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Abstract. We give a simple construction of the Bernstein-Gelfand-Gelfand sequences

of natural differential operators on a manifold equipped with a parabolic geometry.

This method permits us to define the additional structure of a bilinear differential

“cup product” on this sequence, satisfying a Leibniz rule up to curvature terms. It

is not associative, but is part of an A∞-algebra of multilinear differential operators,

which we also obtain explicitly. We illustrate the construction in the case of conformal

differential geometry, where the cup product provides a wide-reaching generalization of

helicity raising and lowering for conformally invariant field equations.

Introduction

In a sequence of pioneering papers [2, 3, 4], Robert Baston introduced a number of
general methods to study invariant differential operators on conformal manifolds, and a
related class of parabolic geometries, which he called “almost hermitian symmetric (AHS)
structures”. In particular, he suggested that certain complexes of natural differential op-
erators, dual to generalized Bernstein-Gelfand-Gelfand (BGG) resolutions of parabolic
Verma modules, could be extended from the homogeneous context (generalized flag man-
ifolds) to curved manifolds modelled on these spaces. He provided a construction of such
a BGG sequence (no longer a complex in general) for AHS structures [3], and introduced
(in [4]) a class of induced modules, now called semiholonomic Verma modules [25].

Baston’s work is related to the programme of parabolic invariant theory initiated by
Fefferman and Graham [26, 27], who studied scalar invariants, and to the work of East-
wood and Rice [24], who studied conformally invariant operators in four dimensions. Sev-
eral authors have joined in an endeavour to complete these ideas and to provide a theory
of invariant operators in all parabolic geometries, which include conformal geometry, pro-
jective geometry, quaternionic geometry, projective contact geometry, CR geometry and
quaternionic CR geometry. In [25], Eastwood and Slovák began the study of semiholo-
nomic Verma modules and classified the Verma module homomorphisms lifting to the
semiholonomic modules in the conformal case—even here the problem is difficult (see
also Graham [31]). The AHS structures have been extensively studied by Čap, Slovák
and Souček in [18, 19, 20], and in the last paper of this series they construct a large class
of invariant differential operators for these geometries. Then, in [21], Čap, Slovák and
Souček clarified Baston’s construction of the BGG sequences in the AHS case, and in the
process, generalized it to all parabolic geometries. Hence we now know that all standard
homomorphisms of parabolic Verma modules induce differential operators also in the
curved setting, providing us with a huge supply of invariant linear differential operators.
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This paper has two main objectives: to simplify the construction of the BGG sequences
given in [21], and to equip these sequences of linear differential operators with bilinear
differential pairings, inducing, in the flat case, a cup product on cohomology.

The key tool for the construction of the BGG sequences is an invariant differential op-
erator from relative Lie algebra homology bundles to twisted differential forms, denoted
L in [3] and [21]. However, when one tries to produce a cup product, one needs a differ-
ential operator defined on the whole bundle of twisted differential forms which induces L
on the homology bundles. The search for such an operator (within the dual homogeneous
formalism of Verma modules) led the second author to a procedure which, in addition to
providing a cup coproduct on the BGG resolutions, gives a simpler construction of the
resolutions themselves. These developments are described in [22]. It is straightforward
to dualize this procedure and one readily sees that it generalizes from the homogeneous
context to arbitrary parabolic geometries, although the presence of curvature introduces
phenomena that do not arise in the flat case, and also suggests further constructions of
multilinear differential operators. We present, in geometric language, these constructions
and phenomena here. That is, we give a simple self-contained approach to the curved
BGG sequences and cup product, in their natural geometrical context, and introduce an
A∞-algebra of invariant multilinear differential operators.

We begin by recalling some basic facts from Cartan geometry, emphasizing the simple
first order constructions a Cartan connection provides. Our approach is mainly influenced
by [2, 21, 44, 46]. In section 2, we define parabolic geometries as Cartan geometries
associated to a semisimple Lie algebra g with a parabolic Lie subalgebra p. We summarize
the basic representation-theoretic facts that we will need and give some examples.

The most substantial piece of representation theory we need is Lie algebra homology,
and we discuss this in section 3. In order to keep the paper as self-contained as possible,
we outline proofs for all the basic properties of Lie algebra homology, although we only
indicate briefly how Kostant’s Hodge decomposition may be established. Additionally,
there are some non-standard aspects to our treatment: firstly we concentrate on Lie
algebra homology, rather than cohomology, since it is the Lie algebra homology that is
p-equivariant, and secondly, we eschew the lamentably inverted notation ∂, ∂∗ for the Lie
algebra coboundary and boundary operators (for some reason, ∂, although a boundary
operator in [36], is the coboundary operator in [2, 16, 19, 49]). Instead, following Kostant
in part [36], and by analogy with the deRham complex, we use d and δ, with subscripts to
indicate that it is the Lie algebraic rather than differential operators we are considering.
This analogy with the deRham complex is central to our proof. After stating the main
theorem to be proved at the end of section 3, we begin the study, in section 4, of the
twisted deRham complex. As observed in [21], there are in fact two natural deRham
complexes one might consider, which differ if the parabolic geometry has torsion.

We prove an explicit version of our main result in section 5. There we give a con-
struction, using a Neumann series, of the BGG sequences of differential operators found
in [21], and at the same time construct the bilinear differential pairings. Our method
enables us to compute explicitly the curvature terms entering into the squares of the
BGG differentials and into the Leibniz rule for the pairings. The BGG sequence of [21]
is based on the the twisted deRham complex with torsion. We show that under a weak
additional assumption, there is another BGG sequence based on the torsion-free twisted
deRham sequence. The operators involved are in some ways more complicated because of
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the corrections needed to “remove” the torsion, but we believe they are more natural and
illustrate this by interpreting curvature terms for normal regular parabolic geometries.
For torsion-free parabolic geometries, of course, the two BGG sequences agree.

At the end of section 5 and in the following section, we introduce multilinear differential
operators and establish that they form a (curved) A∞-algebra. We study adjointness
properties of the BGG operators and cup product in section 7, introducing a dual BGG
sequence and a cap product. In section 8, potential applications, such as deformation
and moduli space problems, are discussed, mostly in a rather open-ended fashion, since
working out the details in many cases is a substantial research project. We attempt to
be more concrete in the final section, where we give examples in conformal geometry, and
show how the cup product generalizes helicity raising and lowering by Penrose twistors
in four dimensional conformal geometry to arbitrary twistors in arbitrary dimensions.

Finally, one feature of our methods is that we work with spaces of smooth sections, and
do not need the machinery of semiholonomic infinite jets and Verma modules. However,
for the convenience of the reader, we sketch an approach to this machine in an appendix.

Acknowledgements. We are very grateful to Andreas Čap, Rod Gover, Martin Markl,
Elmer Rees, Michael Singer, Jan Slovák and Jim Stasheff for stimulating and helpful
discussions. The first author would particularly like to thank Vladimir Souček, with
whom he has discussed helicity raising and lowering extensively over the past few years,
and more recently, some of the details of curved BGG sequences. The second author is
similarly indebted to Gregor Weingart for many discussions on Lie algebra homology and
BGG resolutions. We also thank the referee for helpful comments.

1. Cartan geometries and invariant differentiation

Cartan geometries are geometries modelled on a homogeneous spaceG/P (for a modern
introduction, see [44]). Such a homogeneous space has a natural principal P -bundle
G→ G/P , equipped with g-valued 1-form ω : TG→ g, namely the Maurer-Cartan form
which trivializes TG by the left-invariant vector fields.

In order to avoid fixing G, we work with a pair (g, P ) consisting of a Lie algebra g and
a group P acting on g by automorphisms such that the Lie algebra p of P is a subalgebra
of g and the action of P on g induces the adjoint action of P on p and of p on g.

1.1. Definition (Cartan geometry). Let M be a manifold of the same dimension as g/p.

(i) A Cartan geometry of type (g, P ) on M is a principal P -bundle π : G → M ,
together with a P -equivariant g-valued 1-form η : TG → g such that for each
u ∈ G, ηu : TuG → g is an isomorphism restricting to the canonical isomorphism
between Tu(Gπ(u)) and p.

(ii) A Kleinian or homogeneous model of a Cartan geometry of type (g, P ) is a
homogeneous space G/P , for a Lie group G with subgroup P and Lie algebra g.

(iii) The curvature K : Λ2TG → g of a Cartan geometry is defined by

K(U, V ) = dη(U, V ) + [η(U), η(V )].

It induces a curvature function κ : G → Λ2g∗⊗ g via

κ(u)(ξ, χ) = Ku

(
η−1(ξ), η−1(χ)

)
= [ξ, χ]− ηu[η−1(ξ), η−1(χ)],

where u ∈ G and the latter bracket is the Lie bracket of vector fields on G.
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(iv) Associated to a P -module E is a vector bundle E = G ×P E. In particular, the
Cartan connection η identifies the tangent bundle of M with G ×P g/p. The
adjoint bundle of a Cartan geometry is gM = G×P g. The quotient map g→ g/p

induces a surjective bundle map πg : gM → TM .
Note that the associated bundle construction identifies sections of E = G×P E

over M with P -equivariant maps from G to E:

C∞(M,E) = C∞(G,E)P .

We shall make frequent use of this identification, often without comment.

The curvature K of a Cartan geometry measures the failure of the Cartan 1-form
η to induce a Lie algebra homomorphism. This is the obstruction to finding a local
isomorphism between G →M and a homogeneous model G→ G/P .

The following definition is essentially given in [18, 21], except that we do not restrict
the derivative to horizontal tangent vectors, and hence we do not lose P -equivariance.
The same idea appears in [15, 44], the latter reference attributing it to Cartan [14].

1.2. Definition (Invariant derivative). Let (G, η) be a Cartan geometry of type (g, P )
on M , and let E be a P -module with associated vector bundle E = G ×P E. Then the
invariant derivative on E is defined by

∇η : C∞(G,E)→ C∞(G, g∗⊗ E)

∇η
ξf = df

(
η−1(ξ)

)
for all ξ in g. It is P -equivariant and so maps C∞(G,E)P into C∞(G, g∗⊗E)P . Identifying
P -equivariant maps to a P -module with sections of the associated vector bundle therefore
provides a linear map ∇η : C∞(M,E)→ C∞(M, g∗M ⊗ E).

We now build up some simple properties of this operation.

1.3. Proposition (1-jets). Let (G, η) be a Cartan geometry of type (g, P ) on M .

(i) The curvature K is a horizontal 2-form and so induces KM ∈ C∞(M,Λ2T ∗M ⊗
gM ). Equivalently κ(ξ, ·) = 0 for ξ ∈ p, so κ ∈ C∞(G,Λ2(g/p)∗⊗ g)P .

(ii) The invariant derivative of a P -equivariant map f : G → E is vertically trivial in
the sense that (∇η

ξf)(u) + ξ ·
(
f(u)

)
= 0 for all ξ ∈ p and u ∈ G. In particular if

P acts trivially on E and f : M → E, then ∇ηf = df ◦ πg.
(iii) If f1 : G → E1 and f2 : G → E2 then ∇η

ξ (f1 ⊗ f2) = (∇η
ξf1)⊗ f2 + f1 ⊗ (∇η

ξf2).
(iv) The invariant derivative satisfies the “Ricci identity”:

∇η
ξ (∇

η
χf)−∇η

χ(∇η
ξf) = ∇η

[ξ,χ]f −∇
η
κ(ξ,χ)f.

(v) The map C∞(M,E)→ C∞
(
M,E ⊕ (g∗M ⊗ E)

)
sending s to (s,∇ηs) defines an

injective bundle map, from the 1-jet bundle J1E to E⊕
(
g∗M⊗E

)
, whose image is

G ×P J
1
0 E where J1

0 E = {(φ0, φ1) ∈ E⊕
(
g∗⊗E

)
: φ1(ξ)+ ξ ·φ0 = 0 for all ξ ∈ p}.

Proof. These are straightforward calculations.

(i) For ξ ∈ p, we have by definition that η−1(ξ) is a vertical vector field generated
by the right P -action. Now the map χ 7→ η−1(χ) is P -equivariant for any χ ∈ g,
from which it follows by differentiating that [η−1(ξ), η−1(χ)] = η−1[ξ, χ].

(ii) Differentiate the P -equivariance condition p · (f(up)) = f(u).
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(iii) This is just the product rule for d(f1 ⊗ f2).
(iv) The Ricci identity holds because both sides are equal to df([η−1(ξ), η−1(χ)]).
(v) Certainly the map on smooth sections only depends on the 1-jet at each point,

and it is injective since the symbol of ∇η is the inclusion T ∗M ⊗ E → g∗M ⊗ E,
as one easily sees from the product rule (for E1 trivial and E2 = E). It maps
into G ×P J

1
0 E by vertical triviality, so the result follows by comparing the ranks

of the bundles. �

The final term in the Ricci identity is first order in general, due to the presence of torsion.
The torsion is defined to be the TM -valued 2-form πg(KM ) obtained by projecting the
curvature K onto g/p; a Cartan geometry is said to be torsion-free if K takes values in
p so that πg(KM ) = 0 and κ ∈ C∞(G,Λ2(g/p)∗⊗ p). In this case, for any P -equivariant
f : G → E, we have −∇η

κ(ξ,χ)f = κ(ξ, χ) · f .
We end this section by considering the invariant derivative when the P -module is also

a g-module.

1.4. Definition. A (g, P )-module is a vector space W carrying a representation of P and
a P -equivariant representation of g, such that the induced actions of p coincide.

For a Lie group G with Lie algebra g and subgroup P , any G-module is a (g, P )-module.

1.5. Definition (Twistor connection). Let W be a (g, P )-module and define

∇g : C∞(G,W)→ C∞(G, g∗⊗W)

∇g
ξf = ∇η

ξf + ξ · f .

Then for P -equivariant f , ∇g
ξf vanishes for ξ ∈ p, so ∇gf takes values in (g/p)∗⊗W and

hence ∇g induces a covariant derivative on W = G ×P W which will be called the twistor
connection on W . Its curvature is easily computed to be the action of KM on W .

If G is a Lie group with subgroup P and Lie algebra g, then the principal G-bundle
G̃ = G×P G has a principal bundle connection induced by η, and, on a G-module W, ∇g is
simply the covariant derivative induced by this connection. The linear approach to Cartan
connections is due to Thomas [50, 1], although the most widespread manifestation of a
linear representation of the Cartan connection probably arises in twistor theory, where
W is the local twistor bundle and ∇g defines local twistor transport. Following Baston [2],
we adapt this terminology to more general situations.

1.6. Proposition. Let ΨW be the P -equivariant automorphism of (E⊗W)⊕(g∗⊗E⊗W),
for any P -module E, sending (φ0 = e⊗w, φ1) to (φ0, φ̃1) where φ̃1(χ) = φ1(χ)+ e⊗χ ·w
for any χ ∈ g. Then ΨW restricts to an isomorphism from J1

0 (E⊗W) to J1
0 (E)⊗W.

Proof. For any χ ∈ p and (φ0 = e⊗ w, φ1) ∈ J1
0 (E⊗W), we have

φ̃1(χ) + (χ · e)⊗ w = φ1(χ) + (χ · e)⊗ w + e⊗ χ ·w = φ1(χ) + χ · (e⊗ w) = 0,

and so ΨW maps J1
0 (E⊗W) into J1

0 (E)⊗W. �

The operator ΨW formalises the process of twisting a first order operator (on a P -
module E) by the twistor connection on W. We apply this to the exterior derivative in
section 4.
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2. Parabolic geometries

Parabolic geometries can be described as Cartan geometries of type (g, P ) where g

is semisimple and the Lie algebra p of P is a parabolic subalgebra, i.e., a subalgebra
containing a maximal solvable subalgebra of g. We need a few facts about parabolic
subalgebras, all of which are straightforward: we refer to [5, 16, 46, 49] for proofs.

The parabolic subalgebra splits naturally as the semidirect sum of a reductive subal-
gebra g0 and a nilpotent ideal m∗, where m is a subalgebra of g complementary to p, and
the nilpotent part of p is identified with m∗ using the Killing form of g. Because of this
duality, p∗ := g0 nm is also a parabolic subalgebra of g. By choosing a Cartan subalgebra
of the semisimple part of g0 and extending it to a Cartan subalgebra of g inside g0, one
can show (in the complexified setting) that parabolic subalgebras of semisimple Lie al-
gebras correspond, up to isomorphism, to Dynkin diagrams with crossed nodes, where a
node is crossed if the corresponding root space does not lie in g0. Real forms are classified
in a similar way (using, for instance, Satake diagrams). The distinction between real and
complex geometries does not cause any difficulties at this level: some of the statements
in the following require minor modification in the real case, but we make little further
comment on this.

We note that [g0,m] ⊆ m, [g0,m
∗] ⊆ m∗ and hence m and m∗ may be decomposed into

graded nilpotent algebras by the action of the centre of g0. This centre is nontrivial: in
particular there is an element E in the centre of g0 such that adE has positive integer
eigenvalues on m and negative integer eigenvalues on m∗, which may be normalized by
the requirement that 1 is an eigenvalue. If E acts by a scalar on a g0-module (as it does
on an irreducible g0-module), then this scalar will be called the geometric weight. By
decomposing into irreducibles we can talk about the geometric weights of any semisimple
g0-module, and hence of any element or function with values in that module. An impor-
tant observation in parabolic geometry is that although the grading of a g or p-module by
geometric weight is not p-equivariant, it induces a p-equivariant filtration. The associated
graded vector space is the corresponding g0-module.

If P is a Lie group with Lie algebra p then we define G0 to be the subgroup {p ∈ P :
Adp(g0) 6 g0}; this has Lie algebra g0. We need to restrict the freedom in the choice of P
by assuming throughout that P = G0 expm∗. This holds automatically if G is a Lie group
with Lie algebra g and P = {g ∈ G : Adg(p) 6 p}. The reason for this assumption is that
if we need to show a manifestly G0-invariant construction is P -invariant, we only need to
check m∗-invariance. We refer to such a (g, P ), satisfying in addition the assumptions of
the first section, as a parabolic pair.

2.1. Definition. A parabolic geometry on M is a Cartan geometry whose type is a
parabolic pair (g, P ). If m is abelian, then this is called the abelian or almost Hermitian
symmetric case. A parabolic geometry is said to be semiregular if the geometric weights
of the curvature κ are all nonpositive, and regular if they are all negative.

In the abelian case, the centre of g0 is one dimensional, and so the geometric weight
determines the action of the centre on an irreducible g0-module. In fact m itself has
geometric weight 1, and so an abelian parabolic geometry is regular. Note that Λ2m∗⊗
p has negative geometric weights (at most −2), so the (semi)regularity condition is a
condition on the torsion alone. Regularity ensures that the Lie bracket of vector fields
on M is compatible with the Lie bracket in m—see [16, 46, 49].
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In practice, parabolic geometries are defined in terms of more primitive data, which
have to be prolonged (i.e., differentiated) to obtain the Cartan geometry. It is natural to
impose a further constraint on the curvature of Cartan connections arising in this way,
see 5.9. Here we give some examples of geometric structures inducing such “normal”
parabolic geometries.

Conformal geometry. It is well known that conformal geometry in n > 3 dimensions
(or Möbius geometry in dimension two [11]) can be described by a Cartan geometry with
g ∼= so(n + 1, 1). We fix a Lorentzian vector space V of signature (n + 1, 1). Then the
space of null lines in V is the n-sphere viewed as a conformal manifold, and the Lorentzian
transformations act conformally. We choose a point in Sn and denote its tangent space,
which is a conformal vector space, by m. The isotropy group fixing this null line is
isomorphic to CO(m) n m∗, with the conformal group CO(m) acting on m∗ in the obvious
way. The Lorentzian Lie algebra g, which is semisimple for any n > 1, is a vector space
direct sum g = m⊕ co(m)⊕m∗. The geometric weight is the conformal weight.

Possible choices for P are CO(m) n m∗, where CO(m) may or may not include the
orientation reversing transformations, or CSpin(m) n m∗. These parabolic geometries are
called (oriented) conformal geometry and conformal spin geometry respectively.

A more primitive definition of a conformal manifold is a manifold equipped with an
L2-valued metric c on the tangent bundle, where L1 is the density line bundle. We shall
briefly describe how the Cartan connection arises geometrically. A conformal manifold has
a distinguished family of connections, called Weyl connections: these are the torsion-free
connections D compatible with the conformal structure in the sense that Dc = 0. They
form an affine space modelled on the space of 1-forms, while the Levi-Civita connections
of compatible metrics form an affine subspace modelled on the space of exact 1-forms.
We can define the bundle of Weyl geometries W as the bundle of splittings of J1TM →
TM determined by the Weyl connections. This is an affine bundle modelled on T ∗M

and the Weyl connections are its sections. The principal bundle G is the pullback of
W to the bundle of conformal frames CO(M). The Cartan connection arises from the
observation that a 0-jet of a section ofW can be extended uniquely to a 1-jet of a section
with vanishing Ricci tensor. Usually a more algebraic description is given: for a more
detailed discussion, with proofs, see [2, 19, 42]. Weyl connections have been used to study
conformally invariant operators in [22, 29]—see also [11, 12, 37, 44].

We describe the following examples even more briefly, our aim being only to indicate
the scope of parabolic geometry.

Projective geometry. This is a parabolic geometry of type
(
sl(n+1,R),GL(n,R)nRn

)
.

The structure is purely second order, being given by a projective equivalence class of
torsion-free connections on the tangent bundle.

Quaternionic geometry. This is a parabolic geometry in n = 4m dimensions of type(
sl(m+ 1,H), S(GL(1,H)×GL(m,H)) n Hm

)
. A manifold is equipped with an (almost)

quaternionic structure iff there is a chosen rank 3 Lie subalgebra bundle of End(TM)
pointwise isomorphic to the imaginary quaternions. A quaternionic structure is an almost
quaternionic structure with vanishing torsion.
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Projective contact geometry. There is a a contact geometry associated with each
semisimple Lie algebra. Projective contact geometry is a parabolic geometry of type(
sp(2(m + 1),R),Sp(2m,R) n H2m+1

)
, where H2m+1 is the Heisenberg group with Lie

algebra R2m⊕R, the Lie bracket being the standard symplectic form on R2m. A projective
contact manifold turns out to be a contact manifold together with a chosen class of
“projectively equivalent” partial connections.

CR geometry. The geometry induced on strictly pseudoconvex hypersurfaces in com-
plex manifolds is a parabolic geometry of type

(
su(m+1, 1),CU(m)nH2m+1

)
, where the

Heisenberg Lie algebra is now identified with Cm⊕R and the Lie bracket is the imaginary
part of the standard Hermitian form on Cm. In fact a partial integrability condition on
an almost CR structure suffices to define the Cartan geometry [16]. Certain surfaces of
real codimension two are also parabolic geometries [45].

Quaternionic CR geometry. We define quaternionic CR geometry to be a parabolic
geometry of type

(
sp(m + 1, 1),R+ × Sp(1) Sp(m) n H̃4m+3

)
, where H̃4m+3 is the Lie

group of the nilpotent Lie algebra structure on Hm ⊕ R3 whose Lie bracket is the direct
sum of the three symplectic forms on Hm.

Pfaffian systems in five variables. One of the first nontrivial Cartan geometries
discovered (by Cartan, of course [13]) turns out to be an exceptional parabolic geometry.
One starts from a Lie algebra m with basis {X1, Y1, Z2, X3, Y3} such that [X1, Y1] = Z2,
[X1, Z2] = X3, [Y1, Z2] = Y3 and all other brackets are trivial. Here the subscripts denote
the geometric weight. A derivation of this algebra is determined by its action on X1

and Y1, so the derivations preserving geometric weight form a Lie algebra isomorphic to
gl(2,R) and E is the identity matrix. A more lengthy computation shows that there is
only a two dimensional space of derivations from m to mogl(2,R) lowering the geometric
weight by one. Prolonging twice more gives a Lie algebra structure on g = m⊕gl(2,R)⊕m∗,
which turns out to be a real form of the exceptional Lie algebra g2. Hence if one equips
a 5-manifold M with a rank two subbundle H of the tangent bundle such that Lie
brackets of vector fields in H generate a rank three subbundle, and that further Lie
brackets with H generate TM , then one obtains, by [16, 49], a parabolic geometry of
type

(
g2, GL(2,R) n Ĥ5

)
where Ĥ5 is the Lie group of m.

This example is in some sense typical: most “normal” parabolic geometries are deter-
mined by a Pfaffian system on the tangent bundle [51]. The preceding examples (apart
from quaternionic CR geometry) are unusual in this respect: the geometric structure
involves additional data.

In the main example of conformal geometry, we noted that Weyl geometries are closely
related to the Cartan principal bundle. Turning this around, we can define a Weyl
structure, for an arbitrary parabolic geometry, to be a G0-equivariant section of G → G0

where G0 is the principal G0-bundle G/ expm∗. Since G is a principal expm∗-bundle over
G0, such a section is equivalently given by a P -equivariant map G → expm∗, where the
action ρ of P = G0 n expm∗ on expm∗ is given the adjoint action of G0 and the left
action of expm∗. Hence a Weyl structure is a section of the associated bundle of Weyl
geometries W := G×ρexpm∗∼= G/G0 over M , which is a bundle of principal homogeneous
spaces modelled on G ×P expm∗ ∼= G ×P m∗ = T ∗M , where now P acts by the adjoint
representation on expm∗. For any P -module E, a Weyl structure (i.e., a section ofW over
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M) identifies G ×P E, filtered by geometric weight, with G0×G0
E, which is the associated

graded bundle. We shall use this observation later: for further information, see [17].

2.2. Definition (Parabolic twistors). Let W be a (g, P )-module. Then m∗ acts on W and
the image m∗·W of this action is a P -subrepresentation since m∗ is an ideal of p. Hence
there is a natural P -equivariant map W → Wm∗ where Wm∗ := W/(m∗·W) is the space
of coinvariants of m∗ acting on W. Consequently, on a parabolic geometry, sections of
W induce sections of WT ∗M := G ×P Wm∗. Parallel sections of W will be called parabolic
twistors and the induced sections of WT ∗M will be called parabolic twistor fields.

Missing from this description is a twistor operator : we shall see later that there is a
differential operator acting on sections of WT ∗M which characterizes the parabolic twistor
fields. The twistor operator is the first operator in the curved BGG sequence which we
shall construct. To do this we need some Lie algebra homology.

3. Lie algebra homology and cohomology

Any Lie algebra l possesses naturally defined homology and cohomology theories with
coefficients in an arbitrary l-module W. These homology and cohomology groups can
be constructed using a (projective or injective) resolution of W by a Koszul complex of
W-valued alternating forms. We shall apply this to parabolic geometries by taking W to
be a g-module and letting l = m or m∗, using the vector space direct sum g = m⊕g0⊕m∗.
We focus on Λm∗⊗W, which leads to the homology of m∗ or the cohomology of m with
values in W.

For the convenience of the reader, we outline the basic properties of Lie algebra ho-
mology and cohomology that we need, although they are, of course, well known.

m∗ homology with values in W. We first interpret the space Λkm∗⊗W as the space
Ck(m∗,W) of k-chains on m∗with values in W. This space carries a natural representation
of p: the action on W is the restriction of the g action, while on Λkm∗ we have:

(3.1) ξ ·β :=
∑

i

[ξ, εi] ∧ (ei y β)

for ξ ∈ p, where ei denotes a basis of m with dual basis εi. In the abelian case this action
of m∗ ⊆ p on Λkm∗ is trivial. In general it is compatible with exterior multiplication by
α ∈ m∗ in the sense that:

(3.2) ξ · (α ∧ β) = α ∧ (ξ ·β) + [ξ, α] ∧ β.

There is also a compatibility with interior multiplication by v ∈ m:

v y (ξ ·β) = ξ · (v y β) + 〈[ξ, εi], v〉ei y β(3.3)

ξ · (v y β) = v y (ξ ·β) + [ξ, v]m y β,and so

where [ξ, v]m denotes the m component of the Lie bracket in g, which is the coadjoint
action of ξ on v ∈ m 6 g∗, or equivalently the natural action on v ∈ m ∼= g/p.

Next we define the boundary operator or codifferential δm∗ , where the subscript denotes
the Lie algebra which implicitly acts in the following definition:

δm∗ : Ck(m∗,W)→ Ck−1(m∗,W)

δm∗(β ⊗ w) =
∑

i

(
1
2ε

i · (ei y β)⊗ w + ei y β ⊗ εi ·w
)
.(3.4)
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For k = 0, 1 this definition means δm∗w = 0 and δm∗(α⊗ w) = α ·w .

3.1. Lemma (Cartan’s identity). For α ∈ m∗, β ∈ Λkm∗, w ∈ W and c ∈ Ck(m∗,W) we
have ∑

i

ei y (α ∧ β)⊗ εi ·w +
∑

i

α ∧ (ei y β)⊗ εi ·w = β ⊗ α ·w∑
i

εi ·
(
ei y (α ∧ β)

)
⊗ w +

∑
i

α ∧ εi · (ei y β)⊗ w = 2α ·β ⊗ w

δm∗(α ∧ c) + α ∧ (δm∗c) = α · c .and consequently

Proof. The first part is immediate from the fact that ei y (α ∧ β) = α(ei)β − α ∧ (ei y β).
For the second part, the first term is easily computed using (3.1) and (3.2). The final
formula (Cartan’s identity) follows from the first two by taking c = β ⊗ w. �

Cartan’s identity perhaps best explains the curious factor of 1/2 in the definition of
the codifferential. This factor is also crucial in the following.

3.2. Lemma (Boundary property). The Lie algebra codifferential defines a complex, i.e.,
δm∗ ◦ δm∗ = 0.

Proof. If W is a trivial representation, then the definition of the codifferential reduces to
the term

∑
i

1
2ε

i · (eiyβ)⊗w. The square of this term vanishes separately by virtue of (3.3)
and the Jacobi identity for m∗. The computation of δm∗ ◦ δm∗ for general representations
is now straightforward. �

3.3. Lemma (p-equivariance). For α ∈ m∗ and c ∈ Ck(m∗,W), δm∗(α · c) = α · (δm∗c).

Proof. Both sides equal δm∗
(
α ∧ (δm∗c)

)
by the previous two lemmas. �

It follows that δm∗ is p-equivariant (since it is clearly g0-equivariant).

3.4. Definition (Homology). The cycles, boundaries and homology of δm∗ are given by:

Zk(m∗,W) := ker δm∗ : Ck(m∗,W)→ Ck−1(m∗,W),

Bk(m∗,W) := im δm∗ : Ck+1(m∗,W)→ Ck(m∗,W),

Hk(m∗,W) := Zk(m∗,W)/Bk(m∗,W).

These are all p-modules, and by Cartan’s identity, m∗ maps Zk(m∗,W) into Bk(m∗,W)
and hence acts trivially on the homology Hk(m∗,W).

Note that the zero homology H0(m∗,W) is the space of coinvariants of W with respect
to m∗, since in that case Z0(m∗,W) = W and B0(m∗,W) = im(· : m∗⊗W→W) = m∗·W,
i.e., H0(m∗,W) = W/(m∗·W) = Wm∗.

3.5. Examples. The homology for the trivial representation W = R gives back the usual
multilinear forms in the abelian case: Hk(m∗,W) = Λkm∗.

In the case of conformal geometry, the Lorentzian vector space W = L1⊕(L1⊗m∗)⊕L−1

is itself a g-module:

H0(m∗,W) = L1,

Hk(m∗,W) = L1 ⊗ Λkm∗�m∗,

Hn(m∗,W) = L−1 ⊗ Λnm∗.
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Here elements in the Cartan product Λkm∗�m∗ can be thought of as tensors in Λkm∗⊗m∗

which are alternating-free and trace-free (i.e., in the kernel of the natural maps to Λk+1m∗

and L−2 ⊗ Λk−1m∗)—this is the component generated by the tensor product of highest
weight vectors (in the complexified representations if necessary).

Similarly for the adjoint representation W = g = m⊕ co(m)⊕m∗ we find:

H0(m∗,W) = m,

H1(m∗,W) = m∗�m,

Hk(m∗,W) = Λkm∗� so(m),

Hn−1(m∗,W) = Λn−1m∗�m∗,

Hn(m∗,W) = Λnm∗⊗m∗.

Again elements in the Cartan product Λkm∗� so(m) can be thought of as elements in
the usual tensor product which are in the kernel of natural co(m)-equivariant contractions
and alternations. The role of the modules Hk(m∗, g) in deformation theory, for k = 0, 1, 2,
will be discussed in section 8.

m cohomology with values in W. Secondly we view Λkm∗⊗W as the space Ck(m,W)
of k-cochains on m with values in W. From this point of view it carries a natural p∗-action,
where the action of χ ∈ p∗ on β ∈ Λkm∗ is

χ ·β =
∑

i

εi ∧
(
[ei, χ] y β

)
=

∑
i

[χ, εj ]m∗∧ (ej y β),

with [χ, εj ]m∗ denoting the m∗ component of the Lie bracket.
The coboundary operator or differential dm : Ck(m,W)→ Ck+1(m,W) is defined by

dm(β ⊗ w) =
∑

i

(
1
2ε

i ∧ (ei ·β)⊗ w + εi ∧ β ⊗ ei ·w
)
.

This formula is minus the transpose of the formula for a boundary operator. To be
precise, it means that dm = −(δm)∗, where δm is the codifferential for m homology with
values in W∗, whose k-chains are Ck(m,W∗) = Ck(m,W)∗. It immediately follows that dm

defines a complex and is p∗-equivariant (since δm is equivariant with respect to p∗= g0nm

not p = g0 n m∗). Cartan’s identity becomes dm(v y c) + v y dmc = v · c for v ∈ m and the
cohomology Hk(m,W) of dm is naturally a p∗-module with m acting trivially.

Duality. In the above treatment of cohomology we made use of the fact that it is dual to
homology. More precisely, the m cohomology with values in W is dual to the m homology
with values in W∗:

Ck(m,W)∗= Ck(m,W∗), (dm)∗= −δm, Hk(m,W)∗= Hk(m,W∗).

Similarly, m∗ homology with values in W (the first homology theory above) is dual to m∗

cohomology with values in W∗:

Ck(m∗,W)∗= Ck(m∗,W∗), (δm∗)
∗= −dm∗ , Hk(m∗,W)∗= Hk(m∗,W∗).

There is also a kind of Poincaré duality between m∗ homology and cohomology (and
similarly for m): if m∗ is n-dimensional then Ck(m∗,W∗) ∼= Λnm ⊗ Cn−k(m∗,W∗) and
one easily checks that this intertwines boundary and coboundary so that Hk(m∗,W∗) ∼=
Λnm⊗Hn−k(m∗,W∗).



12 DAVID M. J. CALDERBANK AND TAMMO DIEMER

We are interested primarily in δm∗ and dm, both of which are defined on Λm∗⊗W.
It is natural to ask how they are related. Since g is semisimple, one can use a Cartan
involution to find positive definite inner products on g and W with respect to which δm∗
is minus the adjoint of dm. From this, one obtains Kostant’s Hodge decomposition [36]:

Λm∗⊗W = im dm ⊕
(
ker dm ∩ ker δm∗)⊕ im δm∗ .

Furthermore, ker dm ∩ ker δm∗ may be identified with the kernel of Kostant’s quabla op-
erator ��� = δm∗dm + dmδm∗ . The first two terms in the Hodge decomposition give ker dm

and the last two terms give ker δm∗ and hence

Hk(m,W) ∼= ker ��� ∼= Hk(m∗,W).

This isomorphism is an isomorphism of g0-modules, although the cohomology is viewed
as a p∗-module with m acting trivially, whereas the homology is viewed as a p-module
with m∗ acting trivially. Similarly, the Hodge decomposition, as a direct sum, is only
g0-invariant, although the filtration 0 6 im dm 6 ker dm 6 Λm∗⊗W is p∗-invariant and
the filtration 0 6 im δm∗ 6 ker δm∗ 6 Λm∗⊗W is p-invariant.

The Main Theorem. If M is a parabolic geometry of type (g, P ) and W is a (g, P )-
module, then the Lie algebra homology groups are all P -modules and hence induce vector
bundles on M . We shall write Hk(W ) for G ×P Hk(m∗,W), where W = G ×P W. We also
write C∞(Hk(W )) as a shorthand for C∞(M,Hk(W )); more formally, we can interpret
it as the sheaf U 7→ C∞(U,Hk(W )) for open subsets U of M . Since U is a parabolic
geometry in its own right, this sleight of hand is more apparent than real.

Our goal in the next two sections is to prove an explicit version of the following result,
the first part of which is due to Čap, Slovák and Souček [21], although our construction
will be less complicated.

3.6. Theorem. Let (M,η) be a parabolic geometry of type (g, P ) and let W be a finite
dimensional (g, P )-module. Then there is a naturally defined sequence

C∞(H0(W ))
Dη

0→ C∞(H1(W ))
Dη

1→ C∞(H2(W ))
Dη

2→ · · ·

of linear differential operators such that the kernel of the first operator is isomorphic to
the parabolic twistors associated to W and the symbols of the differential operators depend
only on (g, P,W) not (M,η). If M is flat then this is sequence is locally exact and hence
computes the cohomology of M with coefficients in the locally constant sheaf of parallel
sections of W .

Suppose further that W1, W2 and W3 are three finite dimensional (g, P )-modules with
a nontrivial (g, P )-equivariant linear map W1⊗W2 →W3 (for instance W3 = W1⊗W2).
Then there are nontrivial bilinear differential pairings

C∞(Hk(W1))×C∞(H`(W2)) → C∞(Hk+`(W3))

(α, β) 7→ α tη β

whose symbols depend only on (g, P,W1,W2,W3) and which have the following properties
if M is flat: for k = ` = 0 the pairing extends the given pairing of twistors W1⊗W2 →W3,
while more generally the following Leibniz rule holds

Dη
k+`(α tη β) = (Dη

kα) tη β + (−1)kα tη (Dη
` β),

and hence the pairing descends to a cup product in cohomology.
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4. The twisted deRham sequence

On a parabolic geometry M of type (g, P ) the chain complex of the previous section
induces, provided W is a (g, P )-module, a complex of vector bundles on M . If W is
the bundle induced by W, then the bundle induced by the k-chains is ΛkT ∗M ⊗ W .
The codifferential δm∗ induces a codifferential δT ∗M on the k-chain bundles, since it is
P -equivariant. On the other hand, dm is not P -equivariant and so does not define an
operator on the k-chain bundles on M . There is, however, a first order differential
operator, namely the exterior covariant derivative (twisted deRham differential)

dg : J1(ΛkT ∗M ⊗W )→ Λk+1T ∗M ⊗W

which behaves in many ways like dm. To construct dg formally, recall that the invariant
derivative defines an isomorphism from J1(ΛkT ∗M ⊗W ) to G ×P J1

0 (Λkm∗⊗W), which
in turn is isomorphic to G ×P J1

0 (Λkm∗) ⊗W. Hence we need to find the P -equivariant
map J1

0 (Λkm∗) → Λk+1m∗ induced by the exterior derivative. So let α : G → Λkm∗ be
P -equivariant. Then η identifies α with a horizontal P -equivariant k-form on G. Since
exterior differentiation commutes with pullback, we can compute the exterior derivative
on G. This gives the following formula for dα : G → Λk+1m∗.

dα(ξ0, . . . ξk) =
∑

i

(−1)i(∂η−1(ξi)α)(ξ0, . . . ξ̂i, . . . ξk)

+
∑
i<j

(−1)i+jα(η[η−1(ξi), η−1(ξj)], ξ0, . . . ξ̂i, . . . ξ̂j , . . . ξk)

dα =
∑

i

εi ∧∇η
ei
α−

∑
i<j

εi ∧ εj ∧
(
κ(ei, ej) y α

)
+ 1

2

∑
i

εi ∧ ei ·α .and so

Combining this with the formula for ΨW in Proposition 1.5, gives the following result.

4.1. Proposition (Formal exterior derivatives). Let W a (g, P )-module. Then the exte-
rior covariant derivative induces the P -equivariant map

σ(dg) : J1
0 (Λkm∗⊗W)→ Λk+1m∗⊗W

(φ0, φ1) 7→
∑

i

εi ∧ φ1(ei) + dmφ0 −
∑
i<j

εi ∧ εj ∧
(
κ(ei, ej) y φ0

)
.(4.1)

The last term vanishes if the parabolic geometry is torsion-free. In general it is P -
equivariant, and so the P -equivariant map

σ(dη) : J1
0 (Λkm∗⊗W)→ Λk+1m∗⊗W

(φ0, φ1) 7→
∑

i

εi ∧ φ1(ei) + dmφ0(4.2)

induces an exterior covariant derivative dη with torsion (unless η is torsion-free).

Thus we see that although the zero order operator dm is not P -equivariant, we can
correct it by a first order term: the symbol of the exterior derivative (wedge product).
There are two ways to do this. The simplest formula (4.2) (with no torsion correction)
gives an exterior covariant derivative with torsion, but an extra term can be added to
remove the torsion (4.1). On the bundle level, these exterior derivatives are related by

dgs = dηs−
∑
i<j

εi ∧ εj ∧KM (ei, ej) y s
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for any section s of ΛkT ∗M ⊗W : note that only the torsion part of KM contributes to
the contraction. This difference is also illustrated by the following result.

4.2. Proposition (Curvature). The composites Rg = (dg)2 and Rη := (dη)2 acting on a
section s of ΛkT ∗M ⊗W are given by

Rgs = tr
(
X 7→ KM ∧X · s

)
Rηs = tr

(
X 7→ −KM ∧∇

η
Xs

)
.

Here X ∈ gM : in the first formula, the gM -values of KM act on the W -values of s, while
in the second formula, the gM -values are contracted with the invariant derivative.

Proof. The first formula is clear: the square of the dg is the wedge product action of the
curvature of ∇g. For the second formula, let f : G → Λkm∗⊗W be P -equivariant. Then

dηf = σ(dη)(f,∇ηf) = dmf +
∑

i

εi ∧∇η
ei
f.

We must apply dη to this expression. To do this, note that dm is constant on G, so that∑
j

εj ∧∇η
ej
dηf =

∑
j

εj ∧ dm∇η
ej
f +

∑
i,j

εj ∧ εi ∧∇η
ej

(∇η
ei
f)

and therefore

(dη)2f = (dm)2f +
∑

i

dm(εi ∧∇η
ei
f) +

∑
j

εj ∧ dm∇η
ej
f +

∑
i,j

εj ∧ εi ∧∇η
ej

(∇η
ei
f)

= 0 +
1
2

∑
i,j

(
εj ∧ [ej , εi]m∗∧∇η

ei
f + εj ∧ εi ∧ (∇η

ej
(∇η

ei
f)−∇η

ei
(∇η

ej
f))

)
=

1
2

∑
i,j

εj ∧ εi ∧
(
∇η

ej
(∇η

ei
f)−∇η

ei
(∇η

ej
f)−∇η

[ej ,ei]
f
)

=
1
2

∑
i,j

εj ∧ εi ∧∇η
κ(ei,ej)

f = −
∑

i

〈ζi, κ〉 ∧ ∇η
χi
f,

where χi is a basis of g with dual basis ζi. �

These vanish if K is zero, or if K takes values in a subspace of p acting trivially on W.

5. The BGG sequence and cup product

The key tool for proving the main theorem is a family of differential operators

Πη
k : C∞(ΛkT ∗M ⊗W )→ C∞(ΛkT ∗M ⊗W )

which vanish on im δT ∗M , map into ker δT ∗M , and induce the identity on homology. As
motivation for the construction of such an operator, recall Kostant’s quabla operator
��� = δm∗dm + dmδm∗ (with ker ��� ∼= Hk(m∗,W)) and the Hodge decomposition:

Λkm∗⊗W = im dm ⊕ ker ���⊕ im δm∗ .

The projection onto ker ��� in this direct sum has image contained in ker δm∗ and induces
the identity on homology. Unfortunately, it is not p-equivariant. Ignoring this for the
moment, note that ��� is invertible on its own image and so the projection onto ker ��� may
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be written id −���−1���. A more refined formula may be obtained by observing that ���
commutes with dm, and hence so does ���−1 on the image of ���. Therefore:

id −���−1(δm∗dm + dmδm∗) = id −���−1δm∗dm − dm���−1δm∗ .

The advantage of this formula is that we only need the inverse of ��� on im δm∗ (which is
a p-module). Indeed, we only need the operator ���−1δm∗ .

We now address the problem of p-equivariance. Of course ��� fails to be p-equivariant
simply because dm is not p-equivariant. However, in the previous section we noted that
one resolution is to replace dm with a first order differential operator: either dη or dg. We
shall concentrate first on the former, but return to the latter later in the section.

5.1. Definition (First order quabla operator). Let M be a parabolic geometry of type
(g, P ) and let W be a (g, P )-module. Then the quabla operator on ΛT ∗M ⊗W is the first
order differential operator ���η = δT ∗Md

η + dηδT ∗M .

Note that ���η commutes with δT ∗M and also maps k-forms to k-forms, so it preserves
Bk(W ) = im δT ∗M : Λk+1T ∗M ⊗W → ΛkT ∗M ⊗W . In the flat case it also commutes
with dη, but in general ���η ◦ dη − dη ◦���η = δT ∗M ◦Rη −Rη ◦ δT ∗M .

5.2. Theorem. Suppose M is a parabolic geometry of type (g, P ) and W is a finite dimen-
sional (g, P )-module. Then ���η : C∞(Bk(W )) → C∞(Bk(W )) is invertible. Furthermore
the inverse is a differential operator of finite order.

Proof. To prove that ���η has a two-sided differential inverse, we choose a Weyl structure,
i.e., a section of the bundle of Weyl geometries W. Such sections always exist locally on
M , which is sufficient for our purposes, since we are constructing a local operator and,
by the uniqueness of two-sided inverses, the local inverses patch together. (In fact, in
the smooth, rather than analytic, category, Weyl structures exist globally [17].) Hence
we assume we have a Weyl structure over all of M , which identifies the k-chain bundles,
filtered by geometric weight, with the associated graded bundles. The operators ��� and
dm, which are G0-invariant, but not P -invariant, define operators on associated graded
bundles, and hence, using the Weyl connection, on the k-chain bundles themselves.

5.3. Lemma. ���−1(���η −���) : C∞(Bk(W ))→ C∞(Bk(W )) is nilpotent.

Proof of Lemma. Since W is finite dimensional, the p-module Bk(m∗,W) decomposes into
finitely many irreducible g0-submodules and clearly the action of m∗ lowers the geometric
weight. Suppose that s : M → Bk(W ) takes values in an subbundle associated to an
irreducible g0-submodule. Now

(���η −���)s = (δT ∗M (dη − dm) + (dη − dm)δT ∗M )s

=
∑

i

(
δT ∗M (εi ∧∇η

ei
s) + εi ∧ δT ∗M∇η

ei
s
)

=
∑

i

εi ·∇η
ei
s

which has lower geometric weight, since the covariant derivative preserves the filtration,
while the action of T ∗M lowers the weight. Finally, ���−1 is g0-equivariant and so it
preserves the geometric weight. Hence ���−1(���η −���) lowers the geometric weight, so it is
nilpotent. �
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Writing N = −���−1(���η−���), we have ���η = ���(id−N ). Therefore the two-sided inverse
���−1

η is given by a Neumann series:

���−1
η = (id −N )−1���−1 =

(∑
k>0

N k

)
���−1.

This inverse is a differential operator whose order is the degree of nilpotency of the first
order differential operator N . Hence it is an inverse on any open subset of M . Our
construction involved the choice of Weyl connection, but the inverse constructed is of
course independent of this choice. �

We can now define differential operators Qη and Πη from C∞(ΛT ∗M ⊗W ) to itself:

Qη = ���−1
η δT ∗M , Πη = id − dη ◦Qη −Qη ◦ dη.

Clearly Πη preserves the degree of the form. This gives our operators Πη
k.

5.4. Remark. The first order quabla operator ���η maps sections of Zk(W ) into Bk(W ).
This means in particular that it preserves Bk(W ), but also that it descends to an operator
on Ck(W )/Zk(W ). In the construction of Qη and Πη, we only used the invertibility of
���η on Bk(W ), but in fact it is also invertible on Ck(W )/Zk(W ): in the algebraic setting
this holds for Kostant’s ��� and exactly the same Neumann series argument goes through.
Hence one might prefer to define Q̃η = δT ∗M���−1

η , where ���−1
η is now the inverse on

Ck(W )/Zk(W ) and Q̃η acts on Ck(W ) by first passing to the quotient—clearly this is
well defined since Zk(W ) = Ck(W )∩ ker δT ∗M by definition.

Now observe that Qη and Q̃η are both given by isomorphisms from Ck(W )/Zk(W )
to Bk−1(W ). Composing on each side by ���η gives ���ηQη���η = δT ∗M���η and ���ηQ̃η���η =
���ηδT ∗M . Since ���η is an isomorphism on Ck(W )/Zk(W ) and on Bk−1(W ), and it com-
mutes with δT ∗M , we deduce that Q̃η = Qη.

We now establish the fundamental properties of Πη.

5.5. Proposition (Calculus of Π-operators). The operator Πη
k : C∞(ΛkT ∗M ⊗ W ) →

C∞(ΛkT ∗M ⊗W ) has the following properties.
(i) Πη

k vanishes on im δT ∗M : Πη
k ◦ δT ∗M = 0.

(ii) Πη
k maps into ker δT ∗M : δT ∗M ◦Πη

k = 0.
(iii) On ker δT ∗M , Πη

k
∼= id mod im δT ∗M , i.e., Πη

k induces the identity on homology.
(iv) dη ◦Πη

k −Πη
k+1 ◦ d

η = Qη ◦Rη −Rη ◦Qη.
(v) (Πη

k)
2 = Πη

k + Qη ◦ Rη ◦ Qη and so Πη
k is a projection in the flat case, and for

k = 0.
(vi) Πη ◦���η = Qη ◦Rη ◦ δT ∗M and ���η ◦Πη = δT ∗M ◦Rη ◦Qη.

Thus in the flat case Πη
k is a differential projection onto a subspace of ker δT ∗M comple-

mentary to im δT ∗M and is a chain map from the deRham complex to itself; Qη is a chain
homotopy between Πη

k and id .

Proof. The first three results follow from ker δT ∗M = ker Qη and imQη = im δT ∗M (since
���−1

η is the inverse on im δT ∗M ). The fourth fact follows easily from the definition of Πη

and using this, the fifth fact is an immediate calculation:

(Πη
k)

2 = Πη
k(id − d

η ◦Qη) = Πη
k − (dη ◦Πη

k−1 −Qη ◦Rη +Rη ◦Qη) ◦Qη

= Πη
k +Qη ◦Rη ◦Qη.
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The last part also follows easily from the definition of Πη. �

The first two properties allow us to define two further operators:

Πη
k ◦ repr : C∞(Hk(W ))→ C∞(ΛkT ∗M ⊗W )(5.1)

proj ◦Πη
k : C∞(ΛkT ∗M ⊗W )→ C∞(Hk(W ))(5.2)

where proj denotes the projection from the kernel of δT ∗M to homology and repr means
the choice of a representative of the homology class. Thus Πη

k ◦ repr gives a canonical
differential representative for homology classes and proj ◦ Πη

k is a canonical differential
projection onto homology. By Proposition 5.5 (vi), the canonical representative is the
unique representative in ker ���η, whereas the canonical projection vanishes on im ���η.

The first operator (5.1) was originally constructed by Baston in the abelian case [3], and
Čap, Slovák and Souček in general [21]. Note that on ker δT ∗M , Πη = id −���−1

η δT ∗Md
η.

It is interesting to note that in the flat abelian case, Baston obtained the Neumann series
formula for this in [3], equation (8).

We define Dη
k = proj ◦Πη

k+1 ◦d
η ◦Πη

k ◦ repr . Since dη ◦Πη
k maps ker δT ∗M into ker δT ∗M

already, this equals proj ◦ dη ◦Πη
k ◦ repr , so we only actually need (5.1). For the pairings

we really need (5.1) and (5.2) to define

tη = proj ◦Πη
k+` ◦ ∧ ◦ (Πη

k ◦ repr ,Πη
` ◦ repr )

where ∧ denotes wedge product of forms contracted by the pairing W1 ⊗W2 →W3.
The main theorem is now straightforward (apart from the independence result for the

symbols—see the appendix): in the flat case we have a locally exact resolution because
Πη, as a chain map on the deRham resolution by sheaves of smooth sections, is homotopic
to the identity, and the Leibniz rule follows from the corresponding Leibniz rule for the
wedge product. In the curved case we have the following results.

5.6. Proposition (Composition). Dη
k+1 ◦ D

η
k = proj ◦Πη

k+2 ◦R
η ◦Πη

k ◦ repr .

Proof. By definition Dη
k+1 ◦ D

η
k = proj ◦ dη ◦ Πη

k+1 ◦ d
η ◦ Πη

k ◦ repr . Now commute dη
k+1

past Πη
k+1 using the Π-operator calculus of the previous proposition. �

5.7. Proposition (Leibniz rule). For α ∈ C∞(Hk(W1)) and β ∈ C∞(H`(W2)),

Dη
k+`(α tη β) = Dη

kα tη β + (−1)kα tη D
η
` β

+
[
Πη

k+`+1

((
QηR

ηΠη
kα

)
∧Πη

`β + (−1)kΠη
kα ∧

(
QηR

ηΠη
`β

)
−RηQη

(
Πη

kα ∧Πη
`β

))]
.

Here, and henceforth, we write [. . .] for the projection to homology, and Πη
k for Πη

k ◦ repr .

Proof. This again follows easily from Proposition 5.5:

Dη
k+`(α tη β) = [Πη

k+`+1d
ηΠη

k+`(Π
η
kα ∧Πη

`β)]

= [Πη
k+`+1d

η(Πη
kα ∧Πη

`β)]− [Πη
k+`+1R

ηQη(Π
η
kα ∧Πη

`β)].

The first term can be expanded using the Leibniz rule for the exterior derivative:

dη(Πη
kα ∧Πη

`β) = dηΠη
kα ∧Πη

`β + (−1)kΠη
kα ∧ d

ηΠη
`β.

We insert the projections Πη
k+1, Πη

`+1 using the definition id = Πη + dη ◦ Qη + Qη ◦ dη.
The first correction term does not contribute, since dηΠη

kα and dηΠη
`β are in ker δT ∗M ,

while the second correction gives two further curvature terms as stated. �
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We now consider the other choice of exterior covariant derivative: the torsion-free
operator dg. This change makes no difference if the parabolic geometry is torsion-free.
In the presence of torsion, we can construct what we believe is a more natural curved
analogue of the BGG complex, although to do this, we need to assume that the parabolic
geometry is regular, i.e., the geometric weights of the curvature κ are negative (which is
a condition on the torsion). Under this assumption the extra torsion correction in the
formula for dg does not cause any problems in the proof of nilpotency in Theorem 5.2,
since its action still lowers the geometric weight, and all other details of the proofs are
unchanged. We thus obtain operators ���g, Q, Πk, Dk, t satisfying the same formulae with
dη replaced by dg and Rη by Rg.

The “torsion-free” BGG sequences seem to us to be more natural, because Rg is always
zero order, given by wedge product with the curvature KM . Another reason for preferring
dg is the differential Bianchi identity.

5.8. Proposition. Let M be a Cartan geometry of type (g, P ) with curvature KM ∈
C∞(Λ2T ∗M ⊗ gM ). Then dgKM = 0.

We combine dgKM = 0 with a well-known definition.

5.9. Definition. A parabolic geometry is said to be normal if δT ∗MKM = 0.

5.10. Theorem. Let (G, η) be a normal regular parabolic geometry of type (g, P ) on
M . Then the curvature KM is uniquely determined by its homology class [KM ], via the
formula

KM = Π2[KM ]

and [KM ] therefore satisfies D2[KM ] = 0, where D2 is the operator in the torsion-free
BGG sequence associated to g.

Furthermore the composite of two operators in the torsion-free BGG sequence associated
to W is given by

Dk+1Dkα = [KM ] t α,

where the cup product is contracted by the pairing g⊗W→W given by the g-action.

Proof. Π2[KM ] is the unique element of ker δT ∗M ∩ ker ���g whose homology class is [KM ].
But KM itself satisfies dgKM = 0 and δT ∗MKM = 0 and hence ���gKM = 0.

For the second part, observe that

[KM ] t α =
[
Πk+2

(
Π2[KM ] ∧Πkα

)]
=

[
Πk+2(KM ∧Πkα)

]
=

[
Πk+2R

gΠkα
]

which is the composite proj ◦Πk+2 ◦Rg ◦Πk ◦ repr acting on α. �

For conformal geometry in four dimensions or more, the curvature of the Cartan con-
nection is obtained by applying an invariant first order operator to the Weyl curvature,
as is well known. Even in the general context, the observation that the curvature is
uniquely determined by its (co)homology class is an old one: see [16, 49]. Our approach
reveals that the proofs in these references appear technical because they amount to the
construction of Π2 ◦ repr in this special case. Also, by using Lie algebra homology, rather
than cohomology, the explicit differential operator reconstructing the full curvature is
realized as an operator on M , rather than G. This compares well with the conformal
case.
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In the second part of this theorem, it is slightly awkward that the action of g needs to
be specified. There is a convenient device to make this happen automatically. Suppose
that all (g, P )-modules of interest belong to the symmetric algebra or the tensor algebra
of W = W1⊕W2⊕· · · ; for instance, W could be the standard representation or the direct
sum of the fundamental representations of g. Now work either in the universal enveloping
algebra of W o g (with trivial bracket on W), or in the tensor algebra of W⊕ g modulo
the ideal generated by X ⊗φ−φ⊗X −X ·φ for X ∈ g and φ ∈W⊕ g (a semiholonomic
enveloping algebra—see the appendix). This algebra is filtered by finite dimensional g-
modules, where the action is induced by the action on g ⊕W, and definitely not by left
multiplication with elements of g. It follows that for any differential form α with values
in the associated algebra bundle, Rgα = KM ∧ α− α ∧KM , where the curvature KM is
viewed as a 2-form with values in the copy of gM in this algebra bundle. The properties
of K = [KM ] and D established in the above theorem may now be rewritten:

(5.3) D2K = 0, Dk+1Dkα = K t α− α tK.

The curvature terms in the Leibniz rule may be rewritten in a similar way:

(5.4) Dk+`(α t β) = Dkα t β + (−1)kα tD`β −
〈
K, α, β

〉
+

〈
α,K, β

〉
−

〈
α, β,K

〉
,

where the triple products are defined by〈
K, α, β

〉
=

[
Πk+`+1

(
Π2K ∧Q

(
Πkα ∧Π`β

)
−Q

(
Π2K ∧Πkα

)
∧Π`β

)]
and similarly for the other two products, although the first term acquires a sign (−1)k.
The contractions with K happen automatically in this combination of triple products.
If α and β belong to BGG subsequences associated to W1,W2 then the formula can be
contracted further using any (g, P )-equivariant linear map W1 ⊗W2 →W3.

These triple products may seem ad hoc, but in fact this is the first appearance of
natural trilinear differential pairings closely related to Massey products. For any (g, P )-
equivariant linear map W1⊗W2⊗W3 →W4, one can define a trilinear differential pairing
from C∞(Hk(W1))× C∞(H`(W2))× C∞(Hm(W3)) to C∞(Hk+`+m−1(W4)) by〈

α, β, γ
〉

=
[
Πk+`+m−1

(
(−1)kΠkα ∧Q

(
Π`β ∧Πmγ

)
−Q

(
Πkα ∧Π`β

)
∧Πmγ

)]
.

This measures the failure of the cup product to be associative: one may compute that

Dk+`+m−1

〈
α, β, γ

〉
= (α t β) t γ − α t (β t γ)(5.5)

−
〈
Dkα, β, γ

〉
− (−1)k

〈
α,D`β, γ

〉
− (−1)k+`

〈
α, β,Dmγ

〉
+

〈
K, α, β, γ

〉
−

〈
α,K, β, γ

〉
+

〈
α, β,K, γ

〉
−

〈
α, β, γ,K

〉
where the quadruple products each have five terms. In the flat case, this formula verifies
that the cup product is associative in BGG cohomology. Note, though, that in practice,
one often destroys this associativity by using incompatible (nonassociative) pairings to
define the cup products: it is crucial above that the same map W1 ⊗W2 ⊗W3 →W4 is
used for (α t β) t γ and α t (β t γ).

The relation, in the flat case, with a Massey product is as follows: if Dkα = D`β =
Dmγ = 0 and if also α t β = Dk+`−1A and β t γ = D`+m−1C, then

Dk+`+m−1

(
A t γ − (−1)kα t C −

〈
α, β, γ

〉)
= 0
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and hence we obtain a partially defined triple product of BGG cohomology classes, with
an ambiguity coming from the choice of A and C. Again the role of

〈
α, β, γ

〉
is to correct

the failure of t to be associative on the BGG cochain complex. Note that the two terms
in

〈
α, β, γ

〉
modify the lifts ΠA and ΠC of A and C from Lie algebra homology.

6. Curved A∞-algebras

The formulae (5.3), (5.4) and (5.5) give the first four defining relations of a curved A∞-
algebra. In the case of vanishing curvature, such algebras were introduced by Stasheff [48]
nearly forty years ago. An A∞-algebra is a graded vector space A equipped with a
sequence of multilinear maps µk : ⊗kA→ A of degree 2−k satisfying some identities. (In
fact only parity really matters, and µk has parity k mod 2.) In the original formulation,
µ0 = 0, µ1 is a differential, and µ2 is “strongly homotopy associative”, i.e., it is associative
up to a homotopy given by µ3, which in turn satisfies higher order associativity conditions.
In the presence of curvature, we require that for each m > 0,∑

j+k=m+1
j>1,k>0

j−1∑
`=0

(−1)k+`+k`+k|α1...α`|µj

(
α1, . . . α`, µk(α`+1, . . . αk+`), αk+`+1, . . . αm

)
= 0,

for all α1, . . . αm ∈ A of homogeneous degree, where |α1 . . . α`| denotes the sum of the
degrees. The usual definition, with the sign conventions of [40], is recovered by putting
µ0 = 0. For the Lie analogue of L∞-algebras, the general curved case has been introduced
by Zwiebach [52] within the context of String Field Theory, where the presence of µ0 is
interpreted as a non-conformal background, related to (genus 0) vacuum vertices. In our
setting, µ0 is the (background) curvature, and we now indicate briefly how such a curved
A∞-algebra structure arises. Following [33, 34, 41], we first work on the level of the chain
bundles and define λm inductively, for m > 2, by

λm(a1, . . . am) =
∑

j+k=m
j,k>1

(−1)(k−1)(j+|a1...aj |)Qλj(a1, . . . aj) ∧Qλk(aj+1, . . . am)

where we formally set Qλ1 = −id . Note that the number of terms in λm is given by
the Catalan number 1

m+1

(
2m
m

)
. On the homology bundles, we then define: µ0 = K,

µ1(α1) = Dα1 and µm(α1, . . . αm) = [Πλm(Πα1, . . .Παm)] for m > 2.
In order to prove that this is a curved A∞-algebra, it is convenient to make use of

the observation that an A∞-algebra structure on a vector space A is equivalently an odd
coderivation of square zero on the tensor coalgebra of A (with the grading of A shifted to
get the signs right)—see for instance [40], Example 1.9. Although the tensor coalgebra
of the sheaf of sections of the homology bundles of an enveloping algebra makes us a bit
dizzy, we are only using this formalism as a way to compute identities for multilinear
differential operators which avoids dealing with huge expressions and complicated signs.

To obtain the coderivation, put µ =
∑

m>0 µm :
⊗
A→ A, let pi :

⊗
A→ ⊗iA be the

projection, and define µc by p0µ
c = 0, p1µ

c = µ and ∆ ◦ µc = (id ⊗ µc + µc ⊗ id) ◦ ∆,
where ∆(a1 ⊗ . . . ⊗ ak) =

∑
j(a1 ⊗ . . . ⊗ aj) ⊗ (aj+1 ⊗ . . . ⊗ ak) is the coproduct. The

defining relations of an A∞-algebra are now equivalent to (µc)2 = 0, although it suffices
to check that µµc = 0, since (µc)2 is the coderivation (µµc)c.

In our case, we have µ = proj Π(KM + dg + λ)Π repr , where λ =
∑

m>2 λm and
Π is extended to the tensor coalgebra as

∑
Π ⊗ · · · ⊗ Π. The proof that the induced
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coderivation has square zero follows [41], except that we must deal with curvature terms.
Such terms appear in five ways: the curvature explicitly in the definition of µ; the term
(dg)2 = Rg in µµc; from Π2 = Π+QRgQ; from proj ΠdgΠ = proj Π(dg−RgQ); and from
ΠdgΠ repr = (dg − QRg)Π repr . Note that the shift in the grading changes some signs
and that the recursive definition of λm is equivalent to λ = λ2

(
(Qλ− p1)⊗ (Qλ− p1)

)
∆.

Omitting the lift and projection to homology, we have

µµc = Π(KM + dg + λ)Π
(
Π(KM + dg + λ)Π

)c

= ΠdgΠ2(KM + dg + λ)Π + Πλ
(
Π2(KM + dg + λ)

)cΠ

= ΠRgp1Π + Π(dg −RgQ)λΠ + Πλ
(
KM + dg −QRgp1 + Πλ+QRgQλ

)cΠ

= Π
(
dgλ+ λ(dg)c + λ(Πλ)c

)
Π + Πλ2

(
KM ⊗ (Qλ− p1) + (Qλ− p1)⊗KM

)
Π

+ Πλ2

(
(Qλ− p1)⊗ (Qλ− p1)

)
(Kc

M ⊗ id + id ⊗Kc
M )∆Π

+ Πλ
(
Qλ2

(
KM ⊗ (p1 −Qλ) + (p1 −Qλ)⊗KM

))cΠ

= Π
(
λλc + dgλ+ λ(dg)c − λ([dg, Q]λ)c

)
Π

+ Πλ2

(
QλKc

M ⊗ (Qλ− p1) + (Qλ− p1)⊗QλKc
M

)
∆Π

−Πλ
(
Qλ2

(
KM ⊗ (Qλ− p1) + (Qλ− p1)⊗KM

))cΠ.

Next we compute that λλc = λ2

(
Qλλc ⊗ (Qλ − p1) + (Qλ − p1) ⊗ Qλλc

)
∆—the term

λ2

(
λ⊗ (Qλ− p1) + (Qλ− p1)⊗λ

)
∆ vanishes by expanding λ and using the associativity

of λ2. It follows by induction that λλc = 0. Similarly, dgλ + λ(dg)c − λ([dg, Q]λ)c =
λ2

(
Q

(
dgλ+λ(dg)c−λ([dg, Q]λ)c

)
⊗(Qλ−p1)+(Qλ−p1)⊗Q

(
dgλ+λ(dg)c−λ([dg, Q]λ)c

))
∆,

and so it also follows that dgλ+ λ(dg)c − λ([dg, Q]λ)c = 0. One more recursive argument
shows that the curvature terms cancel as well.

6.1. Remark. J. Stasheff has pointed out to us that this sort of result can also be obtained
using the techniques of Homological Perturbation Theory, at least in the flat case. The
crucial idea is that Q defines strong deformation retraction data for the coderivation
determined by dg. The methods of [32] may then be used to transfer the perturbation of
this coderivation induced by the wedge product to the Lie algebra homology bundles.

Finally, we remark that restricting the above to the (super)symmetric coalgebra gives
an L∞-algebra, in which one can work with W o g instead of its enveloping algebra.

7. The dual BGG sequences

The BGG cochain sequence of Lie algebra homology bundles Hk(W ) is dual to a chain
sequence of Lie algebra cohomology bundles, generalizing the deRham chain complex of
exterior divergences. To fix notations, recall that the latter is a complex

C∞(L−n) δ← C∞(L−n ⊗ TM) δ← C∞(L−n ⊗ Λ2TM) δ← · · ·

where L−n is the oriented line bundle of densities and δ is the exterior divergence, i.e.,
on vector field densities δ = div , the natural divergence, and in general it is adjoint to d
in the sense that for α ∈ C∞(ΛkT ∗M) and a ∈ C∞(L−n ⊗ Λk+1TM), we have

div (α q a) = 〈dα, a〉+ 〈α, δa〉,

where 〈θ, α q a〉 = 〈θ ∧ α, a〉 for any 1-form θ. For compactly supported sections, the
complex can be augmented by

∫
: C∞0 (L−n)→ R, giving a homology theory.
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A simple way to obtain a dual BGG sequence is to twist the BGG sequence of the dual
(g, P )-module W∗by the flat line bundle of pseudoscalars L−n⊗ΛnTM , where n = dimM :
this is the orientation line bundle of M and is associated to a one dimensional (g, P )-
module, on which only G0 6 P might act nontrivially. By Poincaré duality for Lie algebra
(co)homology, such a twist amounts to replacing Hk(W ∗) with L−n ⊗Hn−k(W ∗), where
Hn−k(W ∗) = Hn−k(W )∗. Writing Dn−1−k

η for this twist of Dη
k , we obtain a sequence

C∞(L−n ⊗H0(W ∗))
D0

η← C∞(L−n ⊗H1(W ∗))
D1

η← C∞(L−n ⊗H2(W ∗))
D2

η← · · ·

of linear differential operators. In the flat case, this is, by construction, an injective
resolution of the sheaf of parallel sections of L−n ⊗ ΛnTM ⊗W ∗, beginning with Dn−1

η ,
but it is natural to view it instead as a projective resolution of the dual of the sheaf of
parallel sections of W by working with compactly supported sections and defining, for
a ∈ C∞0 (L−n ⊗H0(W ∗)),

〈∫
a,w

〉
=

∫
〈a, [w]〉 for any parallel section w of W .

This point of view is further amplified by constructing the dual BGG sequences directly
from the sequence of exterior divergences twisted by the twistor connection on W ∗. In
the presence of torsion, there are two possibilities: δη = −(dη)∗ or δg = −(dg)∗. As in
section 5, we define �̂��η = dm∗δ

η+δηdm∗ and find that it is invertible on C∞(L−n⊗Bk(W ∗))
and C∞(L−n ⊗ Ck(W ∗)/Zk(W ∗)), where Ck(W ∗) = G ×P Ck(m∗,W∗) = ΛkTM ⊗ W ∗.
Hence we obtain operators Q̂η and Π̂η. Furthermore, this construction is adjoint to the
construction of the previous section: since δη = −(dη)∗ and dm∗ = −(δm∗)

∗, we have
�̂��η = (���η)∗, Bk(W ∗) = (Ck(W )/Zk(W ))∗, Ck(W ∗)/Zk(W ∗) = Bk(W )∗, and hence, by
Remark 5.4, Q̂η = −(Qη)∗, so that Π̂η = (Πη)∗.

The dual BGG operators obtained above by Poincaré duality are therefore equivalently
defined by Dk

η = proj ◦ δη ◦ Π̂η
k ◦ repr . Associated to a pairing W1 ⊗W2 → W3, the

analogue of the cup product is a “cap product” between cochains and chains:

C∞(Hk(W1))×C∞(L−n ⊗Hk+`(W ∗
3)) → C∞(L−nH`(W ∗

2))

(α,b) 7→ α uη b

satisfying a Leibniz rule up to curvature terms. This can be defined by twisting the cup
product by L−n ⊗ ΛnTM and using Poincaré duality, or by the formula

uη = proj ◦ Π̂η
k+` ◦ q ◦ (Πη

k ◦ repr , Π̂η
` ◦ repr )

where q denotes the contraction of forms with multivectors together with the pairing
W1⊗W ∗

3 →W ∗
2. Here α q a for α ∈ C∞(ΛkT ∗M) and a ∈ C∞(L−n⊗Λk+`TM) is defined

by 〈θ, α q a〉 = 〈θ ∧ α, a〉 for any `-form θ.
The Leibniz rule, for α ∈ C∞(Hk(W1)) and b ∈ C∞(L−n ⊗Hk+`(W ∗

3)), is:

D`
η(α uη b) = α uη (Dk+`

η b)− (−1)`(Dη
kα) uη b

+
[
Π̂η

`−1

(
Πη

kα q
(
Q̂ηR̂ηΠ̂η

k+`b
)
− (−1)`

(
QηR

ηΠη
kα

)
q Π̂η

k+`b− R̂ηQ̂η

(
Πη

kα q Π̂η
`b

))]
.

Similar results hold for the torsion-free sequence Dk = proj ◦ δg ◦ Π̂k ◦ repr (in the regular
case) and if the parabolic geometry is also normal, the composite of dual BGG operators
is given by cap product with [KM ] and the correction terms to the Leibniz rule are given
by triple products of [KM ], α and b.
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The cap product gives a neat way to see the duality between Dk and Dk. Consider the
pairing W⊗ R→W, with cap product

C∞(M,Hk(W ))× C∞(M,L−n ⊗Hk+`(W ∗))→ C∞(M,L−n ⊗H`(R)).

For ` = 0, H0(R) = R and this pairing is the duality pairing of Hk(W ) and Hk(W ∗),
tensored with the density bundle L−n. When ` = 1, H1(R) is the subbundle of TM
associated to g1, the geometric weight 1 subspace of g. Hence we obtain a pairing with
values in vector densities. The claim is that the Leibniz rule for ` = 1 becomes

div α u b = 〈Dkα, b〉+ 〈α,Dkb〉

with no curvature corrections. The inner curvature corrections vanish because Zk(W ) =
Bk(W ∗)0 and Zk(W ∗) = Bk(W )0, so that the contractions of Π with Q̂ and Π̂ with Q

are zero. The outer correction vanishes because the curvature is acting on the trivial
representation. A similar result holds for the analogue of the triple product rule (5.5),
showing that for adjoint pairings of (g, P )-modules, c 7→ β u c is adjoint to α 7→ α t β.

8. General applications

We turn now to potential applications of the BGG sequence and cup product. We
restrict ourselves first to general discussions: more explicit examples are given in the
next section.

Twistor operators. The exterior covariant derivatives dg and dη on W -valued 0-forms
are both simply the covariant derivative ∇g on sections of W . Also ker δT ∗M = W and
so a parabolic twistor f is the natural representative Π0[f ] of its homology class, which
is a parabolic twistor field. Hence Π0 ◦ repr is a “jet operator” which assigns a parabolic
twistor to the corresponding parabolic twistor field. In the flat case, the twistor operator
D0 = proj ◦∇g◦Π0◦repr characterizes parabolic twistor fields as solutions of a differential
equation. In the curved case it is natural to define parabolic twistor fields by the kernel
of this operator, but D0φ = 0 only implies that ∇gΠ0φ = QRgΠ0φ, and so Π0φ might
not be parallel in general.

Twistor algebra. g-modules form an algebra under direct sum and tensor product.
The cup product C∞(M,H0(W1)) × C∞(M,H0(W2)) → C∞(M,H0(W1 ⊗W2)) defines
an algebra structure on sections of the corresponding homology bundles. The Leibniz
rule shows that in the flat case the cup product algebra extends the algebra of twistors.
A similar observation can be made for g-modules under Cartan product (provided one
is careful with identifications between isomorphic representations)—in this case the cup
product is zero order, given by the Cartan product of zeroth homologies.

Deformation theory and moduli spaces. Suppose that M is a compact manifold
admitting a flat parabolic geometry of type (g, P ). What is the moduli space of flat
parabolic geometries of type (g, P ) on M? A first approximation to this question is to
study deformations of the given flat structure (G, η). We discuss briefly deformations of
regular normal parabolic geometries, with emphasis on deformations of flat structures.

Fixing the principal P -bundle G →M , Cartan connections of type (g, P ) form an open
subset of an affine space modelled on the P -equivariant horizontal 1-forms TG → g (it
is an open subset because of the condition that η is an isomorphism on each tangent
space). Therefore a small deformation of η may be written ηε = η + α̃ε where α̃ε is
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a curve of such P -equivariant horizontal 1-forms with α̃0 = 0. The curvature of ηε is
Kε(U, V ) = dηε(U, V ) + [ηε(U), ηε(V )] and passing to associated bundles gives

(8.1) Kε
M = KM + dgαε + αε ∧ αε,

where αε : TM → gM (with α0 = 0) and we think of gM as a subbundle of its universal
enveloping algebra bundle, so that (αε ∧ αε)(X,Y ) = αε(X) · αε(Y ) − αε(Y ) · αε(X) =
[αε(X), αε(Y )] ∈ gM for X,Y ∈ TM (equivalently, we can work directly with the Lie
bracket in gM ). Differentiating with respect to ε at ε = 0, gives, up to third order,

K̇M = dgα̇, K̈M = dgα̈+ 2α̇ ∧ α̇,
...
KM = dg...α + 3(α̈ ∧ α̇+ α̇ ∧ α̈).

Suppose now that KM = 0. Then, in order for ηε to be normal, we need δT ∗MK̇M = 0.
Also dgK̇M = (dg)2α̇ = 0, and so K̇M = Π2[K̇M ] and D2[K̇M ] = 0. Adding dgs to α̇ does
not alter K̇M , and so one can assume δT ∗M α̇ = 0. Hence ���gα̇ = 0 and α̇ represents a
homology class A = [α̇]. We then have α̇ = Π1A, [K̇M ] = [dgα̇] = D1A. This does not
completely fix the freedom to add dgs to α̇: we can still add D0f to A.

To summarize, we see that the linearized theory is controlled by the BGG complex
with W = g: an infinitesimal deformation of η (as a regular normal parabolic geometry)
is given by a section A of H1(gM ) and D1A is the linearized curvature. Since D1D0f = 0,
A = D0f as just an infinitesimal gauge transformation. Hence the formal tangent space
to the moduli space is the first cohomology of the complex

C∞(M,H0(gM )) D0−−→ C∞(M,H1(gM )) D1−−→ C∞(M,H2(gM )) D2−−→ C∞(M,H3(gM )).

This is only the actual tangent space if all infinitesimal deformations can be integrated.
We first consider second order deformations. If K̇M = 0 (i.e., D1A = 0), then normality
implies that δT ∗MK̈M = 0, and since also dgK̈M = 0, K̈M = Π2[K̈M ]. Hence it suffices to
consider [Π2d

gα̈] + [Π2(α̇ ∧ α̇)] and the second term is A t A. As before, we can assume
δT ∗M α̈ = 0, so that the first term is D1[α̈]. Hence we have a quadratic obstruction to
solving K̈M = 0: we need A t A to be in the image of D1. The Leibniz rule gives
D2(A t A) = 2(D1A) t A = 0 and so the obstruction is the class of A t A in the second
cohomology of above complex.

The obstructions to building a formal power series all lie in this second cohomology
space, but the construction involves the A∞-algebra of multilinear operators, not just
the cup product (alternatively we can work in the L∞-algebra associated to g). The
reason for this can be seen at third order: ���gα̈ = δT ∗Md

gα̈ is not zero in general, and
α̈ = Π1α̈+Qdgα̈ = Π1α̈− 2Q(α̇ ∧ α̇). Hence if A1 = [α̇] and A2 = 1

2 [Π1α̈], we have

α̇ = Π1A1 and α̈ = 2
(
Π1A2 −Q(Π1A1 ∧Π1A1)

)
,

[Π2(α̈ ∧ α̇+ α̇ ∧ α̈)] = 2
(
A2 tA1 +A1 tA2 + 〈A1, A1, A1〉

)
.and therefore

The Leibniz and triple product rules (5.4), (5.5) imply that this is in the kernel of D2,
and its cohomology class is the second obstruction.

In general if A =
∑k

j=1Ajε
j satisfies the equation D1A + A t A + 〈A,A,A〉 + · · · = 0

to order k in ε, then D2(A t A + 〈A,A,A〉 + · · · ) vanishes to order k + 1 in ε and the
cohomology class of the degree k+ 1 term of A tA+ 〈A,A,A〉+ · · · is the obstruction to
finding Ak+1 such that Ã =

∑k+1
j=1 Ajε

j satisfies the equation to order k + 1 in ε.
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This deformation theory parallels numerous examples in algebra and geometry which
have been studied since [30, 35]. It would be interesting to extend it to half-flat geometries
such as selfdual conformal 4-manifolds [23].

Linear field theories. In the flat case (when the BGG sequence is a complex) it is
natural to view it as a linear gauge theory. The beginning of the sequence gives the
kinematics, while the end gives the dynamics; equivalently, the dynamics are given by
the beginning of the dual BGG sequence.

charges gauges potentials kinematic fields

0→W→ C∞(H0(W )) D0−−−−−→
Twistor

C∞(H1(W )) D1−−−−−→
Potential

C∞(H2(W ))

0←W∗← C∞(L−nH0(W ∗)) D0

←−−−−−
ConsLaw

C∞(L−nH1(W ∗)) D1

←−−−−−
FieldEqn

C∞(L−nH2(W ∗))

dual charges fluxes sources dynamic fields

The prototype for such a sequence is the deRham complex describing electromagnetism.
We present further justification for this point of view on linear field theory in the following,
but refer to [22] for a thorough discussion. The assumption that the BGG sequence is a
complex means that potentials coming from a gauge via D0 have no kinematic field, that
sources coming from a dynamic field satisfy the conservation law D0, and that kinematic
fields coming from a potential satisfy the kinematic field equation D2 (not shown above).

Given a (g, P )-equivariant pairing W1⊗W2 →W3, we have in particular a cup product
C∞(M,H0(W1))×C∞(M,Hk(W2))→ C∞(M,Hk(W3)). This means that twistors in W1

can be used to transform objects in the field theory associated to W2 to the field theory
associated to W3. The Leibniz rule implies that this transformation will be compatible
with the operators in the sequence. This is often called the translation principle.

Relations to deRham complexes. We restrict attention here to the abelian case, so
the BGG sequence of the trivial representation R is the deRham complex of exterior
derivatives, and the dual BGG sequence is the dual deRham complex of exterior diver-
gences. For any g-module W, we always have a pairing W ⊗ R → W, and so, given
a twistor in W , we can construct potentials and kinematic fields in the W-theory from
differential forms using the cup product (“kinematic helicity raising”), while the cap
product gives multivector densities from dynamic fields and sources (“dynamic helicity
lowering”). Similarly, the pairing W∗⊗ R → W∗ shows that a twistor in W ∗ can be
used to construct dynamic fields and sources from multivector densities via cap product
(“dynamic helicity raising”), and differential forms from potentials and kinematic fields
via cup product (“kinematic helicity lowering”). Let us focus on the cap product

C∞(Hk(W ))× C∞(L−n ⊗Hk+`(W ∗))→ C∞(L−n ⊗ Λ`TM)

associated to the pairing W ⊗ R → W; this has a rich physical and geometric interpre-
tation. We have already seen in the previous section that for ` = 0, this is the natural
duality between Hk and Hk, while the Leibniz rule for ` = 1 shows that Dk and Dk are
adjoint. For ` = 2, we have a bivector density, integrable over (cooriented) codimension
two submanifolds and the Leibniz rule therefore shows that in the flat case, Dk and Dk+1

are “adjoint in codimension one”. In particular, if k = 0, ` = 2, this is an example of
dynamic helicity lowering, using a twistor to construct a bivector density from a dynamic
field. In the flat case, the Leibniz rule shows that this will be divergence-free wherever
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the dynamic field is source-free. Integrating over a cooriented compact codimension two
submanifold then gives a conserved quantity. Hence on a simply connected region, the
dynamic field and codimension two submanifold define a real valued linear map on W,
i.e., an element of W∗. This is one motivation for viewing twistors as “charges”.

Curvature corrections. For general parabolic geometries, some of the preceding state-
ments only hold up to curvature terms. However, the curvature corrections can be trivial
even for non-flat geometries. For instance, when the bilinear pairings and operators are
zero or first order, there may not be enough derivatives for curvature to contribute. Also,
some parts of the curvature might not act on certain modules, so that partial flatness as-
sumptions eliminate the curvature terms. Finally, there is the observation that if Dkα = 0
then [KM ] t α = 0. This can be a strong condition if the cup product has low order.

9. Explicit examples in conformal geometry

The BGG calculus permits one to carry out many calculations without worrying too
much what the linear and bilinear differential operators are. Nevertheless, in applications,
it is sometimes desirable to determine the operators explicitly, in terms, for instance,
of a chosen Weyl connection, although this will only be feasible if the operators and
pairings have low order. The Neumann series definition for Q, together with the results
of Kostant [36], provides one method to carry out these calculations. However, for many
examples, particularly in conformal geometry, one can proceed more directly, by guessing
what the operators and pairings are, using the considerable collective experience in the
literature [3, 4, 10, 18, 20, 22, 27, 28, 46]. The work of [21] and this paper contributes to
this process by asserting the existence of the BGG operators, pairings, and Leibniz rules,
so that one knows what to look for.

Twistor invariants. Let φ be a twistor spinor, i.e., a solution of the twistor equation
for the spin representation of g = so(V ). Then φ is a spinor field with conformal weight
1/2 satisfying the equation DXφ = 1

nc(X)6Dφ for vector fields X, where D is an arbitrary
Weyl connection (the equation is independent of this choice), n is the dimension of the
manifold, 6D = c◦D is the Dirac operator and c(X) is Clifford multiplication (with c(X)2 =
〈X,X〉id). The twistor operator D0 in this case is given by the difference Dφ− 1

nc(·)6Dφ;
the Lie algebra homology bundle here is the Cartan product of the cotangent bundle and
the spinor bundle, which is the kernel of Clifford multiplication by 1-forms.

In four or more dimensions [KM ] is given by the Weyl curvature W c ∈ C∞(Λ2T ∗M �
so(TM)). If φ is a twistor spinor then 0 = D1D0φ = W c t φ. This pairing is zero order:
one can check directly that twistor spinors satisfy W c

X,Y ·φ = 0 for any vector fields X,Y .
The zero order cup products of twistor spinors φ, ψ take values in bundles of conformal

weight one. These include ω(φ, ψ) = φ � ψ, which is a (weight 1) middle-dimensional
form, X(φ, ψ) = 〈c(·)φ, ψ〉, which is a vector field, and µ(φ, ψ) = 〈φ, ψ〉, which is a weight
1 scalar. With our convention for Clifford multiplication these are all symmetric in φ and
ψ. One verifies that ω satisfies a first order twistor equation, that X is a conformal vector
field, and that µ has vanishing conformal trace-free Hessian (i.e., sym0(D2µ + rDµ) =
0, where rD is the normalized Ricci tensor of D). Only the last of these has enough
derivatives for Weyl curvature to enter, but it doesn’t act on twistor spinors. One can
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check explicitly:

D2
X,Y 〈φ, ψ〉 = 1

n

(
〈c(Y )DX 6Dφ,ψ〉+ 〈φ, c(Y )DX 6Dψ〉

)
+ 1

n2

(
〈c(Y )6Dφ, c(X)6Dψ〉+ 〈c(X)6Dφ, c(Y )6Dψ〉

)
= −1

2

(
〈c(Y )c(rD(X))φ, ψ〉+ 〈φ, c(Y )c(rD(X))ψ〉

)
+ 2

n2 〈X,Y 〉〈6Dφ, 6Dψ〉

= −rD(X,Y )〈φ, ψ〉+ 2
n2 〈X,Y 〉〈6Dφ, 6Dψ〉.

As an application, wherever 〈φ, ψ〉 is nonzero, it defines a compatible Einstein metric [6].
There is also a first order cup product taking values in the trivial representation,

given by C(φ, ψ) = 〈6Dφ,ψ〉 − 〈φ, 6Dψ〉. One can again check directly that dC = 0,
as a consequence of the twistor equation. Note that, with our convention for Clifford
multiplication, divD X(φ, ψ) = 〈6Dφ,ψ〉+ 〈φ, 6Dψ〉, so the Dirac operator is skew adjoint.
This convention also makes C(φ, ψ) skew in φ and ψ. However, complexifying if necessary,
we may assume the spinor bundle has an orthogonal complex structure J , and define
C(φ) = C(φ, Jφ). This is the quadratic invariant of Friedrich and Lichnerowicz [6, 39].

Friedrich also found a quartic invariant (see [6]). Many similar invariants can be
obtained by iterating the cup product, i.e., for suitable pairings, φ t (φ t (φ tφ)) will be a
nontrivial scalar. The details are quite complicated, but one obtains a hierarchy of quartic
invariants by considering the cup products factoring through k-forms, for k = 0, 1, 2, ....
The first of these is Friedrich’s quartic invariant.

Helicity. Twistor spinors have been systematically exploited to study massless field
equations (see [43]). The focus has been mainly on first order field equations, where
zero and first order pairings with twistor spinors are used to raise or lower the helicity
of massless fields. Most of these pairings are cup products: apart from the helicity
0 and helicity ±1/2 equations (given by the conformal Laplacian and Dirac operator
respectively), the massless field equation is the dynamic equation in a BGG sequence,
and the helicity is ±(w+1) where w is the conformal weight of the twistor bundle H0(W ).
Helicity ±1 corresponds to the deRham complex and electromagnetic fields.

Geometrical field theories. We focus on helicity ±2: this is the expected helicity of
linear theories of gravity, and because of the close links between gravity and geometry,
these differential equations are of particular interest in conformal differential geometry.
There are (at least) three such theories in four (or more) dimensions: the massless field
equations studied by Penrose, the linearization of Bach’s theory of gravity, and a confor-
mal version of a field theory due to Fierz. The corresponding representations of g = so(V )
are Λ3V , g = so(V ) = Λ2V and V . We have given the Lie algebra homologies (except in
the first case) in 3.5 and the BGG sequences begin:

C∞(L1 so(TM)) → C∞(L1T ∗M � so(TM)) → C∞(L1Λ2T ∗M � so(TM))(9.1)

C∞(TM) → C∞(Sym0 TM) → C∞(Λ2T ∗M � so(TM))(9.2)

C∞(L1) → C∞(L−1 Sym0 TM) → C∞(L−1T ∗M � so(TM))(9.3)

Here Sym0 TM = T ∗M�TM denotes the symmetric traceless endomorphisms—note also
that so(TM) ∼= L2Λ2T ∗M ∼= L−2Λ2TM .

In Penrose gravity (9.1), the operators are both first order, and the cup product of
twistors with Weyl curvature is zero order, giving an integrability condition for solving
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the twistor equation. In four dimensions, the sequence decomposes into selfdual and anti-
selfdual parts, each part being a complex iff the Weyl curvature is antiselfdual or selfdual
respectively. This sequence has been used to give a simple proof of the classification of
compact selfdual Einstein metrics of positive scalar curvature [9]. It also yields a selfdu-
ality result for Einstein-Weyl structures on selfdual 4-manifolds [12]. In Minkowski space,
the Weyl tensor of the Schwarzschild metric defines a natural dynamic field, which may
be viewed as a linearization of the Schwarzschild solution [22].

Since Bach gravity (9.2) is associated to the adjoint representation, this sequence is the
one arising in the study of deformations and moduli spaces. The twistor operator here is
the first order conformal Killing operator, whose kernel consists of conformal vector fields.
It takes values in Sym0 TM

∼= L2S2
0T

∗M , the bundle of linearized conformal metrics. The
second operator is the linearized Weyl curvature, taking values in the bundle of Weyl
tensors. In four dimensions, the adjoint of the linear Weyl operator is sometimes called
the Bach operator: it can be applied to the Weyl curvature itself to give the Bach tensor
of the conformal structure.

The composite of the conformal Killing operator and the linear Weyl operator is a first
order cup product with the Weyl curvature, which one readily computes to be a multiple
of LXW

c: obviously a conformal vector field has to preserve the Weyl curvature. This
cup product is associated to the Lie bracket pairing so(V ) ⊗ so(V ) → so(V ). There is
also an inner product pairing, which gives, for example, a 2-form-valued first order cup
product between vector fields K and Weyl tensors W :

(K tW )(X,Y ) = (n− 2)〈WX,Y , DK〉 − 〈(δDW )X,Y ,K〉.

The twistor equation in Fierz gravity (9.3) is second order, and is the conformal trace-
free Hessian mentioned above. Its kernel consists of Einstein (pseudo)gauges, i.e., a
nonvanishing solution gives a length scale for a compatible Einstein metric. The cup
product with curvature is a first order pairing, sometimes called the Cotton-York oper-
ator, since it assigns a Cotton-York tensor to a (pseudo)gauge. This corresponds to the
fact that Einstein metrics have vanishing Cotton-York tensor.

Helicity lowering. A typical example of helicity lowering occurs in Penrose gravity.
Here the natural zero order contraction of a dynamic Weyl field W and a Penrose twistor
2-form ω gives a bivector density and there is a simple Leibniz rule:

δ〈W,ω〉 = 〈δW,ω〉+ 〈W,Twist ω〉.

Even within the framework of conformal geometry, the cup and cap products considerably
generalize these ideas. For example, the analogous process in Fierz gravity requires first
order pairings:

δ
(
F (Dµ, ·, ·)− 1

2µ(δDF )(·, ·)
)

= µdivD(Sdiv F )− (Sdiv F )(Dµ, ·)

+ 〈sym0(D
2 + rD)µ, F 〉+ 1

2〈W
c, F 〉µ

where F ∈ C∞(L1−nTM � so(TM)), µ ∈ C∞(L1), Sdiv F is the symmetric divergence
in L1−n Sym0 TM , δDF is the skew divergence in L−1−nΛ2TM , and W c is the Weyl cur-
vature. Higher order pairings rapidly become very complicated, although a few examples
involving second order pairings can be computed explicitly.
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Appendix: semiholonomic jets and Verma modules

In this appendix we recall the link with semiholonomic Verma modules. On any Cartan
geometry of type (g, P ), iterating the invariant derivative defines the following.

9.1. Proposition. The map sending a section s to
(
s,∇ηs, (∇η)2s, . . . (∇η)ks

)
takes

values in the subbundle G ×P Ĵk
0 E of

⊕k
j=0

(
(⊗jg∗M ) ⊗ E

)
, where Ĵk

0 E is the set of all
(φ0, φ1, . . . φk) in

⊕k
j=0

(
(⊗jg∗)⊗ E

)
satisfying (for 1 6 i < j 6 k) the equations

φj(ξ1, . . . ξi, ξi+1, . . . ξj)− φj(ξ1, . . . ξi+1, ξi, . . . ξj) = φj−1(ξ1, . . . [ξi, ξi+1], . . . ξj)

φi(ξ1, . . . ξi) + ξi.
(
φi−1(ξ1, . . . ξi−1)

)
= 0

for all ξ1, . . . ξj ∈ g with ξi ∈ p.

Proof. The equations are those given by the vertical triviality and the Ricci identity,
bearing in mind the horizontality of the curvature κ (see Proposition 1.3). �

This map is sometimes called a “semiholonomic jet operator”, since it identifies the
semiholonomic jet bundle ĴkE with the associated bundle G ×P Ĵ

k
0 E. In particular, Ĵk

0 E
is itself the fibre of the semiholonomic jet bundle at 0 = [P ] ∈ G/P . This is a minor
variation of the construction of a semiholonomic jet operator given in [18, 21, 25], except
that we have presented Ĵk

0 E as a complicated subspace of an easily defined p-module,
whereas in these references, Ĵk

0 E is given as a complicated p-module structure on an easy
vector space, namely

⊕k
j=0

(
⊗j(g/p)∗

)
⊗ E. The equations defining Ĵk

0 E have a natural
algebraic interpretation in the dual language of semiholonomic Verma modules.

9.2. Definition. [4, 25] Let g be a Lie algebra with subalgebra p.
(i) The semiholonomic universal enveloping algebra U(g, p) of g with respect to p is

defined to be the quotient of the tensor algebra
⊗

(g) by the ideal generated by

{ξ ⊗ χ− χ⊗ ξ − [ξ, χ] : ξ ∈ p, χ ∈ g}.

We denote by Uk(g, p) the filtration given by the image of
⊕k

j=0(⊗jg), which is
compatible with the algebra structure.

Note that U(g, g) is the usual universal enveloping algebra U(g) and that U(p)
is a subalgebra of U(g, p), so U(g, p) is a U(p)-bimodule.

(ii) Let E∗ be a p-module. Then the semiholonomic Verma module associated to E∗
is the U(g)-module given by V̂ (E∗) = U(g, p)⊗U(p) E∗. We denote by V̂ k(E∗) the
filtration given by the image of Uk(g, p)⊗ E∗.

As a filtered vector space, V̂ (E∗) is naturally isomorphic to
(⊗

(g/p)
)
⊗E∗. The induced

action of p on
(⊗

(g/p)
)
⊗E∗ is most easily described by choosing a complement m to p in

g so that g/p is isomorphic to m. Then the action of ξ ∈ p on v1⊗· · ·⊗vk⊗z ∈ ⊗km⊗E∗
is obtained by tensoring on the left with ξ, then commuting it past all the vj ’s so that it
can act on z. This introduces Lie bracket terms [ξ, vj ], whose p-components must in turn
be commuted to the right. This process is then repeated until no elements of p remain
in the tensor product.

If we define Ĵ∞0 E be the inverse limit with respect to the natural maps Ĵk
0 E→ Ĵk−1

0 E
then the equations defining Ĵk

0 E imply that Ĵ∞0 E is the subspace of
(⊗

g∗
)
⊗ E such

that the pairing with
(⊗

g
)
⊗E∗ descends to V̂ (E∗). Comparing dimensions, we see that

V̂ k(E∗) ∼= (Ĵk
0 E)∗. This is why the dual of E is used in the definition of the Verma module.
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The advantage of semiholonomic jets is that they are defined purely in terms of the
1-jet functor J1, the natural transformation J1E → E, and some abstract nonsense. The
construction of the Π-operators was entirely first order, and so can be carried out formally
on the infinite semiholonomic jet bundle, rather than on smooth sections. This is perhaps
the easiest way to see that the symbols of the operators are the same for all geometries of
a given type, since the semiholonomic Verma module homomorphisms are the same. One
also sees that the operators of the BGG sequences are all strongly invariant in the sense
that they are defined by semiholonomic Verma module homomorphisms, and so can be
twisted with an arbitrary g-module [21].

In the flat case, the first equation in Proposition 9.1 holds for ξi ∈ g (not just p) and
so one can work with the usual holonomic jets and Verma modules. Working dually with
V (E∗), instead of J∞E or C∞(E) as we have done here, leads to a cup coproduct on
BGG resolutions of parabolic Verma modules, as described in [22]. The constructions of
section 6 now equip the family of resolutions with an A∞-coalgebra structure.

References

[1] T. N. Bailey, M. G. Eastwood and A. R. Gover, Thomas’s structure bundle for conformal, projective

and related structures, Rocky Mountain J. Math. 24 (1994) 1191–1217.

[2] R. J. Baston, Almost hermitian symmetric manifolds, I Local twistor theory, Duke Math. J. 63

(1991) 81–111.

[3] R. J. Baston, Almost hermitian symmetric manifolds, II Differential invariants, Duke Math. J. 63

(1991) 113–138.

[4] R. J. Baston, Verma modules and differential conformal invariants, J. Diff. Geom. 32 (1990) 851–898.

[5] R. J. Baston and M. G. Eastwood, The Penrose Transform, Oxford University Press, Oxford (1989).

[6] H. Baum, Th. Friedrich, R. Grunewald, I. Kath, Twistor and Killing spinors on Riemannian mani-

folds, Seminarberichte 108, Humboldt Universität, Sektion Mathematik, Berlin (1990).

[7] I. N. Bernstein, I. M. Gel’fand and S. I. Gel’fand, Structure of representations generated by vectors

of highest weight, Functional Anal. Appl. 5 (1971) 1–8.

[8] I. N. Bernstein, I. M. Gel’fand and S. I. Gel’fand, Differential operators on the base affine space

and a study of g-modules, in Lie groups and their representations, Adam Hilger, London, 1975.

[9] A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. 10, Springer, Berlin Heidelberg, 1987.

[10] T. P. Branson, Second order conformal covariants, Proc. Amer. Math. Soc. 126 (1998) 1031–1042.
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