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Abstract.

On a conformal manifold, a compatible torsion free connection D need not be the Levi-Civita
connection of a compatible Riemannian metric. The local obstruction is a real 2-form FD,
the Faraday curvature. It is shown that, except in four dimensions, FD necessarily vanishes
if it is divergence free. In four dimensions another differential operator may be applied to
FD to show that an Einstein-Weyl 4-manifold with selfdual Weyl curvature also has selfdual
Faraday curvature and so is either Einstein or locally hypercomplex. More generally, the
Bach tensor and the scalar curvature are shown to control the selfduality of FD. Finally,
the constancy of the sign of the scalar curvature on compact Einstein-Weyl 4-manifolds [24]
is generalised to higher dimensions. The scalar curvature need not have constant sign in
dimensions two and three.

1. Introduction.

A Weyl manifold is a conformal manifold equipped with a compatible torsion-free
connection. Such connections correspond bijectively to covariant derivatives on a
real line bundle, which will be called Weyl derivatives. The curvature of a Weyl
derivative D is a real 2-form FD, whose vanishing implies that the induced torsion-
free connection is locally the Levi-Civita connection of a compatible Riemannian
metric. This is the original gauge theory introduced by Hermann Weyl [28] as a
geometrisation of classical electromagnetism: FD is the Faraday 2-form representing
the electromagnetic field.

There has been a resurgence of interest in Weyl geometry recently, not only be-
cause of the original motivation, but also because of a number of more surprising
links with geometry and mathematical physics. The germinal idea to unify gen-
eral relativity and electromagnetism led naturally to the notion of an Einstein-Weyl
manifold, in which the symmetric trace free part of the Ricci tensor of the Weyl
connection is assumed to vanish. However, the geometry of Einstein-Weyl manifolds
initially attracted particular interest in three dimensions, rather than four, thanks to
work of Cartan [7], and Hitchin [18], who showed that the Einstein-Weyl condition is
the integrability condition for a complex structure on the space of oriented geodesics
of a three dimensional Weyl manifold. This provides a twistor correspondence be-
tween Einstein-Weyl 3-manifolds and complex surfaces containing rational curves
with normal bundle O(2). Subsequently, Einstein-Weyl manifolds have been much
studied in all dimensions [5, 6, 9, 14, 22, 23, 24, 25, 26], but the three dimensional
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case retains a special aura, thanks to the above twistor construction, and the link
with selfdual conformal 4-manifolds [19].

In four dimensions, locally hypercomplex 4-manifolds are Einstein-Weyl [23],
and this class of Einstein-Weyl geometries has recently been linked to local heterotic
geometry [27]. One of the main aims of this paper is to prove that every Einstein-
Weyl 4-manifold with selfdual Weyl tensor is either Einstein or locally hypercomplex.
This local result, like several of the results in this paper, was previously only known
in the compact case.

After setting up a framework for studying Weyl geometry in a gauge invariant
way, I present a very simple result which shows that, except in four dimensions, the
vanishing of the divergence of FD (with respect to the Weyl connection) is enough
to ensure that FD itself vanishes. A consequence of this is that FD necessarily
vanishes on scalar flat Einstein-Weyl n-manifolds, for n 6= 4. In four dimensions,
scalar-flatness only implies that FD is source-free, i.e., coclosed; in other words
its selfdual and antiselfdual parts FD

+ and FD
− are both closed. I next show, in

section 4, that the vanishing of one of FD
+ and FD

− implies that the Bach tensor
of the underlying conformal structure is identically zero. The converse also holds,
as long as we continue to assume vanishing scalar curvature. These results are
established by giving a formula for the Bach tensor on an Einstein-Weyl 4-manifold
(Theorem 4.4) generalising a formula of [24] to the local setting.

Also in section 4, I present some identities relating to the Bach tensor, which may
be used to verify (locally) that it vanishes when the Weyl tensor is (anti)selfdual.
This fact is not used in the proof of Theorem 4.4, nor is it new: see [3, 8] for the
statement, and [12] for a proof using the normal conformal connection. However,
these calculations do provide motivation for considering the Bach tensor in a local
context, and they are not readily accessible in the literature, so I hope it will be of
some interest to sketch them briefly here.

In [9], Eastwood and Tod have shown that the Faraday 2-form vanishes on con-
formally flat Einstein-Weyl manifolds. In section 5, I reformulate their result and
demonstrate that the same ideas may be used to prove that half conformally flat
Einstein-Weyl 4-manifolds have (anti)selfdual Faraday curvature, and are therefore
Einstein or locally hypercomplex by [23]. This was previously only known in the
compact case [14, 24] and shows that the twistor theory of Pedersen and Swann [23]
deals with all Einstein-Weyl structures on an (anti)selfdual conformal 4-manifold.

I end the paper with a discussion of the sign of the scalar curvature on compact
Einstein-Weyl manifolds. This was shown to be constant in four dimensions by
Pedersen and Swann [24]. I show that the same is true in higher dimensions, but
not in dimensions two and three, contrary to previous assertions [24, 25]. The higher
dimensional result follows by applying the maximum principle to a formula in [24],
while the low dimensional counterexamples can be found in [6, 25, 26].
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2. Weyl derivatives.

In order to carry out computations in a gauge invariant way, it is convenient to work
with densities. If V is a real n-dimensional vector space and w any real number, then
the oriented one dimensional linear space Lw = Lw(V ) carrying the representation
A 7→ |det A|w/n of GL(V ) will be called the space of densities of weight w or w-
densities. It can be constructed canonically as the space of maps ρ : (ΛnV ) r 0→ R
such that ρ(λω) = |λ|−w/nρ(ω) for all λ ∈ R× and ω ∈ (ΛnV ) r 0.

2.1. Definition. Suppose M is any n-manifold. Then the density line bundle
Lw = Lw(TM) of M is defined to be the bundle whose fibre at x ∈M is Lw(TxM).
Equivalently it is the associated bundle GL(M) ×GL(n) Lw(n) where GL(M) is the
frame bundle of M and Lw(n) is the space of w-densities of Rn.

The density bundles are oriented (hence trivialisable) real line bundles, but there
is no preferred trivialisation. Sections of L = L1 may be thought of as scalar fields
with dimensions of length. This geometric dimensional analysis may also be applied
to tensors: the tensor bundle Lw ⊗ (TM)j ⊗ (T ∗M)k (and any subbundle, quotient
bundle, element or section) will be said to have weight w + j − k, or dimensions of
[length]w+j−k.

Note that sections of L−n may be invariantly integrated, and that an orientation
of M defines an isomorphism between L−n and ΛnT ∗M . Also note that Lw1 ⊗ Lw2

is canonically isomorphic to Lw1+w2 and L0 is the trivial bundle. When tensoring a
vector bundle with some Lw, I shall often omit the tensor product sign. A nonvan-
ishing (usually positive) section of L1 (or Lw for w 6= 0) will be called a length scale
or gauge (of weight w).

2.2. Definition. A Weyl derivative is a covariant derivative D on L1. It induces
covariant derivatives on Lw for all w. The curvature of D is a real 2-form FD which
will be called the Faraday curvature or Faraday 2-form.

If FD = 0 then D is said to be closed. It follows that there are local length
scales µ with Dµ = 0. If such a length scale µ exists globally then D is said to
be exact. Conversely, a length scale µ induces an exact Weyl derivative Dµ such
that Dµµ = 0. Note that Weyl derivatives form an affine space modelled on the
linear space of 1-forms, while closed and exact Weyl derivatives are affine subspaces
modelled on the linear spaces of closed and exact 1-forms respectively.

A gauge transformation on M is a positive function ef which rescales a gauge
µ ∈ C∞(M,Lw) to give ewfµ. If D is any Weyl derivative, then D = Dµ + ωµ for
the 1-form ωµ = µ−1Dµ, and consequently, ωef µ = ωµ + df .
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The notion of density allows one to define a conformal structure, not as an
equivalence class of inner products, but a genuine inner product.

2.3. Definition. A conformal structure on a manifold M is a normalised L2

valued inner product on TM . More precisely it is a section c ∈ C∞(M,L2S2T ∗M)
which is everywhere positive definite. The conformal inner product of tangent vector
fields X, Y will be denoted 〈X, Y 〉, and is a section of L2.

A conformal structure may also be viewed as a metric on the weightless tangent
bundle L−1TM . The normalisation condition states that |det c| = 1, which makes
sense since the densities of L−1TM are canonically trivial.

Conformal structures and Weyl derivatives fit together very well: for instance,
Riemannian geometry is the geometry of an exact Weyl derivative on a conformal
manifold. The existence and uniqueness of the Levi-Civita connection is a special
case of the following central result.

2.4. The Fundamental Theorem of Conformal Geometry. [28] On a
conformal manifold M there is an affine bijection between covariant derivatives on
L1 and torsion free connections on TM preserving the conformal structure. More
explicitly, the covariant derivative on TM is determined from the one on L1 by the
Koszul formula

2〈DXY, Z〉 = DX 〈Y, Z〉+ DY 〈X, Z〉 −DZ 〈X, Y 〉
+ 〈[X, Y ], Z〉 − 〈[X, Z], Y 〉 − 〈[Y, Z], X〉,

where X, Y, Z are vector fields and the conformal inner products are sections of L2.

A conformal manifold equipped with a Weyl derivative D is called a Weyl man-
ifold. Henceforth D will be identified with the induced connection on TM and all
associated bundles.

It is sometimes useful to compare two Weyl derivatives on a conformal manifold:
suppose that D̃ = D + γ, where γ is a 1-form, and suppose that the induced con-
nections on Lw−1TM are related by D̃ = D + Γ for some co(TM)-valued 1-form Γ.
Then Γ is given in terms of γ by the linearised Koszul formula:

ΓX = wγ(X)id + γ M X, where (γ M X)(Y ) = γ(Y )X − 〈X, Y 〉γ.

Here free use is being made of the natural isomorphism ] : T ∗M → L−2TM given by
the conformal structure.

A basic formula in Weyl geometry (and indeed Riemannian geometry) is the
following decomposition of the curvature RD,w of D on Lw−1TM :

(2.1) RD,w
X,Y = WX,Y + wFD(X, Y )id − rD(X) M Y + rD(Y ) M X.

Here WX,Y is the Weyl curvature (independent of D), FD is the Faraday curvature
(independent of c), and rD is a section of L−2 EndTM called the normalised Ricci
tensor. (Convention: RD,w

X,Y = D2
X,Y −D2

Y,X = [DX , DY ]−D[X,Y ].)
The normalised Ricci tensor may be computed from RD,w by taking a trace (since

W is tracefree)—such a trace does not necessarily produce a symmetric tensor. An
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alternative description of rD is given by its decomposition under the orthogonal
group:

rD = rD
0 + 1

2n(n−1)scalDid − 1
2FD,

where rD
0 is symmetric and tracefree and scalD is the scalar curvature of D (which

is a section of L−2).

Two of the results in this paper are based on the idea of twisting a complex
of differential operators by a connection. The most familiar example of this is the
deRham complex. If we have an auxiliary bundle E, then a connection on E induces a
sequence of twisted exterior derivatives on E-valued differential forms. This sequence
is no longer a complex in general: the composite of two twisted exterior derivatives
is given by the natural action of the curvature of the connection.

This idea will be applied to the density bundles and Weyl derivatives, but using
other differential complexes. The first such result is a very simple one. Instead of
considering the deRham complex of exterior derivatives

M × R d−→ T ∗M
d−→ Λ2T ∗M −→ · · ·

consider the adjoint complex of exterior divergences

L−n δ←− L−nTM
δ←− L−nΛ2TM ←− · · ·

Here δ = tr D, where D is any torsion free connection and the trace is with respect to
the first entry: thus δ is minus the formal adjoint of d. Both are complexes of invari-
ant operators. Using the conformal structure, we obtain a complex of conformally
invariant operators:

L−n δ←− L2−nT ∗M
δ←− L4−nΛ2T ∗M ←− · · ·

It is this complex which I shall twist by a Weyl derivative.

2.5. Proposition. Let D be a Weyl derivative on a conformal manifold M .
Then (δD)2FD = −(n− 4)|FD|2. If n 6= 4 it follows that δDFD = 0 iff FD = 0.

Proof. Since FD is a 2-form (of weight −2), the exterior divergence has been
twisted by D on Ln−4. Suppose that D = D0 + ω on L1. Then for any 2-form φ,

(2.2) δD0+ωφ = δD0
φ + (n− 4)φ(ω, .).

If D0 is closed, it follows that

(δD)2φ = δD0+ωδD0+ωφ

= δD0
δD0

φ + (n− 4)
(
δD0

(φ(ω, .)) + (δD0
φ)(ω)

)
= (n− 4) tr φ(D0ω, .),

where (δD0
)2 = 0 because Ln−4 may be locally trivialised by a D0-parallel section

(equivalently, when we twist a complex by a flat connection, it remains a complex).
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Therefore

(δD)2φ = (n− 4)
∑
i,j

D0
ei

ω(ej)φ(ej , ei)

= (n− 4)
∑
i<j

dω(ei, ej)φ(ej , ei)

and dω = FD since D0 is closed. Substituting φ = FD proves the proposition. �

As in the Riemannian case, the second Bianchi identity is a useful tool in Weyl
geometry. The differential Bianchi identity for the Weyl derivative D on L1 gives the
simple fact that dFD = 0, while for the induced covariant derivative on Lw−1TM ,
we have dDRD,w = 0, where RD,w is viewed as an endomorphism valued 2-form. In
particular:

(DXRD,0)Y,ZU + (DZRD,0)X,Y U + (DY RD,0)Z,XU = 0.

If we take the trace of this identity as a function of Z, and separate out the trace
using the conformal structure and (2.1), then we obtain, for n > 2, the contracted
Bianchi identities:

tr DWX,Y U = (n− 3)CD
X,Y U(2.3)

CD
X,ei

ei = 0.(2.4)

Here CD
X,Y = (dDrD)X,Y = (DXrD)(Y ) − (DY rD)(X) is the Cotton-York tensor of

D, and there is an implied summation over the weightless orthonormal basis ei.

3. Einstein-Weyl geometry.

A Weyl manifold of dimension n > 2 is said to be Einstein-Weyl iff rD
0 = 0. This

class of Weyl manifolds has been extensively studied (see [5] and references therein).
The Einstein-Weyl manifolds with exact Weyl derivative are precisely the (homoth-
ety classes of) Einstein metrics, and the closed Einstein-Weyl manifolds are “locally
conformally Einstein”. There are also many examples with nonzero Faraday curva-
ture [4, 19, 21, 23, 24, 25].

The contracted Bianchi identity gives an important relationship between the
Faraday and scalar curvatures. Writing out (2.4) explicitly gives,

divD rD
0 − 1

2nDscalD + 1
2δDFD = 0,

from which we immediately have the following.

3.1. Proposition. [25, 14] Suppose M is Einstein-Weyl of dimension n > 2.
Then DscalD − n δDFD = 0.

When n = 2, we define Einstein-Weyl manifolds by this identity [6], generalising
the metrics of constant scalar curvature.

A consequence of the Einstein-Weyl Bianchi identity is the following formula,
given by Pedersen and Swann in the compact case:

3.2. Proposition. (cf. [24]) Let M be an n-dimensional Einstein-Weyl manifold.
Then ∆DscalD = −n(n− 4)|FD|2.
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Proof. Here ∆D = tr D2, so this follows by applying D to the formula in 3.1 and
taking trace, where Proposition 2.5 is used to compute tr D(δDFD) = (δD)2FD. �

I will make use of this later.

3.3. Theorem. If (Mn, D) is Einstein-Weyl, the following are equivalent:
(i) Either D is closed or n = 4, M is noncompact and FD is harmonic.
(ii) δDFD = 0.
(iii) DscalD = 0.
(iv) Either D is exact or scalD is identically zero.

Before proving this theorem, let me make some remarks. There are two important
consequences to be extracted from these equivalences. The first of these is the fact
that if D is closed then D is exact or scalD = 0. This is not new: it was established by
Gauduchon [14] using 3.1, and by Higa [16], using the contracted Bianchi identity on
the universal cover (which is Einstein). The second consequence is that if scalD = 0
then D is closed, except in the local four dimensional case. This was previously only
known for compact manifolds [14, 25]. The new part of the above theorem follows
easily from 2.5.

Proof. (ii) and (iii) are equivalent by 3.1, and clearly (iii) =⇒ (iv) =⇒ (ii)
or (iii). Also (i) immediately implies (ii)—note that the divergence on 2-forms is
conformally invariant in four dimensions—so it remains to prove the converse. This
follows from 2.5 unless M is four dimensional, in which case FD is an exact coclosed
2-form, and so it is certainly harmonic. If M is compact, an exact coclosed 2-form
necessarily vanishes: write FD = dγ and integrate the section |FD|2 of L−4 by
parts. �

4. Four dimensions and the Bach tensor.

The four dimensional case is singled out by Theorem 3.3 for good reason: it is only
in four dimensions that the divergence is conformally invariant on 2-forms. Closely
related to this is the fact that the bundle of 2-forms is not irreducible, but splits
into the selfdual and antiselfdual 2-forms. Correspondingly, the Faraday 2-form
decomposes as FD = FD

+ + FD
− .

As shown by Pedersen and Swann [23], hypercomplex manifolds provide examples
of scalar flat four dimensional Einstein-Weyl manifolds with nonzero Faraday curva-
ture. In this case, if we fix the orientation by taking the complex structures to be
antiselfdual, then the Faraday 2-form and Weyl tensor are both selfdual. [There are
explicit examples amongst the Pedersen/LeBrun metrics: these are U(2)-symmetric
selfdual conformal structures, which are both conformally Einstein (with nonzero
scalar curvature) [22] and conformally scalar flat Kähler (with antiselfdual complex
structure) [20]. They may be constructed from harmonic functions (“monopoles”) on
S3 or H3. Those coming from S3 also admit a hypercomplex structure with nonzero
Faraday curvature [21].]

On the other hand, the theory in the previous section only shows that FD
+ and FD

−
are both closed, or equivalently, FD is a Maxwell field (an abelian Yang-Mills field).



THE FARADAY 2-FORM IN EINSTEIN-WEYL GEOMETRY 8

It is therefore natural to ask whether the Einstein-Weyl condition implies that FD

is an (anti)selfdual Maxwell field. We might then be able to sharpen Theorem 3.3.
In this section I will show that this question is closely related to the Bach tensor,

the weight −4 symmetric traceless bilinear form which arises as the gradient of the
functional

c 7→
∫

M
|W |2.

Here W is the Weyl curvature of c, so that |W |2 is a section of L−4. It is well
known [3] that the signature formula may be used to show that compact conformal
4-manifolds with (anti)selfdual Weyl are absolute minima of this functional. It is
also known, but perhaps less widely appreciated, that there is also a local result: 4-
manifolds with (anti)selfdual Weyl tensor have vanishing Bach tensor. Since I have
not found a convenient reference for the local theory, I will sketch it here.

4.1. Definition. Let M, c, D be a Weyl n-manifold (n > 2). Then the Bach
tensor of M is defined by the formula

BD(X, Y ) = DeiC
D
ei,XY + rD(ei,Wei,XY )

where rD(X, Y ) = 〈rD(X), Y 〉 and there is an implied summation over the weightless
orthonormal basis ei.

It is not immediately clear that this is symmetric, although it is clearly trace-
free by (2.4). The symmetry turns out to be a consequence of a contracted “third
Bianchi identity”. The first Bianchi identity shows that the Weyl curvature has
the symmetries of a “Weyl tensor”, while the second Bianchi identity shows that it
lies in the kernel of a conformally invariant first order differential operator. In four
dimensions, however, this first order condition is vacuous, and the Weyl curvature
lies in the kernel of a conformally invariant second order differential operator. This
second order operator arises from the third Bianchi identity.

All three Bianchi identities are consequences of the differential Bianchi identity
for the conformal connection [12]. However, I shall prove the following directly.

4.2. Proposition. Let D be any Weyl derivative a conformal manifold. Then

(4.1) dDCD
X,Y,ZU + rD(X, WY,ZU) + rD(Z,WX,Y U) + rD(Y, WZ,XU) = 0.

Here dDCD denotes the exterior derivative of CD as a covector valued 2-form.

Proof. Since CD = dDrD, we readily see that:

dDCD
X,Y,Z = (D2

X,Y rD)(Z) + (D2
Z,XrD)(Y ) + (D2

Y,ZrD)(X)

−(D2
Y,XrD)(Z)− (D2

X,ZrD)(Y )− (D2
Z,Y rD)(X).

Note that (D2
X,Y rD)(Z,U) − (D2

Y,XrD)(Z,U) = −rD(RD
X,Y Z,U) − rD(Z,RD

X,Y U),
where RD = RD,1, and the first term cancels with its cyclic permutations by the
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first Bianchi identity. For the second term we compute:

rD(Z,RD
X,Y U) = rD(Z,WX,Y U) + rD(Z, (rD(Y ) M X) U)− rD(Z, (rD(X) M Y ) U)

+ FD(X, Y )rD(Z,U)

= 〈rD(Z),WX,Y U〉+ 〈rD(X), rD(Z)〉〈Y, U〉 − 〈rD(Y ), rD(Z)〉〈X, U〉

+ rD(Z, Y )rD(X, U)− rD(Z,X)rD(Y, U) + FD(X, Y )rD(Z,U).

On taking cyclic permutations over X, Y, Z, the second and third terms cancel by
symmetry, and the last three terms cancel because the skew symmetric part of rD is
−1

2FD. The first term and its cyclic permutations give the stated formula. �

The symmetry of the Bach tensor follows from the following properties of the
Cotton-York tensor.

4.3. Proposition. Let CD be the Cotton-York tensor of a Weyl n-manifold.
Then

CD
X,Y Z + CD

Y,ZX + CD
Z,XY = 0(4.2)

DeiC
D
X,Y ei + rD(ei,WX,Y ei) = 0.(4.3)

In the second formula, only the skew symmetric part of rD contributes.

Proof. The first part follows easily from the fact that the skew symmetric part
of rD, namely −1

2FD, is closed. The second formula generalises the fact that the
Cotton-York tensor on a 3-manifold is divergence free and follows immediately by
taking the trace over Z and U of the third Bianchi identity (4.1). �

Putting (4.2) and (4.3) together gives

BD(X, Y )−BD(Y, X) = DeiC
D
ei,XY −DeiC

D
ei,Y X

+ rD(ei,Wei,XY )− rD(ei,Wei,Y X)

= −DeiC
D
X,Y ei − rD(ei,WX,Y ei) = 0.

From this it follows that an alternative (perhaps better) formula for the Bach tensor
is:

BD(X, Y ) = 1
2

(
DeiC

D
ei,XY + DeiC

D
ei,Y X

)
+ rD

0 (ei,Wei,XY ).

In dimension four, B = BD is independent of the choice of D. To check this,
consider another Weyl derivative D̃ = D + γ. Then direct calculations give the
following formulae:

rD̃ = rD − (Dγ − γ ⊗ γ + 1
2〈γ, γ〉id)(4.4)

CD̃
X,Y U = CD

X,Y U + γ(WX,Y U)(4.5)

BD̃(X, Y ) = BD(X, Y ) + (n− 4)
(
CD

γ,XY + CD
γ,Y X + γ(Wγ,XY )

)
.(4.6)
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For n > 3, the third Bianchi identity and the definition of the Bach tensor can
be rewritten using the second Bianchi identity (2.3):

(dD divD W )X,Y,ZU + rD(Z,WX,Y U) + rD(Y, WZ,XU) + rD(X, WY,ZU) = 0

(δD divD W )XY + (n− 3)rD(ei,Wei,XY ) = (n− 3)BD(X, Y ).

(dD and δD are the exterior derivative and divergence on covector valued 2-forms.)
In order to interpret this, we need to choose an orientation and introduce the

conformal Hodge star operator ∗ : Lw+kΛkT ∗M → Lw+n−kΛn−kT ∗M . In four di-
mensions, if we view W as an endomorphism valued 2-form, and its divergence CD

as a covector valued 2-form, then the star operator decomposes W and CD into
selfdual and antiselfdual parts. We then see that ∗dD divD W = δD divD ∗W , and
consequently, the Bach tensor may be computed from W+ or W−:

B(X, Y ) = 2(δD divD W+)XY + 2rD(ei,W
+
ei,X

Y )

= 2(δD divD W−)XY + 2rD(ei,W
−
ei,X

Y ).

Hence we finally have that the Bach tensor vanishes on (anti)selfdual conformal
4-manifolds.

These formulae also relate to conformally invariant second order differential op-
erators acting on weight −2 Weyl tensors in dimension four (cf. [2, 8]).

I will now turn to the impact of the Bach tensor on Einstein-Weyl geometry.
In [24], Pedersen and Swann gave a formula for the Bach tensor of a compact Einstein-
Weyl manifold in terms of the 1-form of the Weyl structure in the Gauduchon gauge.
They deduced that on a compact Bach flat (B = 0) Einstein-Weyl 4-manifold, the
Faraday 2-form necessarily vanishes.

The Bach tensor and Faraday 2-form are intimately linked even locally.

4.4. Theorem. Let M be an Einstein-Weyl 4-manifold. Then

B(X, Y ) = 1
24

(
D2

X,Y scalD + D2
Y,XscalD

)
−〈FD

+ (X), FD
− (Y )〉 − 〈FD

+ (Y ), FD
− (X)〉.

Consequently the following are equivalent:

(i) FD is either selfdual or antiselfdual.
(ii) B = 0 and either scalD = 0 or D is exact.

Proof. On an Einstein-Weyl 4-manifold, rD = 1
24scalD − 1

2FD and so the
Cotton-York tensor is:

CD
U,XY = 1

24

(
DU scalD〈X, Y 〉 −DXscalD〈U, Y 〉

)
+ 1

2DY FD(U,X)

where I have used the fact that dFD = 0. Consequently, using 3.1 and 3.2,

B(X, Y ) = 1
24

(
D2

X,Y scalD + D2
Y,XscalD

)
+ 1

4

(
FD(RD

X,ei
ei, Y ) + FD(RD

Y,ei
ei, X) + FD(ei, R

D
X,ei

Y + RD
Y,ei

X)
)
.

After some work, the curvature terms reduce to −〈FD(X), FD(Y )〉+ 1
2 |F

D|2〈X, Y 〉.
Writing FD = FD

+ + FD
− gives the formula in the theorem, since the symmetric

tracefree part of 〈FD
+ (X), FD

+ (Y )〉 is zero, and similarly for FD
− . The equivalence
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of (i) and (ii) follows from this formula, together with the fact that Einstein-Weyl
manifolds with (anti)selfdual Faraday satisfy DscalD = 0 (see [14] or 3.3). To see
that (ii) implies (i), observe that DscalD = 0 and B = 0 together imply that one
of FD

+ , FD
− must vanish at each point, since Λ2

+T ∗M ⊗ Λ2
−T ∗M ∼= L−2S2

0T ∗M . Now,
Einstein-Weyl manifolds are real analytic [24, 25] and so (assuming M is connected),
FD must be everywhere selfdual or antiselfdual (or both, i.e., zero). �

In the compact case, we only need one of the conditions B = 0 or scalD = 0 to
ensure that FD = 0. It is natural to ask whether something similar holds in gen-
eral. However, Bonneau [4] has recently given examples of U(2)-symmetric Einstein-
Weyl structures with vanishing scalar curvature, for which the Faraday 2-form is not
(anti)selfdual. On the other hand, Bach flat Einstein-Weyl structures have not been
studied locally. Are they necessarily scalar flat or Einstein? Equivalently, must FD

be (anti)selfdual?

5. The Weyl tensor and the Faraday 2-form.

Theorem 4.4 implies in particular that on a scalar flat Einstein-Weyl manifold with
selfdual Weyl tensor, the Faraday 2-form is either selfdual or antiselfdual, since such
manifolds are Bach flat. Now selfduality of the Weyl tensor is a much stronger
assumption than Bach flatness, and so one might hope to improve this result in
two ways: firstly, by removing the assumption of scalar flatness; and secondly, by
showing that the Faraday 2-form is in fact selfdual. In this section I will prove such
a result:

5.1. Theorem. Let M be an Einstein-Weyl 4-manifold with selfdual Weyl tensor.
Then the Faraday 2-form is also selfdual.

This is similar to the following theorem of Eastwood and Tod:

5.2. Theorem. [9] Let M be an Einstein-Weyl n-manifold (n > 4) with van-
ishing Weyl tensor. Then the Faraday 2-form also vanishes.

I want to explain how Eastwood and Tod’s result fits into the framework of
twisting complexes of differential operators, and show that in four dimensions, one
can split the argument into its selfdual and antiselfdual parts. Therefore, as well as
proving 5.1, I will provide another proof of 5.2.

The reader may have noticed that the underlying ideas behind many of the
results in this paper are representation theoretic in nature; that is, they involve
the representation theory of the orthogonal group and the theory of conformally
invariant differential operators. I would now like to make these ideas more explicit,
since the proofs of 5.1 and 5.2 are quite straightforward from this point of view,
whereas the detailed calculations are not so simple.

Irreducible representations of SO(n) may be described by l-tuples of integers,
where n = 2l or 2l + 1, and I will use these l-tuples to describe the associated
vector bundles on a Riemannian manifold M [10, 11]. For example (1, 0, ...) is the
(co)tangent bundle, (1, 1, ...) is the bundle of 2-forms and (2, 0, ...) is the bundle of
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symmetric traceless 2-tensors. Here the dots indicate that the remaining integers
are all zero. The integers are nonincreasing, and are usually all positive, in which
case the corresponding tensors have rank equal to the sum of the integers. In four
dimensions (and any even dimension), the last integer may be negative: for instance,
the selfdual and antiselfdual 2-forms are denoted by (1,+1) and (1,−1).

If M is conformal rather than Riemannian, the weight must also be specified.
I will do this by prefixing the l-tuple by the weight, separated by a vertical bar |.
Thus (−2|1,+1) denotes the bundle of selfdual 2-forms with their usual weight of −2.
This notation appears ad hoc, but in fact these (l+1)-tuples describe the irreducible
representations of the parabolic subgroup of SO(n + 1, 1) associated with conformal
geometry [1]: this consists of those elements of SO(n + 1, 1) which stabilise a chosen
null line in the null cone Sn of Rn+1,1 (the model geometry on which all conformal
manifolds are based).

On a conformally flat manifold there is a complex

(1|1, 1, ...) Twist−−−→ (0|2, 1, ...) CLanc−−−−→ (−1|2, 2, ...)

of conformally invariant first order differential operators. The three bundles here are
the 2-forms of weight 1, the weightless Cotton-York tensors and the Weyl tensors
of weight −1. The first operator is a kind of twistor operator, and the second is
the (conformal) Lanczos potential operator. This complex is the beginning of the
Bernstein-Gelfand-Gelfand resolution of the kernel of Twist [1], which (locally, or on
Sn) is the representation (1, 1, 1, 0, ...) of SO(n + 1, 1).

Twisting this complex by a Weyl derivative gives:

(−2|1, 1, ...) TwistD

−−−−→ (−3|2, 1, ...) CLancD

−−−−−→ (−4|2, 2, ...).

This will no longer be a complex in general: CLancD ◦TwistD will be given (up to a
nonzero constant) by tensoring a 2-form with FD and projecting onto (−4|2, 2, ...).
Now suppose that D is Einstein-Weyl, and apply these operators to FD itself.

Since D is Einstein-Weyl, TwistD FD is the Cotton-York tensor of D, which
vanishes, since W = 0. Therefore 0 = CLancD

(
TwistD FD

)
= pr (FD ⊗FD), where

pr denotes projection onto (−4|2, 2, ...) (up to a nonzero constant). It easily follows
that FD is zero.

The same argument applied to half of the sequence proves the four dimensional
result. If W− vanishes, then the sequence

(1|1,−1) Twist−−−→ (0|2,−1) CLanc−−−−→ (−1|2,−2)

is a complex [3, 17]. Twisting this with D and applying it to FD
− shows that FD

− = 0.

The reader may prefer to regard the above as a sketch, rather than a full proof.
The detailed proof is more complicated, because the operators and bundles involved
are complicated. In four dimensions, it is perhaps simpler to use spinor methods,
since the irreducible representations of SO(4) are very easily described in terms
of spinors. Nevertheless, in order to see the four dimensional result in the higher
dimensional context, I shall proceed with brutal tensor methods.
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First of all, here are the operators TwistD and CLancD:

(TwistD φ)X,Y U = DUφ(X, Y )− 1
3(dDφ)(U,X, Y )

− 1
n−1

(
〈U,X〉δDφ(Y )− 〈U, Y 〉δDφ(X)

)
〈(CLancD C)X,Y U, V 〉 = 1

2

(
DUCX,Y V −DV CX,Y U + DXCU,V Y −DY CU,V X

)
− 1

n− 2

(
〈U,X〉SdivD C(V, Y )− 〈U, Y 〉SdivD C(V,X)

−〈V,X〉SdivD C(U, Y ) + 〈V, Y 〉SdivD C(U,X)
)
,

where SdivD C(U,X) = 1
2

(
DeiCei,UX + DeiCei,XU

)
. In these formulae, φ and C can

have any weight w, but TwistD is only conformally invariant (independent of D)
when w = 1, whereas CLancD is only conformally invariant when w = 0.

To check the conformal invariance, and to find out what happens when φ and C
have the “wrong” weight, suppose that D̃ = D + γ on L1. Then, if φ has weight w,
D̃Uφ(X, Y ) = DUφ(X, Y ) + wγ(U)φ(X, Y )− φ

(
(γ M U)X, Y

)
− φ

(
X, (γ M U)Y

)
.

If we now use this in the formula for TwistD̃ we obtain

(TwistD̃ φ)X,Y U − (TwistD φ)X,Y U

= (w − 1)
(

2
3γ(U)φ(X, Y )− 1

3

(
γ(X)φ(Y, U)− γ(Y )φ(X, U)

)
− 1

n−1

(
〈U,X〉φ(γ, Y )− 〈U, Y 〉φ(γ, X)

))
.

A similar formula holds for CLancD. Such formulae verify special cases of the general
theory of conformally invariant first order differential operators due to Fegan [10].
Equation (2.2) is another instance of this.

Since the principal symbols of CLancD and TwistD are canonically defined in
terms of the conformal structure, the composite CLancD ◦TwistD φ is obtained by
taking the second derivative D2φ and applying an equivariant bundle homomorphism
T ∗M⊗T ∗M⊗(w|1, 1, ...)→ (w−2|2, 2, ...). Now the representation (w−2|2, 2, ...) does
not appear in the decomposition of the tensor product of (w|1, 1, ...) with S2T ∗M =
(−2|0, ...)+(−2|2, 0, ...), and so CLancD ◦TwistD is a zero order, given by the action
of the curvature of D. More precisely, CLancD ◦TwistD φ is obtained by applying
the composite

Λ2T ∗M ⊗ co(TM)⊗ (w|1, 1, ...)→ Λ2T ∗M ⊗ (w|1, 1, ...)→ (w − 2|2, 2, ...)

to RD⊗φ where the first map is the natural action of co(TM), and the second is pro-
jection. Again since (w−2|2, 2, ...) is not a subrepresentation of S2T ∗M⊗(w|1, 1, ...),
the symmetric part of the Ricci tensor of D does not contribute. Therefore, on a
conformally flat manifold CLancD0 ◦TwistD0

= 0 for any closed Weyl derivative
D0, and in particular, the conformally invariant composite CLanc ◦Twist is zero on
(1|1, 1, ...). In four dimensions TwistD and CLancD split into separate operators
on the selfdual and antiselfdual parts of the corresponding tensors. The composite
CLancD0 ◦TwistD0

will be zero on (w|1,−1) provided W− = 0. The representation
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theoretic reasons behind this are well known: on antiselfdual 2-forms, Twist is the
operator D2 in [3], section 13C.

Therefore we only need to compute the contribution of Faraday curvature to the
composite CLancD ◦TwistD on (w|1, 1, ...). This can be done by writing D = D0+ω

with D0 exact, then applying CLancD0
to TwistD φ and looking for the D0ω terms.

The D0ω terms in (D0
V TwistD φ)X,Y U are

(w − 1)
(

2
3D0

V ω(U)φ(X, Y )− 1
3

(
D0

V ω(X)φ(Y, U)−D0
V ω(Y )φ(X, U)

)
− 1

n−1

(
〈U,X〉φ(D0

V ω, Y )− 〈U, Y 〉φ(D0
V ω, X)

))
.

On applying the symmetries defining CLancD0
, the result has to be a constant

multiple of the projection of dω ⊗ φ onto (w − 2|2, 2, ...). Indeed the only reason
we need to do the calculation is to check that for w 6= 1, the constant multiple is
nonzero. This turns out to be the case: the constant is w − 1.

It remains to apply CLancD ◦TwistD to FD itself. The result is the projection
of −3FD ⊗ FD onto (−4|2, 2, ...). As shown by Eastwood and Tod [9], this vanishes
iff FD = 0. In four dimensions, only FD

− ⊗ FD
− contributes to the projection onto

(−4|2,−2). It is immediate that this projection vanishes iff FD
− itself vanishes,

because (−4|2,−2) = S2
0(−2|1,−1).

Hence the argument outlined earlier goes through: the formula for TwistD, to-
gether with the Einstein-Weyl condition and Proposition 3.1, shows that TwistD FD

is the Cotton-York tensor of D. By the contracted Bianchi identity (2.3), this van-
ishes if W vanishes, and similarly, in four dimensions, it is selfdual if W is selfdual.
Consequently, CLancD(TwistD FD) vanishes (or is selfdual), which in turn implies
that FD vanishes (or is selfdual). The proofs of Theorems 5.1 and 5.2 are therefore
complete.

In [23], Pedersen and Swann studied the twistor theory of Einstein-Weyl struc-
tures on a selfdual conformal 4-manifold. They found that they could only give
a twistor interpretation of the Einstein-Weyl condition when the Faraday 2-form
was selfdual. Theorem 5.1 shows that their twistor construction in fact covers all
Einstein-Weyl structures on a selfdual conformal 4-manifold.

Finally, combining Proposition 5.4 of [23] with Theorem 5.1, we obtain:

5.3. Theorem. Let D be a Weyl derivative on a selfdual conformal 4-manifold.
Then the following are equivalent:

(i) D is Einstein-Weyl
(ii) Either D is Einstein, or D is the Obata connection of an antiselfdual locally

hypercomplex structure on M .

The Faraday 2-form FD is then selfdual, and either FD = 0 or scalD = 0.

The hypercomplex Einstein-Weyl manifolds are also related to local heterotic
geometries [27]. These are Riemannian geometries with torsion, which arise as target
spaces for (4, 0)-supersymmetric nonlinear σ-models.
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6. The scalar curvature of a compact Einstein-Weyl manifold.

There has been some discussion in the Einstein-Weyl literature on the sign of the
scalar curvature. Einstein manifolds have constant scalar curvature, and the sign
(positive, zero or negative) has implications for the global topology. On a Weyl
manifold, the scalar curvature is a section of L−2, and so the only invariant notion
of “constant scalar curvature” is the condition DscalD = 0, which implies D is exact
or scalD = 0. Nevertheless, it is meaningful to speak of the sign of scalD at each
point, since L−2 is oriented. Consequently it is natural to ask whether the scalar
curvature has constant sign on a compact Einstein-Weyl n-manifold. My aim in
this section is to prove that this is true when n > 4 and point out that there are
counterexamples when n = 2, 3. This is contrary to some assertions in the literature:
the scalar curvature was generally believed to have constant sign in dimensions three
and four, but not in higher dimensions [24, 25].

One motivation for including this material here is to clarify (I hope) the situation.
Another reason is that the Faraday 2-form enters in a fundamental way through 3.2:

∆DscalD = −n(n− 4)|FD|2.

The main result of this section will follow by applying the strong (Hopf) maxi-
mum principle to this Laplacian. In order to do this, we need to turn scalD into a
(weightless) function, by choosing a length scale µ. If D = Dµ + ωµ then on L−2,

∆D = ∆µ + (n− 6)Dµ
[ωµ − 2 tr Dµωµ − 2(n− 4)〈ωµ, ωµ〉.

The gauge µ is said to be a Gauduchon gauge iff tr Dµωµ = 0. Such a gauge
exists uniquely up to homothety if M is compact ([13]—see also [5, 26]), and in any
such gauge,

∆µscalD + (n− 6)Dµ
[ωµscalD − 2(n− 4)〈ωµ, ωµ〉scalD = −n(n− 4)|FD|2.

We can now multiply by µ2 to make scalD into a function.
It immediately follows that if n > 4, µ2scalD cannot have a negative local min-

imum unless ωµ = 0: at a local minimum ∆µscalD > 0 and Dµ
[ωµscalD = 0, from

which it follows that 2〈ωµ, ωµ〉scalD > n|FD|2 > 0. (This can also be established
using a formula for ∆µωµ given in [14].)

The Hopf maximum principle (see [15]) provides the following refinement of this
result.

• If n > 4, µ2scalD cannot have a nonpositive minimum unless it is constant.
• If n 6 4, µ2scalD cannot have a nonpositive maximum unless it is constant.

Therefore when n = 2, 3 we cannot rule out the possibility that µ2scalD has
negative minima and positive maxima. On the other hand, for n > 4 we have that
in any Gauduchon gauge, either µ2scalD is constant, or its local minima are all
positive (and in four dimensions the local maxima are also all positive).

In the compact case, the existence of the Gauduchon gauge, together with the
existence of maxima and minima, implies that scalD has constant sign on Einstein-
Weyl n-manifolds when n > 4.
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This result is contrary to Corollary 4.4 in [24], where the authors claim that some
of their examples have scalar curvature with non-constant sign. The error seems to
involve inconsistent choices of the branch of an inverse trigonometric function in the
evaluation of the scalar curvature at γ−1(c1/2).

I finish this section by remarking that the above dichotomy between low dimen-
sions and higher dimensions is genuine in the sense that in two and three dimensions
there do exist compact Einstein-Weyl manifolds with scalar curvature of nonconstant
sign. This is also contrary to some remarks in the literature (e.g. [25] p. 107, [24]
p. 99). I will show here that there are Einstein-Weyl structures with scalar curvature
of nonconstant sign on S3. Examples also exist on S2 and S1 × S1: see [6].

In [25], Pedersen and Tod found Einstein-Weyl structures on S3 parameterised
by a, b, c ∈ R with a 6= 0. In his classification of possible compact Einstein-Weyl
geometries [26], Tod reobtained these solutions in the following form.

g = P (v)−1dv2 + P (v)dy2 + v2(dt + Cv−2dy)2

ω = 2λv2(dt + Cv−2dy),

D = Dg + ω

P (v) = −λ2v4 + Av2 + B − C2v−2where

and λ, A,B,C are arbitrary constants, related to the parameters a, b, c in [25] by:

A = −a2 + b2 + c2, λ2B = a2b2 + a2c2 − b2c2, λ4C2 = a2b2c2.

Tod’s change of coordinates is well defined provided b 6= c and b 6= −c. The scalar
curvature is scalD = −6A + 3|ω|2 = 6(a2 − b2 − c2 + 2λ2v2). Also, the range of
λ2v2 when P (v) > 0 is the interval [b2, c2]. Therefore, for |b2 − c2| > a2, the scalar
curvature has nonconstant sign.
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