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Abstract. We establish an equivalence between conformally Einstein–Maxwell Kähler
4-manifolds recently studied in [5, 10, 35, 44, 48, 49, 50] and extremal Kähler 4-manifolds
in the sense of Calabi [20] with nowhere vanishing scalar curvature. The corresponding
pairs of Kähler metrics arise as transversal Kähler structures of Sasaki metrics compati-
ble with the same CR structure and having commuting Sasaki–Reeb vector fields. This
correspondence extends to higher dimensions using the notion of a weighted extremal
Kähler metric [7, 11, 45, 46, 47], illuminating and uniting several explicit constructions
in Kähler and Sasaki geometry. It also leads to new existence and non-existence results
for extremal Sasaki metrics, suggesting a link between the notions of relative weighted
K-stability of a polarized variety introduced in [11, 47], and relative K-stability of the
Kähler cone corresponding to a Sasaki polarization, studied in [18, 26].

Introduction

The famous Calabi problem [20], which seeks the existence of canonical Kähler metrics,
is a central and very active topic of current research in Kähler geometry. As a candidate
for a canonical metric on a complex manifold (M,J), Calabi proposed a notion of extremal
Kähler metric g, meaning that its scalar curvature Scal(g) is a Killing potential, i.e., the
vector field J gradg Scal(g) is a Killing vector field for g. Examples include constant scalar
curvature (CSC) Kähler metrics on (M,J), and hence also Kähler–Einstein metrics.

More recently, in real dimension 4, another natural generalization of CSC Kähler metrics
has been studied [5, 48, 49, 50]: Kähler metrics g admitting a positive Killing potential f
for which the scalar curvature of the conformal metric g̃ = (1/f 2)g is a constant c, i.e.,

(1) Scal(g̃) = f 2Scal(g)− 6f∆gf − 12|df |2g = c,

where ∆g is the riemannian laplacian and | · |g the norm defined by g. The metric g̃ satisfies
a riemannian analogue of the Einstein–Maxwell equations with cosmological constant in
generally relativity [59, 29], and thus we say g is a conformally Einstein–Maxwell Kähler
metric. Many explicit examples of such metrics have been exhibited [5, 6, 10, 35, 44, 49,
50], and they have a striking resemblance to similar explicit examples of extremal Kähler
metrics, see e.g. [10, Prop. 3]. Elucidating the connection suggested by these examples
was the main motivation for this article, and our main result implies in particular an
equivalence between the classes of conformally Einstein–Maxwell Kähler 4-manifolds and
extremal Kähler 4-manifolds of nowhere zero scalar curvature. Our approach was suggested
in part by [6, App. C], which implies that both kinds of metric can arise as quotients of a
common strictly pseudo-convex CR 5-manifold (N,D, J) of Sasaki type. It also generalizes
to complex manifolds (M,J) of real dimension 2m, using the notion of a weighted extremal
metric [7, 10, 45], as we now explain.

Let (g, ω) be a Kähler metric on (M,J), f a function on M , and ν ∈ R a real number
(which we call the weight). Then the (f, ν) scalar curvature of g is defined to be

(2) Scal f,ν(g) := f 2Scal(g)− 2(ν − 1)f∆gf − ν(ν − 1)|df |2g,
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Definition 1. Let (g, ω) be a Kähler metric on (M,J) let f be a Killing potential for g
and let ν ∈ R. We say that g is (f, ν)-extremal if its (f, ν) scalar curvature, Scal f,ν(g),
given by (2), is also a Killing potential.

When M is compact and f > 0 on M , the (f, ν) scalar curvature (2) is the momentum
map associated to a formal GIT problem on the space Kω(M)T of T-invariant ω-compatible
Kähler metrics for any torus T in the group Ham(M,ω) of hamiltonian symplectomor-
phisms of (M,ω) which contains the flow of K [7, 10, 45]. This is similar to the framework
found by Donaldson [33] and Fujiki [34] for Calabi extremal Kähler metrics. Indeed, the
latter can be recovered from the weighted generalization by setting f ≡ 1.

For m = 2 and ν = 4, (2) reduces to (1), so that Definition 1 includes the conformally
Einstein–Maxwell Kähler metrics already discussed. This case was extended to the weight
ν = 2m (for any m) in [10], where it was noted that (2) then computes the scalar curvature
of the hermitian metric (1/f 2)g. Thus examples of (f, 2m)-extremal metrics include the
conformally Einstein Kähler metrics studied in [31, 32]. The weight most relevant here is
instead ν = m+2, which first appeared in [7], where it was discovered that certain quotients,
of an m-fold product S3×· · ·×S3 of CR 3-spheres by an m-torus, are (f,m+2)-extremal for
a suitable f . However, an intrinsic geometric interpretation of (f,m+ 2)-extremality with
m > 2 has so far been lacking. Our main result rectifies this by providing an interpretation
in CR geometry, whose basic notions we now recall (see also Section 1).

Let (N,D) be a contact (2m + 1)-manifold and denote by LD : D × D → TN/D the
Levi form of D, defined, via local sections X, Y ∈ C∞N (D), by the tensorial expression
LD(X, Y ) = −ηD([X, Y ]), where ηD : TN → TN/D is the quotient map. A contact vector
field is a vector field X such that LX(C∞N (D)) ⊆ C∞N (D). We make fundamental use of
the following basic fact in the theory of contact manifolds (see e.g. [13]).

Lemma 1. The map X 7→ ηD(X) from contact vector fields to sections of TN/D is a
linear isomorphism, whose inverse ξ 7→ Xξ is a first order linear differential operator.

There is thus a contact Lie algebra con(N,D) of sections ξ of TN/D under the Jacobi
bracket

[ξ, χ] := ηD([Xξ, Xχ]) = LXξχ = −LXχξ.
Now suppose J ∈ End(D) is a CR structure on (N,D); then we obtain a second order
linear differential operator ξ 7→ LXξJ on con(N,D). Its kernel

cr(N,D, J) := {ξ ∈ con(N,D) : LXξJ = 0}

is a Lie subalgebra of con(N,D), whose elements ξ correspond to CR vector fields Xξ on N .
If moreover (D, J) is strictly pseudo-convex then TN/D has an orientation whose positive
sections χ are those for which χ−1LD(·, J ·) is positive definite. Note that χ−1LD = dηχ|D
where ηχ := χ−1ηD is the contact form defined by χ. We let con+(N,D) ⊆ con(N,D) be
the open cone of positive sections χ of TN/D. We then have the following fundamental
definitions (see e.g. [14]).

Definition 2. Let (N,D, J) be a strictly pseudo-convex CR manifold. Then the Sasaki
cone of (N,D, J) is cr+(N,D, J) := cr(N,D, J)∩ con+(N,D). If cr+(N,D, J) is nonempty
then (N,D, J) is said to be of Sasaki type, an element χ ∈ cr+(N,D, J) is called a Sasaki
structure on (N,D, J), with Sasaki–Reeb vector field Xχ, and (N,D, J, χ) is called a Sasaki
manifold. We say χ is quasi-regular if the flow of Xχ generates an S1 action on N , and
moreover regular if this action is free.

The following well-known construction provides a standard way (see e.g. [13]) to extend
geometric notions on Kähler manifolds to Sasaki manifolds.
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Example 1. Let (M,J, g, ω) be a Kähler manifold such that [ω/2π] is an integral de Rham
class. Then there is a principal S1-bundle π : N →M with a connection 1-form η satisfying
dη = π∗ω. Thus (N,D, J, χ) is a Sasaki manifold, where D = ker η 6 TN , J is the pullback
of the complex structure on TM to D ∼= π∗TM and χ is the image in TN/D of the generator
Xχ of the S1 action (with η(Xχ) = 1, so η = ηχ).

Conversely, if χ ∈ cr+(N,D, J) is (quasi-)regular, then N is a principal S1-bundle (or
orbibundle) π : N →M over a Kähler manifold (or orbifold) M . Irrespective of regularity,
this correspondence between Kähler geometry and Sasaki geometry holds locally: any point
of a Sasaki manifold (N,D, J, χ) has a neighbourhood in which the leaf space M of the flow
of Xχ is a manifold and has a Kähler structure (g, J, ω) induced, using the identification
D ∼= π∗TM , by the transversal Kähler structure (gχ, J, ωχ) on D, where ωχ := dηχ|D and
gχ := ωχ(·, J ·). Indeed gχ, J , and ωχ are all Xχ-invariant, so they all descend to M , and
we refer to (M, g, J, ω) as a Sasaki–Reeb quotient of (N,D, J, χ).

For χ ∈ cr(N,D, J), we set

conχ := {ξ ∈ con(N,D) | [χ, ξ] = 0},
crχ := conχ ∩ cr(N,D, J) and crχ+ := conχ ∩ cr+(N,D, J).

If in addition χ ∈ cr+(N,D, J), then

C∞N (R)χ := {f ∈ C∞N (R) : df(Xχ) = 0}
is a Lie algebra under the transversal Poisson bracket {f1, f2} := −ω−1

χ (df1|D, df2|D), and
we have the following elementary but central lemma.

Lemma 2. The map f 7→ ξ = fχ is a Lie algebra isomorphism from C∞N (R)χ to conχ, and
ξ ∈ crχ if and only if f is a transversal Killing potential for (gχ, ωχ), i.e., −ω−1

χ (df) is a
transversal Killing vector field for gχ.

Thus we obtain elements of crχ as pullbacks of Killing potentials from (local) Sasaki–
Reeb quotients of N by χ. The Levi-Civita connection on Sasaki–Reeb quotients pulls
back to a connection ∇χ on D preserving (gχ, J, ωχ), which turns out to be (see e.g. [27,
§4]) the so-called Tanaka–Webster connection [63] of (D, J, χ). Thus the scalar curvature
of Sasaki–Reeb quotients pulls back to the Tanaka–Webster scalar curvature Scal(gχ) of
∇χ, and hence (N,D, J, χ) is CSC, i.e., Scal(gχ) is constant, if and only if its Sasaki–Reeb
quotients are. We may define (weighted) extremal Sasaki structures similarly.

Definition 3. Let (N,D, J, χ) be a Sasaki manifold and ξ = fχ ∈ crχ. The (ξ, ν) scalar
curvature Scal ξ,ν(gχ) of χ is the function induced on N by the (f, ν) scalar curvature (2)
on Sasaki–Reeb quotients. We say that χ is (ξ, ν)-extremal if Scal ξ,ν(gχ)χ ∈ cr(N,D, J).
For constant f , this reduces to extremality of χ in the sense of [14].

Example 2. Lemma 2 shows that any quasi-regular Sasaki manifold over an (f, ν)-extremal
orbifold (M,J, g, ω) is (ξ, ν)-extremal, with ξ = fχ, cf. Example 1 in the regular case.

For (f, ν)-extremal metrics, we have noted that the weight ν = 2m has a special inter-
pretation in conformal geometry. The next lemma provides an analogous interpretation in
CR geometry mentioned above of the weight ν = m+ 2 for (ξ, ν)-extremal metrics.

Lemma 3. For any ξ ∈ cr(N,D, J), σ(ξ) := Scal ξ,m+2(gχ)χ ∈ con(N,D) is independent

of χ ∈ crξ+. Hence ξ 7→ σ(ξ) is a second order quadratic differential operator, with σ(ξ) =
Scal(gξ) ξ in the case that ξ ∈ cr+(N,D, J).

We now emphasise a key feature of Sasaki geometry, which was used in [25, 37, 52, 57]
to construct CSC Sasaki manifolds from Kähler manifolds which are not necessarily CSC
(see also [15, 35]). Namely, cr+(N,D, J) is open in cr(N,D, J), so if (N,D, J) is of Sasaki
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type, and dim cr(N,D, J) > 2, we obtain a family of Sasaki structures χ on N , inducing
transversal Kähler structures on (D, J). With this in mind, the following is our main result,
which is an immediate consequence of Lemma 3, but has many ramifications.

Theorem 1. Let (N,D, J) be a CR (2m + 1)-manifold with Sasaki cone cr+(N,D, J).
Then, for any χ, ξ ∈ cr+(N,D, J) with [χ, ξ] = 0, (N,D, J, χ) is (ξ,m+ 2)-extremal if and
only if (N,D, J, ξ) is extremal.

Together with Example 2, this result shows that the constructions of (f,m+2)-extremal
Kähler metrics available in [5, 49, 50, 35, 44, 45] yield many new extremal Sasaki metrics.

We further observe that since LXξ(Scal(gξ)) = 0, [ξ, σ(ξ)] = 0. Hence the equivalent

conclusions of Theorem 1 correspond to the occurrence of σ(ξ) in crξ; we then have ±σ(ξ) ∈
crξ+ if and only if the scalar curvature Scal(gξ) is everywhere positive or everywhere negative,
in which case we can take χ = ±σ(ξ) in Theorem 1 to obtain Scal ξ,m+2(gχ) = ±1.

Corollary 1. Let (N,D, J, ξ) be an extremal Sasaki (2m + 1)-manifold. Then the crχ+-
family of (ξ,m + 2)-extremal Sasaki structures on (N,D, J) contains a Sasaki structure
χ := ±σ(ξ) of constant nonzero (ξ,m + 2) scalar curvature if and only if the extremal
Sasaki structure ξ has nowhere zero scalar curvature. Thus there is an equivalence between
Sasaki manifolds (N,D, J, χ) of constant nonzero (ξ,m+ 2) scalar curvature and extremal
Sasaki manifolds (N,D, J, ξ) with nowhere zero scalar curvature.

The proofs of Lemmas 1–3 are straightforward rephrasings of standard results in CR
geometry, but for the convenience of the reader, we indicate their proofs in Section 1. In
Section 2, we define, on a compact contact manifold of Sasaki type, a formal GIT setting for
the search for (ξ, ν)-extremal Sasaki structures, extending the picture in [40] and providing
a conceptual explanation for the key Lemma 3 above. Then in the rest of the paper we
return to Kähler geometry and applications of Theorem 1, which gives a way of relating
different Kähler geometries locally or (under suitable rationality conditions) globally. We
formalize this as follows.

Definition 4. Let (M, g, J, ω) be a Kähler manifold and f a positive Killing potential. We
say that (M̃, g̃, J̃ , ω̃) is a CR twist of M by f , or an f -twist for short, if it is a Sasaki–Reeb
quotient by the Sasaki structure fχ on the Sasaki manifold (N,D, J, χ) corresponding (over
any open subset where [ω/2π] is integral) to M via Example 1.

A CR f -twist can be seen as a special case of the twist construction of Swann [60]
(see also [43, 58]) which has been used to study different geometric structures. In these
terms, Theorem 1 shows that any extremal Kähler metric can (locally) be obtained from
a (f,m + 2)-extremal Kähler metric, via a CR f -twist, while Corollary 1 establishes an
equivalence between Kähler metrics of constant (f,m + 2) scalar curvature and extremal
Kähler metrics of nonvanishing scalar curvature.

In real dimension 2m = 4, the latter reduces to the equivalence between conformally
Einstein–Maxwell Kähler metrics (g, J, ω, f) and extremal metrics (g̃, J̃ , ω̃) of nonvanishing
scalar curvature alluded to above: the extremal Kähler 4-manifold is obtained as the
Sasaki–Reeb quotient with respect to an extremal Sasaki structure ξ of (N,D, J), whereas
(g, J, ω, f) is obtained as the quotient with respect to the Sasaki structure defined by
the scalar curvature of ξ. Thus our correspondence gives a conceptual explanation and
generalization of [10, Prop. 3], and can be used to obtain new examples of extremal Sasaki
and Kähler metrics from the known conformally Einstein–Maxwell Kähler ones.

More generally, as any CR twist of an extremal Kähler metric is (f,m + 2)-extremal
for some f , one of the main theses of this paper is that one can reduce the search for
extremal Kähler metrics to the search of (f,m + 2)-extremal Kähler metrics on simpler
Kähler manifolds. We explore this idea in the remainder of the paper.
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As a warm-up, in Section 3, we consider the simplest examples: the Bochner-flat Sasaki–
Reeb quotients of CR spheres [19, 63] and products. Then, in Section 4, we turn our atten-
tion to toric geometry. While toric Kähler and Sasaki geometries have been well-studied,
to apply our theory, we develop a CR-invariant viewpoint, building on [51, 52, 54, 56]. In
the toric case, CR-invariance corresponds to projective invariance on the image of the mo-
mentum map, and as an interesting side benefit, we give a manifestly projectively invariant
treatment of the Legendre transform, by relating it to a particular case of a Bernstein–
Gelfand–Gelfand resolution [12, 53], as constructed in [21, 22]. Returning the main line
of the paper, we then obtain explicit descriptions of the CR f -twists of toric manifolds
and of toric bundles given by the generalized Calabi ansatz, showing that the latter are
CR f -twists of a product metric. In Section 5, we recast, in terms of the general cor-
respondence herein, some of the explicit families of (f,m + 2)-extremal Kähler metrics,
including those obtained by the regular ambitoric ansatz in [5] and by an ansatz in [7].
This leads both to a higher dimensional extension of the regular ambitoric ansatz [5] and
to a complete classification of the (f,m + 2)-extremal Kähler metrics obtained by this
ansatz. In the final Section 6, we turn to global considerations. We define the Calabi prob-
lem for (ξ, ν)-extremal Sasaki metrics, which naturally generalizes the existence problem
of extremal Sasaki metrics in a given Sasaki polarization [14], recently studied in many
places [16, 17, 18, 26, 52, 56, 57, 62]. We end by illustrating how the (non)existence of
(f, ν)-extremal Kähler metrics in a given integral Kähler class of a geometrically ruled
complex surface (as studied in [11, 44, 47]) leads both to existence and non-existence re-
sults for extremal Sasaki metrics compatible with (possibly irregular) Sasaki–Reeb vector
fields on the corresponding contact manifolds. In particular, we establish the following
Yau–Tian–Donaldson type correspondence.

Theorem 2. Let (M,J) = P (O ⊕ L) → B be a compact ruled complex surface over a
Riemann surface B, L a polarization of (M,J), and ω ∈ 2πc1(L) an S1-invariant Kähler
metric with respect to the circle action by scalar multiplication in O. Let (N,D, J, χ) be
the regular Sasaki manifold over (M,J, ω) given by Example 1, ξ ∈ cr+(N,D, J) the lift

of the generator of the S1-action on M and Ẑξ the induced holomorphic vector field on L.
Then N admits a Xχ-invariant, D-compatible CR structure which is extremal Sasaki with

respect to ξ if and only if (M,L, Ẑξ) is analytically relatively (Ẑξ, 4) K-stable with respect
to admissible test-configurations in the sense of [11].

This suggests a link between the weighted K-stability of [11, 47] for a smooth polarized
variety, and K-stability of the Kähler cone of a Sasaki polarization, studied in [18, 26].

1. Proofs of Lemmas 1–3

Let (N,D) be a contact (2m + 1)-manifold, i.e., D 6 TN is a rank 2n distribution
on N , with quotient map ηD : TN → TN/D, whose Levi form LD(X, Y ) = −ηD(X, Y )
(X, Y ∈ C∞N (D)) is nondegenerate at each point of N . A CR structure on (N,D) is a
complex structure J on D such that the subbundle D(1,0) of (1, 0)-vectors in D ⊗ C is
closed under Lie bracket. This implies in particular that J is an almost CR structure, i.e.,
a complex structure on D such that LD has type (1, 1) with respect to J . We say that
(D, J) is strictly pseudo-convex if LD is definite (with respect to J) at each point of N ,
i.e., LD(·, J ·) is a definite bundle metric on D. It then follows that (N,D) is co-oriented,
i.e., TN/D is an oriented real line bundle.

Proof of Lemma 1. We show that any section ξ of TN/D has a unique lift to a contact
vector field Xξ (with ηD(Xξ) = ξ). On the open subset where ξ is nonzero, the contact
condition implies that Xξ is the Reeb vector field of the contact form ηξ := ξ−1ηD, which is
characterized by ηξ(Xξ) = 1 and dηξ(Xξ, ·) = 0. Now suppose ξ = fχ with χ nonvanishing
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and f a smooth function. Then dηχ = df ∧ ηξ + dηξ and the characterization of Reeb
vector fields gives

(3) Xξ = fXχ − (dηχ|D)−1(df |D)

where f is nonzero, but this formula extends Xξ smoothly over the zeroset of f . This also
shows ξ 7→ Xξ is a first order differential operator. Since a contact vector field in D is
necessarily zero by the nondegeneracy of the Levi form, the lift is unique. �

Proof of Lemma 2. Clearly LXχ(fχ) = df(Xχ)χ, and if f, h ∈ C∞M (R)χ then (3) implies

[fχ, hχ] = dh(Xfχ) = −(ωχ|D)−1(df |D, dh|D)

so the first part is immediate. We may thus suppose that f is the pullback of a smooth
function, also denoted f , on a Sasaki–Reeb quotient (M, g, J, ω), with symplectic gradient
K. Then the same formula (3) shows that Xξ is a lift of K to N . Furthermore, since
Xξ is contact and Xχ-invariant, LXξJ is horizontal and Xχ-invariant, hence vanishes iff its
pushforward to M vanishes, which holds iff LKJ = 0 on M , i.e., f is a Killing potential. �

Proof of Lemma 3. We let ξ = fχ with χ ∈ crξ+ and expand the definition of the (ξ,m+2)
scalar curvature of gχ on N to obtain

Scal ξ,m+2(gχ)χ =
(
f 2Scal(gχ)− 2(m+ 1)f∆gχf − (m+ 1)(m+ 2)

∣∣df |D∣∣2gχ)χ(4)

=
(
fScal(gχ)− 2(m+ 1)∆gχf −

(m+ 1)(m+ 2)

f

∣∣df |D∣∣2gχ) ξ.(5)

where (5) holds on the open subset U where ξ is nonzero. Now, as noted already, Scal(gξ)
and Scal(gχ) are the Tanaka–Webster scalar curvatures of the Tanaka–Webster connections
induced by ξ and χ [27, §4], and a straightforward but tedious computation of the change
of the Tanaka–Webster scalar curvature under a change of connection, which can be found
e.g. in [42, (2.9)], shows that on U , (5) computes Scal(gξ)ξ, independently of f . However,
on any open subset where ξ = 0, f = 0 and hence the right hand side of (4) is zero.
Thus Scal ξ,m+2(gχ)χ is independent of χ on a dense open subset, hence everywhere. The
equality (4) now shows that this is a second order quadratic differential operator in ξ. �

2. Formal GIT picture for weighted extremal Sasaki metrics

Let (N,D) be a compact co-oriented contact (2m + 1)-manifold (or orbifold), and fix a
torus T in its group Con(N,D) of contact transformations. As explained in the introduc-
tion, we tacitly identify the Lie algebra of Con(N,D) with the space con(N,D) of smooth
sections of TN/D and denote by con+(N,D) the open cone of positive sections in of TN/D
with respect to its orientation. Let Con(N,D)T denote the group of T-equivariant con-
tact transformations, with Lie algebra identified with the space con(N,D)T of T-invariant
sections of TN/D. Thus, the Lie algebra t of T as a linear subspace of con(N,D)T.

Now observe that volD := ηD∧L∧mD is a well-defined section of ∧2m+1T ∗N⊗(TN/D)m+1:
indeed for any nonvanishing section χ of TN/D, χ−m−1volD = ηχ ∧ dη∧mχ . Fix two such

sections χ, ξ ∈ t∩con+(N,D) and ν ∈ R. Then con(N,D)T has a bi-invariant inner product

〈ξ1, ξ2〉ξ,χ,ν :=

∫
N

(ξ1/χ)(ξ2/χ)(ξ/χ)−ν−1 ηχ ∧ dη∧mχ =

∫
N

ξ1 ξ2 ξ
−ν−1χν−2−m volD.

Let AC+(N,D)T be the space of T-invariant almost CR structures on (N,D), such that
LD is of type (1, 1) and positive definite with respect to J and the given orientation on
TN/D. We denote by C+(N,D)T ⊆ AC+(N,D)T the subset of T-invariant compatible CR
structures on (N,D). Notice that Con(N,D)T acts naturally on AC+(N,D)T (preserving
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C+(N,D)T) and the tangent space of AC+(N,D)T at J is identified with the Fréchet space
of smooth sections J̇ of End(D) satisfying

J̇J + JJ̇ = 0, LD(J̇ ·, ·) + LD(·, J̇ ·) = 0,

so AC+(N,D)T has a formal Fréchet Kähler structure (J,Ωξ,χ,ν) defined by JJ(J̇) := JJ̇
and

Ωξ,χ,ν
J (J̇1, J̇2) :=

1

2

∫
N

tr
(
JJ̇1J̇2

)
(ξ/χ)−ν+1 ηχ ∧ dη∧mχ =

1

2

∫
N

tr
(
JJ̇1J̇2

)
ξ−ν+1χν−2−m volD.

To see this, we can take χ ∈ t∩con+(N,D) to be quasi-regular with a global quotient (M,ω).
Then our set-up reduces to the formal GIT picture for (f, ν)-extremal ω-compatible, T/S1

χ-
invariant almost-Kähler metrics on the symplectic orbifold (M,ω), discussed in [7, 10, 45].
The momentum map for the action of Ham(M,ω)T at a compatible Kähler structure is iden-
tified with the (f, ν) scalar curvature, showing that for a CR structure J ∈ C+(N,D)T, the
corresponding momentum map for the action of Con(N,D)T on AC+(N,D)T is Scal(gξ)ξ
(where we multiply by ξ to obtain an element of con(N,D)T).

We now notice that for ν = m + 2, the bi-invariant inner product on con(N,D)T and
the formal Kähler structure on AC+(N,D)T are independent of χ. In this case, our setting
reduces to the formal GIT picture for extremal Sasaki metrics on (N, ηξ) discussed in [40],
where the momentum map for the action of Con(N,D)T is the Tanaka–Webster scalar
curvature Scal(gξ)ξ (the multiplication by ξ is implicit in [40] through the identification of
the Lie algebra with smooth functions).

Hence this provides another explanation as to why the weight m + 2 is special and the
transversal (ξ,m+ 2) scalar curvature Scal ξ,m+2(gχ)χ of gχ is independent of χ and equal
to the Tanaka–Webster scalar curvature of gξ, viewed as an element of con(N,D)T.

3. Basic Examples

3.1. Bochner-flat (f,m + 2)-extremal metrics. Let us now consider the standard CR
sphere S2m+1 ⊆ Cm+1, m > 2, with D = TS2m+1 ∩ J(TS2m+1), J induced by the standard
complex structure on Cm+1, and cr(S2m+1,D, J) ∼= su(1,m+1). By a result of Webster [63],
for any χ ∈ cr+(S2m+1,D, J), the transversal Kähler structure (gχ, J, ωχ) is Bochner-flat,
and thus extremal (see [19]), and any Bochner-flat Kähler manifold (M, g, J, ω) is (locally)
obtained as a χ-reduction of (S2m+1,D, J) for some such χ. It then follows from Theorem 1
that for any ξ ∈ crχ+, (D, J, χ) is a (ξ,m + 2)-extremal, and hence by Lemma 2 (see
Example 2), we have the following observation.

Proposition 1. Let (M, g, J, ω) be a Bochner-flat Kähler 2m-manifold and f > 0 a Killing
potential. Then (g, ω) is (f,m+ 2)-extremal.

To obtain global examples, we let χw ∈ cr+(S2m+1,D, J) correspond to the weighted Hopf
fibration S2m+1 → CPm

w , realizing (S2m+1,D, J, χw) as a quasi-regular Sasaki manifold over
the Bochner-flat weighted projective space (CPm

w , J, g, ω) (see [19, 28]). Thus we have the
following higher dimensional extension of [10, Prop. 5].

Corollary 2. The Bochner-flat metric on CPm
w is (f,m + 2)-extremal for any positive

Killing potential f .

3.2. Flat (f, ν)-extremal metrics. The conclusion of Proposition 1 can be strengthened
for flat Kähler metrics.

Proposition 2. Let (V, gV , ωV ) be a flat Kähler manifold and f > 0 a Killing potential on
V . Then, for any scalar-flat Kähler manifold (B, gB, ωB) the Kähler product (M, g, ω) of
(V, gV , ωV ) and (B, gB, ωB) is (f, ν)-extremal for any ν.
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Proof. As B is scalar-flat, (2) implies that the (f, ν) scalar curvature of V ×B equals the
(f, ν) scalar curvature of M . Thus, we need to establish the claim on M := V . As g is a
flat metric, (2) reduces to

(6) −2(ν − 1)f∆gf − ν(ν − 1)|df |2g
so it suffices to show that each of the two terms in (6) is a Killing potential for g. For
the first term, using that g is Ricci-flat and f is a Killing potential, the Bochner identity
shows that ∆gf is a constant, and thus f∆gf is a Killing potential of g. For the second
term, using that g is Bochner-flat and Proposition 1, it follows that (6) with ν = m + 2
gives rise to a Killing potential, and hence |df |2g is a Killing potential for g. �

3.3. (f,m + 2)-extremal products. As noted in the proof of Proposition 2, the Kähler
product of a scalar-flat, Kähler 2(m−`)-manifold (B, gB, ωB) with a (f, ν)-extremal Kähler
2`-manifold (V, gV , ωV ) gives rise to a (f, ν)-extremal 2m-manifold (M, g, ω). In [11, 45],
for any given ν, large families of (f, ν)-extremal Hodge (i.e., compact, integral) Kähler
manifolds (V, gV , ωV ) of dimension 2` are constructed. Taking such a (V, gV , ωV , f) with ν =
m+ 2 (m > `) and considering the Kähler product of (V, gV , ωV ) with a scalar-flat Hodge
Kähler 2(m − `)-manifold (B, gB, ωB), we obtain a compact (f,m + 2)-extremal Kähler
2m-manifold (M, g, ω, J), which gives rise to a compact extremal Sasaki (2m+1)-manifold
(N,D, J, ξ) via Example 1. Notice that the extremal Sasaki manifold thus obtained is
not in general quasi-regular, but when it is (which places a rationality condition on the
positive Killing potential f of gV ), the resulting extremal Kähler orbifold is not in general
a product, even though (M, g, ω) is. We detail and generalize this observation below in the
setting of toric bundles.

4. Toric geometry and toric bundles

4.1. Toric contact manifolds. Applications of Theorem 1 depend in particular on the
existence of independent commuting elements ξ, χ ∈ cr(N,D, J) 6 con(N,D). The maxi-
mal dimension of an abelian subalgebra of con(N,D) is m + 1 (assuming N is connected
of dimension 2m + 1). Let us therefore consider the case that we have such an (m + 1)-
dimensional abelian subalgebra h ↪→ con(N,D); a 7→ ξa, in which case (N,D, h) is said
to be toric. We usually assume that the corresponding contact vector fields generate an
effective contact action of a real (m+ 1)-torus Tm+1, whose Lie algebra is thus canonically
isomorphic to h. Hence we have an integral lattice Λ ⊆ h with Tm+1 ∼= h/2πΛ, and, on the
dense open set N◦ where the Tm+1-action is free, angle coordinates t : N◦ → h/2πΛ.

We also assume that the tautological bundle homomorphism

N × h→ TN/D

(p, a) 7→ ξa(p)

is surjective (as it is in the Sasaki case), so that its transpose (TN/D)∗ → N × h∗ is
injective. We thus obtain a momentum map µ̄ : N → P(h∗), where µ̄(p) is the image of
(TN/D)∗p in h∗, for any p ∈ N . Hence µ̄∗Oh∗(−1) ∼= (TN/D)∗, where Oh∗(−1) is the
tautological line bundle over the projective space P(h∗), with fibre Oh∗(−1)τ = τ 6 h∗.

Remark 1. Alternatively observe (cf. [54]) that the annihilator D0 6 T ∗N of D inherits
from T ∗N a closed 2-form which is nondegenerate on the complement of the zero section,
and any contact vector field on N lifts to a hamiltonian vector field on D0. The restriction
to h of the momentum map of this action is µ̃ : D0 → h∗ with 〈µ̃(α), a〉 = α(ξa) for α ∈ D0

and a ∈ h, where angle brackets denote contraction of h∗ with h. Using the natural duality
D0 ∼= (TN/D)∗, (p, µ̃(α)) is the element of µ̄∗Oh∗(−1) 6 N × h∗ corresponding to α ∈ D0

p.
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Herein, we generally work instead with the momentum section µ̂ : N → h∗ ⊗ (TN/D)
defined by 〈a, µ̂(p)〉 = ξa(p) ∈ (TN/D)p for a ∈ h and p ∈ N . If z : P(h∗) → h∗ ⊗ Oh∗(1)
denotes the tautological section, with Oh∗(1) := Oh∗(−1)∗ and 〈a, z(τ)〉 = 〈a, ·〉|τ for a ∈ h
and τ ∈ P(h∗), then under the isomorphism µ̄∗Oh∗(1) ∼= TN/D, µ̂ = µ̄∗z.

Any nonzero ε ∈ h defines an affine chart

A := {p ∈ h∗|〈ε, p〉 = 1} ↪→ P(h∗)

and if U ⊆ P(h∗) is an open subset of the image of this chart, then 〈ε, z〉 restricts to a
trivialization of Oh∗(1)|U . In this trivialization, z is the affine lift of U to A ⊆ h∗, i.e., we
have z : U → h∗ with 〈ε, z〉 = 1. Hence 〈ε, dz〉 = 0, i.e.,

dz : TU → U × ε0, where ε0 = {p ∈ h∗|〈ε, p〉 = 0},

is the trivialization of TU in this affine chart. Thus h is naturally identified with the space
Aff (U) of affine functions on U : a ∈ h defines the affine function 〈a, z〉 on U , with ε
corresponding to the constant function 1. If t = h/ span(ε), there is a short exact sequence

(7) 0→ R ε−→ h
δ−→ t→ 0,

where the duality t∗ ∼= ε0 identifies t with T ∗pU for any p ∈ U , while the quotient map δ
sends an affine function to its linear part (the constant value of its derivative).

Now µ̄ : N → P(h∗) takes values in the affine chart defined by ε iff χ := ξε ∈ con(N,D)
is a nonvanishing section of TN/D. In this trivialization the momentum section becomes
a function µ̂ : N → h∗ with 〈ε, µ̂〉 = 1. The transversal Kähler form dηχ|D descends to
a symplectic form ω on any quotient of M of N by χ. If χ is quasi-regular, we may
take (M,ω) to be the global quotient, which is then a toric symplectic 2m-orbifold under
the hamiltonian action of the real m-torus Tm = Tm+1/S1

χ where S1
χ is the circle action

generated by Xχ.
Concretely, we can choose a basis e0, . . . em for h such that ε = e0, introduce coordinates

zj = 〈ej, z〉 on U with z0 = 1, and write 〈a, z〉 = a0 + a1z1 + · · · anzn. We then have
coordinates µ̂ = (µ̂0, µ̂1, . . . µ̂m) and t = (t0, t1, . . . tm) on N◦ with µ̂0 = 1 and

(8) ηχ = 〈µ̂, dt〉 = dt0 +
m∑
j=1

µ̂jdtj.

Hence dηχ = 〈dµ̂ ∧ dt〉, and since dµ̂ takes values in t∗, 〈dµ̂ ∧ dt〉 depends only on δ(dt),
which descends to a t-valued 1-form on M . If we denote by µ the map M → A induced by
the momentum section on N in the affine chart A, we may therefore write ω = 〈dµ ∧ dt〉
on the image M◦ of N◦. The isomorphism f 7→ fχ of Lemma 2 identifies h with an abelian
Lie subalgebra of C∞M (R) under the Poisson bracket induced by ω. Evidently, χ = ξε
corresponds to f ≡ 1 on M . More generally, for any a ∈ h the function fa = fa(µ) ∈
C∞M (R) corresponding to ξa ∈ con(N,D) satisfies fa(µ(p)) = 〈a, µ(p)〉 for all p ∈ M , i.e.,
fa(µ) = 〈a, µ〉 is the pullback by µ of the affine function fa(z) = 〈a, z〉 on A. Pulling back
by µ, we may thus reinterpret (7) on M : in particular, we may view δ as the restriction to
h ↪→ C∞M (R) of the symplectic gradient, and t as its image in Ham(M,ω).

4.2. Toric CR manifolds and their Sasaki–Reeb quotients. Thus far we have only
considered the toric contact geometry of N and induced toric symplectic geometry on M .
According to [39], on the dense open subset M◦, any toric almost Kähler structure may be
written in momentum–angle coordinates (µ, t) as:

(9)
g = 〈dµ,G(µ), dµ〉+ 〈dt,H(µ), dt〉, Jdt = −〈G(µ), dµ〉,
ω = 〈dµ ∧ dt〉, Jdµ = 〈H(µ), dt〉,



10 V. APOSTOLOV AND D.M.J. CALDERBANK

where H is a smooth positive definite S2t∗-valued function on the momentum image ∆◦ :=
µ(M◦) and G = H−1 is its pointwise inverse, a smooth S2t-valued function. This local
expression makes sense in the affine setting, where ∆◦ lies in an affine space A ⊆ h∗,
modelled on t∗: G is a metric on T∆◦ ∼= ∆◦ × t∗, and H the inverse metric on T ∗∆◦.

A metric of the form (9) is Kähler, i.e., J is integrable, if and only if 〈dG ∧ dz〉 = 0,
which in affine coordinates z = (1, z1, . . . zm) on A reads

∂Gij/∂zk = ∂Gik/∂zj

for all i, j, k ∈ {1, . . .m}. Since G is symmetric, this is the integrability condition to write
G = Hess(u) for a smooth strictly convex function u defined on the momentum image
∆◦, which is called a symplectic potential. When M is a compact manifold (or orbifold),
Delzant theory [30, 55] implies that ∆◦ is the interior of a (rational) Delzant polytope
∆ ⊆ t∗, and u satisfies the Abreu boundary conditions [1] on ∂∆.

The theory of symplectic potentials in toric Kähler geometry thus relies upon a locally
exact complex of linear differential operators

(10) C∞A (R)
Hess−−→ C∞A (S2t)

D−→ C∞A (∧2t� t)

where D(G) = 〈dG ∧ dz〉 and ∧2t � t denotes the alternating-free tensors in ∧2t ⊗ t
(the kernel of the projection, alternation, to ∧3t). This complex is invariant under affine
transformations by construction, but can actually be made projectively invariant. To do
this, observe that the kernel of the hessian consists of affine functions, which on a domain
U ⊆ P(h∗) in projective space are not naturally ordinary functions, but sections of Oh∗(1),
as we discussed above. Also the cotangent space is naturally T ∗U ∼= Oh∗(−1)0⊗Oh∗(−1) 6
h⊗Oh∗(−1). With these modifications, we obtain a locally exact complex of projectively
invariant linear differential operators, beginning

(11) 0→ h
〈z,·〉−−→ C∞U (Oh∗(1))

Hess−−→ C∞U (S2T ∗U ⊗Oh∗(1))
D−→

C∞U (∧2T ∗U � T ∗U ⊗Oh∗(1))→ · · · ,
and which reduces to (10) in any affine chart.

The complex (11) is a simple example of a Bernstein–Gelfand–Gelfand resolution [12, 53].
Without wishing to dwell on the general machinery, we observe that the construction of
this resolution in [21, 22] gives a manifestly invariant construction of the projective hessian.
The main idea is to relate (11) to the h-valued de Rham complex

0→ h→ C∞U (h)
d−→ C∞U (T ∗U ⊗ h)→ · · ·

using the following construction.

Lemma 4. For any u ∈ C∞U (Oh∗(1)) there is a unique L(u) ∈ C∞U (h) with 〈z,L(u)〉 = u
(i.e., L(u) is a lift of u) and 〈z, dL(u)〉 = 0. Furthermore, in any local affine chart with
z0 = 1 and coordinates z1, . . . zm, L(u) = (u0, u1, . . . um) where

−u0 = z1
∂u

∂z1

+ · · ·+ zm
∂u

∂zm
− u

is the Legendre transform of u, and uj = ∂u/∂zj for j ∈ {1, . . .m}.

Proof. In local affine coordinates with z0 = 1, L(u) = (u0, u1, . . . um) is a lift of u iff u =
u0+z1u1+· · ·+zmum, and we require in addition 0 = 〈z, dL(u)〉 = du0+z1du1+· · ·+zmdum.
Thus du = u1dz1 + · · ·+ umdzm, forcing uj = ∂u/∂zj, which in turn determines u0. �

This observation has some interesting consequences.

• L : C∞U (Oh∗(1))→ C∞U (h) is a first order projectively invariant linear differential opera-
tor. Furthermore L(u) is constant if and only if u is an affine section of Oh∗(1).
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• This differential lift L(u) of u is a “universal Legendre transform” in the sense that for
any ε ∈ h and p ∈ h∗ with 〈ε, p〉 = 1, −〈L(u), p〉 is the Legendre transformation of u
in the affine chart defined by ε with basepoint p (it thus depends only on p, not ε).
Furthermore, the projection of L(u) onto t = h/ span(ε) gives the conjugate coordinates
(the components of du in this affine chart, which depend only on ε, not p).
• Any u ∈ C∞U (Oh∗(1)) defines a congruence of affine hyperplanes {y ∈ h : 〈z(p), y〉 = u(p)}

in h parametrized by p ∈ U . The lift L(u) is the envelope of this hyperplane congruence
(a classical view on the Legendre transformation): 〈z,L(u)〉 = u and 〈z, dL(u)〉 = 0.

To complete the construction of the projectively invariant hessian, it remains to observe
that since 〈z, dL(u)〉 = 0, dL(u) is a section of T ∗U ⊗ Oh∗(−1)0; hence 〈dz ⊗ dL(u)〉 is
a section of S2T ∗U ⊗ Oh∗(1), since dz is well-defined modulo Oh∗(−1) and we have 0 =
d〈z, dL(u)〉 = 〈dz∧dL(u)〉. In affine coordinates, dL(u) = (du0, d(∂u/∂z1), . . . d(∂u/∂zm))
and projecting away from ε = (1, 0, . . . 0) gives the usual hessian of u.

To apply this to a toric contact manifold (N,D, h) with µ̄(N◦) = ∆◦, it is convenient to
view the projectively invariant hessian of u ∈ C∞∆◦(Oh∗(1)) as the section G = Hess(u) of
S2Oh∗(−1)0 ⊗Oh∗(−1) 6 S2h⊗Oh∗(−1) with 〈G(z), dz〉 = dL(u). Then we may define a
CR structure J on N◦ by Jdt|D = −µ̄∗dL(u)|D = −〈G(µ̂), dµ̂〉|D. For any χ ∈ cr(N,D, J),
this reduces to the toric Kähler structure defined by u on local Sasaki–Reeb quotients.

Example 3. If m = 1 and u = u(z1) is a symplectic potential in the affine chart z = (1, z1)
then the differential lift of u to h is L(u) = (u(z1)− z1u

′(z1), u′(z1)) with 〈(1, z1),L(u)〉 =
u(z1) and dL(u) = u′′(z1)(−z1, 1) dz1. Thus Jdt0|D = u′′(µ1)µ1 dµ1|D and Jdt1|D =
−u′′(µ1) dµ1|D, in accordance with (dt0 + µ1dt1)|D = ηχ|D = 0.

Remark 2. A key feature of our approach is that we avoid considering compatible complex
structures on the symplectic cone in D0 over N : such structures induce not only a CR
structure J on N , but also a preferred Sasaki structure χ, a choice we wish to decouple.
However, it is straightforward to compare our approach with works such as [2, 52, 57] which
use the symplectic cone. First, sections of Oh∗(1) over U ⊆ P(h∗) correspond bijectively
to homogeneous functions of degree 1 on the inverse image of U in h∗ \ {0} which contains
the momentum image Ũ of the symplectic cone. Thus a symplectic potential in our sense
induces an ordinary function u on Ũ , homogeneous of degree 1. However, the hessian of
any such function is degenerate in radial directions, so does not define a metric on the
symplectic cone. To get around this, we exploit the fact that symplectic potentials are not
well-defined: for any a ∈ h, we can add the linear form 〈a, z〉|

Ũ
to u without changing its

hessian. Hence symplectic potentials are really elements of the quotient of C∞
Ũ

(R) by h.
To be concrete, if f1, . . . fk are linear forms on Ũ corresponding to a(1), . . . a(k) ∈ h,

then u =
∑k

j=1 fj log |fj| is a function on Ũ with u(λp) = λu(p) + log |λ|
∑k

j=1 fj. Hence
it is homogeneous of degree 1 modulo h, but only strictly homogeneous of degree 1 if∑k

j=1 a(j) = 0. Its hessian is G̃ =
∑k

j=1 a
2
(j)/fj with 〈z, G̃〉 =

∑k
j=1 a(j), which is constant.

We can interpret this in our formalism by modifying the differential lift: for a ∈ h and
u ∈ C∞∆◦(Oh∗(1)), we define La(u) by 〈z,La(u)〉 = u and 〈z, dLa(u)〉 = 2a. Assuming
Hess(u) is nondegenerate and 〈a, z〉 is nonvanishing, dLa(u) is nondegenerate, and defines
the metric on the symplectic cone corresponding to the CR structure defined by u and the
Sasaki structure ξa.

4.3. The CR twist of a toric manifold. Suppose (M, g, J, ω) is given by (9) and
(N,D, J, χ) is a (local) Sasaki (2m+1)-manifold over M corresponding to an extension (7)
of t by R. We can suppose we are in the affine picture with 〈ε, µ〉 = 1 on M , where χ = ξε,
and introduce coordinates zj = 〈ej, z〉 with e0 = ε so that the induced contact form on N
is given by (8), where µ̂ is the pullback of µ to N .
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For any a ∈ h, the affine function fa(z) =
∑m

j=0 ajzj is positive on the momentum

image of M if and only if fa(µ) is a positive Killing potential on (M, g, J, ω) if and only
if ξa = fa(µ̂)χ is a Sasaki structure on (N,D, J). A CR fa-twist of (M, g, J, ω) is then
the induced toric Kähler metric on any Sasaki–Reeb quotient of (N,D, J) by ξa, which in
turn has the form (9) for suitable coordinates µ̃, t̃ and a symplectic potential ũ(µ̃) with
G̃ = Hess(ũ). The new affine chart Ã on P(h∗) has tautological affine coordinate z̃ with
1 = 〈a, z̃〉 = fa(z)〈ε, z̃〉 and hence z̃ = z/fa(z).

To obtain explicit momentum-angle coordinates on M̃ , we need to extend ẽ0 := a to a
basis ẽ0, ẽ1, . . . ẽm of h. One approach (see e.g. [52]) is to assume a0 6= 0 (which we can
arrange by a translation of z) so that we may take ẽj = ej for j ∈ {1, . . .m}. Since u
transforms as a section of Oh∗(1), we have the following result.

Lemma 5. Any CR fa-twist (g̃, ω̃) of the toric Kähler metric (9) with respect to the positive
affine function fa(z) = a0 + a1z1 + · · ·+ amzm with a0 6= 0 is a toric Kähler metric of the
form (9) on ∆̃◦ × Rm with respect to momentum-angle coordinates µ̃, t̃ and symplectic
potential ũ given by 〈µ̃, a〉 = 1,

(12) µ̃j =
µj
fa(z)

, t̃j := tj −
aj
a0

t0, j ∈ {1, . . .m} and ũ(z̃) =
u(z)

fa(z)
.

As shown in [51, 52], when M is compact, the rescaling z 7→ z̃ sends the polytope ∆
in A to a polytope ∆̃ ⊆ Ã, and we have a compact CR f -twist (M̃, g̃, ω̃) provided this
polytope is rational.

Example 4. We illustrate the CR twist in the simple case of a toric Riemann surface metric

(13) gV =
dµ2

1

A(µ1)
+ A(µ1) dt21, ωV = dµ1 ∧ dt1,

with profile function A. This is a Sasaki–Reeb quotient of a Sasaki 3-manifold (N,D, J, χ)
with

ηχ = dt0 + µ1dt1, Jdt|D = (Jdt0|D, Jdt1|D) = −(−µ1, 1)

A(µ1)
dµ1|D,

using the affine chart z = (1, z1) as in Example 3. Thus A(z1) = 1/u′′(z1) for a symplectic
potential u = u(z1), and there are straightforward integral formulae

L(u)(z1) =

∫ z1 (−x, 1)

A(x)
dx, u(z1) = 〈L(u), (1, z1)〉 =

∫ z1 z1 − x
A(x)

dx,

for u and its differential lift (i.e., projective Legendre transformation) L(u). Any CR fa-
twist, with fa(z) = a0 + a1z1, is then a Sasaki–Reeb quotient of N by the Sasaki structure
ξ = fa(µ)χ with contact form ηξ = ηχ/fa(µ). If a 6= 0, then as in Lemma 5 we may set
t0 = a0t̃0 and t1 = t̃1 + a1t̃0, so that ηξ = dt̃0 + µ̃1dt̃1, with µ̃1 = µ1/(a0 + a1µ1), has
Sasaki–Reeb field Xξ = ∂/∂t̃0. We then compute

Jdt̃|D = (Jdt̃0|D, Jdt̃1|D) = −(−µ̃1, 1)

Ã(µ̃1)
dµ̃1|D

z̃1 =
z1

a0 + a1z1

and Ã(z̃1) =
a2

0A(z1)

(a0 + a1z1)3
.with

However, other choices can be convenient: for example if the momentum image µ(V ) is
[−1, 1] and fa 6= 0 on [−1, 1] (i.e., |a0| > |a1|) then we can instead preserve [−1, 1] with

z̃1 =
a0z1 + a1

a0 + a1z1

and Ã(z̃1) =
(a2

0 − a2
1)2

(a0 + a1z1)3
A(z1).
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4.4. The generalized Calabi ansatz. We now discuss CR twists of Kähler metrics on
certain toric fibre bundles π : M → B over a Kähler base manifold (B, gB, ωB). We follow
the approach in [9], to which we refer the reader for further details, recalling here only the
special case in which we are interested.

Let (V, gV , ωV ,T`) be a toric Kähler 2`-manifold and let π : P → B be a principal T`-
bundle over a Kähler 2d-manifold (B, gB, ωB), equipped with a connection 1-form θ ∈
Ω1(P, t) (t being the Lie algebra of T`) such that

(14) dθ = ζ ⊗ ωB, ζ ∈ t.

As before, we assume t = h/ span(ε), where h may be identified with the space of affine
functions on the image ∆ ⊆ h∗ of the momentum map of V . Using (7), we choose a ∈ h
such that δa = ζ and the affine function fa(z) := 〈a, z〉 is positive on ∆.

Given these data, we can construct a Kähler 2m-manifold (M, g, ω), with m = ` + d,

M = P ×T` V
π−→ B, and

g = fa(µ)π∗gB + 〈dµ,G(µ), dµ〉+ 〈θ,H(µ), θ〉,
ω = fa(µ)π∗ωB + 〈dµ ∧ θ〉, dθ = δa⊗ ωB,

(15)

where G and H are determined by the toric Kähler metric on V in momentum–angle
coordinates (9). We refer to (15) as the generalized Calabi ansatz, with data (V, gV , ωV ),
(B, gB, ωB) and a ∈ h. For any b ∈ h, the affine function fb(z) = 〈b, z〉 pulls back to Killing
potentials for both (gV , ωV ) and (g, ω), and their CR fb-twists are related as follows.

Proposition 3. Let (M, g, ω) be given by the generalized Calabi ansatz for data (V, gV , ωV ),
(B, gB, ωB) and a ∈ h. Then for b ∈ h with fb > 0 on M , the generalized Calabi ansatz,
with data a CR fb-twist (Vb, gb, ωb) of V , (B, gB, ωB) and a ∈ h, is a CR fb-twist of M . In
particular, the Kähler product of (B, gB, ωB) and (Va, ga, ωa) is a CR fa-twist of M .

Proof. It is enough to prove the result, for arbitrary V and B, in the case a = ε, with
(M, g, ω) being the Kähler product of (B, gB, ωB) and (V, gV , ωV ). Indeed, we may then
recover the Kähler metric (15), associated to a given (B, gB, ωB), (V, gV , ωV ) and a, as a
CR twist of the Kähler product with (B, gB, ωB) of a CR fa-twist (Va, ga, ωa) of (V, gV , ωV ),
by taking b = a.

The Sasaki structure (N,D, J, χ = ξε) associated to the Kähler product of B and V is
(locally) defined by the contact form

ηχ = 〈µ̂, dt+ θB ⊗ ε〉 =
m∑
k=0

µ̂jdtj + θB

where θB is a (local) 1-form on B with dθB = ωB, and the second expression uses a basis
of h (for which we may assume e0 = ε so that µ̂0 ≡ 1 and Xχ = ∂/∂t0). The CR structure
is determined from dηχ = π∗(ωB + ωV ) and gχ = π∗(gB + gV )|D.

Now let fb(z) =
∑m

k=0 bkzk be a positive affine function defining new affine coordinates

z̃j = zj/fb(z) on P(h∗). The symplectic form ω̃ on any Sasaki–Reeb quotient M̃ of N by
ξb pulls back to d(ηχ/fb(µ̂)) = d〈µ̂, dt+ θB ⊗ ε〉 and hence is given by

ω̃ = 〈µ̃, dθ〉+ 〈dµ̃ ∧ θ〉 = 〈µ̃, ε〉ωB + 〈dµ̃ ∧ θ〉,

where µ̃ is the pullback to M̃ of z̃ on P(h∗) and θ ∈ Ω1(Ñ , t̃), with t̃ = h/ span(b), pulls
back to dt + θB ⊗ ε mod b on N . The complex structure on B is unaffected by the CR
twist, while consideration of the action of the CR structure on dµ̃|D allows us to identify

the toric fibres of M̃ over B with the CR fb-twist of V , as in Lemma 5. As in that Lemma,
we can make the momentum–angle coordinates more explicit in a basis of h with e0 = ε
and b0 6= 0. In any case, the result now follows. �



14 V. APOSTOLOV AND D.M.J. CALDERBANK

Corollary 3. If (B, gB, ωB) is an extremal Kähler manifold and (V, gV , ωV ) is an (fa, `+2)-
extremal Kähler manifold then (g, ω) given by (15) is (fa,m + 2)-extremal. In particular,
a CP `-bundle (M,J) = P (L0 ⊕ · · · ⊕ L`) → B over an extremal Hodge Kähler manifold
(B, gB, ωB) has a natural 1-parameter family of (fa,m+ 2)-extremal Kähler metrics.

Proof. The CR fa-twist of the Kähler metric (15) defined by Proposition 3 is the Kähler
product of (B, gB, ωB) with the CR fa-twist (Va, ga, ωa) of (V, gV , ωV ). As (V, gV , ωV ) is
(`+ 2, fa)-extremal, (Va, ga, ωa) is extremal by Theorem 1. It follows that the CR fa-twist
of (15) is extremal, so by Theorem 1 again, we conclude that (15) is (fa,m+ 2)-extremal.

In the special case M = P (L0 ⊕ · · · ⊕ L`) → B, we can apply the above construction
with (V, gV , ωV ) = (CP `, gFS, ωFS), where (gFS, ωFS) is a Fubini–Study metric on CP `. By
Corollary 2, gFS is (fa, `+ 2)-extremal, so the claim follows. �

4.5. The Calabi ansatz. We now specialize to the case that (V, gV , ωV ) in the generalized
Calabi ansatz is a toric 2-manifold or orbifold (13); this is the original Calabi ansatz when
V = CP 1, and (15) reduces to

(16) g = (a0 + a1µ1)gB +
dµ2

1

A(µ1)
+ A(µ1)θ2, ω = (a0 + a1µ1)ωB + dµ1 ∧ θ,

where dθ = a1ωB. By Proposition 3, (M, g, ω) has a CR fa-twist (M̃, g̃, ω̃) given by the
the Kähler product of (B, gB, ωB) and (Ṽ , gṼ , ωṼ ), where the latter is a CR fa-twist of
(V, gV , ωV ) as in Example 4. Furthermore, by Theorem 1, for any b ∈ h, g is (fb,m + 2)-

extremal if and only if g̃ is (f̃b,m + 2)-extremal, where fb(µ1) and f̃b(µ̃1) are the Killing
potentials induced by b on M and M̃ respectively.

If a and b are linearly independent then f̃b is nonconstant and, up to homothety, we may
assume that f̃b(z̃1) = z̃1 + b̃0. Then g̃ is (f̃b,m + 2)-extremal iff gB has constant scalar
curvature sB and gṼ has profile function Ã with

(17) Ã(z̃1 − b̃0) = p0z̃
m+2
1 + p1z̃

m+1
1 − sB z̃m1 + p3z̃1 + p4.

If (B, gB, ωB) is a CSC Hodge Kähler manifold (where we may assume without loss that
[ωB/2π] is primitive) then this picture globalizes in a couple of ways as follows.

First, we may start from a weighted projective line Ṽ = CP 1
w , where w = (w−, w+) is

a pair of positive integers. We equip CP 1
w with the toric symplectic structure ωw induced

by the quasi-regular Sasaki structure (S3,D, J, χw) on the 3-sphere S3 ⊆ C2. By (7),
the rational Delzant polytope [30, 55] of (CP 1

w , ωw) in the affine chart defined by χw is
given by {(z0, z1) : zi > 0, w−z0 + w+z1 = 1}, but we use instead the parametrization
z0 = (1 + z̃1)/(2w+), z1 = (1 − z̃1)/(2w−) to realize this rational Delzant polytope as the
interval [−1, 1] with inward normals 1/(2w+) and −1/(2w−). As explained in [13], for
any positive integer k, the product Kähler orbifold (B, gB, ωB) × (CP 1

w , kgw , kωw) gives
rise to a compact quasi-regular extremal Sasaki orbifold (Nw,k,D, J, χw,k), which is the
Sasaki join of the regular Sasaki manifold (NB,DB, JB, χB) associated to (B, gB, ωB) and
(S3,D, J, 1

k
χw). There are well-understood conditions in terms of the integers (w+, w−, k)

ensuring that Nw,k is a smooth manifold, see [13]. Now any Ã given by (17) with |b̃0| > 1,
which satisfies the well-known positivity and boundary conditions

(18) Ã(z̃1) > 0 on (−1, 1), Ã(±1) = 0 and Ã′(±1) = ∓4w∓/k,

gives rise to a toric, kωw -compatible Kähler metric g̃w on CP 1
w , such that the product

metric gB + g̃w is (f̃b,m+2)-extremal. We thus get a new Sasaki structure (Nw,k,D, Jw , ξb)

which is extremal by Theorem 1. Note that ξb is not quasi-regular if b̃0 is irrational.
For a fixed a0, the endpoint conditions (18) determine the unknown coefficients p0, p1, p3

and p4 of a polynomial Ã satisfying (17), and it remains to examine the positivity condition
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for Ã. This is therefore an effective tool for generating compact examples of extremal Sasaki
metrics, providing an explanatory framework for the constructions in [16, 17].

Secondly, we may begin instead with M = P(O ⊕ L) where L is a holomorphic line
bundle over B such that c1(L) = `[ωB/2π] for ` ∈ Z+ (and O denotes the trivial line
bundle). Then (16) defines a Kähler metric on M such that the S1-action induced by scalar
multiplication in O is isometric and hamiltonian with momentum map µ1 and momentum
image µ1(M) = [−1, 1] ⊂ R if and only if A(z1) is a smooth function on [−1, 1] satisfying
the boundary conditions

(19) A(±1) = 0, A′(±1) = ∓2,

and the positivity condition

(20) A(z1) > 0 on (−1, 1),

and a0 +a1z1 is positive on [−1, 1] with |a1| = ` (and we may assume a1 = ` by replacing z1

with−z1 if necessary). Here θ is the connection form associated to a principal S1-connection
on the unit circle bundle in M → B and

(21) [ω/2π] = c1(OO⊕L(2)) + (a0 + a1)c1(π∗L).

For any positive integers k, n such that n/k > `, Lk,n := OO⊕L(k)⊗π∗Ln/` is a polarization
on M , c1(Lk,n) being homothetic to a Kähler class of the form (21) with a0 = (2n/k) − `
and a1 = `. We thus let (Nk,n,D, J, χ) be the smooth Sasaki manifold corresponding
to the Kähler manifold (M, k

2
g, k

2
ω) via Example 1, where (g, ω) is given by (16) (with

a0 = (2n/k) − ` and a1 = `). Up to a covering, (Nk,n,D, χ) is determined by the ratio
n/k, so we assume henceforth that k and n are coprime positive integers. In [17, (37)],
the contact manifold (Nk,n,D) is identified with the Sasaki join (Nw,k,D) constructed over
B × CP 1

w above, with weights w+ = n,w− = n − k`. The theory of CR twists further
identifies the CR structure J on (Nk,n,D) induced by (16) with the CR structure Jw on
(Nw,k,D) induced by

g̃ = gB +
dµ̃2

1

Ã(µ̃1)
+ Ã(µ̃1)dt2, ω̃ = ωB + dµ̃1 ∧ dt,

Ã(z̃1) =
(a2

0 − a2
1)2A(z1)

(a0 + a1z1)3
, z1 =

a0z̃1 − a1

a0 − a1z̃1

, a0 =
2n

k
− ` and a1 = `.where

5. Separable toric geometries

5.1. Regular ambitoric structures. In [5, 6], the following 4-dimensional geometric
structure was studied.

Definition 5. An ambikähler structure on a real 4-manifold or orbifold M consists of a
pair of Kähler metrics (g−, J−, ω−) and (g+, J+, ω+) such that

• g− and g+ are conformally equivalent;
• J− and J+ have opposite orientations.

The structure is said to be ambitoric if in addition there is a 2-dimensional subspace
t of vector fields on M , linearly independent on a dense open set, whose elements are
hamiltonian and Poisson-commuting Killing vector fields with respect to both (g−, ω−)
and (g+, ω+)—i.e., both Kähler structures are locally toric.

It was shown in [5] that any ambitoric structure is locally either a product, of Calabi type,
or a regular ambitoric structure given by the following ansatz. Let q(x) = q0+2q1x+q2x

2 be
a quadratic polynomial and let M be a 4-manifold or orbifold with real-valued functions
(x1, x2, τ0, τ1, τ2) such that x1 > x2, 2q1τ1 = q0τ2 + q2τ0, and their exterior derivatives
span each cotangent space. Let t be the 2-dimensional space of vector fields K on M
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with dx1(K) = 0 = dx2(K) and dτj(K) constant, and let A(x) and B(x) be positive
functions on open neighbourhoods of the images of x1 and x2 in R, on whose product
fq(x1, x2) := q0 + q1(x1 + x2) + q2x1x2 is positive. Then M is ambitoric with

g± =

(
x1 − x2

fq(x1, x2)

)±1(
dx2

1

A(x1)
+

dx2
2

B(x2)
+ A(x1)α 2

1 +B(x2)α 2
2

)
,

ω± =

(
x1 − x2

fq(x1, x2)

)±1

(dx1 ∧ α1 ± dx2 ∧ α2),
J±dx1 = A(x1)α1,

J±dx2 = ±B(x2)α2,

α1 =
dτ0 + 2x2dτ1 + x2

2dτ2

(x1 − x2)fq(x1, x2)
, α2 =

dτ0 + 2x1dτ1 + x2
1dτ2

(x1 − x2)fq(x1, x2)

(22)

There is a gauge freedom to make a simultaneous projective transformation of the coordi-
nates x1, x2, with q transforming as a quadratic polynomial, and A,B as quartics [5]. If q
has repeated roots, we may use this freedom to set q = 1, and then g+ is a 2-dimensional
orthotoric metric, as studied in [3, 4]. We then refer to g− as a negative orthotoric metric.

Ambitoric structures are examples of separable toric geometries, i.e., they admit separable
coordinates x1, . . . xm in which the metric is determined by m functions of 1 variable (and
some explicit data, such as q here). We now explore CR twists for some separable toric
geometries. While we could simply apply the general approach given in Lemma 5, this is
not expedient for a couple of reasons. On a practical level, we would need to compute: the
transformation from separable coordinates to momenta, the symplectic potential, its CR
twist in terms of the new momenta, and finally the transformation from these momenta
back to separable coordinates. This is rather involved, and unnecessarily so, because
whereas a CR twist involves a change of momentum coordinates due to the change of
affine chart, the separable coordinates remain fixed. We illustrate this first in the simplest
separable situation: Kähler products of toric Riemann surfaces.

5.2. The CR twisted toric product ansatz. A Kähler product of toric Riemann sur-
faces has a Kähler metric of the form:

(23) g =
m∑
i=1

( dxi
2

Ai(xi)
+ Ai(xi)dti

2
)
, ω =

m∑
i=1

dxi ∧ dti, Jdxi = Ai(xi)dti,

where A1, . . . Am are arbitrary functions of 1 variable. In this case the separable coordinates
and momenta coincide: the toric Killing potentials have the form

fb(x1, . . . xm) = b0 + b1x1 + · · ·+ bmxm.

It is straightforward to compute the CR structure associated to (g, ω, J) as in Example 1.
Denoting by ti, xi also their pullbacks to N , we have D = ker η and J : D∗ → D∗ given by

η = dt0 +
m∑
i=1

xidti, J
(
dxi|D

)
= Ai(xi)dti|D.

We now lift fb(x1, . . . xm) to a new Sasaki structure ξb on N and compute the new Sasaki–
Reeb quotient. The new contact form is ηb := ηξb = η/fb, with

dηb =
m∑
i=1

dxi ∧
∂ηb
∂xi

=
1

fb(x1, . . . xm)

m∑
i=1

dxi ∧ (dti − biηb).
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Since J
(
dxi|D

)
= Ai(xi)(dti − biηb)|D, the Sasaki–Reeb quotient is given by the following

toric ansatz, originally proposed in [7], which we refer to here as a twisted toric product :

(24)
gb =

1

fb(x1, . . . xm)

m∑
i=1

( dxi
2

Ai(xi)
+ Ai(xi)αi

2
)
, ωb =

1

fb(x1, . . . xm)

m∑
i=1

dxi ∧ αi,

Jbdxi = αi, dαi = −biω, fb(x1, . . . xm) = b0 + b1x1 + · · ·+ bmxm.

For b0 6= 0, we may obtain more explicit angle coordinates by setting τi = ti − bit0/b0 and
αi = dτi − (bi/fb)

∑m
j=1 xjdτj. We may take as momenta

µ0 =
1

fb(x1, . . . xm)
, µj =

xj
fb(x1, . . . xm)

, j ∈ {1, . . .m}.

Hence the momentum coordinates and separable coordinates no longer agree. The original
product metric (23) is a CR twist of (24) by µ0 = f−1

b = 1/fb. It was shown in [7]
that when m = 2, this construction unifies the ambitoric product, Calabi and negative
orthotoric ansatz of [5] in a single family.

It was also shown in [7] that a twisted toric product metric (24) is (f−1
b ,m+ 2)-extremal

if and only if Aj is a cubic polynomial for all j ∈ {1, . . .m}. We see here that this follows
straightforwardly from Theorem 1, as (24) is (f−1

b ,m + 2)-extremal if and only if (23) is
extremal, and a toric Kähler product is extremal if and only if the factors are, meaning
that each Ai is a cubic. In this case, we may also identify the CR manifold which has
these metrics as its Sasaki–Reeb quotients. Indeed, straightforward computation shows
that the Cartan tensor of a Sasaki 3-manifold vanishes precisely when the (transversal,
i.e., Tanaka–Webster) scalar curvature is transversally holomorphic (see e.g. [41]). It then
follows from [24] that the (f−1

b ,m + 2)-extremal metrics given by (24) are obtained as
Sasaki–Reeb quotients with respect to the CR structure of a (local) Sasaki join [13] of m
copies of the standard CR structure (D0, J0) on the 3-sphere S3 ⊆ C2, with respect to a
(local) Sasaki structure on each factor.

We next consider the extremality condition for the Kähler metrics (24), using again
Theorem 1 to infer that (24) is extremal if and only if the product metric (23) is (fb,m+2)-
extremal. We thus have

(25)
m∑
j=1

(
−f 2

bA
′′
j (xj) + 2(m+ 1)fb

∂fb
∂xj

A′j(xj)− (m+ 1)(m+ 2)

(
∂fb
∂xj

)2

Aj(xj)

)

= −
m∑
j=1

fm+3
b

∂2

∂x2
j

(
Aj(xj)

fm+1
b

)
= Scal fb,m+2(g) = c0 + c1x1 + · · ·+ cmxm,

where c0, c1, . . . cm are some real constants. For m = 1 we get that A1 must be a polynomial
of degree 6 3 and for m = 2 (24) is given by the ambitoric product, Calabi or negative
orthotoric ansatz of [5], and the extremality condition (25) can be solved [5] in terms of
two polynomials A1 and A2 of degree 6 4. We thus assume from now on that m > 3.

Proposition 4. For m > 3 the Kähler metric (24) is extremal if and only if it is a product
of extremal Riemann surfaces, or is given by the Calabi ansatz over a product of m−1 CSC
Riemann surfaces, or is the Kähler product of a scalar-flat product of Riemann surfaces
with a product of flat Riemann surfaces, as in Proposition 2.

Proof. Differentiating (25) (m+ 1) times with respect to xj yields

f 2
bA

(m+3)
j (xj) = 0,
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showing that each Aj must be a polynomial of degree 6 m + 2. Thus, both sides of (25)
are polynomials in xi, so we may compare coefficients. Taking two derivatives in xj gives

0 = fmb
∂2

∂x2
j

(
A

(2)
j (xj)

fm−1
b

)
= f 2

bA
(4)
j (xj)− 2(m− 1)bjfbA

(3)
j (xj) +m(m− 1)b2

jA
(2)
j (xj).

If bi 6= 0 for some i 6= j, the vanishing of the polynomial coefficients containing x2
i in the

above relation show that Aj has degree 6 3; if furthermore bj 6= 0, then the coefficients
containing xi show that Aj has degree 6 2. Substituting back in (25) and comparing
coefficients, this yields the following three possibilities for the solutions to (25) with m > 3:

• fb(x1, . . . xm) = b0. Then the Aj are polynomials of degree 6 3 and the corresponding
extremal metric (24) is a product of extremal Riemann surfaces;
• fb(x1, . . . xm) = b0 + bjxj with bj 6= 0. Then (24) is given by the Calabi ansatz over

the product of (m − 1) Riemann surfaces indexed by i : i 6= j. In particular, for each
i : i 6= j, Ai is a polynomial of degree 6 2 whereas Aj is a polynomial of degree 6 m+ 2,
as described by (17).
• there are 0 6= j1 6= jj 6= 0 with bj1 6= 0 6= bj2 . Then for each j with bj 6= 0, Aj is a

polynomial of degree 6 1, and for each i with bi = 0, Ai is a polynomial of degree 6 2
with

∑
i:bi=0A

′′
i = 0. Thus, in this case, g is the product metric of a scalar-flat product

of (CSC) Riemann surfaces (indexed by {i : bi = 0}) with a product of flat Riemann
surfaces (indexed by {j : bj 6= 0}). �

5.3. CR twists of positive regular ambitoric structures. We return now to regular
ambitoric structures (22), for which it was shown in [5] that g+ is extremal if and only if
g− is extremal if and only if

(26) A = pq + P, B = pq − P,
where p is a quadratic polynomial orthogonal to q, and P is polynomial of degree 6 4.
Note that the orthogonality condition 〈p, q〉 := p0q2− p1q1 + p2q0 = 0 means that the roots
of p and the roots of q harmonically separate each other.

When q has distinct roots, the positive and negative structures are equivalent, cf. [6,
Remark 5], while in the case of repeated roots the negative orthotoric structures are twisted
toric products [7], as noted above. Hence we only need to consider the positive ambitoric
metrics. The CR structure associated to (g+, J+, ω+) in (22) was computed in [6, App. C],
which implies that D = ker η and J : D∗ → D∗ are given by

(27) η =
dt0 + (x1 + x2)dt1 + x1x2 dt2

x1 − x2

,

J(dx1|D) = A(x1)
dt0 + 2x2dt1 + x2

2dt2
(x1 − x2)2

∣∣∣
D
,

J(dx2|D) = B(x2)
dt0 + 2x1dt1 + x2

1dt2
(x1 − x2)2

∣∣∣
D
,

independently of q, while the toric Killing potentials of (g+, J+, ω+) have the form fw/fq,
where w is quadratic polynomial, and lift to Sasaki structures ξw := fw(x1, x2)χ/(x1−x2),
where χ ∈ con+(N,D) with η = χ−1ηD.

The CR structures arising from an extremal positive ambitoric metric thus have A and B
of degree 6 4, such that the roots of A+B have harmonic cross-ratio (i.e., in {−1, 1/2, 2}).
We may then write

(28) A = p1p2 + P, B = p1p2 − P, with degP 6 4, deg pj 6 2, 〈p1, p2〉 = 0.

Here we have renamed the quadratics compared to (26) so that we are free to use q to
define an arbitrary Sasaki–Reeb quotient of (27). Indeed for any quadratic q, the Sasaki
structure ξq is (fpjχ, 4)-extremal for j ∈ {1, 2} by Theorem 1 and is extremal if q = p1 or
q = p2. We obtain in particular a result of [10], as any Sasaki–Reeb quotient by ξq, given
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explicitly by (22), subject to (28), is (fpj/fq, 4)-extremal for j ∈ {1, 2}, i.e., the scalar
curvature of g̃j = (fq/fpj)

2g+ is a Killing potential of g+; in fact one can compute [5, 10]

(29) Scal(g̃j) = −fw
fq

with w := {pj, (pj, P )(2)},

where the Poisson bracket is given by {p, r} := p′ r − p r′ and

(p, P )(2) := pP ′′ − 3p′ P + 6p′′ P

is a transvectant of p and P . Special choices of q give special metrics in this family of
Sasaki–Reeb quotients [5, 10].

• If q = pj, then g̃j = g+, recovering the case that g+ is extremal.
• If 〈q, pj〉 = 0, then g− is also (fpj/fq, 4)-extremal, and g̃j has diagonal Ricci tensor; if

in addition 〈(pj, P )(2), q〉 = 0 then {pj, (pj, P )(2)} is a multiple of q; hence g̃j is CSC,
so g+ is conformally Einstein–Maxwell (in fact to a riemannian Plebański–Demiański
metric [5, 29, 59]).
• Combining these observations, if say q = p1, then 〈q, p2〉 = 0 so g+ = g̃1 is extremal,

while g̃2 has diagonal Ricci tensor; if in addition 〈(p2, P )(2), q〉 = 0 then g̃2 is Einstein.
• Finally, taking q = 1, we obtain an orthotoric metric in the family.

Corollary 4. Any regular positive ambitoric Kähler metric (g+, ω+, J+) given by (22) can
be obtained as a fq-twist of an orthotoric metric.

5.4. The CR twisted orthotoric ansatz. Corollary 4 immediately suggests a higher
dimensional extension of the positive regular ambitoric ansatz (22). For this, we start with
an orthotoric 2m-manifold M with Kähler structure [4]:

g =
m∑
j=1

(
∆j

Aj(xj)
dx2

j +
Aj(xj)

∆j

( m∑
r=1

σr−1(x̂j) dtr

)2
)
,

ω =
m∑
j=1

dxj ∧
( m∑
r=1

σr−1(x̂j)dtr

)
=

m∑
r=1

dµr ∧ dtr,

Jdxj =
Aj(xj)

∆j

m∑
r=1

σr−1(x̂j) dtr, Jdtr = (−1)r
m∑
j=1

xm−rj

Aj(xj)
dxj,

(30)

where each Aj is a smooth function of 1 variable, µr = σr(x1, . . . xm) are the momentum
coordinates (σr being the r-th elementary symmetric function with σ0 = 1) x̂j = (xk :
k 6= j), and ∆j =

∏
k 6=j(xj − xk). The separable coordinates x := (x1, . . . xm) are called

orthotoric and have a natural gauge freedom under simultaneous affine changes x̃j = axj+b.
The toric Killing potentials in orthotoric coordinates are

(31) fq(x) = q0 + q1µ1 + · · ·+ qmµm with µr = σr(x),

which can be viewed as the polarized form of a degree 6 m polynomial

(32) q(x) := fq(x, . . . x) =
m∑
j=0

(
j

m

)
qjx

j.

As usual, to write down the CR structure (N,D, J) over M , it is convenient to view
dt = (dt0, dt1, . . . dtm) as a 1-form with values in the Lie algebra h ∼= Rm+1 of Killing
potentials (with basis σ0, σ1, . . . σm). Then D = ker η and J : D∗ → D∗ are given by

(33) η = dt(x) :=
m∑
r=0

µrdtr, J(dxj|D) =
Aj(xj)

∆j

∂(dt(x))

∂xj

∣∣∣
D

with µ0 = 1 (omitting pullbacks to N).
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Proposition 5. Let (g, ω, J) be the orthotoric Kähler metric (30) and let fq be a positive
function of the form (31). Then a CR fq-twist of (g, ω, J) has toric Kähler metric

gq =
m∑
j=1

(
∆j

Aj(xj)fq(x)
dx2

j +
Aj(xj)fq(x)

∆j

( ∂

∂xj

dt(x)

fq(x)

)2
)
,

ωq =
m∑
j=1

dxj ∧
( ∂

∂xj

dt(x)

fq(x)

)
, Jqdxj =

Aj(xj)fq(x)

∆j

( ∂

∂xj

dt(x)

fq(x)

)
.

(34)

Proof. The CR fq-twist is the Sasaki–Reeb quotient of (33) by the Sasaki structure ξq = fqχ
with contact form η/fq(x) (i.e., χ is the Sasaki structure with contact form η = χ−1ηD),
and

d
( η

fq(x)

)
=

m∑
j=1

dxj ∧
∂

∂xj

dt(x)

fq(x)
.

Now we observe that

J(dxj|D) =
Aj(xj)

∆j

∂(dt(x))

∂xj

∣∣∣
D

=
Aj(xj)

∆j

fq(x)
∂

∂xj

dt(x)

fq(x)

∣∣∣
D

and the 1-forms dxj and ∂
∂xj

dt(x)
fq(x)

are basic with respect to ξq—in the latter case because(dt(x)
fq(x)

)
(Xξq) = 1. Hence the transversal Kähler structure of ξq is the pullback of (34). �

We now turn to the extremality condition of the Kähler metrics given by (34). By
Theorem 1, such a metric is extremal iff the orthotoric metric (30) is (fq,m+ 2)-extremal,
a condition studied in [11, App. A]. Using standard formulae for the scalar curvature and
laplacian of an orthotoric metric [4], this condition is

(35)
m∑
j=1

(
−fq(x)2

A′′j (xj)

∆j

+ 2(m+ 1)fq(x)
∂fq
∂xj

A′j(xj)

∆j

− (m+ 1)(m+ 2)
(∂fq
∂xj

)2Aj(xj)

∆j

)

= −
m∑
j=1

fq(x)m+3

∆j

∂2

∂x2
j

(
Aj(xj)

fq(x)m+1

)
= Scal fq ,m+2(g) =

m∑
k=0

ckµk.

for some constants c0, . . . cm. If we let Aj(x) = P (x) for a j-independent polynomial P
of degree 6 m + 2, the metric (30) is Bochner-flat by [4], and we obtain (for any q) a
solution of (35) by Proposition 1. When q = 1, (35) describes the extremality condition
for (30), which is studied in [4], where the solutions are given as Aj(x) = P (x) + pj1x+ pj0
for a j-independent polynomial P of degree 6 m + 2 and arbitrary real constants pj1, pj0
(j ∈ {1, . . .m}). Another special case is q(x) = xm, i.e., fq = σm, which is studied in [11,
Prop. A2], where the solutions are given as Aj(x) = P (x) + pj1x

m+1 + pj0x
m+2 for a j-

independent polynomial P of degree 6 m+2 and arbitrary real constants pj1, pj0. However,
we notice that in this case the corresponding extremal Kähler metric gq given by (34) is

orthotoric with respect to the variables x̃j = 1/xj and functions Ãj(x̃j) = x̃m+2
j Aj(1/x̃j),

so the corresponding extremal Kähler metrics are not new. More generally, we may extend
arguments from [4, Lemma 6] and [11, Prop. A2] as follows.

Proposition 6. Let m > 3. Then the orthotoric Kähler metric (30) is (fq,m + 2)-
extremal for some positive fq in the form (31) if and only if either all Aj(x) are equal
to a j-independent polynomial of degree 6 m + 2 or else the polynomial q has a root of
multiplicity m (possibly at infinity) so that, up to a simultaneous affine transformation of
the xj in (30), we may assume that either q(x) = 1 or q(x) = xm. Then, Aj(x) are the
solutions described in [4, Prop. 17] and [11, Prop. A2], respectively. In particular, each
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extremal Kähler metric of the form (34) is either Bochner-flat or orthotoric with respect
to suitable variables.

Proof. Multiplying (35) by ∆ :=
∏

j<k(xj − xk), we get the relation

fq(x)m+3

m∑
j=1

±∆(x̂j)
∂2

∂x2
j

( Aj(xj)

fq(x)m+1

)
= ∆

( m∑
k=0

ckσk(x)
)
,

where ∆(x̂j) =
∏

i<k 6=j(xi−xk) and the signs ± are left unspecified. The right hand side in

the above equality is a polynomial of degree 6 m in each variable xj, ∆(x̂j) is a polynomial
of degree (m − 2) in any xi, i 6= j and of degree 0 in xj, whereas fq(x) is a polynomial of
degree 6 1 in each xj. It follows that for m > 2,

0 =
∂m+1

∂xm+1
j

(
fq(x)m+3 ∂

2

∂x2
j

( Aj(xj)

fq(x)m+1

))
= fq(x)2A

(m+3)
j (xj),

showing that each Aj must be a polynomial of degree 6 m+ 2.
Now let k 6= j be fixed indices. Multiplying (35) by xj − xk and letting xj = x = xk

leads to the vanishing of

(36) (f0 +xf1)2P ′′jk(x)+2(f0 +xf1)(f1 +xf2)xm+2
(P ′jk(x)

xm+1

)′
+(f1 +xf2)2xm+3

(Pjk(x)

xm+1

)′′
,

where Pjk(x) = Aj(x) − Ak(x). Here each fk =
∑m

r=0 qr+kσ̂r, with σ̂r denoting the r-
th elementary symmetric function of the variables xi : i 6= j, k (and letting σ̂r = 0 for
r > m−2), is a polynomial of degree 6 1 in each xi : i 6= j, k. Equivalently, fk : k ∈ {0, 1, 2}
can be viewed as affine functions in the variables σ̂1, . . . σ̂m−2 and thus (36) can be viewed
as a polynomial of degree 6 2 in σ̂1, . . . σ̂m−2. By making an simultaneous affine change
of the variables xj in (30) if necessary (which preserves the orthotoric structure of the
metric, see [4]), we can assume without loss that q0 6= 0, i.e., f0 6= 0. We thus consider the
following three cases.

Case 1. f0, f1, f2 are linearly independent affine functions of σ̂1, . . . σ̂m−2. Then, us-
ing f0, f1, f2 as independent variables, and considering the coefficients of f 2

2 , f0f1 and f 2
0

in (36) yields that Pjk(x) must belong to the common kernel of the ODEs P ′′(x) = 0,
(P ′(x)/xm+1)′ = 0 and (P (x)/xm+1)′′ = 0. The latter is trivial, thus showing that
Pjk(x) ≡ 0 in this case, i.e., Aj(x) = P (x) must be a j-independent function.

Case 2. f0, f1, f2 span a 2-dimensional subspace of affine functions of σ̂1, . . . σ̂m−2. In
this case, (36) is a polynomial of degree 2 in two independent variables in the span of
f0, f1, f2, which places three relations involving P ′′(x), (P ′(x)/xm+1)′ and (P (x)/xm+1)′′.
Using their functional independence, we conclude again that P ′′(x) = 0, (P ′(x)/xm+1)′ = 0
and (P (x)/xm+1)′′ = 0, i.e., Pjk(x) = Aj(x) − Ak(x) = 0 so that Aj(x) = P (x) is a
j-independent function.

Case 3. f0, f1, f2 span a 1-dimensional subspace of affine functions in σ̂1, . . . σ̂m−2. Thus,
in this case, f1 = λ1f0 and f2 = λ2f0 for some λ1, λ2 ∈ R. The first identity means
qr+1 = λ1qr for r ∈ {0, . . .m− 1} whereas the second identity is equivalent to qr+2 = λ2qr
for r ∈ {0, . . .m − 2}. As we have assumed q0 6= 0, we conclude that λ2 = λ2

1 and then
qr = λr1q0, i.e., q(x) = q0(1 + λ1x)m. It thus follows that either q(x) = 1 (i.e., λ1 = 0) and
then (35) describes the extremal Kähler condition of an orthotoric metric, which has been
analysed in [4, Prop. 15]. Otherwise, by making a simultaneous affine change of xj in (30),
we can assume q(x) = xm and (35) then reduces to finding (σm,m + 2)-extremal metrics,
which has been accomplished in [11, Prop. A2].

To summarize, we have proven that one of the following holds:

• q = 1 and Aj(x) = P (x)+pj1x+pj0, for a j-independent polynomial P of degree 6 m+2;
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• up to a simultaneous affine transformation of the xj in (30), q(x) = xm and Aj(x) =
P (x) + pj1x

m+1 + pj0x
m+2 for a (j-independent) polynomial P of degree 6 m+ 2;

• Aj(x) = P (x) are all equal to a polynomial P of degree 6 m+ 2.

In the third case, the orthotoric Kähler metric (30) is Bochner-flat (see e.g. [4, Prop. 17] or
[19]) and any q provides a solution to (35) (see Proposition 1). By result of Webster [63],
any CR q-twist of g is again a Bochner-flat Kähler metric, which completes the proof. �

Remark 3. Similar arguments yield a classification of (fq, ν)-extremal orthotoric metrics,
where ν ∈ R \ {1, . . .m+ 2} and m > 3. Indeed, as shown in [11], in this case we have to
consider the equation

(37) −
m∑
j=1

fq(x)ν+1

∆j

∂2

∂x2
j

(
Aj(xj)

fq(x)ν−1

)
= Scal fq ,ν(g) =

m∑
k=0

ckµk.

Multiplying by xj − xk and letting xj = x = xk leads again to the conclusion that one of
the following three cases occurs: (1) q = 1 and Aj(x) = P (x) + pj1x+ pj0 for a polynomial
P of degree 6 m by the classification in [4, Prop. 15], or, (2) up to a simultaneous affine
change of the variables xj in (30), q = xm and Aj(x) = P (x) + pj1x

ν−1 + pj0x
ν according

to [11, Prop. A2], or (3) Aj(x) = P (x) are j-independent. In the third case, multiplying
(37) with ∆ leads to the equation

0 =
∂m+1

∂xm+1
j

(
fq(x)ν+1 ∂

2

∂x2
j

( P (xj)

fq(x)ν−1

))
= fq(x)ν−m

∂2

∂x2
j

( P (m+1)(xj)

fq(x)ν−m−2

)
.

Letting xj = x, fk =
∑m

r=0 qrσ̂r−k where σ̂r denotes the r-th elementary symmetric function
of xi, i 6= j with σ̂r = 0 for r > m, the above conditions reduce to the vanishing of

(f0+xf1)2P (m+3)(x)−2(ν−m−2)f1(f0+xf1)P (m+2)(x)+(ν−m−2)(ν−m−1)f 2
1P

(m+1)(x).

If f0 and f1 are linearly independent affine functions of σ̂1, . . . σ̂m−1 (and as ν 6= m+1,m+2
by assumption), this implies P (m+1)(x) = 0, i.e., P must be a polynomial of degree 6 m
and the metric (30) is flat (see [4, Prop. 17]). These are precisely the solutions described in
[11, Prop. A1]. Otherwise, either f0 = 0 (i.e., q = xm) or f1 = λf0 (i.e., q(x) = q0(1+λx)m),
so we are again in a situation covered by [11, Prop. A2] and [4, Prop. 15].

6. The Calabi problem and non-existence results

6.1. The Calabi problem for (f, ν)-extremal Kähler metrics. Let (M,J) be a com-
pact connected complex manifold of real dimension 2m, and Ω ∈ H2(M,R) a Kähler class.
As observed in [10, 36, 45], many features of the theory of extremal Kähler metrics extend
naturally to the (f, ν)-extremal case. In particular, one can formulate a weighted version
of the Calabi problem [20] which seeks an (f, ν)-extremal Kähler metric (g, ω) with ω ∈ Ω.
We pin down the function f indirectly by fixing first a quasi-periodic holomorphic vector
field with zeroes K generating a torus T 6 Autr(M,J) inside the reduced group of auto-
morphisms of (M,J) (see e.g. [38]), and secondly, a real constant κ > 0 such that for any
T-invariant Kähler metric (g, ω) with ω ∈ Ω, the Killing potential f of K with respect to
g, normalized by

∫
M
fωm/m! = κ, is positive on M , see [10, Lemma 1].

Problem 1. Is there a T-invariant Kähler metric (g̃, ω̃) on (M,J) with ω̃ ∈ Ω, which

is (f̃ , ν)-extremal where f̃ is the Kähler potential of K with respect to g̃ determined by∫
M
f̃ ω̃m/m! = κ? We refer to such metrics as (K,κ,m+ 2)-extremal.

Remark 4. It is easy to check that if (g, ω) and (g̃, ω̃) are two T-invariant Kähler metrics
in Ω with Kähler forms ω̃ = ω+ ddcϕ for a T-invariant smooth function ϕ on M , then the
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corresponding κ-normalized Killing potentials f̃ and f of K are related by

(38) f̃ = f + dcϕ(K).

Indeed, the proof of [10, Lemma 1] shows that f̃ = f ◦Φ for some diffeomorphism Φ of M .

It thus follows that if f is the κ-normalized Killing potential of K with respect to g, then f̃
is the unique Killing potential of K with respect to g̃ such that f̃(M) = f(M). The latter

property holds for f̃ defined by (38), as can be seen by considering points of minima and

maxima for f and f̃ (at which K = J gradg f = J gradg̃ f̃ vanishes).

6.2. The Calabi problem for (ξ, ν)-extremal Sasaki metrics. Let N be a compact
connected (2m + 1)-manifold. Following [13, 14], one can extend the Calabi problem
to an analogous problem in Sasaki geometry by fixing a nowhere zero vector field X as
the candidate for the Sasaki–Reeb vector field of the extremal Sasaki structure on N ,
together with a complex structure JX on the quotient bundle DX of TN by the span of
X. If (D, J, χ) is a Sasaki structure with Xχ = X then D is transverse to X and so
the projection onto DX is a bundle isomorphism, and we can require in addition that
this isomorphism intertwines J and JX . The corresponding Sasaki structures on N are
completely determined by their contact distributions, or equivalently, their contact forms
η, with η(X) = 1 and dη(X, ·) = 0.

Definition 6. [14] The subspace S(X, JX) of Ω1(N) whose elements η are contact forms
of Sasaki structures compatible with (X, JX) is called a Sasaki polarization of (N,D, J,X).
We also fix a torus T in the automorphism group Aut(N,X, JX) and let S(X, JX)T denote
the T-invariant elements of S(X, JX).

One can now imitate constructions in Kähler geometry by using the basic de Rham
complex Ω•X(N) = {α ∈ Ω•(N) : ıXα = 0 = LXα}, with differential dX given by restriction
of d (which evidently preserves basic forms). Since {α ∈ ∧kT ∗N : ıXα = 0} is naturally
isomorphic to ∧kD∗X , J∗X is also well defined on Ω•X(N), yielding a twisted differential
dcX . The same holds for the subspace Ω•X(N)T of T-invariant basic forms. Following [14,
Lemma 3.1] and [13, Prop. 7.5.7], S(X, JX)T is an open subset of an affine space modelled
on C∞N,0(R)T × Ω1

X,cl(N)T, where C∞N,0(R)T denotes the quotient by constants of the space

of smooth T-invariant functions on N , and Ω1
X,cl(N)T denotes the basic T-invariant closed

1-forms on N . Indeed, for any two elements η, η̃ ∈ S(X, JX)T, η̃ − η is basic and so

(39) η̃ = η + dcXϕ+ α

for a T-invariant smooth function ϕ, and a basic T-invariant closed 1-form α. It follows
from (39) that the induced Kähler forms on local quotients (M,J) of N by X are linked by
ω̃ = ω+ ddcϕ, i.e., belong to the same Kähler class. Moreover any K in the Lie algebra of
T is CR for both CR structures (D, J) and (D̃, J̃) induced by η and η̃, and hence induces
on any such M a Killing vector field, also denoted K, for both ω and ω̃, with respective
Killing potentials pulling back to f = η(K) and f̃ = η̃(K) = f + dcϕ(K) + α(K). Notice
that by the T-invariance and closedness of α, the term α(K) is a constant.

Lemma 6. Let (N,D, J) be a compact CR manifold and χ, ξ ∈ cr+(D, J) with [ξ, χ] = 0.
Let X = Xχ, K = Xξ. Then for any η̃ ∈ S(X, JX) with LK η̃ = 0, K is a Sasaki–Reeb

vector field for the induced CR structure (D̃, J̃).

Proof. As K is a CR vector field by construction, we need to check that f̃ := η̃(K) > 0.
We let η ∈ S(X, JX) be the contact form of (D, χ). Since K is contact with respect to

D̃ := ker η̃, we have K = f̃X − (dη̃|
D̃

)−1(df̃ |
D̃

) and hence

η(K) = f̃ − (dη̃|
D̃

)−1(df̃ |
D̃
, η|

D̃
)
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Evaluating this relation at a global minimum p of f̃ we obtain f̃(p) = η(K)(p) > 0. �

We now specialize the above set-up. First, we fix a nowhere zero vector K and let T
be the torus in Aut(N,X, JX) generated by X and K. In addition, following [37], we
fix a basepoint η ∈ S(X, JX)T with corresponding Sasaki structure (D, J, χ), and restrict
attention to the affine slice of S(X, JX)T consisting of contact forms η̃ related to η by (39)
with α = 0. We may thus identify this slice with

(40) Ξ(X, JX)T := {ϕ ∈ C∞N,0(R)T | ηϕ := η + dcXϕ is a contact form}

We also write (Dϕ, Jϕ, χϕ) for the Sasaki structure induced by ηϕ for ϕ ∈ ΞK(X, JX)T, and
let ξϕ = ηDϕ(K) and ξ = ηD(K). In view of Lemmas 2 and 6, we now have an analogue of
Problem 1 for (ξ, ν)-extremal Sasaki metrics.

Problem 2. Given a compact CR manifold (N,D, J) of Sasaki type and χ, ξ ∈ cr+(N,D, J)
with [χ, ξ] = 0, is there ϕ ∈ Ξ(X, JX)T such that (Dϕ, Jϕ, χϕ) is (ξϕ, ν)-extremal?

In the case χ = ξ, Problem 2 reduces to the search for extremal Sasaki metrics in a
given Sasaki polarization, see [14], which has been studied in many places, see e.g. [14, 18,
26, 52, 56, 57, 62]. We notice that Problems 1 and 2 are naturally linked in the regular
case, via Examples 1, 2 and Remark 4. Indeed, the parametrization (40) implies that for

any ϕ ∈ Ξ(X, JX)T, the Kähler potentials f̃ = ηϕ(K) and f = η(K) of K are linked on a

Sasaki–Reeb quotient (M,J) via f̃ = f + dcϕ(K), which is consistent with (38).

Remarks 5. (i) By the equivariant Gray–Moser theorem and Lemma 6 above, for each
ϕ ∈ Ξ(X, JX)T the corresponding contact form ηϕ ∈ S(X, JX)T is equivalent to η by an
identity component T-equivariant diffeomorphism Φ of N . Pulling back Jϕ by Φ gives a
CR structure Jϕ,η in the space C+(N,D)T of T-invariant D-compatible CR structures on
(N,D) introduced in Section 2, where T 6 Con(N,D) is the torus generated by the CR
vector fields Xχ and Xξ. Thus, Problem 2 can be viewed as a special case of the problem
of finding critical points in C+(N,D)T for the square norm of the momentum map of the
Con(N,D)T-action on AC+(N,D)T defined in Section 2.

(ii) In view of Theorem 1, one may ask whether, given (N,D, J, χ, ξ) as in Problem 2,
there exists a (ξϕ,m + 2)-extremal solution ϕ ∈ Ξ(X, JX)T iff there exists an extremal
Sasaki structure with contact form ηϕ ∈ S(K, JK)T. This would be useful for studying
irregular extremal Sasaki structures by taking X quasi-regular and K irregular. However,
it is not clear how to relate the spaces Ξ(X, JX)T and S(K, JK)T, since Jϕ is the lift of JK
to Dϕ and its projection onto TN/ span(X) does not agree with JX in general, and so the
pullback Jϕ,η = Φ∗Jϕ with Φ∗ηϕ = η need not descend to a complex structure in the same
Teichmüller class as J on the quotient of N by X.

6.3. Extremal Sasaki structures from ruled complex surfaces. We now specialize
to geometrically ruled complex surfaces and the regular Sasaki manifolds they define. Let
(M,J) = π : P(O ⊕ L) → B be the underlying complex manifold of a projective CP 1-
bundle over a compact Riemann surface B, where L is a holomorphic line bundle over B of
positive degree `. Let K be the generator of the holomorphic S1-action on (M,J) induced
by scalar multiplication in O. We denote by (gB, ωB) the Kähler metric on B of constant
scalar curvature 4(1 − g), where g denotes the genus of B. It is well-known (see e.g. [8])
that the Kähler cone of (M,J) can be parametrized up to homothety by the cohomology
classes of Kähler metrics (g, ω) given by the Calabi ansatz (16) as described in Section 4.5,
with a1 = `. For convenience, in this section, we let a denote the real constant a0/` and
write z for z1 and µ for µ1, so that a0 + a1µ1 = `(µ+ a).

For each b ∈ R with |b| > 1, fb := µ+ b is a positive Killing potential for K on (M, g, ω).
The existence of a (fb, 4)-extremal Kähler metric of the form (16) on M (up to homothety)
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is studied in [11, 44, 50]. It is shown there (see e.g. [11, Thm. 1]) that such a metric must
be obtained from a smooth function A(z) = Pa,b(z)/(z + a), where Pa,b is a polynomial
of degree 6 4 uniquely determined from (19) in terms of a, b and `; thus(M, g, J, ω) is
(fb, 4)-extremal iff Pa,b(z) satisfies the positivity condition (20). Conversely, we have the
following result.

Proposition 7. Let M = P (O ⊕ L) → CP 1 be a ruled surface and Ω = λ[ω] a Kähler

class on M for λ > 0, a > 1. Let |b| > 1, fb = µ+ b and κ = λ3

2

∫
M
fb ω

2. If the polynomial
Pa,b(z) is not positive on (−1, 1), Ω contains no (K,κ, 4)-extremal Kähler metrics.

Proof. The proof follows from a slight modification of the arguments in [46, Cor. 1], taking
into account the recent result [47, Cor. 1]. Indeed, suppose for contradiction that Pa,b(p0) =
0 for some p0 ∈ (−1, 1), and that [ω] admits a (K,κ, 4)-extremal Kähler metric.

Consider first the case that Pa,b(z) is negative somewhere on (−1, 1). If the Kähler
class [ω/2π] is rational (which is equivalent to a ∈ Q), we derive a contradiction by [47,
Cor. 1] (which implies that the relative weighted Mabuchi functional must be bounded
from below) and [11, Prop. 2.7] (which concludes otherwise). If the Kähler class [ω/2π] is
not rational, we can approximate it with rational classes [ω̃/2π] of the form (21) by taking
rational values ã close to a, and still ensure that Pã,b(z) is negative somewhere on (−1, 1).
Furthermore, by the openness of weighted extremal classes established in [45, Thm. 2], we
can assume that [ω̃] admits a (K, κ̃, 4)-extremal Kähler metric with κ̃ = 1

2

∫
M
fb ω̃

2. We
get a contradiction as before.

It thus remains to consider the case when p0 ∈ (−1, 1) is a double root of the quadratic

Pa,b(z)/(1 − z)2. In this case, we prove that there exists a sequence b̃i converging to b,

such that Pa,b̃i(p0) < 0; by the openness result in [45, Thm. 2], we can then find b̃ with
Pa,b̃(p0) < 0 and such that the Kähler class [ω] admits a (K, κ̃, 4)-extremal Kähler metric

with κ̃ = 1
2

∫
M
fb̃ ω

2, a situation we have already ruled out.

In order to find a sequence as above, it is enough to show that
∂Pa,b
∂b

(p0) 6= 0 at each
double root p0 ∈ (−1, 1). The remainder of the proof establishes this technical fact.

If a = b, we get the natural solution of Corollary 3, in which case Pa,b(z) > 0 on (−1, 1).
We can thus assume that a 6= b, and then, adapting [44, (11) & (31)] to our notation, the
polynomial Pa,b is given by

(41)
2Pa,b(z)

1− z2
= 2(z + a) + (1− z2)

3ca,b + a+ s

3c2
a,b − 1

,

where s = 2(1− g)/` and ca,b = (ab− 1)/(a− b).
Suppose that

∂Pa,b
∂b

(p0) = 0 for p0 6= ±1. We compute that this is equivalent to

2ca,b s+ 3c2
a,b + 2a ca,b + 1 = 0.

Since ca,b 6= 0, we may solve for s and substitute back in (41) to obtain

2Pa,b(z)

1− z2
=

1 + 4a ca,b + 4ca,b z − z2

2ca,b
.

Now if Pa,b has a double root at p0 6= ±1, we must have p0 = 2ca,b = 2(ab− 1)/(a− b), the
critical point of this expression. However, (ab − 1)2 − (a − b)2 = (a2 − 1)(b2 − 1) > 0 for
|b| > 1 and a > 1, so |p0| > 2 and hence p0 /∈ (−1, 1). �

It is shown in [11, Prop. 2.12] that for a rational Kähler class of the form (21), and
for z ∈ (−1, 1) ∩ Q, Pa,b(z) computes a weighted notion of the relative Donaldson–Futaki
invariant associated to the polarized variety (M,Lk,n), where Lk,n is a polarization on M
corresponding to a = a0/` = (2n/k`) − 1 as explained in Section 4.5. This motivates the
following definition.
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Definition 7. [11] Let (M,Lk,n) be a polarized ruled surface as above, and Ẑb the quasi-
periodic (real) holomorphic vector field on Lk,n, given by the lift of K with respect to the

potential fb. We say that (M,Lk,n, Ẑb) is analytically relatively (Ẑb, 4) K-stable with respect
to admissible test configurations if Pa,b(z) > 0 on (−1, 1).

Thus, Proposition 7 implies that that (M,J) admits a (K,κ, 4)-extremal Kähler metric

in 2πc1(Lk,n) iff (M,Lk,n, Ẑb) is analytically relatively (Ẑb, 4) K-stable with respect to
admissible test configurations.

6.4. Proof of Theorem 2. Let (Nk,n,D, χ) be a compact regular contact manifold over
a ruled surface M constructed in Section 4.5, and ξb ∈ con(Nk,n,D) the contact lift of the
generator K of the S1-action on M via potential µ + b. We denote by T 6 con(Nk,n,D)
the torus generated by χ and ξb, and let Pa,b be the polynomial corresponding to the
Kähler class (21) with a0 = (2n/k) − ` and a1 = `. We need to show that there exists a
(ξb, 4)-extremal CR structure J ∈ C+(Nk,n,D)T if and only if Pa,b(z) > 0 on (−1, 1).

Existence follows from Theorem 1 and the fact that when Pa,b(z) > 0 on (−1, 1), A(z) =
Pa,b(z)/(z + a) in (16) defines an (fb, 4)-extremal Kähler metric on M (see [11, Thm. 1]).

We now establish the non-existence claim. Suppose that Pa,b(z) has a zero on (−1, 1).
Denote by J the CR-structure in C+(Nk,n,D)T induced by a Kähler metric (g, ω) on M of
the form (16) and suppose for contradiction that there exists a D-compatible CR structure
J ′ ∈ C+(Nk,n,D)T such that (D, J ′, ξb) is an extremal Sasaki structure and Pa,b(z) has a
zero on (−1, 1). As J ′ is Xξb-invariant, on M we obtain another ω-compatible complex
structure J ′ which is invariant under the S1-action generated by K. As any compact Kähler
4-manifold admitiing a holomorphic vector field with zeroes must be a rational or a ruled
surface [23], (M,J ′) must be a ruled surface too, i.e., (M,J ′) = P (O ⊕ L′) → B′ with B′

having the same genus as B. Intersection properties of the zero set of K (which equals
the zero and infinity sections in either case) yield that deg(L) = deg(L′). Since J and J ′

are compatible with the same symplectic form ω, the corresponding class [ω] is of the form
(21) on either surface, with the same parameter a = a0/` > 1; furthermore, the Killing
potential of K induced by ξb in both cases is fb = µ+ b for the same b > 1. It thus follows
that the respective polynomials associated to [ω] on each ruled surface (M,J) and (M,J ′)
coincide; we denote them by Pa,b.

Now, by Theorem 1, the Kähler class [ω] on (M,J ′) admits a (K,κ, 4)-extremal Kähler
metric which, by Proposition 7, forces Pa,b(z) > 0 on (−1, 1), a contradiction. �

Remarks 6. (i) Theorem 2 yields a (ξb, 4)-extremal Sasaki metric on the Sasaki join
(Nw,k,D) over B × CP 1

w (with weights w+ = n,w− = n − k`, where a = (2n/k`) − 1)
if Pa,b(z) > 0 on (−1, 1). This always happens when B has genus 0 or 1, or when a is
sufficiently large (see e.g. [11, Thm. 1]). These extremal Sasaki structures are not new
(see [16, 17]) but we have seen in Section 4.5 that they can equivalently be obtained from

a (f̃b, 4)-extremal product Kähler metric gB + pgw on B × CP 1
w . Taking the limit b → ∞

also yields the extremal Kähler metrics on the ruled surfaces constructed in [20, 61] as a
CR twist of a product metric on B × CP 1

w .

(ii) To the best of our knowledge, the non-existence result obtained via Theorem 2 is
new, at least for irrational values of b (in which case ξb generates T, and thus is not
quasi-regular). To construct specific examples, following [44], on any ruled surface M
over a curve of genus > 2 as above, there exists an explicit a0(M) > 1 such that for
any a ∈ (1, a0(M)] the polynomial Pa,ba(z) has a zero on (−1, 1), where b = ba > 1 is

the unique solution of a = 1+b2

2b
satisfying |b| > 1. Taking coprime positive integers k, n

with a = (2n/k`) − 1 6 a0(M), we obtain a contact manifold (Nk,n,D) which admits no
(ξb, 4)-extremal CR structure J ∈ C+(Nk,n,D)T.
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[7] V. Apostolov, D. M. J. Calderbank, P. Gauduchon and E. Legendre, Levi–Kähler reduction of CR

structures, product of spheres, and toric geometry, arXiv:1708.05253.
[8] V. Apostolov, D. M. J. Calderbank, P. Gauduchon and C. W. Tønnesen-Friedman, Hamiltonian

2-forms in Kähler geometry III Extremal metrics and stability, Invent. Math. 173 (2008), 547–601.
[9] V. Apostolov, D. M. J. Calderbank, P. Gauduchon and C. W. Tønnesen-Friedman, Extremal Kähler

metrics on projective bundles over a curve, Adv. Math. 227 (2011), 2385–2424.
[10] V. Apostolov and G. Maschler, Conformally Kähler, Einstein–Maxwell geometry, arXiv:1512.06391,

to appear in JEMS.
[11] V. Apostolov, G. Maschler and C. W. Tønnesen-Friedman, Weighted extremal Kähler metrics and the

Einstein–Maxwell geometry of projective bundles, arXiv:1808.02813.
[12] I. N. Bernstein, I. M. Gel’fand and S. I. Gel’fand, Differential operators on the base affine space and

a study of g-modules in “Lie groups and their representations”, Adam Hilger, London, 1975.
[13] C. P. Boyer and K. Galicki, Sasakian Geometry, Oxford Mathematical Monographs. Oxford University

Press, Oxford, 2008.
[14] C. P. Boyer, K. Galicki and S. Simanca, Canonical Sasakian metrics, Comm. Math. Phys. 279 (2008),

705–733.
[15] C. P. Boyer, H. Huang, E. Legendre and C. W. Tønnesen-Friedman, The Einstein–Hilbert functional

and the Sasaki–Futaki invariant, Int. Math. Res. Notices 2017 (2017), 1942–1974.
[16] C. P. Boyer and C. W. Tønnesen-Friedman, Extremal Sasaki geometry on S3 bundles over Riemann

surfaces, Int. Math. Res. Not. 20 (2014), 5510–5562.
[17] C. P. Boyer and C. W. Tønnesen-Friedman, The Sasaki join, hamiltonian 2-forms, and constant scalar

curvature, J Geom. Anal. 26 (2016), 1023–1060, arXiv:1402.2546
[18] C. P. Boyer and C. van Coevering, Relative K-stability and extremal Sasaki metrics, arXiv:1608.06184.
[19] R. Bryant, Bochner–Kähler metrics, J. Amer. Math. Soc. 14 (2001), 623–715.
[20] E. Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, pp. 259–290, Ann. of Math.

Stud. 102, Princeton Univ. Press, Princeton, N.J., 1982.
[21] D. M. J. Calderbank and T. Diemer, Differential invariants and curved Bernstein–Gelfand–Gelfand

sequences, J. reine angew. Math. 537 (2001), 67–103.
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