dual of [ê0 − ê∞].)

It follows that admissible Kähler classes have the form

Ω =
∑
a∈A

[ωa]/xa + Ξ

up to scale, where the pullback of Ξ to M̂ is [ω0] − [ω∞] + Ξ̂. Since pullback to a
blow-up is injective on cohomology, admissible Kähler classes on M are uniquely
determined by the parameters xa.
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If (g, ω) is any Kähler metric on M of the form (1) on M0, then we claim
Ω = [ω] is admissible. For this we first note that on M0, the Kähler form ω is a
linear combination

∑
a∈A ωa/xa + η, where

η = (z + 1)ω0 +
∑
a∈A

zωa + (z − 1)ω∞ + dz ∧ θ.

Here ω0, ω∞ and θ are defined only on M0. However, for a ∈ A, ωa extends to a
closed 2-form on M (as a pullback from S), so η is globally defined and closed on
M (since ω is). The pullback of η to M̂ may be written ω0−ω∞+ η̂ with η̂ = d(zθ)
on M0, and since ω0 and ω∞ are well-defined and closed on M̂ (as pullbacks from
Ŝ), so is η̂, and we easily see2 that [η̂] = Ξ̂.

Observe that η depends implicitly on the choice of metric (g, ω) on M because
the momentum map z does. However, the above shows that the cohomology class
[η] is Ξ, independent of this choice. From this realisation of Ξ, it follows easily, by
pulling back to e0 and e∞, that for a cohomology class of the form

∑
a∈A[ωa]/xa+Ξ

to be a Kähler class, it is necessary that for a ∈ A, 0 < |xa| < 1 with the sign of
xa such that ωa/xa is positive. Conversely, we claim that any cohomology class of
this form (with 0 < |xa| < 1 and ωa/xa positive for a ∈ A) is an admissible Kähler
class and contains a Kähler metric of the form (1) on M0 up to scale. To do this
we construct a distinguished Kähler metric in each such class.

Let r0 and r∞ be the norm functions induced by the hermitian metrics on E0

and E∞. Then z0 = 1
2r

2
0 and z∞ = 1

2r
2
∞ are fibrewise momentum maps for the

U(1) actions given by scalar multiplication in E0 and E∞, generated by K0 and
K∞. We equip M with a fibrewise Fubini–Study metric (gM/S , ωM/S): with our
normalization of g0 and g∞, each fibre is the Kähler quotient of the corresponding
fibre of E0⊕E∞ by the diagonal U(1) action at momentum level z0 + z∞ = 2; then
on this momentum level, the function z = z0 − 1 = 1− z∞ descends to a fibrewise
momentum map M → [−1, 1] for the quotient U(1) action.

We extend (gM/S , ωM/S) to TM by requiring that the horizontal distribution of
the induced connection on M is degenerate. To obtain a nondegenerate metric, we
then set

gc =
∑
a∈A

1 + xaz

xa
ga + gM/S , ωc =

∑
a∈A

1 + xaz

xa
ωa + ωM/S ,

where the (ga, ωa) are pulled back from S; gc is then a positive definite Kähler
metric with respect to the canonical complex structure of M = P (E0 ⊕ E∞) by
the assumptions on the parameters xa. We refer to (gc, ωc) as the canonical Kähler
metric on M in the given admissible Kähler class.

Lemma 1. For any 0 < |xa| < 1 (a ∈ A), the corresponding canonical Kähler
metric on M is of the form (1) on M0, where Θ = Θc and Θc(z) = 1− z2.

Proof. The inverse image in E0 ⊕ E∞ of M0 = M \ (z−1(−1) ∪ z−1(1)) may be
viewed as an open subset of O(−1)E0 ⊕ O(−1)E∞ . Then (gc, ωc) is the Kähler
quotient at momentum level z0 + z∞ = 2 of the metric∑

a

(1 + xa)z0 + (1− xa)z∞
2xa

ga +
dz2

0

2z0
+
dz2
∞

2z∞
+ 2z0θ2

0 + 2z∞θ2
∞,

2On each fibre of p̂ : M̂ → Ŝ, η̂/4π integrates to 1 and so [η̂/4π] restricts to give the generator of
H2(p̂−1(x), Z). Hence by the Leray–Hirsch theorem, H2(M̂, R) is generated by [η̂] and pullbacks
from S. The restriction of [η̂/2π] to ê0 is the first Chern class [ωŜ/2π] of L̂ (and the restriction

to ê∞ is the first Chern class [−ωŜ/2π] of L̂−1). Thus [η̂/4π] is a projective version of the Thom

class of a vector bundle.
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where x0 = 1, x∞ = −1, and θ0, θ∞ are connection 1-forms for the U(1)-line bundles
O(−1)E0 , O(−1)E∞ with θ0(K0) = 1 = θ∞(K∞), dθ0 = −ω0+Ω0, dθ∞ = ω∞+Ω∞.

If we regard M0 as an open subset of M̂ = P (O⊕L̂), then the diagonal action is
generated by K0+K∞, θ∞−θ0 is basic and so induces a unitary connection θ (with
respect to the quotient U(1)-action) on L̂ with dθ = ωŜ . Substituting z0 = 1 + z
and z∞ = 1 − z and performing the quotient yields (1) with Θ = Θc. (On each
fibre over Ŝ this is the realization of CP 1 as a Kähler quotient of C2.) �

Remark 2. The existence of the canonical metric on M shows there does exist a
cohomology class Ξ whose pullback to M̂ is Ξ̂. Ξ is then unique, and the admissible
Kähler classes form a family of dimension #A + 1. If b2(Sa) = 1 for all a and
b1(Sa) 6= 0 for at most one a, then every Kähler class on M is admissible.

1.4. Admissible metrics. Let M = P (E0 ⊕ E∞) → S be an admissible bundle
and Ω an admissible Kähler class corresponding to parameters xa. Then a Kähler
metric in Ω is said to be admissible if it has the form (1) on M0, up to scale, with
respect to the given projective unitary bundle structure on M and local Kähler
product structure on S. According to Theorem 3, in order for a (scale of a) metric
of the form (1) on M0 to define an admissible Kähler metric on M , it is necessary
that Θ is a smooth function on [−1, 1] satisfying (2)–(3). We now show that these
conditions are also sufficient and provide a parameterization of admissible metrics.

We first note that any metric of the form (1), where Θ is a smooth function on
[−1, 1] satisfying (2)–(3), defines a smooth metric g on M compatible with the same
symplectic form as the canonical Kähler metric gc in Ω, provided that we take z to
be the momentum map and θ the connection 1-form of the canonical Kähler metric;
then, using (3), we find that g − gc is smooth on M , and g is positive definite on
M since it is on M0 by (2) and ω is nondegenerate on M . (See [5, §1] for details.)

With this point of view, the smooth functions Θ on [−1, 1] satisfying (2)–(3)
define a family of complex structures on M . However, we claim that there is an
S1-equivariant biholomorphism, in the identity component of the diffeomorphism
group, between any two such complex structures, so that Θ parameterizes Kähler
metrics compatible with the given (fixed) complex structure on M whose Kähler
forms belong to a given admissible Kähler class Ω. This claim holds essentially
because it is true for toric complex structures on CP 1 (and for toric varieties in
general), but for later use we need to make explicit the transformation of M that
relates the complex and symplectic points of view, following [29, 28, 15].

A key ingredient in this transformation is the notion of a symplectic potential of
an admissible Kähler metric defined by Θ(z), which is a function u(z) on (−1, 1)
with u′′(z) = U(z) := 1/Θ(z). Then

uc(z) = 1
2

(
(1− z) log(1− z) + (1 + z) log(1 + z)− 2 log 2

)
is the unique symplectic potential for the canonical Kähler metric (gc, Jc) given by
Θc(z) = (1− z)(1 + z), which satisfies uc(±1) = 0. We can extend this description
to all admissible Kähler metrics compatible with ω, thanks to the following lemma,
which is an easy application of l’Hôpital’s Rule and Taylor’s Theorem.

Lemma 2. A smooth function Θ(z) = 1/U(z) satisfies (3) if and only if U(z) −
Uc(z) is smooth on [−1, 1]. Then U(z)/Uc(z) is positive and smooth on [−1, 1].

On M0, the symplectic potential u(z) of an admissible Kähler metric is closely re-
lated to a Kähler potential of ω with respect to J by a fibrewise Legendre transform
(see [4, 29]) over Ŝ. Indeed, if we put

y = u′(z), h(y) = −u(z) + yz,
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then dc
Jy = θ and ddc

Jh(y) = ω −
∑

a ωa/xa on (M0, J).3 Let yc, hc(yc) denote the
corresponding quantities associated to uc. There are local 1-forms α on Ŝ such that
θ = dt + α, where t : M0 → R/2πZ is locally defined up to an additive constant
on each fibre. Since exp(y + it) and exp(yc + it) give C×-coordinates on the fibres,
there is a U(1)-equivariant fibre-preserving diffeomorphism Ψ of M0 over Ŝ with

Ψ∗y = yc, Ψ∗t = t, and hence Ψ∗J = Jc.

As Jc and J are integrable complex structures, Ψ extends to a U(1)-equivariant
diffeomorphism of M leaving fixed any point on e0∪e∞ (since it is fibre preserving).

Put ω̃ := Ψ∗ω. Then ω̃ is a Kähler form on (M,Jc) which (we claim) belongs to
the same cohomology class Ω as ω. Indeed, on M0 we have

ω̃ − ω = ddc
Jc

(h(yc)− hc(yc))

since ddc
Jc
h(yc) = Ψ∗ddc

Jh(y) = ω̃ −
∑

a ωa/xa, so the following implies the claim.

Lemma 3. The function h(yc)− hc(yc) is smooth on M .

Proof. Since Ψ is a diffeomorphism with Ψ∗y = yc, this holds if and only if h(y)−
hc(y) is smooth on M . We already know that h(y) − hc(yc) = −(u(z) − uc(z)) +
z(u′(z)− u′c(z)) is smooth (by Lemma 2) so it suffices to show that hc(y)− hc(yc)
is smooth on M . However, knowing uc explicitly, we calculate

hc(y)− hc(yc) = −1
2

(
log

(1− z̃

1− z

)
+ log

(1 + z̃

1 + z

))
,

where z̃ := Ψ∗z is the momentum map of ω̃ = Ψ∗ω; since Ψ is S1-equivariant and
fixes e0 ∪ e∞, it follows that z̃, viewed as a function of z, satisfies z̃(±1) = ±1;
moreover, since both z̃ and z are momentum maps of the same U(1) action on M
(and are therefore Morse-Bott functions with the same critical sets), we must have
z̃′(±1) 6= 0. Thus hc(y)− hc(yc) is smooth on M . �

Hence the moduli space Kadm
ω of admissible metrics in Ω = [ω] is identified with

the space of smooth functions Θ on [−1, 1] satisfying (2)–(3) or equivalently with
{u ∈ C0([−1, 1]) : u− uc ∈ C∞([−1, 1]), u(±1) = 0 and u′′ > 0 on (−1, 1)}.

1.5. The isometry Lie algebra. For a compact Kähler manifold (M, g), we de-
note by i0(M, g) the Lie algebra of all Killing vector fields with zeros. Since M is
compact this is equivalently the Lie algebra of all hamiltonian Killing vector fields.

Proposition 2. Let g be an admissible metric on M = P (E0⊕E∞)
p→ S and equip

S and Ŝ → S with the metrics gS, gŜ induced by
∑

a ga/xa on
∏

a Sa. Let z(K, g)
be the centralizer in i0(M, g) of the Killing vector field K = J gradg z.

Then the vector space z(K, g) is the direct sum of a lift of i0(Ŝ, gŜ) and the span
of K in such a way that p∗ : i0(M, g) → i0(S, gS) is induced by the natural surjection
i0(Ŝ, gŜ) → i0(S, gS).

Proof. Let X be a holomorphic vector field on Ŝ which is hamiltonian with respect
to ωh :=

∑
a ωa/xa; then the projection Xa of X onto the distribution Ha (induced

by TSa on the universal cover
∏

a Sa of Ŝ) is a Killing vector field with zeros,
so ιXa

ωh = −dfa for some function fa (with integral zero). Thus
∑

a faxa is a
hamiltonian for X with respect to the symplectic form ωŜ =

∑
a ωa: since this is

the curvature dθ of the connection on M0, X lifts to a holomorphic vector field
X̃ = XH +(

∑
a faxa)K on M0, which is hamiltonian with potential

∑
a(1+xaz)fa

3It follows that if ±Ha is a local Kähler potential for ±ωa and ũ = u(z)−
P

a(1 + xaz)Ha/xa,

then ỹ = ∂ũ/∂z is pluriharmonic and h̃ = −ũ + ỹz is a local Kähler potential for ω on (M0, J) [4].
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and commutes with K. Here XH is the horizontal lift to M0 with respect to θ. X̃
and its potential extend to M since M \M0 has codimension ≥ 2 and X̃ has zeros.

Conversely any element of z(K, g) pulls back to a holomorphic vector field V on
M̂ . The projection of V to the normal bundle p̂∗T Ŝ of p̂ : M̂ → Ŝ is holomorphic
hence constant on the CP 1 fibres by Liouville’s Theorem (the normal bundle is
trivial on each fibre), so V is projectable; since V is the pullback of a Killing vector
field which commutes with K, it maps to zero iff it comes from a constant multiple
of K. This gives a projection to i0(Ŝ, gŜ) splitting the inclusion just defined. �

2. Admissible extremal Kähler metrics

2.1. Automorphisms and the Matsushima–Lichnerowicz obstruction. On
any compact Kähler manifold (M, g), the Lie algebra h(M) of holomorphic vector
fields lies in an exact sequence:

0 → h0(M) → h(M) → H1(M,R)∗

where h0(M) is the ideal of holomorphic vector fields with zeros, which is the Lie
algebra of the reduced automorphism group H0(M) ⊂ Aut0(M), i.e., the connected
component of the kernel of the Albanese map Aut0(M) → H1(M,R)∗/H1(M,Z).
The Matsushima–Lichnerowicz Theorem [36, 41] says that if g is CSC, h0(M) is the
complexification of the Lie algebra i0(M, g) of hamiltonian Killing vector fields and
h(M) = a(M)⊕ h0(M), a(M) being the central subalgebra of parallel vector fields:
thus h(M) is reductive. This condition on h(M) is often called the Matsushima–
Lichnerowicz obstruction to the existence of CSC Kähler metrics on (M,J).

Let us consider the special case of geometrically ruled complex manifolds M =
P (E), where p : P (E) → S and E is a holomorphic vector bundle of rank r + 1
over a compact Kähler 2d-manifold (S, h, ωh). Thus M is a kählerian 2m-manifold
with m = r + d: for instance, [O(1)E ] + k[p∗ωh] is a Kähler class for k � 1, where
O(−1)E is the (fibrewise) tautological line bundle of P (E).

The projection of any holomorphic vector field V ∈ h(M) to the normal bundle
p∗TS is constant on each fibre, so V descends to a holomorphic vector field p∗V ∈
h(S). Since p∗[V1, V2] = [p∗V1, p∗V2], we have an exact sequence of Lie algebras

0 → hS(M) → h0(M) → h0(S),

where hS(M) is the subspace of h(M) of holomorphic vector fields tangent to the
fibres of p (which have zeros). Obviously hS(M) = H0(S, sl(E)) is the Lie algebra
of holomorphic vector fields preserving the CP r-fibres of p : P (E) → S. Since an
ideal in a reductive Lie algebra is reductive, we obtain the following weaker (but
often more useful) version of the Matsushima–Lichnerowicz obstruction.

Proposition 3. Let M = P (E) → S be a geometrically ruled complex manifold
which admits a CSC Kähler metric. Then hS(M) must be reductive.

The following elementary result yields a simple application of this criterion.

Proposition 4. Let M = P (E0 ⊕ E1 ⊕ · · · ⊕ E`), where Ej are holomorphic
vector bundles on a compact kählerian manifold S such that H0(S, gl(Ej)) is re-
ductive and H0(S,Hom(Ej , Ei)) = 0 for all i < j. Then hS(M) is reductive iff
H0(S,Hom(Ei, Ej)) = 0 for all i < j.

Proof. Any element of the Lie algebra hS(M) = H0(S, sl(E)) may be represented as
an (`+1)×(`+1) matrix (aij) with aij ∈ H0(S,Hom(Ei, Ej)). By assumption, this
matrix is upper-triangular. The strictly upper-triangular matrices form a nilpotent
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ideal n and if this is zero, hS(M) is clearly reductive. Conversely, taking commu-
tators with elements of the form IdEi/ rankEi − IdEj/ rankEj ∈ H0(S, sl(E)), we
see that n ⊆ [hS(M), hS(M)]. Hence if n 6= 0, [hS(M), hS(M)] is not semisimple,
i.e., hS(M) is not reductive. �

Corollary 2. Let M = P (E) where E = L0 ⊕ L1 ⊕ · · · ⊕ Lr is a direct sum
of holomorphic line bundles over a Riemann surface Σ of genus g. If g ≥ 2 and
degLi−degLj > g−1 for some 0 ≤ i, j ≤ r then M admits no CSC Kähler metric.
If g ≤ 1, then M admits a CSC Kähler metric if and only if degLi = degLj for
all i, j (i.e., L0 ⊕ L1 ⊕ · · · ⊕ Lr is a polystable vector bundle).

Proof. We can assume without loss that E = E0 ⊗ Cr0 ⊕ E1 ⊗ Cr1 ⊕ · · · ⊕ E` ⊗ Cr`

with deg Ei ≤ deg Ej and Ei 6∼= Ej for i < j. The Kodaira vanishing theorem then
implies H0(Σ, E−1

j ⊗ Ei) = 0 for any i < j, and we may apply Proposition 4. By
assumption, deg E` − deg E0 > max(0,g − 1), and so dimH0(Σ, E−1

0 ⊗ E`) > 0 by
Riemann–Roch. Hence hΣ(M) is not reductive, and there is no CSC Kähler metric
on M . The converse when g ≤ 1 follows from Narasimhan–Seshadri [43]. �

Remark 3. The assumptions of Proposition 4 hold if E1, . . . E` are projectively-
flat hermitian vector bundles such that the slopes µ(Ej) := c1(Ej) ∪ Ωd−1, with
respect to some Kähler class Ω on S (dimS = 2d), satisfy µ(Ei) < µ(Ej) for i < j.
Indeed in this case gl(Ej) is a flat hermitian bundle and H0(S, gl(Ej)) is the space
of parallel sections of gl(Ej)4, which is a complexification of the space of parallel
sections of u(Ej), hence a reductive Lie algebra. The slope condition then ensures
H0(S,Hom(Ej , Ei)) = 0 for all i < j by a theorem of Kobayashi [33].

In general, the condition that hS(M) is reductive does not imply h0(M) is. How-
ever it does if p∗ : h0(M) → h0(S) is surjective and h0(S) is reductive. This obvi-
ously holds if h0(S) = 0. It also holds if (S, gS) is CSC and there is a metric g on
M such that p∗ is a surjection from i0(M, g) to i0(S, gS). This is true for admissible
bundles by Proposition 2.

Proposition 5. Let Ω be an admissible Kähler class on M = P (E0 ⊕ E∞) → S,
where the local product metric gS on S is CSC. Then the admissible metrics in
Ω are invariant under a common maximal compact connected subgroup of H0(M),
and h0(M) is reductive iff H0(S,Hom(E0, E∞)) = 0 = H0(S,Hom(E∞, E0)). This
latter condition holds if c1(E∞)− c1(E0) is strictly indefinite.

Proof. Let g be an admissible Kähler metric on M . We know by the Matsushima–
Lichnerowicz theorem that h(S) is reductive and h0(S) is the complexification of
the Lie algebra i0(S, gS) of a maximal compact subgroup of H0(S). Then by Propo-
sition 2, both p∗ : h0(M) → h0(S) and p∗ : i0(M, g) → i0(S, gS) are surjective.

To show that the Lie algebra i0(M, g) is a maximal compact subalgebra of h0(M),
it therefore suffices to show that i0(M, g)∩hS(M) is a maximal compact subalgebra
of hS(M). Since c1(E∞)−c1(E0) = ωS , we can certainly arrange that µ(E∞)−µ(E0)
is nonzero by the choice of a Kähler class on S. Then, by Remark 3, we are under the
hypotheses of Proposition 4, and, as in its proof, we have that hS(M) is the direct
sum of the reductive centralizer of K and a nilpotent ideal n in [hS(M), hS(M)].
The first part now follows easily from Proposition 2 and Remark 3.

As noted above, h0(M) is reductive iff hS(M) is. By Proposition 4, the latter hap-
pens iff both H0(S,Hom(E0, E∞)) = 0 = H0(S,Hom(E∞, E0)). This indeed holds

4This is a standard Bochner argument, as in [33]. Alternatively, note that the pullback of gl(Ej)
to the universal cover of S is trivialized by parallel sections, and apply the open mapping theorem:
the pullback of a holomorphic section of gl(Ej) has closed bounded image in this trivialization.
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if c1(E∞)−c1(E0) is strictly indefinite (by the vanishing theorem of Kobayashi [33]
as in Remark 3), since we can then choose Kähler classes on S such that the cor-
responding slopes have µ(E∞)− µ(E0) with either sign. �

Since S is a local Kähler product, it is CSC iff the factors Sa (a ∈ A) in the
universal cover are CSC.

2.2. The Futaki invariant and extremal vector field. On a compact Kähler
2m-manifold (M,J, g, ω), recall that the (normalized) Futaki invariant of a real
holomorphic vector field with zeros V = J gradg f + gradg h is defined by

Fω(V ) =
(∫

M
µg

∫
M

(f + ih)Scalgµg −
∫

M
Scalgµg

∫
M

(f + ih)µg

)/
Vol(M)2,

where µg = ωm/m! is the volume form of g. Futaki [21] showed that this complex
number is independent of the choice of metric in the Kähler class Ω = [ω], and
that the map FΩ : h0(M) → C is a character on h0(M). FΩ is closely related to the
Futaki–Mabuchi extremal vector field KΩ := J gradg prgScalg of (M,J,Ω, G), where
G is a maximal compact connected subgroup of H0(M) and prg is the L2-projection
onto the space of Killing potentials with respect to any G-invariant metric g in Ω:
Futaki and Mabuchi [22] showed that KΩ is independent of this choice. Clearly FΩ

and KΩ vanish if Ω contains a CSC metric. Calabi [8] showed that if FΩ vanishes
then any extremal Kähler metric in Ω is a CSC metric, but the vanishing of FΩ

does not suffice in general for the existence of a CSC metric in Ω.
Let Ω be an admissible Kähler class on M = P (E0 ⊕ E∞) → S and suppose

in addition that for a ∈ A, ±ga is a CSC Kähler metric with scalar curvature
Scal±ga = ±2dasa. Let pc(t) =

∏
a(1 + xat)da and define

αr :=
∫ 1

−1
pc(t)trdt,

βr := pc(1) + (−1)rpc(−1) +
∫ 1

−1

(∑
a

dasaxa

1 + xat

)
pc(t)trdt.

(7)

We now compute the Futaki invariant FΩ(K) of K = J gradg z and show that KΩ is
essentially FΩ(K)K, where G the maximal compact connected subgroup of H0(M)
of Proposition 5 preserving admissible Kähler metrics in Ω. FΩ(K) will reappear
in the next paragraph as the leading coefficient of a polynomial associated with Ω.

Proposition 6. Suppose M is admissible over a CSC base and Ω is an admissible
Kähler class with admissible metric g. Then FΩ(K) = 2(α0β1−α1β0)/α2

0. Also the
L2-projection of Scalg orthogonal to the space of Killing potentials is

(8) Scalg +Az +B

where A and B are given by
Aα1 +Bα0 = −2β0

Aα2 +Bα1 = −2β1.
(9)

(Since α0α2 > α2
1, this system has a unique solution for A,B.) In particular the

extremal vector field of (Ω, G) is KΩ = −AK = 2(α0β1 − α1β0)K/(α0α2 − α2
1).

Proof. We may rescale Ω so that an admissible metric (g, ω) in Ω is of the form (1).
We then have

µg =
ωm

m!
= pc(z)

(∧
a

(ωa/xa)da

da!

)
∧ dz ∧ θ,
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where m = 1 +
∑

a da is the complex dimension of M . Thus∫
M
µg = 2πVol

(
S,

∏
a

ωa
xa

)
α0

(
= Vol(M)

)
,∫

M
zµg = 2πVol

(
S,

∏
a

ωa
xa

)
α1 = Vol(M)α1/α0,

where Vol
(
S,

∏
a

ωa
xa

)
=

∏
a Vol

(
Sa,

ωa
xa

)
in the case when S is a global product.

The scalar curvature of (M, g) is given by

(10) Scalg =
∑

a

2dasaxa

1 + xaz
− F ′′(z)
pc(z)

where F (z) = Θ(z)pc(z) (see e.g. [4, (79)]). We thus calculate∫
M
zScalgµg = 2πVol

(
S,

∏
a

ωa
xa

) ∫ 1

−1

(( ∑
a

2dasaxa

1 + xaz

)
pc(z)− F ′′(z)

)
zdz

= 2πVol
(
S,

∏
a

ωa
xa

)(∫ 1

−1

(∑
a

2dasaxa

1 + xaz

)
pc(z)z dz −

[
zF ′(z)− F (z)

]+1

−1

)
= 2Vol(M)β1/α0,

where we integrate by parts, then impose the boundary conditions (3). Similarly,∫
M

Scalgµg = 2Vol(M)β0/α0

and the first claim follows.
For the second claim note that the above integral formulae imply Scalg +Az+B

is orthogonal to the Killing potentials 1, z if and only if (9) holds. By the form of
Scalg, the fact that the sa are constant, and Proposition 2, the result follows. �

Note that the above expression for FΩ(K) is manifestly independent of the choice
of a smooth function Θ(z) satisfying (3), as it should be according to the general
theory [21]. Indeed, as we have already discussed in §1.4, these smooth functions
Θ(z) define Kähler metrics within the same Kähler class.

2.3. K-energy and the extremal polynomial. Given a complex 2m-manifold
(M,J), a maximal compact connected subgroup G of H0(M), and a Kähler class Ω,
we denote by MΩ the infinite dimensional Fréchet space of Kähler metrics in Ω and
let MG

Ω be the subspace of G-invariant Kähler metrics in Ω. Following Guan [28]
and Simanca [48], consider the map

g 7→ pr⊥g Scalgµg,

where pr⊥g is the L2-projection orthogonal to the space of Killing potentials. This
can be viewed (by integration) as a 1-form σ on MG

Ω , which turns out to be closed.
Therefore for any ω0 ∈ Ω, there exists a unique functional EG

ω0
: MG

Ω → R with

dEG
ω0

= −σ,

EG
ω0

(ω0) = 0. Note that changing the base point ω0 ∈ MΩ would change EG
ω0

by
an additive constant. We refer to EG

ω0
as the (modified) K-energy: it agrees with

the Mabuchi K-energy [38] when G is trivial.
By definition, it is clear that the critical points of EG

ω0
are exactly the extremal

Kähler metrics in MG
Ω , since σ = 0 means that Scalg is a Killing potential. Note

that by the Calabi Theorem [7], any extremal Kähler metric g ∈ MΩ belongs to
MG

Ω with G = Isom0(M, g) ∩H0(M).
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Building on earlier work by Bando–Mabuchi [6], Chen [9], Donaldson [16] and
others, Chen and Tian have established the following uniqueness result and neces-
sary condition for existence of an extremal Kähler metric.

Theorem 4. [10, 11] Extremal Kähler metrics in MΩ are unique up to automor-
phism and any extremal Kähler metric in MG

Ω realizes the absolute minimum of
EG

ω0
(for any ω0 ∈MG

Ω). In particular, if MG
Ω contains an extremal Kähler metric,

then EG
ω0

is bounded from below.

Now let M be an admissible projective bundle over a CSC base as in the previous
paragraph. We want to obtain a formula for the K-energy as a functional acting
on Kadm

ω , where ω is fixed, so we need to use the description given in §1.4 which
shows how Kadm

ω is embedded into MG
Ω , in which the complex structure is fixed.

This description shows that if ut(z) is a path of symplectic potentials in Kadm
ω ,

then the smooth functions ht(yc) − hc(yc) define a path ω + ddc
Jc

(ht(yc) − hc(yc))
in MΩ, where ht are introduced by

ht(yt(z)) = −ut(z) + ytz, yt = u′t(z),

so that, after setting z = y−1
t (yc), we have

ht(yc) = −ut(y−1
t (yc)) + y−1

t (yc)yc.

Differentiating with respect to t, we get for the corresponding vector fields u̇ ∈
Tg(Kadm

ω ) and ḣ ∈ Tω(MG
Ω), the relation (cf. [28, 15]):

ḣ = −u̇.
Hence we obtain the following symplectic version of the (modified) K-energy.

Lemma 4. The K-energy EG
ω , restricted to the space of admissible Kähler metrics

in Ω and viewed as a function on the space of symplectic potentials, is determined
uniquely up to an additive constant by the formula

(dEG
ω )g[u̇] =

∫
M

(pr⊥g Scalg)u̇ µg,

where pr⊥g denotes the L2-projection orthogonal to the space of Killing potentials.

Consider an admissible metric g in Ω corresponding to the function Θ(z) =
F (z)/pc(z). Since the base S is CSC we have, by Proposition 6, pr⊥g Scalg = Scalg +
Az +B, with A and B given by (9) and Scalg by (10).

Lemma 5. There is a unique smooth function FΩ on [−1, 1] with

(11) F ′′Ω(z) =
(
Az +B +

∑
a

2dasaxa

1 + xaz

)
pc(z)

and FΩ(±1) = 0. FΩ satisfies (6) and is a polynomial of degree ≤ m + 2, the
coefficient of zm+2 being a nonzero multiple of A.

Proof. There is clearly a unique solution to (11) with FΩ(±1) = 0. One easily
checks, using (9) that the solution is

(1 + z)pc(−1) + (1− z)pc(1) +
∫ 1

−1

(
1
2
(At+B) +

∑
a

dasaxa

1 + xat

)
pc(t)|z − t|dt.

The derivative of this function is

pc(−1)− pc(1) +
∫ 1

−1

(
1
2
(At+B) +

∑
a

dasaxa

1 + xat

)
pc(t)sign(z − t)dt,
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which gives the formulae for F ′Ω(±1) in (6), using the first equation of (9). �

The motivation for this lemma is that now Scalg+Az+B = (F ′′Ω(z)−F ′′(z))/pc(z),
see (10). Furthermore, F and FΩ satisfy the same boundary conditions (6).

Proposition 7. Let Ω be an admissible Kähler class on an admissible bundle over
a CSC base. Then the K-energy restricted to the space of admissible Kähler metrics
Kadm

ω is (up to an additive constant) a positive multiple of the functional

Egc : u(z) 7→
∫ 1

−1
FΩ(z)(u′′(z)− u′′c (z))dz −

∫ 1

−1
pc(z) log

(u′′(z)
u′′c (z)

)
dz.

Proof. Egc is well-defined by Lemma 2 and its gradient is

(dEgc)g[u̇] =
∫ 1

−1
FΩ(z)u̇′′(z)dz −

∫ 1

−1
pc(z)

u̇′′(z)
u′′(z)

dz =
∫ 1

−1
(FΩ(z)− F (z))u̇′′(z)dz.

Integrating twice by parts, using the fact that F and FΩ both satisfy (6), and
multiplying by 2πVol(S,

∏
a ωa/xa), we obtain

∫
M (Scalg +Az +B)u̇µg. �

Remark 4. It is worth noticing that (by (3)) the functional

E : u(z) 7→
∫ 1

−1

(
FΩ(z)u′′(z)− pc(z) log u′′(z)

)
dz

is well-defined on Kadm
ω and is still a primitive of the restriction of the 1-form σ

to Kadm
ω . It can then be regarded as a natural determination of a (modified) K-

energy on Kadm
ω , with no explicit reference to any base point in Kadm

ω , and such
that Egc(u) = E(u)− E(uc).

Corollary 3. If there is an extremal Kähler metric in Ω, then FΩ ≥ 0 on [−1, 1].

Proof. If there is an extremal Kähler metric in Ω, then by Theorem 4 [10, 11],
the K-energy is bounded from below. We now apply an argument from [15]: take
any nonnegative smooth function f(z) with supp(f) ⊂ (−1, 1) and consider the
sequence uk(z) with u′′k(z) = u′′c (z) + kf(z) of symplectic potentials (cf. Lemma 2)
for admissible Kähler metrics. We therefore get

Egc(uk) = −
∫ 1

−1
pc(z) log

(
1 + k

f(z)
u′′c (z)

)
dz + k

∫ 1

−1
FΩ(z)f(z)dz.

This will tend to −∞ if
∫ 1
−1 FΩ(z)f(z)dz < 0 for some f . �

In the next paragraph, where we complete the proof of Theorem 1, we shall
show that positivity of FΩ on (−1, 1) is a necessary and sufficient condition for the
existence of an extremal Kähler metric in Ω.

Definition 1. Let Ω be an admissible Kähler class on M . Then the polynomial
FΩ constructed above will be called the extremal polynomial of Ω.

2.4. A characterization of extremal admissible Kähler classes. In this para-
graph we prove Theorem 1 in three steps. First, if the extremal polynomial FΩ of an
admissible Kähler class Ω is positive on (−1, 1), we construct an admissible extremal
Kähler metric in Ω by adapting an argument of Guan and Hwang (cf. [27, 30, 31]):
we discuss their work further in the next section. Second, we extend the continuity
argument of [54] to prove the existence of admissible extremal Kähler metrics for
Ω sufficiently small. Third, we use Corollary 3, the uniqueness result of Chen–
Tian [10, 11] and an argument from [54] to show that an extremal Kähler metric
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in Ω is admissible up to automorphism. Hence we deduce that the existence of an
extremal Kähler metric in Ω implies that FΩ is positive on (−1, 1).

We begin with the construction. By Proposition 1, an admissible metric (1) is
extremal exactly when for each a ∈ Â, ±ga is a CSC Kähler metric with Scal±ga =
±2dasa and (4)–(5) hold for a polynomial P of degree ≤ N + 1, where N = #Â.
The metric g is CSC iff P has degree ≤ N .

We have seen that the boundary conditions (3) imply (6) and the converse clearly
holds if pc(±1) 6= 0 (i.e., d0 = 0 = d∞). However, if g is extremal, then (4)–(5) imply
that F ′′(z) = p′c(z)Υ(z) with Υ(−1) = 2(d0 +1) if d0 > 0 and Υ(1) = −2(d∞+1) if
d∞ > 0 (because of the normalization of the Fubini–Study metrics on S0 and S∞).
Hence, by (6), F ′(z) = pc(z)Ψ(z) with Ψ(−1) = 2(d0 + 1) and Ψ(1) = −2(d∞ + 1),
and Θ(±1) = 0. Now by l’Hôpital’s Rule, Θ′(±1) = ∓2. Hence, for extremal
Kähler metrics, the boundary conditions (3) are equivalent to (6).

In summary, to obtain a globally defined admissible extremal metric on a pro-
jective bundle P (E0 ⊕ E∞) → S, we need, for CSC Kähler metrics (±ga,±ωa)
satisfying c1(E∞) − c1(E0) =

∑
a[ωa/2π], to solve (4) and (5) for a polynomial F

(of degree ≤ m+ 2) which satisfies (6) and is positive on (−1, 1).
For an admissible Kähler class Ω on M , we claim that (4)–(5) and the boundary

conditions (6) have a unique solution for F , given by the extremal polynomial FΩ.

Proposition 8. Let M = P (E0 ⊕ E∞) → S be an admissible 2m-manifold, where
S is CSC. Then for any admissible Kähler class Ω on M , the extremal polynomial
FΩ is the unique polynomial F of degree ≤ m+ 2 satisfying (4)–(5) and (6).

Proof. An admissible Kähler class on M is specified by parameters xa such that
x0 = 1, x∞ = −1 and otherwise 0 < |xa| < 1 with ωa/xa positive. We write
Scal±ga = ±2dasa. Equation (5) can be solved for a degree N − 1 polynomial P0

by Lagrange interpolation, i.e.,

P0(z) =
∑

a

2dasaxa

∏
b∈Â

(1 + xbz)

and then we can write the general degree N + 1 solution as

P (z) = P0(z) + (Az +B)
∏
a∈Â

(1 + xaz) =
(
Az +B +

∑
a

2dasaxa

1 + xaz

) ∏
a∈Â

(1 + xaz)

so that

F ′′(z) =
(
Az +B +

∑
a

2dasaxa

1 + xaz

)
pc(z).

Integrating F ′′(z) and zF ′′(z) on [−1, 1], (6) now implies that A,B satisfy (9).
Hence F = FΩ is the unique solution. �

Remark 5. An alternative approach is to solve the initial value problem (at z =
−1) for F (z). The boundary conditions at z = 1 then show that A,B satisfy (9).
This gives another formula for the extremal polynomial:

(12) FΩ(z) = 2(1 + z)pc(−1) +
∫ z

−1

(
At+B +

∑
a

2dasaxa

1 + xat

)
pc(t)(z − t)dt,

where A and B are given (as usual) by (9).

Proposition 8 shows that the existence of an admissible extremal Kähler metric
in Ω is equivalent to the positivity of the extremal polynomial FΩ on (−1, 1). Since
the leading coefficient is a nonzero multiple of A, Proposition 6 shows that such a
metric will be CSC iff the Futaki invariant FΩ(K) vanishes.



HAMILTONIAN 2-FORMS IN KÄHLER GEOMETRY, III 19

Remark 6. Since FΩ depends continuously (in fact analytically) on the admissible
Kähler class and has roots at ±1 with fixed multiplicities d∞ + 1 and d0 + 1, it is
positive on (−1, 1) for an open subset of such classes. This observation fits in with
the general stability result of LeBrun and Simanca [35].

We now show that FΩ is positive on (−1, 1) for sufficiently small Ω.

Proposition 9. Let M = P (E0 ⊕ E∞) → S be admissible, where S is a local
Kähler product of CSC metrics (±ga,±ωa). Then there is a nonempty open subset
of admissible Kähler classes on M which contain an (admissible) extremal Kähler
metric of positive scalar curvature. The admissible Kähler classes containing a CSC
metric form a real analytic hypersurface which is nonempty if c1(E∞) − c1(E0) is
strictly indefinite over S (i.e., the definite forms ωa do not all have the same sign).

Proof. As we noted in Remark 6, the extremal polynomial FΩ is positive on (−1, 1)
for an open subset of admissible Kähler classes. It remains to see that this open
subset is nonempty and to find the CSC metrics in the family. For this, we study
the behaviour of FΩ near xa = 0 for all a ∈ A.

Lemma 6. The coefficients A and B defined by (9), as functions of xa (a ∈ A) for
|xa| small are given by

A = −2(2 + d0 + d∞)
∑

a∈Adaxa +O(x2)(13)

B = −(1 + d0 + d∞)(2 + d0 + d∞)(14)

− 2
∑

a∈Adasaxa + 2(d0 − d∞)
∑

a∈Adaxa +O(x2)

where O(x2) is shorthand for
∑

a,b∈AO(xaxb).

The proof is given in Appendix B. It follows that in the limit xa → 0 for all
a ∈ A (which does not give a Kähler class), F ′′Ω(z)/(1 + z)d0(1− z)d∞ is given by

(15) −(1 + d0 + d∞)(2 + d0 + d∞) +
2d0(d0 + 1)

1 + z
+

2d∞(d∞ + 1)
1− z

.

If d0 = 0 and d∞ = 0, this is negative on (−1, 1) and FΩ is convex. By (6), for
some ε > 0, FΩ is positive and increasing on (−1,−1 + ε) and concave if d0 > 0,
while it is positive and decreasing on (1 − ε, 1) and concave if d∞ > ∞. By (15),
for sufficiently small Ω, FΩ does not have enough inflection points to have a zero
on (−1, 1) and so it is positive there. Hence the set of admissible Kähler classes
containing an admissible extremal Kähler metric is nonempty. Since z ∈ [−1, 1],
we see that for xa sufficiently small, the scalar curvature −Az −B of g is positive.

Now the Futaki invariant FΩ(K) ∼ A is a rational function of xa, a ∈ A, so the
CSC metrics form a real analytic hypersurface. It is then clear from (13) that if xa

occur with both signs, A has nonconstant sign for small xa. �

(Using the Matsushima–Lichnerowicz criterion, the CSC existence result in this
proposition provides an alternative proof of the last part of Proposition 5.)

Proposition 10. Let M be an admissible projective bundle over a CSC base. Then
if an admissible Kähler class on M contains an extremal Kähler metric, this ex-
tremal Kähler metric is admissible up to automorphism.

Proof. Consider the set U of admissible Kähler classes that contain an extremal
Kähler metric invariant under the maximal compact subgroup G of H0(M) defined
in Proposition 5. By LeBrun–Simanca [35], U is open in the set of all admissible
Kähler classes. Suppose there is some admissible class Ω0 (with parameters x0

a)
which contains an inadmissible extremal metric g0; by the Calabi Theorem, we can
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assume that g0 is G-invariant, i.e., Ω0 ∈ U . By LeBrun–Simanca [35], this implies
that in all Kähler classes sufficiently close to Ω0, there are G-invariant extremal
Kähler metrics close to g0 (in suitable Sobolev spaces; by the Sobolev embedding
theorem this also holds in the C`(M) topology, for any ` > 0). We have two cases:

• there is an open neighbourhood of Ω0 in U for which the extremal polynomial is
not positive on (−1, 1);

• there are admissible extremal Kähler metrics in classes arbitrarily close to Ω0.

The first case contradicts the existence of admissible extremal Kähler metrics on
M for sufficiently small Ω, i.e., the positivity of the extremal polynomial. Indeed,
for such Ω, FΩ(z) has at most two inflection points in (−1, 1) by (15), and an easy
case by case analysis (according to whether d0, d∞ are zero or positive) then shows
that QΩ(z) := FΩ(z)/(1 + z)d0(1 − z)d∞ , as a polynomial in z, has simple roots.
However, by assumption, for all Ω in some open neighbourhood of Ω0, the extremal
polynomial FΩ is nonnegative (by Corollary 3) but not positive on (−1, 1), so QΩ(z)
has zero discriminant. Since it is analytic in Ω, it is identically zero, a contradiction.

In the second case we apply instead the uniqueness result [10, 11] for extremal
Kähler metrics, as in [54]. Let Ωk be a sequence of admissible Kähler classes (with
parameters xk

a) which converges to Ω0 (i.e., xk
a converges to x0

a for all a) and such
that Ωk contains an admissible extremal Kähler metric g̃k which, without loss, is
not CSC. By LeBrun–Simanca [35], it follows that for k � 1 there are G-invariant
extremal Kähler metrics gk ∈ Ωk which converge to g0 in the C2(M) topology. By
Chen–Tian [10, 11], gk is the pullback of g̃k by an automorphism Ψk of (M,J,Ωk, G).
We now claim that g0 is the pullback by an automorphism of an admissible extremal
Kähler metric in Ω0, completing the proof.

To prove the claim, we use the theory of hamiltonian 2-forms of order 1 from [4, 5].
Since g̃k admits such a 2-form with S1 action generated by K, so does gk (by
Proposition 6, K is a nonzero multiple of the extremal vector field of (Ωk, G) and
so is preserved by Ψk). Now if (g, ω) is any Kähler metric on M for which K =
J gradg z generates an isometric S1 action, then it follows from [5] that this action
comes from a hamiltonian 2-form if and only if it is rigid (meaning that g(K,K)
depends only on z) and semisimple (meaning that for any regular value z0 of z,
the z-derivative at z = z0 of the family of Kähler quotient metrics gŜ(z) on the
complex quotient Ŝ is parallel and diagonalizable with respect to gŜ(z0)). Thus,
the S1 action generated by K is rigid and semisimple with respect to gk, hence also
with respect to g0 by continuity, so that g0 itself admits a hamiltonian 2-form of
order 1 with S1 action generated by K.

We now apply Theorem 3 and Proposition 1 to g0: it follows that g0 is adapted to
the bundle structure of M = P (E0 ⊕ E∞) → S and induces a CSC Kähler metric
gŜ

0 on Ŝ = P (E0) ×S P (E∞), and a connection 1-form θ0 on the principal C×-
bundle over Ŝ (whose total space is identified with M0), such that the (1, 1)-form
dθ0 =: ωŜ

0 is parallel and diagonalizable with respect to gŜ
0. Then (by Chern–

Weil theory) we have [ωŜ
0] = [ωŜ ], where ωŜ is the product CSC metric defining

the admissible class Ω0. It follows that the Kähler form of gŜ
0 is in the cohomology

class
∑

a[ωa]/x0
a, since, as explained in §1.3, this cohomology class is determined by

the admissible class Ω0, which can be uniquely written as the sum of the ‘projective
Thom class’ Ξ̂, of M̂ = P (O ⊕ L̂) → Ŝ and a pullback from Ŝ.

Now by Chen–Tian [10, 11] again (see also [14, 40]), there is an automorphism
ψ of Ŝ with gŜ = ψ∗gŜ

0, since these are CSC Kähler metrics in the same Kähler
class. In fact, the proof of [10, 11] essentially shows that any two extremal metrics
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in a given Kähler class can be connected by a geodesic in the space of Kähler po-
tentials, and therefore ψ can be chosen in the reduced (connected) automorphism
group H0(Ŝ) ⊆ Aut0(Ŝ) (see e.g. [28, 26]); in particular, such a ψ acts trivially on
cohomology. By Proposition 2 there is a fibre-preserving S1-equivariant automor-
phism Ψ of M̂ = P (O ⊕ L̂) → Ŝ, which induces ψ on Ŝ. Thus, Ψ preserves the
C×-bundle structure of M0 → Ŝ and sends the connection 1-form θ0 to a connection
1-form θ̃0 with curvature dθ̃0 = ψ∗ωŜ

0 ∈ [ωŜ
0] = [ωŜ ]; now since ψ∗ωŜ

0 and ωŜ are
both parallel (and therefore harmonic) with respect to ψ∗gŜ

0 = gŜ , Hodge theory
implies they are equal. We can therefore send θ̃0 to θ via a bundle isomorphism.

Thus we have constructed (on M0 and hence, by a standard extension argument,
everywhere) an automorphism sending g0 to an admissible extremal Kähler metric
in Ω0, as required. �

Theorem 1 follows from Propositions 8–10.

3. Existence and nonexistence results for extremal Kähler metrics

In this section we use Theorem 1 to construct explicit examples of extremal
Kähler metrics. We also obtain some nonexistence results for CSC Kähler metrics.

3.1. Constructing admissible extremal Kähler metrics. We begin with a
root counting argument due to Hwang [30] and Guan [27] which gives a complete
construction when the base S is a local Kähler product of nonnegative CSC Kähler
metrics (in fact Hwang and Guan only considered the case that S has constant
nonnegative eigenvalues of the Ricci tensor, but the proof is no different in general,
and the idea to weaken this hypothesis is already explored in [31]).

Proposition 11. Suppose that M = P (E0 ⊕ E∞) → S is admissible where S is
a local Kähler product of nonnegative CSC metrics. Then every admissible Kähler
class contains an (admissible) extremal Kähler metric.

Proof. By the boundary conditions FΩ is positive, and increasing or decreasing, on
(−1,−1 + ε) or (1− ε, 1) respectively, for some ε > 0. Suppose it is not positive on
(−1, 1). Then it has at least two maxima, one minimum and two inflection points
on (−1, 1). It follows that P has at least two roots in (−1, 1).

Let y1 ≤ · · · ≤ yQ and z1 ≤ · · · ≤ zR (Q,R ≥ 0) denote the roots (counted with
multiplicity) of P in [1,∞) and (−∞,−1] respectively, and put y0 = 1, yQ+1 = ∞,
z0 = −∞, zR+1 = −1. We order {xa : a ∈ Â} as

−1 ≤ xa1 < · · · < xaJ < 0 < xaJ+1 < · · · < xaN ≤ 1

(for some 0 ≤ J ≤ N) so that gaj is negative definite (hence with saj nonpositive)
for j ≤ J and positive definite (hence with saj nonnegative) for j ≥ J + 1.

Therefore by (5), for each 0 ≤ q ≤ Q, there is at most one xaj with yq ≤
−1/xaj < yq+1, so that Q + 1 ≥ J with equality iff there is exactly one xaj in
each such interval. Similarly, for each 0 ≤ r ≤ R, there is at most one xaj with
zr < −1/xaj ≤ zr+1, so that R + 1 ≥ N − J with equality iff there is exactly one
xaj in each such interval. Thus P has at least N − 2 roots outside (−1, 1).

Since P has degree ≤ N + 1, it has at most N − 1 roots outside (−1, 1), so we
must either have Q + 1 = J or R + 1 = N − J . If (without loss of generality)
Q + 1 = J then −1/xa1 < y1, so that P (−1/xa1) > 0 (by (5) again) and there
must be a root of P between −1/xa1 (1 ≤ −1/xa1 < y1) and the last maximum
of FΩ in (−1, 1). This now forces R + 1 = N − J also, hence P (−1/xaN ) > 0 and
there must be a root of P between the first maximum of FΩ in (−1, 1) and −1/xaN

(zR < −1/xaN ≤ −1), contradicting degP ≤ N + 1. �
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Because of this result, in the rest of this section we shall mainly be interested
in the influence of negative scalar curvature factors in the base metrics. In the
presence of such factors, the existence of extremal Kähler metrics is nontrivial, as
was already observed in [54] for ruled surfaces. By Theorem 1, such a metric exists
in a given admissible class Ω iff the extremal polynomial FΩ is positive on (−1, 1).
However, the integrals αi and βj involved in the above construction of FΩ are hard
to compute in general (see Appendix B). For the next examples, we therefore adopt
a different approach to compute FΩ. Instead of solving (4)–(5) and integrating, we
solve first the boundary conditions.

It is easy to see that (6), together with (5) for a = 0 and a = ∞ (if there are
blow-downs), are solved by any F of the form

(16) F (z) = (1− z2)
(
pc(z) + (1 + z)d0+1(1− z)d∞+1q(z)

)
for some polynomial q(z). Conversely any polynomial solution is of this form, and
to obtain the extremal polynomial FΩ, the degree of q must be ≤ (

∑
a∈A da) − 1.

Now it remains to compute F ′′(z), to solve (4)–(5) for a ∈ A (so that F = FΩ),
and to check positivity. For a given projective bundle and admissible Kähler class
this leads to equations on the coefficients of q. The Futaki invariant will be zero
(and the metric will be CSC) iff q has degree ≤ (

∑
a∈A da)− 2.

In general, the algebraic equations on q are hopelessly complicated. However,
when S has real dimension ≤ 4, they are tractable.

3.2. Extremal Kähler metrics over a Riemann surface. We consider first
extremal Kähler metrics on projective bundles over a Riemann surface, generalizing
the study of projective line bundles in [54].

Let Σ be a compact Riemann surface with CSC metric (±gΣ,±ωΣ) and let M =
P (E0 ⊕ E∞) → Σ, where E0, E∞ are projectively-flat hermitian vector bundles
with ranks d0 + 1 > 0, d∞ + 1 > 0, and c1(E∞) − c1(E0) = [ωΣ/2π]. Let ±2s be
the scalar curvature of ±gΣ and Ω be an admissible Kähler class on M defined by
0 < |x| < 1. The metric

g = (z + 1)g0 + (z + 1/x)gΣ + (z − 1)g∞ +
pc(z)
F (z)

dz2 +
F (z)
pc(z)

θ2

is an extremal metric in the given class iff F = FΩ. From §3.1, we know that

FΩ(z) = (1 + z)d0+1(1− z)d∞+1
(
(1 + xz) + c(1− z2)

)
,

where q(z) = c is a constant uniquely determined by the equation

F ′′Ω(−1/x) = 2sx(1− 1/x)d0(1 + 1/x)d∞ .

(This holds whether or not d0, d∞ are zero.) We solve this to obtain

c(s, x) = − 2x2(2+d0(1+x)+d∞(1−x)−sx)
(2+d0(1+x)+d∞(1−x))(4+d0(1+x)+d∞(1−x))+(4+d0+d∞)(1−x2)

.

Since sx has same sign as ScalΣ, it can be positive only when Σ = CP 1, in which
case E0 = L0 ⊗ Cd0+1 and E∞ = L∞ ⊗ Cd∞+1 for some line bundles L0,L∞. It
then follows that ωΣ is integral, and thus s = p/q where p ≤ 2 and q is an integer
of same sign as x ∈ (−1, 1) \ {0} (see Remark 1); then we have that sx < 2, so that
c < 0. Therefore FΩ(K), which is a nonzero multiple of c, doesn’t vanish for any
admissible Kähler class. Since b2(Σ) = 1, every Kähler class on M is admissible, so
we get an immediate nonexistence result.

Theorem 5. Let E0, E∞ be projectively-flat hermitian vector bundles over a Rie-
mann surface Σ. Then there are no CSC Kähler metrics on M = P (E0 ⊕ E∞)
unless c1(E0) = c1(E∞) (i.e., E0 ⊕ E∞ is polystable).
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This partially extends the converse in Corollary 2 to the case g > 1. Compared to
Theorem 1, we note that here c1(E∞)− c1(E0) can never be strictly indefinite. On
the other hand, by Theorem 1, we have an extremal Kähler metric for sufficiently
small Ω. Indeed it is easy to see that |c| is small when |x| is small, and hence
(1+xz)+ c(1−z2) is positive on (−1, 1). We also know from Proposition 11 that if
Σ has genus 0 or 1, then every admissible Kähler class contains an extremal Kähler
metric. Let us now see what happens when g > 1, i.e., when sx < 0.

Since c < 0, the quadratic Q(z) = (1 + xz) + c(1 − z2) is concave. It is clearly
positive at z = ±1, so it is positive on (−1, 1) unless its minimum is in (−1, 1) and
it is nonpositive there. The minimum value 1 + c+ x2/4c occurs at z = x/2c and

c(s, 1) = − 2(1 + d0)− s

2(1 + d0)(2 + d0)
, c(s,−1) = − 2(1 + d∞) + s

2(1 + d∞)(2 + d∞)
.

It follows that if s < −d0(d0 + 1), then c(s, 1) < −1
2 and hence for 0 < x < 1

sufficiently close to 1, we have c(s, x) < −1
2 and the minimum of Q(z) is in (−1, 0)

and nonpositive. Similarly, if s > d∞(d∞+1) then for −1 < x < 0 sufficiently close
to −1, we have c(s, x) < −1

2 and the minimum of Q(z) is in (0, 1) and nonpositive.
Hence if Σ has genus g > 1 and s < −d0(d0 + 1) or s > d∞(d∞ + 1) then not

every admissible Kähler class contains an admissible extremal metric.
Conversely if s ≥ −d0(d0 + 1) then it is easy to check that c(s, x) ≥ −x/2 for

all 0 < x < 1, so the minimum of Q(z) is not in (−1, 1) for any such x, whereas if
s ≤ d∞(d∞ + 1), c(s, x) ≥ x/2 for all −1 < x < 0 and again the minimum of Q(z)
is not in (−1, 1) for any such x.

Theorem 6. Let E0, E∞ be projectively-flat hermitian vector bundles of ranks
d0+1, d∞+1 over a compact Riemann surface Σ of genus g, and suppose c1(E∞)−
c1(E0) = [ωΣ/2π] for a Kähler form ±ωΣ of constant curvature. Then there exist
admissible extremal Kähler metrics on P (E0 ⊕ E∞) → Σ. Such metrics exist in
every Kähler class if g = 0 or 1. For g > 1, put ρΣ = sωΣ. Then such metrics
exist in every Kähler class if and only if −d0(d0 + 1) ≤ s ≤ d∞(d∞ + 1), otherwise
such metrics exist for |x| sufficiently small (depending on s).

Remark 7. In absence of blow-downs, we recover the examples of [54] on (complex)
pseudo-Hirzebruch surfaces P (O⊕L) → Σ, where there are Kähler classes which do
not contain an extremal Kähler metric (if Σ has genus g > 1). Our result extends
these examples to higher rank projective bundles. However, in the presence of
blow-downs, there do exist projective bundles for which there is an extremal Kähler
metric in every Kähler class, even with g > 1.

3.3. Nonexistence of CSC Kähler metrics over a Hodge 4-manifold. We
now obtain a similar nonexistence result to Theorem 5 when dimS = 4.

Theorem 7. Let (S,±gS ,±ωS) be a CSC Hodge 4-manifold and let E0, E∞ be
projectively-flat hermitian vector bundles of ranks d0 + 1, d∞ + 1 over S with
c1(E∞) − c1(E0) = [ωS/2π]. Then there are no CSC Kähler metrics in the ad-
missible Kähler classes on M = P (E0 ⊕ E∞) → S.

Proof. We will prove that FΩ(K) is nonzero for any admissible Kähler class Ω by
showing that the leading coefficient of FΩ cannot vanish. Following the discussion
in §3.1 we see that for given d0, d∞ ≥ 0 and 0 < |x| < 1 we have

FΩ(z) = (1 + z)d0+1(1− z)d∞+1
(
(1 + xz)2 + (cz + e)(1− z2)

)
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with c and e being constants uniquely determined by the conditions

F ′′Ω(−1/x) = 0 and
F ′′Ω(z)
1 + xz

∣∣∣
z=−1/x

= 4sx(1− 1/x)d0(1 + 1/x)d∞ .

The leading coefficient of FΩ vanishes iff c = 0. As before c (and e) are determined
by s and x. In particular, c(s, x) = n(s, x)/d(s, x), where

d(s, x) = (1 + d∞)(2 + d∞)2(3 + d∞)(1− x)4

+ 4(2 + d0)(1 + d∞)(2 + d∞)(3 + d∞)(1− x)3(1 + x)

+ 6(2 + d0)(2 + d∞)
(
4 + d0 + d∞ + (1 + d0)(1 + d∞)

)
(1− x)2(1 + x)2

+ 4(1 + d0)(2 + d0)(3 + d0)(2 + d∞)(1− x)(1 + x)3

+ (1 + d0)(2 + d0)2(3 + d0)(1 + x)4

(which is manifestly positive for |x| < 1) and

−n(s, x)/2x3 = 4(6− 3sx+ sx3)

+ d0(1 + x)
(
(5− x)(1 + x) + (7− x)(3− sx)

)
+ d∞(1− x)

(
(5 + x)(1− x) + (7 + x)(3− sx)

)
+ (9− sx)

(
d0(1 + x) + d∞(1− x)

)2 +
(
d0(1 + x) + d∞(1− x)

)3
.

Since s = p/q where p ≤ 3 (see Remark 1) and q is an integer of same sign as
x ∈ (−1, 1) \ {0}, we have that sx < 3 and a moment’s thought then gives that
n(s, x), and therefore c(s, x), is never zero. �

3.4. CSC Kähler metrics over a product of two Riemann surfaces. As
counterpoint to the nonexistence results of §§3.2–3.3, we now explore explicitly the
existence of CSC Kähler metrics, given by Theorem 1, in the simplest case when
the base is a global product of two Riemann surfaces and there are no blow-downs.

Let Σa (a = 1, 2) be compact Riemann surface with CSC metrics (±ga,±ωa) and
let M be P (O ⊕ L) → Σ1 × Σ2 where L = L1 ⊗ L2 and La are pullbacks of line
bundles on Σa with c1(La) = [ωa/2π]. Let ±2sa be the scalar curvature of ±ga and
−1/xa be the constant roots defining an admissible Kähler class with x1 6= x2 (the
case x1 = x2 was considered in §3.3, where we established nonexistence of CSC
metrics). We thus have pc(z) = (1 + x1z)(1 + x2z) and the metric becomes

g =
1 + x1z

x1
g1 +

1 + x2z

x2
g2 +

pc(z)
F (z)

dz2 +
F (z)
pc(z)

θ2.

According to §3.1, to obtain a CSC metric, F (z) must be the extremal polynomial

FΩ(z) = (1− z2)
(
(1 + x1z)(1 + x2z) + cx1x2(1− z2)

)
,

where c is a constant such that the following relations are satisfied:

F ′′Ω(−1/x1) = 2s1(x1 − x2) and F ′′Ω(−1/x2) = 2s2(x2 − x1).

Writing 2(1 − c) = s (which is 1
6Scalg and not to be confused with the s in the

previous two paragraphs), these relations hold iff

x1(s1(x1 − x2)− 2 + (1− s)x1x2) + 3(s− 1)x2 = 0(17)

x2(s2(x2 − x1)− 2 + (1− s)x1x2) + 3(s− 1)x1 = 0,(18)
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and these are precisely the conditions on an admissible Kähler class Ω (parame-
terized by (x1, x2) with 0 < |xa| < 1) coming from the vanishing of FΩ(K) (see
Proposition 8). Eliminating s = 2(1− c), we obtain (using x1 6= x2)

(19) x1(6 + s1x1(x2
2 − 3)) + x2(6 + s2x2(x2

1 − 3)) = 0.

The normalized scalar curvatures sa are subject to the integrality conditions
sa = 2(1 − ga)/qa for qa a nonzero integer with the same sign as xa, where ga is
the genus of Σa. In particular saxa < 2. This and (19) imply that x1x2 < 0; we
thus get a nonexistence result in the case x1x2 > 0.

Theorem 8. Let (Σa, ωa) (a = 1, 2) be compact CSC Riemann surfaces and L
be a holomorphic vector bundle over Σ1 × Σ2 with c1(L) = [(ω1 + ω2)/2π] (so
that c1(L) is positive definite). Then there are no admissible Kähler classes on
M = P (O ⊕ L) ∼= P (O ⊕ L−1) containing a CSC Kähler metric.

Remark 8. Note that we do not need to assume that the base is a global product
of compact Riemann surfaces for the nonexistence result in the above theorem. It is
sufficient to have a compact base S that is a local product of Riemann surfaces with
CSC and saxa < 2, which is always satisfied, since Scal±ga ≤ 4 by the integrality
of the pull-back of ±ωa to the universal cover of S.

In contrast to this result, we have the following observation.

Lemma 7. Let Ω be an admissible Kähler class, corresponding to a solution (x1, x2)
of (17)–(18) with s ≥ 0. Then Ω admits an admissible CSC Kähler metric with
scalar curvature 6s.

Proof. If (19) holds, the extremal polynomial FΩ of an admissible Kähler class
gives rise to a globally defined CSC Kähler metric iff FΩ > 0 on (−1, 1). Let
Q(z) = FΩ(z)/(1 − z2), and observe that the coefficient of z2 in this quadratic
is 1

2sx1x2. Since Q(±1) > 0, Q will be positive on [−1, 1] if it is convex, i.e., if
sx1x2 < 0. If s = 0, Q(z) is linear and positive on [−1, 1]. Since x1x2 < 0, FΩ is
positive on (−1, 1) whenever we have solutions of (17)–(18) with s ≥ 0. �

We now obtain some explicit solutions of (17)–(18). If we take x2(17) − x1(18)
and x1(17)− x2(18), we obtain, for x1 6= x2:

(s1 + s2)x1x2 = 3(s− 1)(x1 + x2)

2(x1 + x2) = s1x
2
1 + s2x

2
2 + (1− s)x1x2(x1 + x2).

These are equivalent to (17)–(18) for x2
1 6= x2

2. As x1 6= x2, x2
1 = x2

2 iff x1 + x2 = 0
and then s1 + s2 = 0. The following lemma deals with this case.

Lemma 8. If s1+s2 = 0, then either x1+x2 = 0 and s = (1−x2
1+2s1x1)/(3−x2

1),
or, without loss, x1 = x2 + 1, s = 1, and s1 = 2 = −s2. Conversely, these give
solutions of (17)–(18).

Proof. Clearly s1 + s2 = 0 iff s = 1 or x1 + x2 = 0. The formula for s in the latter
case is immediate from (17). Now if s = 1, then without loss of generality s1 = −s2
is nonnegative and we must have either x1 + x2 = 0, or s1 > 0 and x1 = x2 + 2/s1.
Since 0 < |xa| < 1, this forces x1 to be positive, hence s1 ≤ 2, so in fact we must
have s1 = 2 and x1 = x2 + 1. �

In order to apply Lemma 7, we suppose in the first case above that x1s1 ≥ 0: then
s > 0 since 1−x2

1 > 0 for |x1| < 1. Thus in both cases saxa ≥ 0 for a = 1, 2 and we
obtain CSC Kähler metrics on projective line bundles over T 2× T 2, T 2×CP 1 and
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CP 1 × CP 1. In particular any Kähler class on P (O ⊕O(q,−q)) → CP 1 × CP 1 is
admissible, so the above Lemmas and Proposition 11 yield the following conclusions.

Theorem 9. On P (O⊕O(q,−q)) → CP 1×CP 1 (q ≥ 1), any Kähler class (param-
eterized, up to scale, by 0 < x1 < 1 and −1 < x2 < 0) contains a unique admissible
extremal Kähler metric. For q > 1 this metric is CSC if and only if x1 + x2 = 0,
while for q = 1 it is CSC if and only if x1 + x2 = 0 or x1 = x2 + 1.

When q = 1, the two 1-parameter families of CSC Kähler classes of this theorem
intersect at x1 = 1/2, x2 = −1/2. In fact, the CSC metric in this Kähler class is
the Koiso–Sakane Kähler–Einstein metric [34, 47].

We end our study of CSC Kähler metrics on P (O⊕L) → Σ1×Σ2 by considering
the case of zero scalar curvature metrics, which we do not obtain automatically
from Theorem 1. If s = 0 then equation (17) defines x2 as a function of x1

x2 = f1(x1) = x1
2− s1x1

x2
1 − s1x1 − 3

,

whereas (18) defines x1 as a function of x2

x1 = f2(x2) = x2
2− s2x2

x2
2 − s2x2 − 3

.

Note that f1(0) = f2(0) = 0 and the gradients dx2/dx1 of the two graphs at
x1 = x2 = 0 are both negative. By comparing the size of the gradients, one sees
that for x1 small and positive the graph of f1 is above the graph of f2. Note also
that the denominator appearing in fa(xa) is negative at xa = 0.

Assume that s1 ≤ 0. If f1 has no asymptotes for 0 < x1 < 1 then f1(1) ≤ −1.
Otherwise, for the asymptote x1 = v closest to x1 = 0 we have limx1→v− = −∞.
Assume moreover that 0 < s2. If f2 has no asymptotes for −1 < x2 < 0 then
f2(−1) > 1. Otherwise, for the asymptote x2 = v closest to x2 = 0, we have
limx2→v+ = +∞. By continuity, the graphs of f1 and f2 intersect in the open square
(0, 1)× (0,−1) and (17)–(18) is solved for some 0 < x1 < 1 and −1 < x2 < 0.

Theorem 10. Let (Σa,±ωa) (a = 1, 2) be compact Riemann surfaces with genus
ga and canonical bundles Ka, and suppose that the Kähler forms ±ωa are integral
with constant curvature. Let La be line bundles on Σa with c1(La) = [ωa/2π] and,
if ga 6= 1, let La be Kqa/2(ga−1)

a tensored by a flat line bundle, for an integer qa.
There is then an admissible scalar-flat Kähler metric on P (O⊕L1⊗L2) → Σ1×Σ2

in the following cases:
• Σ1 = T 2 and L1 is ample, Σ2 has genus g2 > 1 and q2 < 0;
• Σ1 and Σ2 both have genus ga > 1, q1 > 0, and q2 < 0.

4. K-stability and admissible extremal Kähler metrics

4.1. Introduction to stability. It has been first suggested by S. T. Yau in [56],
then formulated and worked out in several ways, in particular by G. Tian [53] and
by S. Donaldson [15], that the existence of a Kähler-Einstein or, more generally,
of a CSC or an extremal Kähler metric on a projective complex manifold in the
Kähler class determined by some polarization L should be equivalent to some kind of
stability for the polarized projective variety (M,L). This conjecture is drawn from
a detailed formal picture which makes clear an analogy with the well-established
relation between the polystability of vector bundles and the existence of Einstein–
Hermitian connections.

At present the most promising candidate for the conjectured stability criterion
is ‘K-polystability’, in the form given by Donaldson [15], following Tian [53]: a
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polarized projective variety (M,L) is K-polystable if any ‘test configuration’ for
(M,L) has nonpositive Futaki invariant with equality iff the test configuration is a
product. We shall explain this definition shortly. We also discuss an idea of J. Ross
and R. Thomas [45, 46], who focus on test configurations arising as ‘deformations
to the normal cone’ of subschemes of (M,L), leading to a notion of ‘slope’ K-
polystability analogous to the slope polystability of vector bundles. We explore
this analogy further in §4.2.

(Note that some authors use the term K-stable rather than K-polystable, but the
latter term agrees better with pre-existing notions of stability.)

4.1.1. Finite dimensional motivation. Let (X,L,Ω) be a polarized Kähler manifold
with a hermitian metric on L with curvature −iΩ (thus c1(L) = Ω/2π). Suppose
a compact connected group G acts holomorphically on X with momentum map
µ : X → g∗ (i.e., d〈µ, ξ〉 = −Ω(Kξ, ·), where Kξ is the vector field on X correspond-
ing to ξ ∈ g, the Lie algebra of G). There is a lift of the action to L generated by
K̃ξ + 〈µ, ξ〉K for each ξ ∈ g, where 〈µ, ξ〉 is pulled back to L, K̃ξ is the horizontal
lift, and K generates the standard U(1) action on L. The action of g on X and L
extends to an action of the complexification gc and we assume this integrates to an
action of a complex Lie group Gc.

By a well-known result of Kempf–Ness and Kirwan, for any x ∈ X, there is a
g ∈ Gc such that µ(g · x) = 0 iff for any nonzero lift x̃ of x to L∗, the orbit Gc · x̃ is
closed. Such points x are said to be polystable. If Xps denotes the set of polystable
points in X, we then have an equality between Xps/Gc, the polystable quotient of
X by Gc, and the symplectic quotient X//G = µ−1(0)/G.
Gc · x̃ is closed iff α(C×) · x̃ is closed for any one parameter subgroup α : C× ↪→

Gc. This leads to the Hilbert–Mumford criterion for polystability: x is said to be
semistable if for any one parameter subgroup α : C× ↪→ Gc, the linear action of C×
on L∗x0

has nonpositive weight wx0(α) ≤ 0, where x0 = limλ→0 α(λ) · x is the limit
point; x is then polystable if it is semistable and wx0(α) = 0 only when x0 = x;
finally x is stable if it is polystable and has zero dimensional isotropy subgroup.

4.1.2. The infinite dimensional analogue. We apply the finite dimensional picture
above formally to an infinite dimensional setting in which X is the space of compat-
ible complex structures on a compact symplectic manifold (M,ω) with H1(M) = 0.
The space X has a natural Kähler metric with respect to which the group G of
symplectomorphisms of M acts holomorphically with a momentum map µ : X →
C∞0 (M,R) given by the scalar curvature of the corresponding Kähler metric on
M , modified by a constant in order to lie in g∗ ∼= g = C∞0 (M,R), the functions
with total integral zero, which is the Lie algebra of the symplectomorphism group
equipped with the L2-inner product. A quick way to see this is to observe that the
Mabuchi K-energy (see §2.3) of M is a Kähler potential for the metric on X: the
gradient on X of the Mabuchi K-energy is the scalar curvature [26].

There is no group whose Lie algebra is the complexification gc, but one can
still consider the foliation of X given by the vector fields induced by gc. The
complex structures in a given leaf are all biholomorphic by a diffeomorphism in the
connected component of the identity, and pulling back the symplectic form ω by
these biholomorphisms, we may identify the leaf with the set of all Kähler metrics
in a fixed Kähler class, compatible with a fixed complex structure on M . Hence
there should be a CSC metric in a given Kähler class iff the momentum map µ
vanishes on the corresponding leaf iff the leaf is stable in a suitable sense.
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To make precise this infinite dimensional analogue, we formalize what is meant
by the orbit of a 1-parameter subgroup in terms of ‘test configurations’ and give a
Hilbert–Mumford formulation of stability in terms of the weight of limit points.

4.1.3. Test configurations. Let (M,Ω) be a Hodge manifold, viewed as a polarized
projective variety with respect to a line bundle L with c1(L) = Ω/2π.

Definition 2. [15] A test configuration for (M,L) is a polarized scheme (X, E) over
C with a C× action α and a flat proper C×-equivariant morphism p : X → C (where
C× acts on C by scalar multiplication) such that the fibre (Xt = p−1(t), E|Xt

) is
isomorphic to (M,L) for some (hence all) t 6= 0.

(X0, E|X0
) is called the central fibre. Since 0 ∈ C is fixed by the action, (X0, E|X0

)
inherits a C× action, also denoted by α.

A test configuration is said to be a product configuration if X = M ×C and α is
given by a C× action on M (and scalar multiplication on C).

Since relevant properties of test configurations are unchanged if we replace E by
Er for a positive integer r, we can let E be a Q-line bundle in the definition above
(i.e., E denotes a ‘formal root’ of a line bundle Er for some positive integer r).

A particularly important class of test configurations are those associated to a
subscheme of (M,L), as studied by J. Ross and R. Thomas [45, 46]. We shall state
it here for complex submanifolds of (M,L), but the same definition actually makes
sense for subschemes.

Definition 3 (Deformation to the normal cone). For a polarized complex mani-
fold (M,L) and a complex submanifold Z the normal bundle is defined by νZ =
TM|Z/TZ (in the more general situation when Z is a subscheme of M , νZ then
denotes the normal cone, defined similarly). The deformation to the normal cone
is then defined as the family p : X → C, where X = M̂ × C denotes the blow-
up of M × C along Z × {0} and p the map induced by the natural projection
from M × C to C. For t 6= 0 in C, p−1(t) is then biholomrphic to M , whereas
p−1(0) = P ∪ M̂ , where P denotes the exceptional divisor in M̂ × C, which is bi-
holomorphic to P(OZ ⊕νZ), hence is a compactification of the normal cone, and M̂
stands for the blow-up of M along Z; notice that P ∩ M̂ = P(νZ), the exceptional
divisor in M̂ .5 We equip this with the polarization Ec = π∗L⊗O(−cP ), where O(P )
is the line bundle associated to the exceptional divisor P , π : X →M is induced by
the natural projection from M ×C to M , and c is a positive rational number such
that Ec is an ample Q-line bundle. This last condition gives an upper bound ε on
c, called the Seshadri constant of Z with respect to L.

We let α be the C× action coming from the trivial action on M and multiplication
on C. This clearly defines an action on X with a lift to Ec. Hence the deformation
to the normal cone determines a family of test configurations, parameterized by
c ∈ (0, ε) ∩Q.

4.1.4. The Futaki invariant and K-stability. K-stability is defined using a Hilbert–
Mumford criterion, i.e., in terms of a ‘weight’ associated to each test configuration.
This weight is given by the Futaki invariant of the central fibre; however, since the

5The name deformation to the normal cone originates from the following fact: In the induced

holomorphic embedding Z×C ↪→ M̂ × C, Z×{t} ↪→ p−1(t) is isomorphic to the natural embedding

Z ↪→ M , whereas Z ×{0} ↪→ p−1(0) = P ∪ M̂ has its image in P = P(OZ ⊕ νZ) and is isomorphic
to the natural embedding Z ↪→ νZ ⊂ P(OZ ⊕ νZ) as the zero section of νZ , cf. [20, Chapter 5] for
more details on this classical construction.
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latter is typically a singular projective variety, we need an algebraic geometric def-
inition of the Futaki invariant. Such a definition has been given by Donaldson [15].

Let V be a scheme of dimension n over C polarized by an ample line bundle L and
suppose that α is a C× action on V with a lift to L. Then α acts on the vector spaces
Hk = H0(V,Lk), k ∈ Z+. If wk(α) denotes the weight of the highest exterior power
of Hk (that is, the trace TrAk of the infinitesimal generator Ak of the action) and
dk denotes the dimension of Hk then wk(α) and dk are given by polynomials in k for
sufficiently large k, of degrees at most n+1 and n respectively. For sufficiently large
k the quotient wk(α)/(kdk) can be expanded into a power series with no positive
powers. The Futaki invariant F(α) is the residue at k = 0 of this quotient, that is,
the coefficient of the k−1 term in the resulting expansion. The Futaki invariant is
independent of the choice of lift of α to L. (When V is a manifold, this definition
coincides with Futaki’s original definition up to a normalization convention.)

Definition 4. The Futaki invariant of a test configuration is defined to be the
Futaki invariant F(α) of the central fibre, where α denotes the induced C× action.

A Hodge manifold (M,L) is said to be K-polystable if the Futaki invariant of
any test configuration is nonpositive, and equal to zero if and only if the test
configuration is a product configuration.

For the test configurations (X, Ec) arising from a deformation to a normal cone,
J. Ross and R. Thomas [45, 46] show that the Futaki invariants F(αc) are rational
in c ∈ (0, ε)∩Q, where ε is the Seshadri constant, and can be extended to c ∈ (0, ε).
With this in mind, we give the following

Definition 5. A Hodge manifold (M,L) is said to be slope K-polystable if for the
deformation to the normal cone of any nontrivial subscheme, the Futaki invariant
F(αc) of the corresponding family (X, Ec) of test configurations and its natural
extension to the whole interval (0, ε) are negative.

Remark 9. The concepts of slope K-stability, slope K-polystability, slope K-semi-
stability were introduced by J. Ross and R. Thomas [45], [46] and, in their relative
versions, by G. Székelyhidi [50], [51]. The notion of slope K-polystability in [45]
is stronger than the one in [46] and has been partially motivated by the limiting
situations illustrated by our Example 1 below (cf. Section 2.1 and Remark 3.9 in
[45], and Remark 10 below). Our Definition 5 is closer to the one in [45], but is not
quite the same as [45] also requires F(αε) < 0 unless ε is rational and the semi-ample
configuration (X, Eε) is the pullback by a contraction of a product configuration.
We shall not need this refinement. As observed in [45, Remark 3.9], the notion
of (relative) slope K-polystability used here and in [45] might more properly be
referred to as analytic (relative) slope K-polystability, corresponding to analytic
test configurations (while the original definitions in [53, 15] only concern algebraic
test configurations).

4.2. Stable bundles and CSC Kähler metrics. We now relate our results con-
cerning CSC Kähler metrics on projective bundles to stability theory for vector
bundles. Recall that if E → S is a holomorphic vector bundle over a compact
kählerian 2d-manifold (S, [ωh]), the slope µ(E) is the number c1(E) · [ωh]d−1; E is
called (slope) stable or semistable if µ(F ) < µ(E) or µ(F ) ≤ µ(E) (respectively) for
any proper coherent subsheaf F ⊂ E; it is polystable if it is a direct sum of stable
vector bundles with the same slope; then, as is well-known, ‘stable’ ⇒ ‘polystable’
⇒ ‘semistable’, and by the Hitchin–Kobayashi correspondence (established by Don-
aldson [13] and Uhlenbeck–Yau [55]), E admits an Einstein–Hermitian connection
iff it is polystable.
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There is a close analogy between K-stability for polarized Kähler manifolds and
slope stability for vector bundles. In particular, one might hope to find a direct
relation between the existence problem for CSC Kähler metrics on a geometrically
ruled complex manifold P (E) over S and the stability of E → S. Notable progress
in understanding the relation between K-polystability of P (E) and slope polysta-
bility of E has been made by Ross–Thomas [45, 46], using their notion of slope
K-polystability: indeed if F is a coherent subsheaf of E, then P (F ) is a subscheme
of P (E) and deformation to the normal cone of P (F ) is a test configaration which
‘destabilizes’ P (E) iff µ(F ) > µ(E) (see [45]).

Using the general theory of CSC Kähler metrics, the work of [45] shows that
if E is not semistable with respect to an integral Kähler class [ωh] on S, then
for all k � 1 the integral classes 2πc1(O(1)E) + kp∗[ωh] on P (E)

p→ S do not
contain CSC metrics. As a partial converse, Hong [32, Theorem A] shows that if
E is polystable and h0(M) → h0(S) is surjective, then there is a CSC metric in
2πc1(O(1)E) + kp∗[ωh], for each k � 1, iff the Futaki invariant FΩ vanishes.

To put our results in this context, let P (E) → S be admissible so E = E0 ⊕E∞
for projectively-flat (and thus polystable) hermitian vector bundles E0 and E∞
with c1(E∞)−c1(E0) =

∑
a[ωa/2π]. Thus E is determined up to tensor product by

a line bundle and is polystable iff it is semistable iff µ(E0) = µ(E∞). With respect
to a Kähler class [ωh] = [

∑
a ωa/fa] on S (where faxa > 0), this condition reads

(20) 0 = µ(E∞)− µ(E0) =
(d− 1)!

2π
Vol(S,

∏
aωa/fa)

(∑
adafa

)
,

which can happen for suitable fa iff c1(E∞) − c1(E0) is strictly indefinite; this is
exactly the condition of Theorem 1 that ensures the existence of CSC metrics in a
sufficiently small admissible Kähler class Ω = Ξ + p∗[

∑
a∈A ωa/xa], subject only to

the constraint that FΩ(K) = 0. Note that Ξ is equal to 4πc1(O(1)E) up to a basic
term (depending on the choice of E)—this follows by integrating Ξd0+d∞+1 over a
fibre and using the expression for I(d0, d∞, 0) from Appendix B. Thus, admissible
classes play a similar role to those considered by Ross–Thomas and Hong, and
k � 1 corresponds to |xa| sufficiently small in our picture. (We recall that this
means that the fibres are small compared to the base.) However, there is not a
simple relation in general between those Ω containing a CSC metric and the [ωh]
with respect to which E is polystable: the approach of Ross–Thomas and Hong
suggests taking fa = xa/(1 + raxa), for some ra depending only on E; then (20)
agrees asymptotically with FΩ(K) = 0 in the limit xa → 0, but the two conditions
define distinct hypersurfaces in general.

Conversely, in the case E0 and E∞ are line bundles over a product S = Σ1 ×Σ2

of two Riemann surfaces, Theorem 8 shows that polystability of E with respect to
some Kähler class on S (which is unique up to scale in this case) is also necessary
for the existence of a CSC metric in an admissible Kähler class on P (E).

Consider now the case that the base S is a Riemann surface Σ of genus g;
the stability of a holomorphic vector bundle is then independent of the choice of
a Kähler class on Σ, and it is natural to speculate [45] that the notion of K-
polystability of the projective manifold P (E) should be independent of the specific
Kähler class, and to conjecture that P (E) admits a CSC Kähler metric iff E is
polystable. At present (see [2]) this conjecture is confirmed when E is of rank 2 (i.e.,
on geometrically ruled surfaces), when g ≤ 1 and E is a direct sum of line bundles
(cf. Corollary 2—this always holds when g = 0), or when E is indecomposable and
g ≥ 2. Theorem 5 further confirms the conjecture in the case of decomposable
bundles of the form E = E0 ⊕ E∞ with E0 and E∞ polystable.
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4.3. Extremal Kähler metrics and relative K-polystability. In recent work,
G. Székelyhidi [50] has extended the theory of K-polystability to cover extremal
Kähler metrics, not just CSC Kähler metrics. We briefly explain his ideas here.

4.3.1. Motivation. Recall that extremal Kähler metrics are critical points for the
L2-norm of the scalar curvature for metrics in a fixed Kähler class on a complex
manifold (M,J) [7]. If we identify the Kähler class with a leaf of the formal Gc

orbit described in §4.1.2, we are therefore looking for critical points of ||µ||2, where
µ : X → C∞0 (M,R) and X is the space of compatible complex structures on a
compact symplectic manifold (M,ω) with H1(M) = 0.

We can adapt the finite dimensional model of §4.1.1 to this problem by supposing
that the Lie algebra g is equipped with a G-invariant inner product 〈, 〉. Now,
following Székelyhidi [50], we note that the weight wx of the linear action of the
isotropy algebra gx on L∗x is given by wx = 〈βx, ·〉 : gx → R for some βx ∈ gx, which
is the orthogonal projection of µ(x) onto gx. We refer to βx (or rather the induced
vector field on X) as the extremal vector field: for in the infinite dimensional setting
it agrees with the extremal vector field of Futaki and Mabuchi (see §2.2).

Clearly x is a critical point of ||µ||2 iff µ(x) is in gx, i.e., βx = µ(x). Using this,
Székelyhidi shows that x is in the Gc orbit of a critical point of ||µ||2 if and only if it
is polystable for the action of the subgroup of Gc whose Lie algebra is the subspace
β⊥x of the centralizer of βx. The Hilbert–Mumford criterion may then be modified
as follows: the modified weight wx0(α)− 〈α, βx〉wx0(βx)/〈βx, βx〉 of the limit point
x0 should be nonpositive for any one parameter subgroup α of the centralizer of
βx, with equality if and only if x0 = x.

4.3.2. The inner product and modified Futaki invariant. Thus motivated, we return
to the setting of §4.1.4 and define a modified Futaki invariant of a polarized scheme
(V,L) (of dimension n over C) relative to a C× action β. We first need to define an
inner product between such actions.

Assume then that V has two C× actions α and β with lifts to L and infinitesimal
generators Ak and Bk of the actions on Hk. Then for k sufficiently large, Tr (AkBk)
is a polynomial of degree at most n+ 2. The inner product 〈α, β〉 is defined to be
the coefficient of kn+2 of the expansion of Tr (AkBk)− wk(α)wk(β)/dk for large k,
which is independent of the lifts of α and β to L: indeed it depends only on the
trace-free parts of Ak and Bk. (When V is a manifold, this inner product coincides
with Futaki–Mabuchi bilinear form [22] up to a normalization convention.)

We define the modified Futaki invariant [50] Fβ(α) of α relative to β (assuming
the action β is nontrivial) to be

Fβ(α) = F(α)− 〈α, β〉
〈β, β〉

F(β).

4.3.3. Relative K-stability. Let (M,Ω, L) be as in §4.1.3 and suppose it has a non-
trivial C× action β.

Definition 6. [50] A test configuration (X, E) for (M,L) is compatible with β
if there is a C× action, also denoted by β, on (X, E) preserving p : X → C and
inducing the trivial action on C, such that β restricted to (Xt, E|Xt

) coincides with
the original action for t 6= 0 under the isomorphism with (M,L).

In this case we have an induced action on the central fibre X0, also called β, and
the modified Futaki invariant of the test configuration is defined to be Fβ(α).
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A polarized Hodge manifold (M,L) with nontrivial C× action β is K-polystable
relative to β if the modified Futaki invariant of any test configuration (X, E) com-
patible with β is nonpositive, and equal to zero if and only if (X, E) is a product.

If (M,L) has a C× action β which preserves a subscheme Z, the test configura-
tions (X, Ec) arising from the deformation to the normal cone are compatible with
β. As in [45, 46], Fβ(αc) is rational in c ∈ (0, ε) ∩ Q and so extends to c ∈ (0, ε).
Thus, cf. §4.1.4, we have a notion of slope K-polystability relative to β.

Definition 7. A polarized Hodge manifold (M,L) with nontrivial C× action β is
said to be slope K-polystable relative to β if the modified Futaki invariant Fβ(αc) of
the family (X, Ec) of test configurations, corresponding to the deformation to the
normal cone of any nontrivial subsheme preserved by β, is negative for c ∈ (0, ε).

As with the definition of (absolute) slope K-polystability, strictly speaking, we
should also require Fβ(αε) < 0 unless ε is rational and (X, Eε) is the pullback by a
contraction of a product configuration.

It follows from [23, 42] that the (Futaki–Mabuchi) extremal vector field associated
to a Hodge Kähler manifold (M,Ω) with a maximal compact connected subgroup
G of H0(M) has closed orbits, and therefore defines an effective C× action which
we will refer to as the extremal C× action of (M,Ω, G). By ‘K-polystable relative
to G’, we mean relative to the extremal C× action of (Ω, G). The motivation of
§4.3.1 then suggests the following conjecture [50].

Conjecture 1. Let (M,Ω, L) be a polarized Hodge manifold and G a maximal
compact connected subgroup of H0(M). Then there is a G-invariant extremal Kähler
metric in Ω = 2πc1(L) if and only if (M,L) is K-polystable relative to G.

As a motivating example, Székelyhidi considers the deformation to the normal
cone of the infinity section in a (higher genus) polarized geometrically ruled surfaces
P (O⊕L) → Σ. He finds that relative K-polystability implies existence of extremal
Kähler metrics of the type constructed in [54], which are precisely the admissible
metrics on these bundles. In the next section we generalize this idea to arbitrary
admissible bundles. However, in doing so, we find that unless dimS ≤ 4, we need
to replace ‘K-polystable’ by ‘slope K-polystable’ in the above conjecture.

4.4. Relative K-polystability of admissible projective bundles. We now
consider the deformation to the normal cone (X, Ec, α) of the infinity section e∞ =
z−1(−1) = P (0⊕ E∞) for an admissible projective bundle M = P (E0 ⊕ E∞) → S
(with dimS = 2d), polarized by a line bundle L with Ω = 2πc1(L) admissible.

We therefore choose the admissible Kähler class Ω = Ξ+
∑

a[ωa]/xa to be integral
(where 0 < |xa| ≤ 1 with equality iff a ∈ {0,∞}). The Seshadri constant of this
polarization is 2, so we take c ∈ (0, 2) ∩ Q. Since the C× action β induced by
the vector field K preserves Z, X is compatible with this action. We will use the
letters α, β to denote also the corresponding actions on the (polarized) central fibre
(X0, L0) and on the vector space H0(X0, L

k
0), where L0 = Ec|X0

.
Let us calculate the modified Futaki invariant of this configuration. For this we

first note that if I∞ ⊂ OM is the ideal sheaf of holomorphic functions vanishing on
e∞, then for any p ≥ 0, Ip

∞/Ip+1
∞ is supported on e∞, and its restriction is Spν∗∞,

where ν∞ is the normal bundle to e∞ in M .
Therefore, for k sufficiently large, we have, as in [45, 50]

H0(X0, L
k
0) =

(2−c)k⊕
i=0

H0(e∞, L|ke∞ ⊗ S2k−iν∗∞)⊕
ck⊕

j=1

H0(e∞, L|ke∞ ⊗ Sck−jν∗∞),



HAMILTONIAN 2-FORMS IN KÄHLER GEOMETRY, III 33

where α acts on the first direct sum with weight 0 and on the components of the
second direct sum with weight −j. We can choose the lift of β to L so that the
weight of the induced action on H0(e∞, L|ke∞ ⊗ Suk+vν∗∞) is (u− 1)k + v.

Now Spν∗∞ is the direct image q∗O(p)ν∞ , where O(−1)ν∞ is the (fibrewise) tau-
tological bundle of q : ê∞ = P (ν∞) → e∞. Also ê∞ may be identified with Ŝ via
the obvious inclusion i of Ŝ into M̂ = P (O ⊕ L̂) as the infinity section, and then
i∗O(1)ν∞ = L̂. For convenience, we now drop the hats, so that we have

H0(X0, L
k
0) =

(1−z)k⊕
i=0

H0(S, i∗Lk ⊗ L2k−i)⊕
(1+z)k⊕

j=1

H0(S, i∗Lk ⊗ L(1+z)k−j)

=
2k⊕
i=0

H0(S, i∗Lk ⊗ L2k−i),

where we have abused notation by writing c−1 = z; a priori this has nothing to do
with the momentum map that we also denote by z, but notice that it does take (ra-
tional) values in the same interval (−1, 1). To compute dk, TrAk, TrBk, TrAkBk,
TrB2

k, and thereby Fβ(α), we need only the dimensions of these vector spaces. We
note that we only need to compute dk, TrAk and TrBk to subleading order in k,
whereas for TrAkBk and TrB2

k the leading order term suffices. Consequently we
will be dropping lower order terms without further comment. We also note that
since the Futaki invariant is defined in terms of ratios, we can ignore any overall
multiples. Now by the Riemann–Roch formula and the ampleness of i∗L (in fact it
is only semiample if d∞ > 0, but we can apply a limiting argument in this case, as
in [45]), for sufficiently large k we have that

h0(S, i∗Lk ⊗ Luk+v) = χ(S, i∗Lk ⊗ Luk+v) =
(
ch(i∗Lk ⊗ Luk+v) · Td(S)

)
[S]

=
(
c1(i∗Lk ⊗ Luk+v) + 1

2c1(K
−1
S )

)d[S] +O(kd−2)

=
(∑

a

k +
(
(u− 1)k + v + sa/2

)
xa

xa
[ωa/2π]

)d

[S] +O(kd−2)

since the Ricci form of Sa may be written saωa +ρa,0 where ρa,0∧ωda−1
a = 0. After

an overall multiplication by (2π)d/d! and
∏

a x
da
a /Vol(Sa, ωa), this is

kdps
c(u− 1 + v/k) +O(kd−2),

where ps
c(t) =

∏
a(1 + xa(t+ sa/2k))da . In order to carry out the summations over

i and j we use the trapezium rule, as in [45, Lemma 4.7].

Lemma 9. Let f(x) be a polynomial and b a rational number. Then for ε ∈ {0, 1}
and for k ∈ Z+ such that bk is a positive integer, we have

bk∑
i=ε

f(i/k) = k

∫ b

0
f(t) dt+

1
2
(f(b) + (−1)εf(0)) +O(k−1).

The proof is easy (see e.g. [45]): by linearity we can assume f(x) = xm and
then use

∑N
i=1 i

m = Nm+1/(m+ 1) +Nm/2 +O(Nm−1) (which in turn is an easy
induction on N). We then obtain (up to an overall multiple), that for any r ≥ 0,

k−d−rTrBr
k = k

∫ 2

0
(1− t)rps

c(1− t) dt+ 1
2(pc(1) + (−1)rpc(−1)) +O(1/k)

= kαr + 1
2βr +O(1/k),
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with αr =
∫ 1
−1 pc(t)tr dt and βr as in (7). Setting r = 0 gives dk. Similarly, using

the explicit formula (12) for the extremal polynomial FΩ(z) we obtain

k−d−1TrAk = k

∫ 1+z

0
−tps

c(z − t) dt− 1
2(1 + z)pc(−1) +O(1/k)

= −k
∫ z

−1
pc(t)(z − t) dt− 1

2

∫ z

−1

(∑
a

dasaxa

1 + xat

)
pc(t)(z − t)dt

− 1
2(1 + z)pc(−1) +O(1/k)

= −k
∫ z

−1
(z − t)pc(t) dt

− 1
4
FΩ(z) +

1
4

∫ z

−1
(At+B)pc(t)(z − t) dt+O(1/k)

k−d−3TrAkBk =
∫ 1+z

0
−t(z − t)pc(z − t) dt+O(1/k)

= −
∫ z

−1
pc(t)t(z − t) dt+O(1/k)

where A and B are the solutions of (9). Now we are ready to calculate 〈β, β〉,
〈α, β〉, F(β), and F(α). (We omit the dependence of z for convenience.)

〈β, β〉 =
α2α0 − α2

1

α0

〈α, β〉 = −
∫ z

−1
pc(t)t(z − t) dt+

α1

α0

∫ z

−1
pc(t)(z − t) dt

F(α) = Resk=0
(TrAk)1 + (TrAk)0/k
α0(1 + β0/(2kα0))

=
α0(TrAk)0 − 1

2β0(TrAk)1
α2

0

=
−1

4α0FΩ(z) + 1
4α0

∫ z
−1(At+B)pc(t)(z − t) dt+ 1

2β0

∫ z
−1 pc(t)(z − t) dt

α2
0

F(β) = Resk=0
α1 + β1/2k

α0(1 + β0/(2kα0))
=
β1α0 − β0α1

2α2
0

where we have set (TrAk)0 = −1
4FΩ(z)+ 1

4

∫ z
−1(At+B)pc(t)(z−t) dt and (TrAk)1 =

−k
∫ z
−1 pc(t)(z − t) dt.

Finally, we can calculate the modified Futaki invariant for our test configuration.

α2
0Fβ(α) = α2

0

(
F(α)− 〈α, β〉F(β)/〈β, β〉

)
= −1

4α0FΩ(z) + 1
4α0

∫ z

−1
(At+B)pc(t)(z − t) dt+ 1

2β0

∫ z

−1
pc(t)(z − t) dt

+
α0(β1α0 − β0α1)

2(α2α0 − α2
1)

(∫ z

−1
pc(t)t(z − t) dt− α1

α0

∫ z

−1
pc(t)(z − t) dt

)
= −1

4α0FΩ(z) + 1
4α0

∫ z

−1
(At+B)pc(t)(z − t) dt− 1

4α0

∫ z

−1
Atpc(t)(z − t) dt

+
β0(α2α0 − α2

1)− α1(β1α0 − β0α1)
2(α2α0 − α2

1)

∫ z

−1
pc(t)(z − t) dt
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= −1
4α0FΩ(z) + 1

4α0

∫ z

−1
(At+B)pc(t)(z − t) dt

− 1
4α0

∫ z

−1
Atpc(t)(z − t) dt− 1

4α0

∫ z

−1
Bpc(t)(z − t) dt

= −1
4α0FΩ(z)

which is a negative multiple of the extremal polynomial. It follows immediately
that if (M,L) is slope K-polystable relative to K = J gradg z, then FΩ is positive
on (−1, 1) and Ω contains an admissible extremal metric by Theorem 1.

If (M,L) is slope K-polystable in the absolute sense, then F(α) is negative on
(−1, 1) and hence nonpositive at z = 1. Evaluating the integrals in this case (and
using FΩ(1) = 0), we find that A ≥ 0. Now if we swap the roles of the zero
and infinity sections (by interchanging E0 and E∞) then the analogous calculation
shows that A ≤ 0 (we get the same formulae with the change of variables z 7→ −z).
Thus A = 0 and F(β) = 0. (Intuitively, the reason we get F(β) = 0 is that in these
limits, deformation to the normal cone of the zero or infinity section is actually the
pullback by a contraction of the product configuration associated to±β, cf. [45, 46].)
Hence (M,L) is slope K-polystable relative to β, FΩ is positive on (−1, 1), and the
admissible extremal metric is CSC.

This proves Theorem 2, providing evidence for the reverse implication in Con-
jecture 1 (with relative K-stability replaced by relative slope K-stability) because
in our setting, the extremal vector field is a nonzero multiple of AK. This calcu-
lation also shows that the forward implication in Conjecture 1 implies Corollary 3,
without referring to K-energy or the results of Chen–Tian [10, 11], providing fur-
ther indirect evidence. However, if we use relative K-stability instead of relative
slope K-stability, we can only deduce that FΩ is positive on (−1, 1) ∩Q and hence
nonnegative on (−1, 1). However, since Ω is integral, FΩ has rational coefficients,
and so when dimS(=

∑
a∈A 2da) ≤ 4 it follows that FΩ is positive on (−1, 1): in-

deed FΩ(z) = (1 + z)d0+1(1− z)d∞+1Q(z) where Q(z) is a quadratic or cubic with
rational coefficients, and the repeated roots of such a polynomial must be rational.

On the other hand, the following examples show that positivity of the extremal
polynomial on (−1, 1) ∩Q is not sufficient for the existence of an extremal Kähler
metric when dimS = 6.

Example 1. Let S = Σ1×Σ2×Σ3 be a product of hyperbolic Riemann surfaces Σa

with integral Kähler classes [±ωa]. Then for any admissible projective line bundle
M over S and any admissible integral Kähler class Ω on M with parameters xa ∈ Q,
the extremal polynomial has the form

FΩ(z) = (1− z2)(pc(z) + (1− z2)(a0 + a1z + a2z
2)).

where the aj are determined by the constant gaussian curvatures ±sa of Σa (via (4)–
(5)). However, since we are free to choose the genera and degrees of the line bundles
defining M , the sa can be arbitrary rational numbers subject only to the constraint
that saxa < 0 (so that the gaussian curvatures are negative). Hence we are free to
choose the aj subject to this constraint.

We claim that for any rational r > 0 and x1 > x2 > 0 > x3, we can choose the
aj so that FΩ(z) is a positive multiple of (1− z2)(z2 + rz − 1)2 provided that

(21) x1x2x3 + x1 + x2 + x3 = 0.

FΩ then has a repeated root in (0, 1) and another in (−∞,−1) and for r in an
open subset of Q+, these roots are irrational. Obviously for any 1 > x1 > x2 > 0
rational, (21) has a unique rational solution x3 = −(x1 + x2)/(1 + x1x2) with
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0 > x3 > −1, and it is elementary to verify our claim by equating coefficients.
F ′′Ω(z) is then negative for large z and has at least two roots in (−1, 1) and none
in (1,∞). We then check that for r > 8/5, F ′′Ω(−1) is negative and so the other
two roots (which must be real, since FΩ must have four inflection points) are in
(−∞,−1). Hence we can choose x1, x2 so that s1x1 < 0 and s2x2 < 0, with sa

defined by (4)–(5). It automatically follows that s3x3 < 0.
These data then define a countably infinite family (parameterized by (x1, x2, r)

in an open subset of Q3) of admissible projective line bundles over products of three
Riemann surfaces together with admissible rational Kähler classes (which we can
scale to be integral) such that FΩ is positive on (−1, 1) ∩ Q, but has an irrational
repeated root in (−1, 1). By Theorem 1 these Kähler classes then do not contain
an extremal Kähler metric.

Remark 10. According to the conjectures [15, 50], the above examples should
define unstable projective varieties. However, the degeneration that demonstrates
this instability is not algebraic. While we cannot prove that there is no other
algebraic test configuration which would detect this instability, it is difficult to
imagine how such a test configuration could be constructed. Thus, presumably, our
examples are algebraically (relative) K-polystable but analytically only (relative)
K-semistable. This suggests that the non-algebraic degenerations implicit in the
use of slope K-polystability may be essential to relate stability to existence of CSC
and extremal Kähler metrics.

Appendix A. Relation to previous papers

In this appendix we summarize the classification of compact Kähler 2m-manifolds
M with a hamiltonian 2-form of order ` given in [5, Theorem 5], and explain
how Theorem 3 follows from this classification in the case ` = 1. We also give a
nonexistence result for extremal Kähler metrics when ` = 2.

A.1. Summary of the classification. Let (M, g, J, ω) be a compact connected
Kähler 2m-manifold with a hamiltonian 2-form φ of order `. Let p(t) be the mo-
mentum polynomial of φ and K(t) = J gradg p(t) be the corresponding family of
hamiltonian Killing vector fields. We summarize results from [4, 5] in italics.
The vector fields {K(t) : t ∈ R} generate an effective isometric hamiltonian action
of an `-torus T on M and p(t) has m− ` constant roots counted with multiplicity.
This action is free on a connected dense open subset M0 of M .

We let S∆ be the stable quotient of M by the induced action of the complexified
torus Tc and denote by ηa, for a in a finite set with ≤ m− ` elements, the distinct
constant roots of p(t) and by da their multiplicities.
S∆ is covered by a product S̃∆ =

∏
a Sa of Kähler 2da-manifolds (Sa,±ga,±ωa),

and M0 → S∆ is a principal Tc-bundle.
In [4, 5], we took a ∈ {1, . . . N}, but here we shall adopt (in a moment) a different

notation for the index set. We let pc(t) =
∏

a(t−ηa)da and write p(t) = pc(t)pnc(t),
where pnc(t) =

∑`
r=0(−1)rσrt

`−r and σ0 = 1. The Killing vector fields Kr :=
J gradg σr, for r = 1, . . . `, are linearly independent on M0.

The image ∆ of the momentum map (σ1, . . . σ`) is a simplex in t∗ ∼= R`, whose
interior (the image of M0) is the image under the elementary symmetric functions
of a domain D =

∏`
j=1(βj−1, βj), where β0 < β1 < · · · < β`. The roots of pnc(t)

define smooth, functionally independent, pairwise distinct functions ξj (j = 1, . . . `)
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on M0 which extend continuously to M with image [βj−1, βj ]. The codimension one
faces of ∆ may be labelled F0, . . . F` such that on Fj, either ξj = βj or ξj+1 = βj.

The local description of the metric on M0 is as follows (where we have set c = 1,
according to [5, Remark 13]).
There are 1-forms θ1, . . . θ` on M0 with θr(Ks) = δrs and dθr =

∑
a(−1)rη`−r

a ωa

and a function Θ of one variable satisfying

(−1)`−jΘ > 0 on (βj−1, βj),(22)

Θ(βj) = 0, Θ′(βj) = −
∏
k 6=j

(βj − βk),(23)

such that the Kähler structure on M0 may be written

g =
∑

a

pnc(ηa)ga +
∑̀
j=1

∆j

Θ(ξj)
dξ2j +

∑̀
j=1

Θ(ξj)
∆j

(∑̀
r=1

σr−1(ξ̂j)θr

)2
,

ω =
∑

a

pnc(ηa)ωa +
∑̀
r=1

dσr ∧ θr,

(24)

where
∑

a pnc(ηa)ga is the pullback of a local Kähler product metric on Ŝ, ∆j =∏
k 6=j(ξj − ξk), and σr(ξ̂j) is the rth elementary symmetric function of ξ1, . . . ξ`

with ξj omitted. (σr itself is the rth elementary symmetric function of ξ1, . . . ξ`.)
The global description of M in [5, Theorem 5] was presented using the blow-up

M̂ of M along the inverse image of the codimension one faces F0, . . . F` of S∆.
M̂ is Tc-equivariantly biholomorphic to the CP `-bundle M0 ×Tc CP ` → S∆.

The blow-up is encoded by fibrations S∆ → SFj for each Fj (see also [5, Propo-
sition 6]): either S∆ = SFj , or the fibration is covered by the obvious projection
S̃∆ →

∏
b6=aj

Sb for some index aj such that Saj is a complex projective space and
(±gaj ,±ωaj ) has constant holomorphic sectional curvature ±

∏
k 6=j(βj − βk)

We unify these cases here by introducing, if S∆ = SFj , an additional index aj

with daj = 0 and Saj = CP 0 (a point). We denote the new index set by Â and
take a ∈ Â unless otherwise stated: the additional indices make no difference to
the previous formulae. We still have S̃∆ =

∏
a Sa, and now for all Fj , S∆ → SFj is

a CP daj -bundle covered by S̃∆ →
∏

b6=aj
Sb. The map j → aj is injective [5] and so

Â is the union of a set A and the injective image of {0, . . . `} (under j 7→ aj).
For a ∈ A, either ηa < β0 or ηa > β`, according to the sign of (±ga,±ωa), whereas
for j = {0, . . . `}, ηaj = βj.

The formula (24) for the metric on M0 leads to a description [5, Theorem 5]
of M̂ as a projective bundle P (L0 ⊕ L1 ⊕ · · · ⊕ L`) → S∆ together with formulae
for the Chern classes of Lj on the covering S̃∆. To obtain instead a description of
M , we need one further ingredient, which follows easily by considering the form of
the covering transformations and the fact that S̃∆ →

∏
b6=aj

Sb covers the fibration
S∆ → SFj .

Lemma 10. The projection S̃∆ → S̃ :=
∏

a∈A Sa descends to realize S∆ as a fibre
product of flat projective unitary CP daj -bundles over a quotient S of S̃.

An important class of flat projective unitary CP r-bundles on S are those of the
form P (E), where E is a rank r+1 projectively-flat hermitian vector bundle on S. If
S is simply connected, then any flat projective unitary CP r-bundle is trivial, hence
of the form P (E) with E ∼= E ⊗ Cr+1 for a holomorphic line bundle E . In general
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the obstruction to the existence of E is given by a torsion element of H2(S,O∗)
(cf. [19]). In particular, such an E always exists if S is a Riemann surface.

Let us suppose that S∆ = P (E0) ×S P (E1) ×S · · · ×S P (E`) → S, where each
Ej → S is projectively-flat hermitian of rank dj + 1. We are free to choose the
Ej so that M̂ = P

(
O(−1)E0 ⊕ O(−1)E1 ⊕ · · · ⊕ O(−1)E`

)
where O(−1)Ej is the

(fibrewise) tautological line bundle over P (Ej) (trivial over the other factors of S∆).
From the description of the blow-up in [5] (see in particular formulae (46) there),
we immediately deduce the following (in which we write c1(E) = c1(E)/ rankE).
M is Tc-equivariantly biholomorphic to P (E0⊕E1 · · ·⊕E`) → S and for any i 6= j,
c1(Ej)− c1(Ei) = 1

2

∑
a

(∏
k 6=i(ηa − βk)−

∏
k 6=j(ηa − βk)

)
[ωa/2π].

Derivation of Theorem 3. In order to derive Theorem 3 from the above, it suffices
to rescale g and φ so that we can take β0 = −1 and β1 = 1, see [5, Remark 13].
Then we set ηa = −1/xa and change the sign of ωa for all a. We also write Ŝ for
S∆, and replace the index set {0, 1} by {0,∞} so that we can take Â = {0,∞}∪A
where A is a finite subset of Z+, but these changes are purely cosmetic.
A.2. A nonexistence result for order 2 extremal Kähler metrics.

In this paper we study only hamiltonian 2-forms of order 1. As a partial justifi-
cation for this restriction, we now consider the lowest interesting dimension for the
order 2 case, and show that any extremal metric on a compact Kähler 6-manifold
compatible with a hamiltonian 2-form of order 2 is a Fubini–Study metric on CP 3.

According to [4], in this situation the momentum polynomial has nonconstant
roots ξ1 and ξ2 and one constant root η so #A ≤ 1 and p(t) = (t−η)(t−ξ1)(t−ξ2).
The stable quotient Σ of (M,J) by the complexified Tc action is a compact Riemann
surface with Kähler structure (gΣ, ωΣ).

By [5, Remark 13], we can set β0 = −1 and β2 = 1 and write β1 = β (where
|β| < 1). If A is empty, (M,J) is biholomorphic to CP 3; otherwise |η| > 1 and
(M,J) is Tc-equivariantly biholomorphic to M = P (L0 ⊕L1 ⊕L2) → Σ, where Lj

are holomorphic line bundles on Σ such that (without loss) L1 is trivial and, by [5,
Theorem 5], we have

c1(L0) = 1
2(η − 1)(β + 1)[ωΣ/2π],

c1(L2) = 1
2(η + 1)(β − 1)[ωΣ/2π].

(25)

The Kähler metric on M is determined by a function Θ(t) satisfying positivity
and boundary conditions which imply that Θ(t) = F (t)/(t − η) where F (t) =
H(t)((t− η) +H(t)Q(t)) for some function Q(t), and H(t) = (1− t2)(t− β).

If g is extremal and the extremal vector field is tangent to the fibres of M → Σ,
then by [4], F (t) is a polynomial of degree at most 5 and gΣ has scalar curvature
−F ′′(η). This forces Q(t) = 0 and so the scalar curvature of gΣ is 2(3η2− 2βη− 1)
which is positive since |η| > 1 and |β| < 1. Hence Σ = CP 1. Since 1

4ScalgΣ [ωΣ/2π]
is a primitive integral class, (25) implies that

(η ∓ 1)(β ± 1) = q±(3η2 − 2βη − 1)

for some nonzero integers q±. We remark that these formulae show that the relation
between q± and (η, β) is birational, in fact the restriction to R2 of a quadratic
transformation of CP 2. In any case, η is constant on the lines through (q+, q−) =
(1, 1), and β = ±1 on the lines q± = 0 and 2q± − q∓ = 1, the latter being the lines
on which η = ±1. It follows straightforwardly that |η| > 1 and |β| < 1 iff q+ > 0,
q− < 0 and 2q+− q− < 1 or vice-versa (swap plus and minus)—which is impossible
as |q±| ≥ 1. We therefore have the following nonexistence result.



HAMILTONIAN 2-FORMS IN KÄHLER GEOMETRY, III 39

Theorem 11. A compact extremal Kähler 6-manifold (M,J, g, ω) which admits a
hamiltonian 2-form of order 2 with the extremal vector field tangent to the Tc-orbits
is isometric to CP 3 with a Fubini–Study metric.

Appendix B. Proof of Lemma 6

In this appendix we prove Lemma 6 by computing the asymptotics as xa → 0,
for a ∈ A, of the solution (A,B) of the system (9), i.e., Aα1 + Bα0 = −2β0,
Aα2 + Bα1 = −2β1, where αr =

∫ 1
−1 pc(t)trdt and βr are as in (7). In order to do

this, we rewrite β0 and β1 as integrals using the obvious identities

pc(1) + pc(−1) =
∫ 1

−1

d

dt

(
tpc(t)

)
dt =

∫ 1

−1

(
1 +

∑
a

daxat

1 + xat

)
pc(t)dt

pc(1)− pc(−1) =
∫ 1

−1

d

dt

(
t2pc(t)

)
dt =

∫ 1

−1

(
2 +

∑
a

daxat

1 + xat

)
pc(t)t dt

to obtain

β0 =
∫ 1

−1
(1 + t)d0(1− t)d∞

(
1 + d0 + d∞ +

d2
0

1 + t
+

d2
∞

1− t
+

∑
a∈A

daxa(sa + t)
1 + xat

)
×

( ∏
a∈A

(1 + xat)da

)
dt

β1 =
∫ 1

−1
(1 + t)d0(1− t)d∞

(
2 + d0 + d∞ +

d2
0

1 + t
+

d2
∞

1− t
+

∑
a∈A

daxa(sa + t)
1 + xat

)
×

( ∏
a∈A

(1 + xat)da

)
t dt.

The asymptotics of α0, α1, α2, β0 and β1 are given by integrals of the form

I(m,n, k) =
∫ 1

−1
(1 + t)m(1− t)ntk dt.

Integrating by parts and using 2I(m,n, k + 1) = I(m+ 1, n, k)− I(m,n+ 1, k),

I(m,n, 0) =
2m+n+1m!n!
(m+ n+ 1)!

, I(m,n, 1) =
2m+n+1(m− n)m!n!

(m+ n+ 2)!
,

I(m,n, 2) =
2m+n+1(m2 + n2 +m+ n− 2mn+ 2)m!n!

(m+ n+ 3)!
.

These are rather complicated, so we manipulate the integrals using the identities

I(m− 1, n, 0)m2 + I(m,n− 1, 0)n2 = 1
2I(m,n, 0)(m+ n+ 1)(m+ n)

I(m− 1, n, 1)m2 + I(m,n− 1, 1)n2 = 1
2I(m,n, 1)(m+ n− 1)(m+ n+ 2)

I(m− 1, n, 2)m2 + I(m,n− 1, 2)n2 = 1
2I(m,n, 2)(m+ n+ 3)(m+ n)

− I(m,n, 1)(m− n)
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and thus obtain, up to O(x2),

αk = I(d0, d∞, k) + I(d0, d∞, k + 1)
∑
a∈A

daxa,

β0 = 1
2I(d0, d∞, 0)(1 + d0 + d∞)(2 + d0 + d∞) + I(d0, d∞, 0)

∑
a∈A

dasaxa

+ 1
2I(d0, d∞, 1)(1 + d0 + d∞)(2 + d0 + d∞)

∑
a∈A

daxa,

β1 = 1
2I(d0, d∞, 1)(1 + d0 + d∞)(2 + d0 + d∞) + I(d0, d∞, 1)

∑
a∈A

dasaxa

+
(

1
2I(d0, d∞, 2)(3 + d0 + d∞)(2 + d0 + d∞)− I(d0, d∞, 1)(d0 − d∞)

) ∑
a∈A

daxa.

Direct computation with these formulae and the identity I(m,n, 1)(m + n + 2) =
I(m,n, 0)(m− n) now shows that, up to O(x2),

α0β1 − α1β0

α0α2 − α2
1

= (2 + d0 + d∞)
∑
a∈A

daxa

α2β0 − α1β1

α0α2 − α2
1

= 1
2(1 + d0 + d∞)(2 + d0 + d∞) +

∑
a∈A

dasaxa + (d∞ − d0)
∑
a∈A

daxa.

Multiplying by −2 completes the proof.
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