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Abstract. It is well known that any 4-dimensional hyperkähler metric with two com-
muting Killing fields may be obtained explicitly, via the Gibbons–Hawking Ansatz, from a
harmonic function invariant under a Killing field on R3. In this paper, we find all selfdual
Einstein metrics of nonzero scalar curvature with two commuting Killing fields. They are
given explicitly in terms of a local eigenfunction of the Laplacian on the hyperbolic plane.
We discuss the relation of this construction to a class of selfdual spaces found by Joyce, and
some Einstein–Weyl spaces found by Ward, and then show that certain ‘multipole’ hyper-
bolic eigenfunctions yield explicit formulae for the quaternion-kähler quotients of HPm−1

by an (m− 2)-torus studied by Galicki and Lawson. As a consequence we are able to place
the well-known cohomogeneity one metrics, the quaternion-kähler quotients of HP2 (and
noncompact analogues), and the more recently studied selfdual Einstein Hermitian metrics
in a unified framework, and give new complete examples.

1. Introduction

We present in this paper an explicit classification of 4-dimensional Einstein metrics with
selfdual Weyl curvature and two linearly independent commuting Killing fields. We refer to
these metrics as selfdual Einstein metrics with torus symmetry, since they are the local form
(on a dense open set) of such metrics with an action of T 2, S1 ×R or R2 by isometries.

When the selfdual Einstein metric g is scalar-flat, it is well known that g is locally hy-
perkähler and that some linear combination of the two Killing fields is triholomorphic—hence
g is determined by a harmonic function on R3, via the Gibbons–Hawking Ansatz [21], and
this harmonic function is invariant under the transrotation of R3 coming from the second
Killing field of g. Therefore we focus on the case that the selfdual Einstein metric has
nonzero scalar curvature.

1.1. Theorem. Let F (ρ, η) be a solution of the linear differential equation

Fρρ + Fηη =
3F

4ρ2

on some open subset of the half-space ρ > 0, and consider the metric g(ρ, η, φ, ψ) given by

g =
F 2 − 4ρ2(F 2

ρ + F 2
η )

4F 2

dρ2 + dη2

ρ2

+

(
(F − 2ρFρ)α− 2ρFηβ

)2
+
(
−2ρFηα+ (F + 2ρFρ)β

)2

F 2
(
F 2 − 4ρ2(F 2

ρ + F 2
η )
) ,

(1.1)

where α =
√
ρ dφ and β = (dψ + η dφ)/

√
ρ. Then:

(i) On the open set where F 2 > 4ρ2(F 2
ρ + F 2

η ), g is a selfdual Einstein metric of positive

scalar curvature, whereas on the open set where 0 < F 2 < 4ρ2(F 2
ρ + F 2

η ), −g is a
selfdual Einstein metric of negative scalar curvature.

(ii) Any selfdual Einstein metric of nonzero scalar curvature with two linearly independent
commuting Killing fields is arises locally in this way (i.e., in a neighbourhood of any
point, it is of the form (1.1) up to a constant multiple).
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The metric g is sufficiently explicit to make it straightforward, though tedious, to check
that it is selfdual and Einstein, for instance, by computing the curvature of the Levi-Civita
connection of g on antiselfdual 2-forms using the Cartan calculus [37]. Hence the heart
of the above Theorem is part (ii), so we concentrate on this and explain why all selfdual
Einstein metrics with torus symmetry are of this form. The proof of (ii) will in fact encode
the selfdual Einstein condition (using work of Tod [39]), thus proving (i) at the same time.

There are three features of these metrics which need to be explained. First, and most
remarkable, is the fact that the equation for F is linear—this means that we can “superpose”
two such metrics to yield a third.

Second, the equation for F means that it is a local eigenfunction, with eigenvalue 3/4,
of the Laplacian ρ−2(∂2

ρ + ∂2
η) of the hyperbolic metric (dρ2 + dη2)/ρ2—in other words F

satisfies a natural differential equation on the hyperbolic plane.
Third, the level surfaces of constant φ, ψ are orthogonal to both Killing fields ∂/∂φ and

∂/∂ψ—hence the orbits of the induced 2-dimensional local symmetry group are surface-
orthogonal, i.e., the orthogonal distribution to the orbits is integrable.

These three features are closely related. We originally found an explicit form for selfdual
Einstein metrics with torus symmetry by noticing that the local quotient of such a metric
by one of its Killing fields must be an Einstein–Weyl space with an axial symmetry, i.e., one
of the spaces found by Ward [40] and studied in [9]. These Einstein–Weyl spaces are given
explicitly in terms of an axisymmetric harmonic function (AHF) on R3, i.e., a solution of
a linear differential equation. The geometry of the hyperbolic plane H2 enters the picture
because R3rR is conformal to H2×S1. Finally, these Einstein–Weyl spaces are the quotients
of the conformal metrics found by Joyce [26], who obtained a classification of selfdual 4-
manifolds with two commuting surface-orthogonal conformal vector fields.

This original argument had the advantage of being an exercise in pure thought, i.e.,
a combination of known results with no new computations. However, it led to a rather
awkward description of the conformally Einstein metrics among Joyce’s selfdual spaces.

Therefore, we shall present a different, more self-contained proof of Theorem 1.1. Indeed,
we proceed rather in reverse, by establishing directly, in section 3, the surface-orthogonality
of the Killing fields. To do this, we first review, in section 2, an isomorphism between Killing
fields and twistors which plays an important role throughout the paper—these twistors are
essentially the same thing as compatible scalar-flat Kähler metrics [33]. We discuss this in
section 4, together with Tod’s description [39] of selfdual Einstein metrics with a Killing
field in terms of the SU(∞) Toda equation (see also [34, 15]).

Returning to the general argument, the surface-orthogonality of the Killing fields shows
that the conformal structure of a selfdual Einstein metric with torus symmetry is a ‘Joyce
space’ [26]. We review the theory of Joyce spaces and their quotient Einstein–Weyl spaces in
section 5 and explain how they are determined by two solutions of a spinor equation on H2

which is equivalent to the equation for AHFs. On the other hand, Tod’s analysis of selfdual
Einstein metrics with a Killing field shows that these two AHFs must be related in a special
way. The essential idea is that the AHFs are constructed from the eigenfunction F by a
Bäcklund transformation, and a 2-dimensional family is obtained because this transformation
is coordinate dependent. In sections 6 and 7 we use the spin geometry of the hyperbolic plane
to give a more natural description, and this allows us to complete the proof of Theorem 1.1.

In section 8 we discuss the Swann bundle [36] of our selfdual Einstein metrics, cf. [13]. This
hyperkähler 8-manifold with two commuting triholomorphic Killing fields is given locally by
the generalized Gibbons–Hawking construction of [23, 32] and we establish the relationship
between this construction and the eigenfunction F . Then, comparing the Swann bundle
with the hyperkähler quotients of Hm by an (m− 2)-torus (see [5]), we are led, in section 9,
to define ‘multipole’ hyperbolic eigenfunctions and prove the following theorem.



SELFDUAL EINSTEIN METRICS WITH TORUS SYMMETRY 3

1.2. Theorem. The selfdual Einstein metrics arising as quaternion-kähler quotients of
quaternionic projective space HPm−1 by an (m−2)-dimensional family of commuting Killing
fields are exactly the metrics given by (1.1) where F is a ‘positive m-pole solution’ of the
hyperbolic eigenfunction equation on H2.

A more precise statement is given in Theorem 9.1. In particular, this characterizes the
m-pole solutions corresponding to quaternion-kähler quotients of HPm−1 by an (m − 2)-
torus, which yield the compact selfdual Einstein orbifold metrics of Galicki–Lawson [19]
when m = 3, and Boyer–Galicki–Mann–Rees [7] in general.

Replacing Hm with Hp,q leads to non-compact analogues of these metrics, among which
there are examples of complete selfdual Einstein metrics of negative scalar curvature. Some
of these metrics are well-known—and our approach provides a unified description of them—
but we also obtain new examples.
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Bielawski, Paul Gauduchon, Kris Galicki, Elmer Rees, and Michael Singer for stimulat-
ing discussions, and also the EPSRC, the Leverhulme Trust and the William Gordon Seggie
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Both authors are members of EDGE, Research Training Network HPRN-CT-2000-00101,
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2. Selfdual Einstein metrics, twistors and Killing fields

We begin by reviewing the relation between Killing fields and antiselfdual twistors on a
selfdual Einstein manifold, following [4, 39]. Recall that a vector field K is a Killing field of
a metric g if and only if its covariant derivative DgK is a skew endomorphism of the tangent
bundle (the endomorphism is defined by X 7→ Dg

XK).
In four dimensions skew endomorphisms decompose into selfdual and antiselfdual parts:

so(TM) = so+(TM) ⊕ so−(TM). This is related (via the metric) to the decomposition
∧2T ∗M = ∧2

+T
∗M ⊕ ∧2

−T
∗M of the bundle of 2-forms into eigenspaces of the Hodge ∗

operator. We denote the decomposition of sections of these bundles by A = A+ +A−.
An antiselfdual endomorphism Ψ is called a twistor if there is a 1-form γ such that

Dg
XΨ = (γ MX)− for all vector fields X—here, for vector fields X,Y , we define γ MX(Y ) =

γ(Y )X − 〈X,Y 〉]γ. It follows by taking a trace that γ is a multiple of the divergence δgΨ
and so this is a linear differential equation on Ψ, called the twistor equation.

For a selfdual Einstein metric, the curvature Rg ∈ C∞(M,∧2T ∗M ⊗ so(TM)) has only
two irreducible components: the selfdual Weyl curvature W + ∈ C∞(M,∧2

+T
∗M⊗so+(TM)),

and the (normalized) scalar curvature sg = 1
6 scalg.

This has strong consequences for Killing fields and twistors.

2.1. Proposition. Let g be a selfdual Einstein metric.

(i) Suppose K is a Killing field of g and let Ψ = (DgK)−. Then Dg
XΨ = 1

2s
g
(
〈K, ·〉MX

)−
and so Ψ is a twistor.

(ii) Suppose Ψ is a twistor with Dg
XΨ = (γ MX)−. Then the dual vector field ]gγ is a

Killing field of g and (Dgγ)− = 1
2s
g〈Ψ(·), ·〉.

Proof. (i) Since K is Killing and g is selfdual Einstein, we have

Dg
XD

gK = RgX,K = W
+

X,K + 1
2s
g〈K, ·〉MX.

The antiselfdual part of this is what we want.
(ii) Differentiating the twistor equation again and skew symmetrizing gives

(Dg
Xγ MY )

− − (Dg
Y γ MX)

−
= [RgX,Y ,Ψ] = −1

2
sg[〈X, ·〉MY,Ψ].
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Contracting with another vector field Z and taking the trace over X and Z, we obtain

symDgγ + 1
2δ
gγ + (dγ)

−
= sg〈Ψ(·), ·〉.

The right hand side is skew, so Dgγ is skew, ]gγ is a Killing field and 2(Dgγ)− = sg〈Ψ(·), ·〉.

2.2. Corollary. Let g be a selfdual Einstein metric of nonzero scalar curvature. Then there
is a linear isomorphism from space of Killing fields of g to the space of twistors.

This is not true if g has zero scalar curvature, when Dg is flat on so−(TM) and g is locally
hyperkähler. Then Proposition 2.1 (i) says that (DgK)− is parallel, and so K is either
triholomorphic, or (DgK)− is a nonzero constant multiple of one of the complex structures.
Proposition 2.1 (ii) says that the Killing field associated to a twistor is triholomorphic.

Let us remark, however, that this isomorphism does generalize to quaternion-kähler man-
ifolds of nonzero scalar curvature [35], and underlies the quaternion-kähler quotient [19].
4m-dimensional quaternion-kähler manifolds with Tm+1-symmetry have beed studied in [13].

3. Surface-orthogonality

In this section we show that the orbits of two commuting Killing fields of a selfdual
Einstein metric with nonzero scalar curvature are necessarily surface-orthogonal.

Recall that a Killing vector K is hypersurface-orthogonal if and only if (DgK)(X,Y ) =
0 for all X,Y orthogonal to K. Here we view DgK as a 2-form using the metric g;
(DgK)(X,Y ) = −1

2〈K, [X,Y ]〉 and so hypersurface-orthogonality means precisely that the
orthogonal distribution is integrable. Equivalently K is hypersurface-orthogonal if and only
if (∗DgK)(K) is zero. In four dimensions, this is a 1-form called the twist of K.

Similarly, two linearly independent Killing vector fields K, K̃ are (codimension 2-) surface-
orthogonal if and only if (DgK)(X,Y ) = 0 and (DgK̃)(X,Y ) = 0 for all X,Y orthogonal to

both K and K̃. This means that the orthogonal distribution is integrable, and holds if and
only if (∗DgK)(K, K̃) and (∗DgK̃)(K, K̃) are both zero. In four dimensions, these are both
scalars, the twist scalars.

We first collect some simple facts about commuting Killing fields.

3.1. Lemma. Suppose K, K̃ are commuting Killing fields of a 4-dimensional metric g and
let Ψ = (DgK)−, Ψ̃ = (DgK̃)−. Then:

(i) (DgK)(K, K̃) = 0 and (DgK̃)(K, K̃) = 0.

(ii) d(|Ψ̃|2)(K) = 0 and d(|Ψ|2)(K̃) = 0.

Proof. (i) Since [K, K̃ ] = 0, we have (DgK)(K̃, ·) = (DgK̃)(K, ·). The results follow by

contracting with K and K̃ respectively.
(ii) Since LKg = 0 and LKK̃ = 0, we have LKDgK̃ = 0 and hence LK(Ψ̃) = 0. We deduce

that d(|Ψ̃|2)(K) = 0, and, in the same way, d(|Ψ|2)(K̃) = 0.

Combining this with Proposition 2.1 yields the surface-orthogonality.

3.2. Proposition. Let g be a selfdual Einstein metric of nonzero scalar curvature, and
suppose K, K̃ are linearly independent commuting Killing fields. Then the orthogonal dis-
tribution to <{K, K̃}> is integrable.

Proof. Contracting the formula of Proposition 2.1 (i) with Ψ, we obtain gradg |Ψ|2 =

sg Ψ(K). Now d(|Ψ|2)(K̃) = 0 and sg is nonzero, so we deduce that 〈Ψ(K), K̃〉 = 0. This
implies that (∗DgK)(K, K̃) = (DgK)(K, K̃) which vanishes by the above lemma. A similar
argument shows that the other twist scalar also vanishes.

In the zero scalar curvature case, the twist scalars are constant, but they need not vanish.
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4. Scalar-flat Kähler metrics and Toda structures

On any Riemannian 4-manifold (M, g), the twistor equation has a geometric interpretation
due to Pontecorvo.

4.1. Proposition. [33] Suppose that Ψ is a section of so−(TM) satisfying the equation
Dg
XΨ = (γ MX)− for all vector fields X, where γ is a 1-form, and write, on the open set

where Ψ is nonzero, Ψ = fJ where J2 = −1.
Then (f−2g, J) is a (negatively oriented) Kähler metric. In particular the antiselfdual

almost complex structure J is integrable.

Proof. Contracting the equation with Ψ, we deduce that γ = −2Jdf . Hence fDg
XJ +

df(X)J = −2(Jdf MX)−, which may be rewritten Dg
XJ+(f−1df MX)◦J−J◦(f−1df MX) =

0. This means that J is parallel with respect to the Levi-Civita connection of f−2g.

Since the Kähler form of a negatively oriented Kähler metric ĝ is parallel, it is a twistor with
respect to ĝ. However, the twistor equation is conformally invariant if Ψ has weight 1 (the
other component of the covariant derivative of Ψ, the divergence, is equivalently the exterior
derivative of the associated 2-form, and so it is conformally invariant if Ψ has weight −2).
This means that all compatible Kähler metrics arise from twistors.

If (M, g) is selfdual, then (f−2g, J) is a scalar-flat Kähler metric [20]. Hence on a selfdual
manifold, compatible scalar-flat Kähler metrics are determined locally by solutions of a linear
differential equation.

Now suppose that K is a Killing field of g, and that LKΨ = 0. Then K is a holomorphic
Killing field of the scalar-flat Kähler metric (f−2g, J). LeBrun [29] shows that such a scalar-
flat Kähler metric gJ is locally of the form

gJ = weu(dx2 + dy2) + w dz2 + w−1(dt+A)2,

where ∂t is the Killing field, u is a solution of the SU(∞) Toda equation uxx+uyy+(eu)zz = 0,
and w is a solution of its linearization wxx + wyy + (euw)zz = 0, which is the compatibility
condition for the local existence of A with dA = wxdy∧dz−wydx∧dz+(euw)zdx∧dy. The
scalar-flat Kähler metric is hyperkähler if and only if uz is a multiple of w, when LeBrun’s
construction reduces to that of Boyer and Finlay [6] (or the Gibbons–Hawking Ansatz if
uz = 0).

A geometrical interpretation of this construction is obtained by relating it to the Jones–
Tod correspondence [25]. Given a selfdual space M with a nonvanishing conformal vector
field K, the local quotient of M by K is a 3-dimensional Einstein–Weyl space B—recall that
this is a conformal manifold equipped with a torsion-free conformal connection D (a Weyl
connection) such that the symmetric trace-free part of the Ricci curvature of D vanishes [10].
Weyl connections on a conformal manifold form an affine space modelled on the space of
1-forms. In the Jones–Tod construction, there is a unique compatible metric for which K
is a vector field of constant length, and D differs from the Levi-Civita connection of the
quotient metric by a multiple of the twist of K (which descends to a 1-form on B).

Conversely, given an Einstein–Weyl space B, selfdual spaces M with a conformal vector
field fibering over B are locally determined by solutions of the abelian monopole equation
∗Dw = dA (where w is a section of L−1, i.e., a scalar of weight −1, and A is a 1-form).

In explicit terms, a Weyl structure may be specified by a choice of representative metric
h and a 1-form ω such that Dh = −2ω ⊗ h. The Einstein–Weyl structure in LeBrun’s
construction is given by

h = eu(dx2 + dy2) + dz2

ω = −uzdz.
(4.1)
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An Einstein–Weyl space which can be written in this form, for some solution u of the SU(∞)
Toda equation, is said to be Toda. These Einstein–Weyl spaces were introduced by Ward [40].

The reduction to three dimensions of the twistor equation for Ψ governing scalar-flat
Kähler metrics gives a linear description of compatible ‘Toda structures’ on an Einstein–
Weyl space [9].

4.2. Definition. A Toda structure on an Einstein–Weyl is a section X of L−1/2⊗TB such
that DX = σ id for some section σ of L−1/2. In other words, X is a weighted vector field
with tracelike covariant derivative.

Using work of Tod [38] (see also [11]), it was shown in [9] that if X is a nonvanishing
Toda structure, then in the gauge (h, ω) with |X | = 1, called the LeBrun–Ward gauge, the
Einstein–Weyl space with is of the form (4.1), for some solution of the SU(∞) Toda equation,
and X = ∂z.

We end this section by stating the crucial result of Tod [39] which characterizes selfdual
Einstein metrics g of nonzero scalar curvature with a Killing field K. Proposition 2.1 shows
that these admit a solution Ψ of the twistor equation, and it is clear that LKΨ = 0.

4.3. Proposition. [39] Let g be a selfdual Einstein metric of nonzero scalar curvature with
a Killing field K. Then g is locally isometric to z−2gJ , where gJ is a scalar-flat Kähler
metric arising from LeBrun’s construction with w = 2 − zuz. Conversely, on any Toda
Einstein–Weyl space, 2 − zuz is a solution of the abelian monopole equation and z−2gJ is
Einstein.

Note that a Toda structure only determines z up to translation, so this construction gives
a one parameter family of selfdual Einstein metrics over any Toda Einstein–Weyl space.
However, it is very difficult to obtain explicit solutions of the SU(∞) Toda equation! In
this paper, we are, in effect, exploiting some implicit solutions of the SU(∞) Toda equation
found by Ward [40].

5. The Joyce Ansatz and Einstein–Weyl spaces

In [26], Joyce studied selfdual spaces with a surface-orthogonal action of the 2-torus by
conformal transformations and constructed selfdual conformal metrics on connected sums
of complex projective planes. To do this, he first considered the local problem, and showed
how selfdual conformal metrics with a pair of surface-orthogonal commuting conformal vector
fields are generically determined by two solutions of a linear equation for a spinor field Φ on
the hyperbolic plane H2.

On the other hand, in [40], Ward gave examples of Toda Einstein–Weyl spaces by taking
quotients of Gibbons–Hawking metrics constructed from axisymmetric harmonic functions
(AHFs) on R3. These spaces were studied further in [9], where it was shown that they are
determined by a single solution Φ of the same linear equation on H2.

We refer to this equation for Φ, which can be written ∂Φ = 1
2Φ, as the Joyce equation.

The two constructions can be related using the Jones–Tod correspondence. To do this
in a symmetrical manner, we view the span of two commuting conformal vector fields as
a 2-dimensional linear family Ks, s ∈ V, where V is a 2-dimensional real vector space on
which we fix an area form (i.e., ∧2V = R) once and for all. We say that Ks is a pencil of
conformal vector fields, since the nonzero elements up to scale are parameterized by a real
projective line.

We shall call a selfdual conformal manifold with a surface-orthogonal pencil of conformal
vector fields a Joyce space. A pencil of solutions Φ = (Φs) of the Joyce equation determines
a Joyce space. On the other hand, a single solution Φ of the Joyce equation defines an
Einstein–Weyl space with an axial symmetry, i.e., admitting a surface-orthogonal divergence-
free conformal vector field K preserving the Weyl connection. We shall see that the pencil
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of quotients of a Joyce space are the Einstein–Weyl spaces with an axial symmetry defined
by the components Φs of Φ (in fact this pencil is parameterized by V∗, not V, which is why
it is convenient to fix an area form on V). First let us summarize the two constructions.

5.1. Proposition. Suppose that (N, gN ) is a hyperbolic 2-manifold with a spinor bundle
W, i.e., a real rank 2 vector bundle with a complex structure such that W⊗CW = TN . Let
gW be the induced Hermitian metric on W.

(i) [9] Suppose that Φ ∈ C∞(N,W∗) is a solution of the Joyce equation which is nonvanishing
on an open subset U of N , and let π : B → U be a flat principal S1- or R-bundle with fibre
coordinate ψ. Then

g = |Φ|2π∗gN + dψ2

ω = Φ2/|Φ|2

is an Einstein–Weyl space with an axial symmetry. Conversely any connected Einstein–
Weyl space with an axial symmetry is either flat with translational symmetry, or is locally
isomorphic to one of these.

(ii) [26] Suppose that Φ ∈ C∞(N,W∗)⊗V is a pencil of solutions of the Joyce equation which
induces a positive isomorphism Wx → V of real vector spaces for all x in an open subset U
of N , and let π : M → U be a flat principal V/Λ-bundle where Λ is a discrete subgroup of
(V,+). Then the conformal class of the metric

π∗gN + gW(Φ−1(·),Φ−1(·))
(where we identify TM with π∗TN ⊕ (M ×V), using the principal connection) is a Joyce
space. Conversely, any connected Joyce space is either locally conformally hyperkähler with
a pencil of triholomorphic Killing fields, or is locally isomorphic to one of these.

(For local questions we may as well take N = H2, B = U ×R and M = U ×V.)

The conventions used to identify ∂Φ with 1
2Φ in the Joyce equation are crucial. If the

curvature of the hyperbolic metric is −1, the isomorphism from W∗ (which is just W∗ with
the opposite complex structure) to T ∗N ⊗C W∗ must have norm 1 (as an isomorphism of
real vector bundles) with respect to the Hermitian metrics gW and gN .

To clarify this, we follow Joyce by giving an explicit and purely real interpretation of
the Joyce equation. We take N to be the hyperbolic plane H2 and introduce half-space
coordinates (ρ > 0, η), so that gH2 = (dρ2 + dη2)/ρ2. The metric on W then has the form
gW = µ2

0 + µ2
1 where µ2

0 − µ2
1 = dρ/ρ and 2µ0µ1 = dη/ρ is the identification of S2

0W∗ with
T ∗N .

We write the Joyce equation for the components Φ = A0µ0 + A1µ1 with respect to this
orthonormal frame. The Levi-Civita connection of the hyperbolic metric induces a Hermitian
connection ∇ on W and it is straightforward to compute the connection coefficients ∇µ0 =
−dη

2ρ ⊗ µ1 and ∇µ1 = dη
2ρ ⊗ µ0. Hence

∂Φ =
(
ρ(A0)ρ + ρ(A1)η − 1

2A0

)
µ0 −

(
ρ(A1)ρ − ρ(A0)η − 1

2A1

)
µ1,

which equals 1
2(A0µ0 +A1µ1) if and only if

(A0)ρ + (A1)η = A0/ρ

(A0)η − (A1)ρ = 0.

By solving one of these equations, we can reduce the Joyce equation to an equation for
a single function. The most obvious way to do this is to use the second equation to set
A0 = Gρ and A1 = Gη so that the first equation becomes Gρρ + Gηη = Gρ/ρ. If we set

G = ρ1/2F then F is an eigenfunction of the Laplacian on H2 with eigenvalue 3/4.
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Alternatively we can use the first equation to put A0 = −ρVη and A1 = ρVρ, so that the
second equation becomes ρVηη + (ρVρ)ρ = 0. This means that V is an AHF on R3 with
metric dρ2 + dη2 + ρ2dθ2.

By construction, the equation for F is the integrability condition for V and vice-versa, so
the relation between F and V is a simple example of a Bäcklund transformation.

Suppose now that we have two solutions A0µ0 + A1µ1 and B0µ0 + B1µ1 of the Joyce
equation. The corresponding Joyce space has a compatible metric

g0 = (A0B1 −A1B0)gH2 +
(A0dφ−B0dψ)2 + (A1dφ−B1dψ)2

A0B1 −A1B0
.(5.1)

Via the Jones–Tod correspondence [25], the quotient by ∂φ is an Einstein–Weyl space, and
we can compute it by rediagonalizing g0 and rescaling by (A2

0 +A2
1)/(A0B1 −A1B0) to give

(A2
0 +A2

1)gH2 + dψ2 +

(
A2

0 +A2
1

A0B1 −A1B0

)2(
dφ− (A0B0 +A1B1)dψ

A2
0 +A2

1

)2

.

In this form, we can read off the Einstein–Weyl space (gB , ωB) and abelian monopole (w , A),
using the abelian monopole equation ∗(dw − ωBw) = dA to compute ωB . The result is:

gB = (A2
0 +A2

1)gH2 + dψ2, ωB =
2A0A1 dη + (A2

0 −A2
1)dρ

ρ(A2
0 +A2

1)
,(5.2)

w =
A1B0 −A0B1

A2
0 +A2

1

, A = −A0B0 +A1B1

A2
0 +A2

1

dψ.(5.3)

Hence, as expected, the result is the Einstein–Weyl space constructed from the solution
A0µ0 +A1µ1 of the Joyce equation. However, we also see explicitly how the second solution
B0µ0 + B1µ1 of the Joyce equation determines an abelian monopole on this Einstein–Weyl
space. In the remainder of this section we discuss the scalar-flat Kähler metrics and Toda
structures that will enable us to characterize the case that (M, g0) is conformally Einstein.

An important point is that any Joyce space admits a family of scalar-flat Kähler met-
rics [26], and any Einstein–Weyl space with an axial symmetry admits a family of Toda
structures [9]. In fact, Joyce observes that each point at infinity of H2 determines a scalar-
flat Kähler metric in the conformal class on M : more precisely, for any half-space coordinates
(ρ, η) on H2, the metric ρg0 is scalar-flat Kähler. By Pontecorvo’s work [33], this means that
M has a 2-dimensional linear family of solutions of the twistor equation, which we parame-
terize by a 2-dimensional real vector space W.

Since these scalar-flat Kähler metrics are invariant under the entire pencil of conformal
vector fields, LeBrun’s work [29] shows that each scalar-flat Kähler metric determines a
Toda structure on each quotient Einstein–Weyl space. This fits together with a further
characterization of Einstein–Weyl spaces with an axial symmetry [9]: they are precisely the
Einstein–Weyl spaces admitting a pencil of Toda structures. These Toda structures are
parameterized by the same 2-dimensional real vector space W, and are obtained from a
choice of half-space coordinates (ρ, η) on H2 as follows.

First introduce the functions G,V with Gρ = A0 = −ρVη and Gη = A1 = ρVρ. (Note
that G is determined by V up to translation: one way to define G is to choose an AHF U
with Uη = V , so that G = ρUρ.) Then, after a conformal rescaling by ρ2, the Einstein–Weyl
structure may be written in the form (4.1),

h = ρ2(dV 2 + dψ2) + dG2, ω =
2Vη

ρ2(V 2
ρ + V 2

η )
dG,

where we set x = V , y = ψ, z = G, and eu = ρ2.
We know that uz is an abelian monopole giving rise to hyperkähler metric [6], while the

Einstein metrics we seek are obtained from a 2−zuz monopole (once we have fixed the Toda
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structure and the translational freedom in the z coordinate). The conformal rescaling by ρ2

multiplies the abelian monopoles w by (a constant multiple of) 1/ρ, so in the original gauge,
these monopoles may be written

ρ

2
uz =

A0

A2
0 +A2

1

ρ

2
(2− zuz) =

ρ(A2
0 +A2

1)−GA0

A2
0 +A2

1

.

Clearly (from (5.3)) the first of these is the abelian monopole associated to the solution µ1 of
the Joyce equation. The second turns out to be associated to the solution B0µ0 +B1µ1 with
B0 = ρA1−ηA0 and B1 = G−ρA0−ηA1. This latter formula is rather mysterious at present,
though one easily checks that it does satisfy the Joyce equation, and that A1B0 − A0B1 =
ρ(A2

0 +A2
1)−GA0. The origin of this transformation of the Joyce equation will be explained

later.

H2

Bs

gt

tX

Ks

�����
�����
�����

�����
�����
�����

M , g

t

s

Figure 1.

Let us now summarize the discussion of this section (see Figure 1). First, each solution Φ
of the Joyce equation determines an Einstein–Weyl space with an axial symmetry. A pencil
of solutions Φ = (Φs) defines a pencil of Einstein–Weyl spaces Bs and a selfdual space M
with a surface-orthogonal pencil of conformal vector fields Ks, having the Einstein–Weyl
spaces Bs as quotients. On the other hand, any such selfdual space M has a pencil of
compatible scalar-flat Kähler metrics gt and these determine a pencil of Toda structures Xt
on each quotient Einstein–Weyl space Bs. The choice of a scalar-flat Kähler metric or Toda
structure is given, up to homothety, by a point t at infinity on the hyperbolic plane H2. We
can fix the homothety freedom by introducing half-space coordinates for the given point at
infinity. We shall see in the next section how to regard points at infinity of H2 as a pencil.

6. Spin geometry of the hyperbolic plane

The hyperbolic plane H2 is most naturally described as the space of timelike lines in a
3-dimensional Lorentzian vector space: it inherits a Riemannian metric from the observation
that each timelike line meets the hyperboloid of two sheets at two points, one in each sheet;
thus we may identify H2 with one of these sheets, with the induced metric. Planar models
(such as the Poincaré disc or half-plane) are obtained by introducing coordinates (pairs of
real-valued functions with independent differentials) on H2.
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In this section we describe the geometry of spinors on the hyperbolic plane by equipping
the Lorentzian vector space with some extra structure, following Iversen [24].

Let W be a 2-dimensional real vector space with an area form ε (so ∧2W = R). Then
S2W is a (+ +−) Lorentzian vector space with metric 〈v1v2, w1w2〉 = −ε(v1, w1)ε(v2, w2)−
ε(v1, w2)ε(v2, w1). Alternatively, we can use ε to identify S2W with sl(W), the Lie algebra
of traceless linear maps A : W→W, so that the Lorentzian quadratic form is A 7→ −detA,
i.e., the timelike vectors have positive determinant.

This linear algebra is a manifestation of the well-known isomorphism between Spin(2, 1)
and SL(2,R): W is the space of spinors of S2W. The hyperboloid of two sheets is the surface
detA = 1 and so we use this description to identify H2 with the positive definite elements
of S2W of determinant one.

In more concrete terms, choosing a unimodular basis of W, we can parameterize H2 in
S2W by the matrices

A(ρ, η) =
1

ρ

[
1 η
η ρ2 + η2

]
.

Note that the corresponding traceless matrices are obtained by multiplying these symmetric
matrices by J =

[
0 −1
1 0

]
, which has determinant one. We easily compute that

dA =
dρ

ρ

[
−1/ρ −η/ρ
−η/ρ (ρ2 − η2)/ρ

]
+
dη

ρ

[
0 1
1 2η

]

〈dA, dA〉 =
dρ2 + dη2

ρ2
.so that

Thus ρ and η are functions on H2 identifying it with the standard half-space model of the
hyperbolic plane. They are only defined once we have chosen the unimodular basis of W.

The advantage of this model of the hyperbolic plane is that spinors are easy to handle.
Indeed we can identify H2 ×W with the spinor bundle by noting that for each A ∈ H2,
A−1 is, by definition, a positive definite unimodular inner product on W, and this equips
W = H2 ×W with a metric. The induced complex structure evidently satisfies W2 = TH2,
since W2

A consists of the symmetric elements in W⊗RW which are traceless with respect to
the inner product A−1, i.e., orthogonal to A, and this is the tangent plane TAH2.

In terms of a half-space model, a frame for W is given by the vectors

m0 =
[

0√
ρ

]
, m1 =

[
1
/√
ρ

η
/√
ρ

]

with dual frame

µ0 =
[−η

/√
ρ

1
/√
ρ

]
, µ1 =

[√ρ
0

]
.

One easily sees that these are orthogonal and of unit length with respect to A, and that

m2
0 −m2

1 = dA(ρ∂ρ), 2m0m1 = dA(ρ∂η).

We refer to the “constant” sections of W = H2 ×W as twistors—they are certainly not
parallel with respect to the induced Hermitian connection onW, since the hyperbolic metric
is not flat. We shall not need to discuss what equation they satisfy, since we have an explicit
description of them in terms of the orthonormal frame m0,m1: they are the sections of the
form

[a
b

]
= −aη − b√

ρ
m0 + a

√
ρm1,

for a, b ∈ R. In particular, the norm of [ ab ] is
√
a2ρ2 + (aη − b)2/

√
ρ.
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For a geometric interpretation, note that P (W) is the space of null lines in S2W, which
are the points at infinity of the hyperbolic plane. A point at infinity identifies the hyperbolic
plane with the half-space model. The inverse square norm of a twistor gives a ‘ρ’ coordinate
for this half-space model. Evidently, the ‘ρ’ coordinate determines the twistor up to a sign.

7. A tale of two pencils

We have introduced two pencils, parameterized by the vector spaces V and W. The first
vector space V parameterizes the pencils of

• conformal vector fields on the selfdual space M with torus symmetry;
• Einstein–Weyl spaces with an axial symmetry arising as quotients of M ;
• solutions of the Joyce equation determining these Einstein–Weyl spaces.

The second vector space W parameterizes the pencils induced by (deprojectivized) points at
infinity of the hyperbolic plane, i.e., the pencils of

• compatible scalar-flat Kähler metrics on M ;
• Toda structures on the Einstein–Weyl spaces;
• twistors on the hyperbolic plane.

The idea now is that when the selfdual space M is given by a selfdual Einstein metric g of
nonzero scalar curvature, these pencils are the same:

• each Killing field determines a scalar-flat metric;
• each Einstein–Weyl space has one of its Toda structures distinguished;

and therefore there must be a field on H2 which determines a linear map from twistors to
solutions of the Joyce equation, and the resulting linear family of solutions is the pencil
defining the underlying conformal structure of the Einstein metric. In this section we prove
that this field is the eigenfunction F . The heart of the argument is the following result.

7.1. Proposition. Let F be an eigenfunction of the Laplacian on the hyperbolic plane with
eigenvalue 3/4 and let ϕ be a twistor. Then Φ = 1

2F [ϕ + dF ·ϕ is a solution of the Joyce

equation, where dF ·ϕ denotes the natural pairing T ∗H2 ⊗W →W∗.
Proof. Given a twistor ϕ, we can use the freedom in the choice of half-space model to set
ϕ = m0/

√
ρ. In these half-space coordinates F satisfies the equation

Fρρ + Fηη =
3F

4ρ2
.

Since dF = ρFρ(µ
2
0−µ2

1) + 2ρFηµ0µ1 direct calculation yields Φ = (ρ1/2F )ρµ0 + (ρ1/2F )ηµ1,
so Φ satisfies the Joyce equation.

Proof of Theorem 1.1. Suppose that g is a selfdual Einstein metric of nonzero scalar curva-
ture on M with two commuting Killing fields. Let us review what we have proven so far
about g. Firstly, by Proposition 3.2, the Killing fields are surface orthogonal, and therefore,
by [26], the conformal class of g is a Joyce space. (If g is conformally hyperkähler, it must
be conformally flat, i.e., locally isometric to S4 or H4, but then the Killing fields of g cannot
all be triholomorphic with respect to the flat hyperkähler metric.)

The quotient of g by one of its Killing fields is an Einstein–Weyl space B with an abelian
monopole w [25]. The work of Tod [39] shows that the choice of Killing field determines a
compatible scalar-flat Kähler metric on M , a Toda structure on B, and a coordinate z on
B such that the monopole w is 2 − zuz. On the other hand, we showed in section 5 that
B is an Einstein–Weyl space with an axial symmetry. Since the Toda structure is invariant
under this symmetry, it is one of the Toda structures determined by a point at infinity on
H2. Introducing compatible half-space coordinates we may write the solution of the Joyce
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equation corresponding to this Einstein–Weyl space as Φ = A0µ0 + A1µ1 and then z = G
for some function G on H2 with Gρ = A0 and Gη = A1.

Now set F = ρ−1/2G. Then Fρρ + Fηη = 3
4F/ρ

2 and Φ is obtained by applying F to the
twistor m0/

√
ρ as in Proposition 7.1. On the other hand, applying F to (−ηm0 +ρm1)/

√
ρ

yields the solution Φ̃ = (ρA1 − ηA0)µ0 + (G− ρA0 − ηA1)µ1, which is precisely the solution
needed to construct the 2− zuz monopole on B.

Hence F generates the pencil of solutions of the Joyce equation yielding the underlying
conformal structure of the selfdual Einstein metric g. The distinguished scalar-flat Kähler
metric is ρg0 and rescaling this by 1/z2, according to Proposition 4.3, we recover the self-
dual Einstein metric F−2g0. The explicit formula (1.1) is obtained from (5.1) by direct
substitution.

As we remarked in the introduction, the reader who is not convinced that we really
have encoded the entire selfdual Einstein condition in the construction can easily verify this
directly. Such calculations amount to reproving Tod’s result [39] in this special case.

In the next section we shall be able to obtain a better understanding of formula (1.1)
after studying the Swann bundle. We will also indicate there how to check directly that the
metric is selfdual and Einstein.

8. The Swann bundle

The Swann bundle U(M) of a selfdual Einstein manifold (M, g) with nonzero scalar cur-
vature is defined to be the principal CO(3)-bundle of conformal frames of ∧2T ∗−M . In [36],
Swann showed how to define a canonical (pseudo-)hyperkähler metric on a similar bundle
over any quaternion-kähler manifold.

The hyperkähler structure on U(M) is obtained as follows. The Levi-Civita connection
induces a principal CO(3) connection on π : U(M) → M . The horizontal bundle of U(M)
is isomorphic to π∗TM , which has three tautological 2-forms (determined by the frame
of ∧2T ∗−M at each point of U(M)), whereas the vertical bundle of U(M) is isomorphic
to U(M) ×H, since CO(3) ∼= H×/{±1}, and this has a standard triple of 2-forms. Adding
suitable multiples of the horizontal and vertical components gives the three symplectic forms.

In order to describe this more explicitly, identify U(M) locally with M×CO(3) by choosing
a frame Θ of ∧2T ∗−M . We view Θ as a 2-form on M with values in ImH. The connection
on ∧2T ∗−M is given by an ImH-valued 1-form ω satisfying

dΘ− ω ∧Θ + Θ ∧ ω = 0

where (ω ∧Θ)(X,Y ) = ω(X)Θ(Y )− ω(Y )Θ(X) is the usual wedge product of quaternion-
valued forms. The selfdual Einstein equation is now

dω − ω ∧ ω + sΘ = 0

where s is a constant—up to a positive numerical factor it is the scalar curvature of the
selfdual Einstein metric g.

Passing to a double cover, we have an H-valued coordinate q given by the projection
M ×H× → H×. The hyperkähler metric is then

g̃ = s|q|2g + |dq + qω|2

with ImH-valued Kähler form Ω = s qΘq + (dq + qω) ∧ (dq + qω). An easy computation
gives

dΩ = dq ∧ (sΘ− ω ∧ ω + dω)q + q(sΘ + dω − ω ∧ ω) ∧ dq + q(s dΘ + ω ∧ dω − dω ∧ ω)q

which vanishes if g is a selfdual Einstein metric.
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Let us turn now to the examples of Theorem 1.1. In this case a frame for ∧2
−T
∗M is given

by

Θ =
1

F 2

((
−1

4F
2 + ρ2(F 2

ρ + F 2
η )
)dρ ∧ dη

ρ2
+ α ∧ β

)
i

+
1

F 2

((
ρFρ + iρFη

)
(α− iβ)− 1

2F (α+ iβ)
)
∧ dρ− idη

ρ
j

where i, j,k are the imaginary quaternions. A tedious computation is rewarded by a re-
markably simple formula for the connection 1-form:

ω =
1

F

(
−ρFη

dρ

ρ
+
(

1
2F + ρFρ

)dη
ρ

)
i− 1

F
(α− iβ)j.

Computing dω − ω ∧ ω, we can check that the metric g is selfdual and Einstein with s = 1.
Since the construction of the Swann bundle is canonical, the commuting Killing fields of

g lift to give commuting trihamiltonian vector fields of g̃. Now any hyperkähler 8-manifold
with two commuting trihamiltonian vector fields is given explicitly by a generalized Gibbons–
Hawking Ansatz [23, 32]: it is isometric to

Φij〈dxi, dxj〉+ Φ−1
ij(dti +Ai)(dtj +Aj)

where (Φij , Ai) is a solution of a generalized abelian monopole equation on R2⊗ ImH, whose
coordinates (x1,x2) are the ImH-valued momentum maps of the trihamiltonian vector fields
(∂t1 , ∂t2). In more invariant language, the matrix Φ is a section of S2V over V∗⊗ImH, where
V is the 2-dimensional real vector space of Killing fields. Our notation Φ = (Φij) is meant to
suggest that this matrix is essentially the same object as the pencil Φ = (Φs) of solutions of
the Joyce equation, as we shall see at the end of this section. First, using the non-constant
frame (α, β) for V = W∗ (instead of (dφ, dψ)), we obtain the following result.

8.1. Proposition. Let F be a local eigenfunction of the Laplacian on H2. Then the hy-
perkähler metric on the Swann bundle of the associated selfdual Einstein metric is given by
the generalized Gibbons–Hawking Ansatz with

Φ =
F

|q|2
(

1
2F + ρFρ ρFη
ρFη

1
2F − ρFρ

)
.

Furthermore, the ImH-valued momentum maps of ∂ψ and ∂φ are

xψ =
qkq√
ρF

and xφ =
q(η + ρi)kq√

ρF
.

Proof. For the first part we show that Φ−1 is the metric on U(M)×W induced by g̃. Let Q

be the matrix
( 1

2
F−ρFρ −ρFη
−ρFη 1

2
F+ρFρ

)
, so that the selfdual Einstein metric is

g =
1

F 2

[
detQgH2 +

1

detQ
(α β)Q2

(
α
β

)]

Then the metric on the torus induced by g̃ = |q|2g + |dq + qΘ|2 is

|q|2
F 2 detQ

(α β)
(
detQ id +Q2

)(α
β

)

and detQ id + Q2 = (tr Q)Q = F Q by the Cayley–Hamilton theorem. This is what we
want, because Φ−1 = |q|2Q/(F detQ).

For the momentum maps, we must compute the contraction of the ImH-valued symplectic
form qΘq + (dq + qω) ∧ (dq − ωq) with ∂ψ and ∂φ. The contraction with any vector field X
in the torus is q

(
Θ(X) +ω(X)ω−ω ω(X)

)
q+ qω(X)dq+ dq ω(X)q. It is straightforward to
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compare this with dxψ or dxφ when X = ∂ψ or ∂φ: in particular note that ω(∂ψ) = k/
√
ρF

and ω(∂φ) = (η + ρi)k/
√
ρF .

We summarize this discussion of the Swann bundle by the following diagram.

U(M)8 CO(3)�
M4

ImH⊗0 W

T 2

�
CO(3)� H2

T 2
�

Here we denote by ImH ⊗0 W the elements of ImH ⊗W which are not decomposable. In
terms of a basis for W, this means the points where the coordinates x1 and x2 are linearly
independent. Clearly the momentum maps xφ and xψ are linearly independent.

In order to understand the bottom arrow in this diagram, consider the Grammian map
ImH⊗W→ S2W given in components by

(x1,x2) 7→
[
|x1|2 〈x1,x2〉
〈x1,x2〉 |x2|2

]
.

The determinant of this matrix is |x1 ∧x2|2, which is nonnegative, and vanishes if and only
if x1 and x2 are linearly dependent. Otherwise the matrix is positive definite, and so on
dividing by |x1 ∧ x2|, we get a well-defined map ImH ⊗0 W → H2. This map is CO(3)-
invariant, where CO(3) acts diagonally on ImH ⊗W ∼= ImH ⊕ ImH, and applying it to
(xφ,xψ) gives the matrix

1

ρ

[
1 η
η ρ2 + η2

]

so the diagram commutes.
We now attempt to justify our use of the same letter both for solutions of the Joyce

equation defining selfdual Einstein metrics, and for generalized monopoles defining their
Swann bundles. Given any hyperbolic eigenfunction F on H2, define F̃ : S2W+ → R, where
S2W+ denote the space of timelike elements of S2W (i.e., matrices of positive determinant),

by requiring that F̃ has homogeneity 1/2, i.e., F̃ (λv) = λ1/2F̃ (v), and that F̃ |H2 = F .

Then dF̃ is a function on S2W+ with values in S2W and its matrix with respect to the
(homogeneity 1/2) orthonormal frame (m0,m1) of S2W+ ×W is

1√
detA

(
1
2F + ρFρ ρFη
ρFη

1
2F − ρFρ

)
at A =

√
detA

ρ

[
1 η
η ρ2 + η2

]
∈ S2W+.

• Pulling dF̃ back to ImH ⊗0 W gives the generalized monopole Φ, since
√

detA pulls
back to |xψ ∧ xφ| = |q|2/F .

• Restricting dF̃ to H2 gives the pencil of solutions Φ of the Joyce equation and this
explains the form of the metric in (1.1).

Hence Φ and Φ are different manifestations of the same object. Furthermore, this description
in terms of a homogeneity 1/2 function F̃ gives a natural interpretation of the equation for F :

F = F̃ |H2 is a hyperbolic eigenfunction with eigenvalue 3/4 if and only if F̃ is a (homogeneity
1/2) solution of the wave equation.

9. Quaternion-kähler and hyperkähler quotients

Our motivation for constructing the Swann bundle of the selfdual Einstein metrics of this
paper is to provide an explicit relation between these metrics and the quaternion-kähler
quotients of quaternionic projective space HPm−1. In [16, 19] Galicki and Lawson defined
an analogue of the hyperkähler quotient [23] in quaternion-kähler geometry, in which the
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quotient of a 4(m− 1)-dimensional quaternion-kähler manifold by a k-dimensional group of
symmetries is (at least locally) a 4(m− k − 1)-dimensional quaternion-kähler manifold.

This is of interest here, because quaternion-kähler quotients of HPm−1 by an (m − 2)-
dimensional subtorus of a maximal torus Tm in Sp(m) are selfdual Einstein metrics of
positive scalar curvature with T 2 symmetry. These quotients were first studied by Galicki–
Lawson [19] and Boyer–Galicki–Mann–Rees [7]; they are globally defined on compact orb-
ifolds. Hence if we could obtain explicitly the relation between these quaternion-kähler
quotients and Theorem 1.1, then we would have explicit formulae for the (hithertoo only
implicit) Galicki–Lawson metrics and their generalizations.

Quaternion-kähler quotients of a quaternion-kähler manifold Q may be related to hy-
perkähler quotients of its Swann bundle U(Q). Indeed the symmetry group lifts to an action
on U(Q) preserving the hyperkähler structure, and commuting with the CO(3)-action. The
momentum map of this action is a CO(3)- and G-equivariant map µ : U(Q) → ImH ⊗ g∗,
where ImH carries the standard representation of CO(3) and g is the Lie algebra of G,
so that g∗ is the coadjoint representation. The hyperkähler quotient of U(Q), given by
U(Q)///G = µ−1(0)/G, is therefore hyperkähler with a CO(3)-action. (It may or may not
be a manifold, but in any case the geometry of the local quotient is well-defined.) Swann
proved that U(Q)///G is the Swann bundle of the quaternion-kähler quotient of Q [36]. In-
deed, when taking quotients of HPm−1 one often works in homogeneous coordinates, and
this amounts to working on (the double cover of) the Swann bundle (Hm r {0})/{±1}.

Now hyperkähler quotients of Hm by tori are well understood. Let Tm be the maximal
torus of Sp(m) acting on Hm by (q1, . . . qm) 7→ (e

�
t1q1, . . . e

�
tmqm). We can describe an

(m − 2)-subtorus of Tm by declaring that its Lie algebra is the kernel of a map Rm → R2

sending the standard basis e1, . . . em (the generators of the chosen m-torus) to some given
α1, . . . αm ∈ R2. Evidently α1, . . . αm must be rational (up to an overall factor) in order
that the kernel of the map Rm → R2 is the Lie algebra of a subtorus. However, even
without this condition, we can still consider the local hyperkähler quotient of Hm by an
(m− 2)-dimensional family of commuting triholomorphic Killing fields.

Specializing a result of Bielawski–Dancer [5] to the case of interest, we learn that the
hyperkähler quotient of Hm r {0} by this subtorus (with zero momentum map in order
to obtain the Swann bundle of a quaternion-kähler quotient) is given by the generalized
Gibbons–Hawking Ansatz with

Φij =
m∑

k=1

(αk)i(αk)j
rk

,

where rk = |(αk)1x1 + (αk)2x2|.
Note that R2 here is the Lie algebra of the quotient torus. In our setting this is the vector

space W. Then α1, . . . αm define m twistors on H2, which we write as ϕk =
[ ak
bk

]
, where

ak = −(αk)2, bk = (αk)1. These m twistors must determine the hyperbolic eigenfunction F

in some way. Since Φ is dF̃ , we compute that

F̃ =
m∑

k=1

rk =
m∑

k=1

|bkx1 − akx2|

and therefore

F =
m∑

k=1

√
a2
kρ

2 + (akη − bk)2

√
ρ

=
m∑

k=1

|ϕk|

where |ϕk| is the pointwise norm of the twistor
[ ak
bk

]
. Indeed, it is straightforward to check

that the norm of a twistor ϕ is a hyperbolic eigenfunction: without loss of generality we can
take ϕ =

[
0
1

]
= m0/

√
ρ, so that F = 1/

√
ρ.
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For this ‘monopole solution’ F , the pencil of solutions of the Joyce equation degenerates:
applying F to

(
−(aη − b)m0 + aρm1

)
/
√
ρ, using Proposition 7.1, gives Φ = 2aµ1, which is

the solution of the Joyce equation found by Joyce [26]. Joyce superposed this solution with
its image under hyperbolic isometries in order to obtain his explicit metrics on nCP2.

The same trick yields interesting metrics here. For the monopole solution, F = 1/
√
ρ,

1
4F

2 − ρ2(F 2
ρ + F 2

η ) is identically zero, and so we only obtain a selfdual Einstein metric
only on the empty set! However for m > 1 the ‘m-pole’ solutions F =

∑m
k=1 |ϕk| yield

quaternion-kähler quotients of HPm−1. Let us state our result more precisely.

9.1. Theorem. Let Rm be the Lie algebra of the maximal torus of Sp(m) which acts on
HPm−1 by [q1 : · · · : qm] 7→ [e

�
t1q1 : · · · : e

�
tmqm]. Let M4 be the local quaternion-kähler

quotient of HPm−1 by the (m − 2)-dimensional family of Killing fields in the kernel of the
map Rm →W sending the standard basis e1, . . . em to ϕ1, . . . ϕm ∈W.

Then the selfdual Einstein metric on M 4 is given by (1.1) with F =
∑m

k=1 |ϕk|.
The solutions corresponding to reductions of HPm−1 by an (m−2)-torus yield the compact

selfdual Einstein orbifolds we seek. These global reductions arise when ϕ1, . . . ϕm ∈W span
a 2-dimensional vector space over the rationals, i.e., when they can be chosen to have rational
components.

The description of these metrics in terms of the hyperbolic plane links the geometry to
the topological analysis of Boyer–Galicki–Mann–Rees [7], who describe a T 2-invariant cell
decomposition of their orbifolds over the closed disc, where the principal orbits fibre over the
open disc and the special orbits fibre over the boundary. If we identify the open disc with
the hyperbolic plane H2, then the boundary is the circle at infinity P (W). The m twistors
determine m marked points on this circle, corresponding to the fixed points of the action.

Non-compact analogues of these metrics may be obtained by taking quaternion-kähler
quotients of quaternionic hyperboloids HHp−1,q and HHp,q−1 by an (m − 2)-subtorus of a
Cartan subgroup of Sp(p, q), p+q = m. This includes, for instance, quotients of quaternionic
hyperbolic space HHm−1 when {p, q} = {m− 1, 1} [17, 18].

Such metrics may also be viewed as analytic continuations. Indeed, both the constructions
of this paper and the hyperkähler and quaternion-kähler quotients may be carried out in
the holomorphic category, and from this point of view real metrics are obtained by taking
real slices of such complex metrics. In the holomorphic category, |ϕ| must be taken to be
a choice of branch of the square root of the complex bilinear pointwise inner product of ϕ
with itself. Other real slices are obtained by replacing a sum of real twistors either by a
sum of complex conjugate twistors, or by a difference of real twistors, leading to multipole
solutions of the form

F =
r∑

k=1

(
|ϕ2k−1 + iϕ2k|+ |ϕ2k−1 − iϕ2k|

)
+

p∑

k=r+1

(
|ϕ2k−1| − |ϕ2k|

)
+

p+q∑

k=2p+1

|ϕk|,

where ϕ1, . . . ϕp+q are real and 0 6 r 6 p. (The norm of a complex twistor vanishes on the
hyperbolic plane and so the complex conjugate pairs are only defined on a branched cover.)

The freedom here corresponds to the fact that Sp(p, q) does not have a unique Cartan
subgroup up to conjugacy: for each Sp(1, 1) factor, we can take either an S1 ×R subgroup
or a T 2 subgroup, using (for instance) elements of the form

(
e

�
t1 cosh t2 e

�
t1 sinh t2

e
�
t1 sinh t2 e

�
t1 cosh t2

)
or

(
e

�
t1 0

0 e
�
t2

)

in U(1, 1). Hence if we suppose p 6 q and write Hp,q = (H1,1)p ×Hq−p, then we obtain a
Cartan subgroup of Sp(1, 1) ×· · · ×Sp(1, 1) ×Sp(q − p) of the form

(S1 ×R)r ×T 2(p−r) ×T q−p 6 Sp(1, 1)r ×Sp(1, 1)p−r ×Sp(q − p).



SELFDUAL EINSTEIN METRICS WITH TORUS SYMMETRY 17

We should remark, however, that in addition to Cartan subgroups, there are also maximal
abelian subgroups containing nilpotent elements. We believe these yield a mild generalization
of m-pole solutions, in which multipoles can become infinitesimal in a limiting process, such
as the dipole limε→0

1
ε (|ϕ1 +εϕ2|− |ϕ1−εϕ2|). We shall not study this kind of solution here.

The global behaviour of the m-pole solutions can be approached either via the quaternion-
kähler quotient, as in [7, 17, 18], or via compactification arguments based on local models,
as discussed by Joyce [26]. A detailed analysis of this would take us to far afield here, so we
turn instead to examples.

10. Examples

In this section we study the simplest nontrivial examples of multipole selfdual Einstein
metrics. An m-pole solution F is determined, up to sign and reality choices, by m distinct
elements of the 2-dimensional vector space W of twistors, and conversely F determines the
twistors up to sign. Concretely, with respect to a choice of unimodular basis, we may write
these elements as

[ ak
bk

]
. Now the group SL(W) acts naturally on the set of m-tuples of

elements of W, yielding equivalent solutions, so there is really only a 2m − 3 parameter
family of solutions. Furthermore, the solutions F and λF yield the same Einstein metric for
any λ 6= 0, so the moduli space actually has dimension 2m− 4.

We first remark that the dipole solutions (m = 2) yield only hyperbolic and spherical
metrics. More precisely, using the SL(W) freedom, we take the two twistors to be [ a0 ] and
[ 0
a ]. Allowing for the homothety freedom, we are then left with three choices for the solution:

F+ =
1 +

√
ρ2 + η2

√
ρ

, F− =
1−

√
ρ2 + η2

√
ρ

F c =

√
ρ2 + (η + i)2 +

√
ρ2 + (η − i)2

√
ρ

.or

The first of these gives the spherical metric, while the other two give the hyperbolic metric
with inequivalent torus actions.

We now consider the case m = 3, when the moduli space is 2-dimensional. This case
is particular interesting since selfdual Einstein metrics in this family have been studied in
many places by diverse methods.

(i) In the context of finding selfdual Einstein metrics of negative scalar curvature with
prescribed conformal infinity [27], the second author found complete examples on the
4-ball [31], depending on a single parameter in (−1,∞) (denoted m2 there). It was
later realized [28, 22] that when this parameter is (2−n)/n (for n ∈ Z, n > 3), analytic
continuations of these metrics are complete on O(n) → CP1 (and are conformally
related to LeBrun’s scalar-flat Kähler metrics on O(−n)).

(ii) By taking quaternion-kähler quotients of HP2 by S1, Galicki and Lawson [19] found
selfdual Einstein metrics of positive scalar curvature on certain compact orbifolds Oq,p
(p, q coprime with 0 < q/p 6 1). Negative scalar curvature analogues and generaliza-
tions have also been studied [17, 18].

(iii) A subfamily of the m = 3 metrics have local cohomogeneity one, and are therefore bi-
axial Bianchi metrics, which have been studied in many places, in particular [3]. The
metrics in (i) are all in this subfamily. Furthermore, the quaternion-kähler quotients
considered in detail in (ii) are mainly the local cohomogeneity one examples, although
the general case is analogous [19, Remark 4.27].

(iv) Apostolov and Gauduchon [2] classify explicitly selfdual Einstein Hermitian metrics,
i.e., admitting a selfdual complex structure: such metrics automatically have torus
symmetry. They are conformal to selfdual Kähler metrics, which have been classified
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by Bryant [8] as the specialization to four dimensions of Kähler metrics with vanishing
Bochner tensor. Conversely a generic selfdual Kähler metric is locally conformally
Einstein. Apostolov and Gauduchon also show that quaternion-kähler quotients of
HP2 and quaternionic hyperbolic space HH2 by S1 or R are selfdual Hermitian (and
the same is true for HH1,1). In particular the 3-pole solutions are all Hermitian.

(v) These solutions have recently been studied by Casteill, Ivanov and Valent [12], using
the harmonic superspace approach.

In view of all this work, we cannot claim that the m = 3 examples are new. Nevertheless,
in addition to presenting a unified treatment, we are able to give explicitly the parameter
values yielding complete 3-pole metrics on the 4-ball. At the end of the section, we shall
use a perturbation argument to obtain complete m-pole metrics on the 4-ball for any m,
showing that the moduli space is infinite dimensional.

Consider then the general 3-pole solution. Using the SL(W) freedom we may write this
in the form:

F =
a√
ρ

+
b+ c/m

2

√
ρ2 + (η +m)2

√
ρ

+
b− c/m

2

√
ρ2 + (η −m)2

√
ρ

,

where |m| = 1, but m can be imaginary or real, −m2 = ±1. We refer to these as Type I and
Type II solutions respectively, after the Eguchi–Hanson I and II metrics. It is convenient to
work in (Eguchi–Hanson)-like coordinates

ρ =
√
R2 ± 1 cos θ, η = R sin θ

with θ ∈ (−π/2, π/2) so that
√
ρF = a+ bR+ c sin θ

ρ−1
(

1
4F

2 − ρ2(F 2
ρ + F 2

η )
)

=
b(aR ∓ b) + c(a sin θ + c)

R2 ± sin2 θ
.and

Note that the zero-set of F is a conformal infinity of the selfdual Einstein metric, which has
negative scalar curvature there. On the other hand the zero-set of 1

4F
2 − ρ2(F 2

ρ + F 2
η ) is a

singularity separating domains of positive and negative scalar curvature, and the metric is
incomplete there. Let us consider the Type I and Type II metrics separately.

In the Type I case, F is only globally defined on a branched double cover of the hyperbolic
plane: we can regard R = 0 as the branch cut between R > 0 and R 6 0. Without loss of
generality, we can assume a is nonzero and use the homothety freedom to set a = 1. We can
also suppose b, c > 0 (using R 7→ −R and θ 7→ −θ).

When b is nonzero we have, for each θ ∈ (−π/2, π/2), a unique value of R, namely
R∞ = −(1 + c sin θ)/b, at which F = 0, and a unique value R± = (b2 + c2 + c sin θ)/b where
1
4F

2 − ρ2(F 2
ρ + F 2

η ) = 0. When c = 0, R∞ = −1/b and R± = b: this is the case that
the selfdual Einstein metric is a bi-axial Bianchi IX metric, i.e., of local cohomogeneity one
under U(2), and the distinguished Einstein–Weyl quotient (by the centre of U(2)) is S3 [31].

In general, one checks that R∞ < R± for all θ. Hence there are three domains of definition.

• R ∈ (−∞, R∞): here the metric has negative scalar curvature and yields a complete
metric on the ball B4 with a conformal infinity at R = R∞.
• R ∈ (R∞, R±): the metric still has negative scalar curvature, but has an unremovable

singularity at R = R±.
• R ∈ (R±,∞): the metric now has positive scalar curvature, again with an unremovable

singularity at R = R±.

The complete domain was found by Galicki [18], although it is only more recently that it
has been noticed that these metrics are more general than those of [31].
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If b = 0 then there are two nontrivial cases: for c > 1, there is a conformal infinity at
sin θ = −1/c and no singularity, while for c < 1 there is a singularity at sin θ = −c and no
conformal infinity. These turn out to be Bianchi VIII metrics, i.e., have local cohomogeneity
one under GL(2,R), and the distinguished Einstein–Weyl quotient is H3 [11]. For c = 1
the metric is the Bergman metric on CH2. We illustrate this discussion with a diagram
(Figure 2) of the (b, c)-plane next to which we give a heuristic picture of the behaviour of
F on the branched double cover of the hyperbolic plane by shading the domain over which
the Einstein metric has positive scalar curvature and indicating the conformal infinity in the
domain of negative scalar curvature.

2

CH2

CH

Figure 2.

For the Type II metrics the range of R is (1,∞) and F is globally defined on the hyperbolic
plane. However the moduli space has a much richer structure and the analysis is more
involved. The homothety freedom means that the Einstein metrics are parameterized by
a point [a, b + c, b − c] in RP2 r {[1, 0, 0], [0, 1, 0], [0, 0, 1]}. The lines joining the points
[1, 0, 0], [0, 1, 0] and [0, 0, 1] represent dipole solutions, so the true moduli space is obtained
by removing these lines and taking the quotient by the permutation group Sym3 of the
coordinates. For convenience we shall only remove the line a = 0, so that we can set a = 1
and use inhomogeneous coordinates (b, c) as in the Type I case. On the lines b = ±c the
selfdual Einstein metric is the hyperbolic metric for b < 0 and the spherical metric for b > 0.

First note that (b, c) = (1, 0) (the fixed point [1, 1, 1]) gives the Fubini–Study metric
on CP2, whereas the points (0, 1), (0,−1) and (−1, 0) yield the Bergman metric on CH2

(cf. [19, 31]). Along the lines joining these four points, we have bi-axial Bianchi metrics with
distinguished quotient H3: along the lines joining (1, 0) to the others, the metric is Bianchi
IX, whereas on the lines between (0, 1), (0,−1) and (−1, 0), the metric is Bianchi VIII.

As in the Type I case, the zero-sets of F and 1
4F

2 − ρ2(F 2
ρ + F 2

η ) do not meet. This is a
matter of checking that there are no simultaneous solutions of

bR+ cS + 1 = 0

bR+ b2 − cS − c2 = 0
(10.1)

with S = sin θ ∈ (−1, 1), R > 1. The solution of (10.1) for b, c 6= 0 is R = −(1 + b2 −
c2)/2b, S = −(1− b2 + c2)/2c which satisfies b2(R2 − 1) = c2(S2 − 1). Hence we see that we
cannot have S ∈ [−1, 1], R ∈ [1,∞] unless (b, c) lies on one of the Bianchi VIII lines b = 0,
b + c + 1 = 0 or b − c + 1 = 0, in which case there are solutions R = ∞, (R,S) = (1,−1)
and (R,S) = (1, 1) respectively, i.e., at the three marked points at infinity.

Analysing the equations in (10.1) separately, we can determine for which (b, c) the selfdual
Einstein metric has positive and/or negative scalar curvature domains, and whether there is
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a conformal infinity. The Bianchi VIII lines b = 0, b± c+ 1 = 0 and the dipole lines b = ±c
divide the (b, c) plane into 1 + 3 + 3 + 6 = 13 regions of four different types leading to the
following picture of the (pre-)moduli space (Figure 3).

SCH 4

CP

2

H4

2

4H

2CH 4S

2CH

A

B

B

C

C

D

D

D

D

C

D

D
B

Figure 3.

In this figure the Bianchi VIII lines are solid, the Bianchi IX lines are dotted (and do
not bound regions), while the dipole lines are dashed. We label the type of the region by
A,B,C,D and sketch the topology of the zero sets in the hyperbolic disc as before. In these
regions of the moduli space the geometry of the selfdual Einstein metric is as follows.

(A) The metric has positive scalar curvature and no singularities for R ∈ (1,∞). When
(b, c) = (1, 0) it is the Fubini–Study metric, while for other rational values the metric
may be compactified on a weighted projective space CP [p,q,r], and the selfdual Einstein
metrics are Hermitian [2, 8, 19].

(B) The metric has a positive and a negative scalar curvature domain separated by an
unremovable singularity.

(C) The metric has two domains of negative scalar curvature separated by a conformal
infinity. On one side of the conformal infinity the metric is complete on B4. For
rational parameter values, the metric on the other side yields a complete metric on
O(n)→ CP1 or an orbifold generalization of this [17, 22, 28, 31].

(D) The metric has two domains of negative scalar curvature and one of positive scalar
curvature. On one side of the conformal infinity we obtain a complete metric on B4.
This is similar to the behaviour in the Type I case.

It is also fairly clear from Figure 3 what happens as (b, c) passes from one region to
another. Along the dipole lines b = ±c, a bubble of positive or negative scalar curvature
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appears or disappears at one of the marked points, whereas along the Bianchi VIII lines,
either the singularity or the conformal infinity passes through one of the marked points,
creating or destroying a domain of positive or negative scalar curvature as it does.

The R,S coordinates give a reasonably simple formula for the metric.

g =
b2 − c2 + a(bR− cS)

(a+ bR+ cS)2

( dR2

R2 − 1
+

dS2

1− S2

)

+
1

(a+ bR+ cS)2(b2 − c2 + a(bR− cS))(R2 − S2)

∗
(

(R2 − 1)(1 − S2)
(
(bR− cS)dφ + (cR− bS)dψ

)2

+
(
(b(R2 − 1)S + c(1− S2)R)dφ+ (c(R2 − 1)S + b(1− S2)R+ a(R2 − S2))dψ

)2
)
.

In particular, the metric is rational. This is not surprising in view of the work of Apostolov–
Gauduchon [2] and Bryant [8]: the 3-pole metrics are all Hermitian, and are given explicitly
in terms of a fourth order polynomial P (y) whose roots sum to zero. Despite the superficial
resemblence of this formula to [8, section 4.3.2] (see also [1]), the precise relationship is
rather complicated. By computing the selfdual Weyl curvature W + of the Einstein metric
g, we find that the selfdual Kähler metric |W +|2/3g—see [2, 14]—is (a constant multiple of)
(a+ bR+ cS)2g/(b2 − c2 + a(bR− cS))2 with Kähler form

1

(b2 − c2 + a(bR− cS))2

(
(dφ ∧ (b dR − c dS) + dψ ∧

(
(c+ aS)dR − (b+ aR)dS)

))
.

The momentum maps of ∂φ and ∂ψ are therefore (up to an affine transformation)

bR− cS
b2 − c2 + a(bR − cS)

and
cR− bS

b2 − c2 + a(bR− cS)
.

According to [8], these must be affine linear combinations of the trace u1 = y1 + y2 and the
pfaffian u2 = y1y2 of the normalized Ricci form of the Kähler metric, and by [2, 14] u2

1 is
the conformal factor from the Einstein metric to the Kähler metric. For generic a, b, c, this
allows us to put the Kähler metric into the form of [8, 1]:

(y1 − y2)
( dy2

1

P (y1)
− dy2

2

P (y2)

)
+

1

y1 − y2

(
P (y1)(dt1 + y2dt2)2 − P (y2)(dt1 + y1dt2)2

)

where P (y) = (y−2ab−b2+c2)(y+2ab−b2+c2)(y−2ac+b2−c2)(y+2ac+b2−c2). We interpret
this formula abstractly by noting that three twistors ϕ1, ϕ2, ϕ3 give rise to three SL(W)-
invariants, namely the determinants z1 = ε(ϕ2, ϕ3), z2 = ε(ϕ3, ϕ1) and z3 = ε(ϕ1, ϕ2). Up
to an overall sign, the roots of the polynomial P (y) are then

r0 = 1
2(z1 + z2 + z3), r1 = 1

2(z1 − z2 − z3),

r2 = 1
2(−z1 + z2 − z3), r3 = 1

2(−z1 − z2 + z3).

Hence we have related the generic Type II 3-pole Einstein metrics to the Case 4 Kähler
metrics of [8]. In a similar way, the generic Type I 3-pole Einstein metrics are related to
Bryant’s Case 1 Kähler metrics. The extra lines in our 3-pole moduli space are cohomogene-
ity one metrics, which are treated separately in [2, 8] because the trace and the pfaffian of the
normalized Ricci form are not independent. On the other hand Bryant’s Case 2 and Case 3
metrics are not covered by the 3-pole metrics, because P (y) then has repeated roots. These
correspond to quaternion-kähler quotients of HH2 and HH1,1 by a non-semisimple S1 action.
We could obtain them from a limiting process in which a dipole becomes infinitesimal.

Let us end by remarking that it is straightforward to obtain many complete selfdual
Einstein metrics with T 2 symmetry on B4. Such metrics arise when there is a domain of
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negative scalar curvature surrounding a single marked point and bounded by a conformal
infinity. Starting with a known example we can deform F slightly by adding additional
monopole solutions at points on the other side of the conformal infinity. The zero-set of
F deforms smoothly and so the metric stays complete until the conformal infinity hits a
fixed point. This argument yields not only the 3-pole solutions, but m-pole solutions for any
m > 2. Hence the moduli space of smooth and complete torus-symmetric selfdual Einstein
metrics on the ball is infinite dimensional, cf. [30].

We can also obtain infinite dimensional families of smooth complete metrics with other
topologies, but we postpone the discussion of these examples to another occasion.
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[13] B. de Wit, M. Roček and S. Vandoren, Hypermultiplets, hyperkähler cones and quaternion-Kähler geom-
etry, J. High Energy Phys. 01 02 (2001), 039.
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(1995) 1535–1547.

[39] K. P. Tod, The SU(∞) Toda field equation and special four-dimensional metrics, in Geometry and
Physics (Aarhus, 1995, J. E. Andersen, J. Dupont, H. Pedersen and A. Swann, eds.), Lecture Notes
in Pure and Appl. Math. 184, Marcel Dekker, New York (1997), pp. 307–312.

[40] R. S. Ward, Einstein–Weyl spaces and SU(∞) Toda fields, Class. Quantum Grav. 7 (1990) L95–L98.

Department of Mathematics and Statistics, University of Edinburgh, King’s Buildings, May-
field Road, Edinburgh EH9 3JZ, Scotland.

E-mail address: davidmjc@maths.ed.ac.uk

Department of Mathematics and Computer Science, SDU-Odense University, Campusvej 55,
DK-5230 Odense M, Denmark.

E-mail address: henrik@imada.sdu.dk


