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Abstract. I show that solutions of the SU(∞) Toda field equation generating a
fixed Einstein-Weyl space are governed by a linear equation on the Einstein-Weyl
space. From this, obstructions to the existence of Toda solutions generating a
given Einstein-Weyl space are found. I also give a classification of Einstein-Weyl
spaces arising from the Toda equation in more than one way. This classification
coincides with a class of spaces found by Ward and hence clarifies some of their
properties. I end by discussing the simplest examples.

1. Introduction

In [16], Ward showed that solutions u(x, y, z) of the SU(∞) Toda field equation
uxx+uyy+(eu)zz = 0 may be used to define three dimensional Einstein-Weyl spaces.
A Weyl space is a conformal manifold M together with a compatible torsion-free
connection (called a Weyl connection) and it is said to be Einstein-Weyl iff the
symmetric tracefree part of the Ricci tensor of this connection vanishes [7]. Weyl
connections on a conformal manifold correspond bijectively to covariant derivatives
(called Weyl derivatives) on the density line bundle L1, which is the oriented real
line bundle whose nth power is |ΛnTM | where n = dimM .

A Weyl space may be described by a choice of compatible Riemannian metric g
and the connection 1-form ω of the Weyl derivative on L1 relative to the trivialisa-
tion of L1 determined by the volume form of the metric (so that, for the induced
Weyl connection, Dg = −2ω⊗ g). In these terms, the Einstein-Weyl space defined
by the solution u of the Toda equation may be written:

g = eu(dx2 + dy2) + dz2

ω = −uz dz.
(1.1)

The Toda equation is a nonlinear integrable system, but very few solutions are
known explicitly [1, 3, 4, 13]. Ward found an implicit procedure for generating a
family of solutions from axially symmetric harmonic functions V . The Einstein-
Weyl spaces determined by these implicit solutions are nevertheless completely
explicit (in terms of V ) and Ward suggested that “. . . further investigation is needed
to clarify the nature and properties of this family of spaces” [16].

In this paper I show that these Einstein-Weyl spaces are precisely the Einstein-
Weyl spaces which can be written in the form (1.1) in at least two inequivalent
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ways. The key observation is that the solutions of the Toda equation on a fixed
Einstein-Weyl background are essentially given by solutions of a linear system in
this Weyl geometry. More precisely, the solutions of this linear system, the “Toda
structures”, correspond to solutions of the Toda equation on the Einstein-Weyl
space up to changes of isothermal coordinates (x, y) and translation of z. As a
consequence, I show that an Einstein-Weyl space admits at most a four dimensional
space of compatible Toda structures, with equality iff the Einstein-Weyl space is
Einstein. Furthermore, obstructions to the existence of Toda structures on a given
Einstein-Weyl space are found. These obstructions are sufficient to establish which
of the local forms of compact Einstein-Weyl spaces (found in [12]) admit Toda
structures.

In section 3, I prove that the existence of more than one Toda structure on an
Einstein-Weyl space is equivalent to the existence of a conformal vector field of a
special type, which I will call an “axial symmetry”. This fact is used in section 4
to classify the resulting spaces. The simplest examples are then discussed in the
final section.

I work throughout with the density bundles Lw (w ∈ R). A conformal structure
may then be defined as an L2 valued metric, so that the conformal inner product
of vector fields X,Y is 〈X,Y 〉 ∈ C∞(M,L2). Compatible Riemannian metrics
correspond to trivialisations of L1, and such a trivialisation is often called a length
scale or gauge. When tensoring with a density line bundle, I shall omit the tensor
product sign, and sections of Lw−1TM or Lw+1T ∗M are called vector fields or 1-
forms of weight w respectively. The Hodge star operator on an oriented conformal
3-manifold identifies Lw with Lw+3Λ3T ∗M and Lw+1T ∗M with Lw+2Λ2T ∗M and it
will be taken to have square −id. For further details see [2, 5]. The results in this
paper are local in character, and so, where necessary, vector fields are taken to be
nonvanishing and manifolds simply connected.

Acknowledgements. Thanks to Henrik Pedersen and Paul Tod for interesting
and helpful discussions.

2. Toda structures on Einstein-Weyl spaces

The Einstein-Weyl spaces arising from the Toda Ansatz (1.1) have been charac-
terised by Tod [13] as those which admit a shear-free twist-free geodesic congruence.
If χ ∈ C∞(M,L−1TM) denotes the weightless unit vector field tangent to this con-
gruence (an oriented foliation with one dimensional leaves) then this means that

(2.1) Dχ = τ(id − 〈χ, .〉 ⊗ χ)

where D is the Weyl connection, τ is a section of L−1 and 〈χ, .〉 denotes the weight-
less 1-form dual to χ with respect to the conformal structure. In (1.1), the con-
gruence generated by ∂/∂z has this property and one finds that 2τ〈χ, .〉 = −uz dz.
Hence the Weyl derivative D − 2τ〈χ, .〉 is induced by the Levi-Civita connection
of g and so the metric g is canonically determined, up to a constant multiple, by
the Weyl structure and the congruence [2, 13]. I will denote by µ the trivialisa-
tion of L1 corresponding to g and refer to this gauge µ (unique up to a constant)
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as the LeBrun-Ward gauge [10, 16]. The congruence χ determines (in principle)
the solution of the Toda equation up to the choice of isothermal coordinates (x, y)
and affine changes of z. Fixing the LeBrun-Ward gauge µ determines z up to
translation. In (1.1), τ = −1

2uzµ
−1, χ = µ−1∂/∂z and 〈χ, .〉 = µdz.

The equation (2.1) for χ is apparently nonlinear, but it actually becomes linear
as an equation for the weight 1

2 vector field X = µ1/2χ: explicitly, DX = σ id, for
some section σ = µ1/2τ of L−1/2. Conversely, if DX is a multiple of the identity,
then χ = X/|X | is a shear-free twist-free geodesic congruence and µ = |X |2 is the
LeBrun-Ward gauge.

Although this observation is trivial, it is the key idea behind the results of this
paper, and so I should explain its origins. In [10], LeBrun gave a characterisation
of the Toda Einstein-Weyl spaces in terms of minitwistor theory [7]. The space of
oriented geodesics in a three dimensional Einstein-Weyl space is a complex surface
S containing rational curves (“minitwistor lines”) with normal bundle O(2), and
shear-free geodesic congruences correspond to divisors in S of degree 2 on each
minitwistor line. LeBrun noticed that if the congruence is also twist-free, then
the corresponding divisor is actually a divisor for K−1/2

S , where KS is the canonical
bundle of S. After incorporating the choice of homothety factor of the LeBrun-Ward
gauge, Toda structures on a fixed Einstein-Weyl space correspond to holomorphic
sections of K−1/2

S . This immediately suggests that a linear equation is involved,
and by applying the Penrose transform, following Tsai [15], one finds that sections
of K−1/2

S correspond to weight 1
2 vector fields with tracelike derivative. It is then

not hard to guess the relationship between such a vector field and χ.

2.1. Definition. A Toda structure on a three dimensional Einstein-Weyl space is a
shear-free twist-free geodesic congruence together with a choice of homothety factor
for the corresponding LeBrun-Ward gauge.

A Toda structure gives (perhaps only implicitly) a solution of the Toda equation
up to changes of isothermal coordinates (x, y) and translation of z.

2.2. Proposition. Toda structures correspond to solutions of the following closed
linear system for a nonzero weight 1

2 vector field X and a −1
2 density σ:

DX = σ id(2.2)

Dσ = −1
2
FD(X , .)− 1

6
scalD〈X , .〉(2.3)

where D is the Weyl connection, FD is its curvature on L1, and scalD is its scalar
curvature, which is a section of L−2. Hence Toda structures are parallel sections
with respect to a natural connection on L−1/2TM ⊕ L−1/2.

Proof. Equation (2.2) has already been established. Differentiating it and skew-

symmetrising yields R
D, 1

2
X,Y X = (DXσ)Y − (DY σ)X, where RD, 1

2 denotes the curva-
ture of D on L−1/2TM . Since D is Einstein-Weyl,

(2.4) R
D, 1

2
X,Y = −1

6scalD〈X, .〉MY + 1
2F

D(X, .) MY − 1
2F

D(Y, .) MX+ 1
2F

D(X,Y )id
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where (for any 1-form α and vector fields X,Y ) αMX(Y ) = α(Y )X − 〈X,Y 〉[α.
Equation (2.3) now follows by taking a trace. �

2.3. Corollary. An Einstein-Weyl space admits at most a four dimensional space of
Toda structures, and hence at most a three parameter family of shear-free twist-free
geodesic congruences.

By computing the curvature of the connection

D(X , σ) =
(
DX − σ id, Dσ + 1

2F
D(X , .) + 1

6scalD〈X , .〉
)

on L−1/2TM ⊕ L−1/2, one can find obstructions to the existence of Toda struc-
tures on Einstein-Weyl spaces. In particular, substituting equation (2.3) back into

R
D, 1

2
X,Y X = (DXσ)Y − (DY σ)X, and using (2.4), yields

FD(X,Y )X + 〈X,X〉FD(Y )− 〈Y,X〉FD(X) = 0

where FD(X) = [FD(X, .). This condition on X is simply that 〈X , .〉 ∧FD = 0, or
equivalently, 〈X , ∗FD〉 = 0.

2.4. Proposition. The congruence associated to a Toda structure on an Einstein-
Weyl space (M,D) must be orthogonal to ∗FD. Hence M admits a four dimensional
space of Toda structures if and only if FD = 0, i.e., the Einstein-Weyl space is
Einstein.

The sufficiency of FD = 0 follows by verifying that on each of the three Einstein
spaces, the Toda structures (given by Tod [13]) do indeed form a four parameter
family (where one of the parameters is essentially the homothety factor of the
Einstein metric).

The remaining curvature obstructions are obtained by differentiating equation
(2.3) and skew-symmetrising. The resulting constraint on (X , σ) is:

(DXF
D)(Y,X )− (DY F

D)(X,X ) + 1
3

(
〈X,X〉DY scalD − 〈Y,X〉DXscalD

)
= FD(X,Y )σ.

The Cotton-York curvature of the underlying conformal structure may be defined by
CX,Y Z = (DXF

D)(Y, Z)− (DY F
D)(X,Z) + 1

6

(
〈X,Z〉DY scalD − 〈Y, Z〉DXscalD

)
.

Hence the above constraint relates C to DscalD and FD. Since it is skew in X,Y ,
it is convenient to apply the star operator to obtain

Y(X , .) + 1
6(∗DscalD)(X , .) = σ ∗FD

where Y(U, V ) = 〈∗(C.,.U), V 〉 (which is well known to define a symmetric tracefree
tensor). One simple consequence of this is the following refinement of Proposi-
tion 2.4.

2.5. Proposition. The congruence associated to a Toda structure on an Einstein-
Weyl space (M,D) must be orthogonal to ∗FD and null with respect to the Cotton-
York tensor Y. Hence M can only admit a Toda structure if Y is indefinite on the
orthogonal complement of ∗FD.



THE GEOMETRY OF THE TODA EQUATION 5

To see that this obstruction is nontrivial, I will apply it in the case that the
Weyl structure is given by (g, ω) with ω dual to a Killing field of g. On a compact
Einstein-Weyl space, there is a unique compatible metric (up to a constant) with
this property, and the Einstein-Weyl structures satisfying this condition have been
classified [12]. In order to avoid a case-by-case computation of Y, I will derive a
general formula.

2.6. Proposition. Suppose D = Dg + ω is Einstein-Weyl with ω dual to a Killing
field of g. Then

(i) Dg
XF

D = 1
3scalD ω ∧ 〈X, .〉 and so ∗FD is also dual to a Killing field of g.

(ii) Y(U, V ) = 3
2

(
ω(U)(∗FD)(V ) + ω(V )(∗FD)(U)

)
− 〈ω, ∗FD〉〈U, V 〉.

Proof. Since FD = dω is closed and Dgω is skew, Dg
XF

D(Y, Z) = −2(Rg
Y,Zω)(X).

The usual formulae for the Ricci tensor of g [5, 12] yield the first result by direct
calculation.

Next observe that DscalD = DgscalD − 2scalDω and that DXF
D(Y, Z) =

Dg
XF

D(Y, Z)−FD(ωMX(Y ), Z)−FD(Y, ωMX(Z))−2ω(X)FD(Y, Z). Also, by [5],
DgscalD = 3Dg|ω|2 and Dgω = 1

2F
D, which leads to the following formula for C:

CX,Y =− ω(X)FD(Y, .) + ω(Y )FD(X, .)

+ 3
2F

D([ω,X)〈Y, .〉 − 3
2F

D([ω, Y )〈X, .〉+ 2FD(X,Y )ω.

Applying the star operator gives the second formula. �

2.7. Corollary. Suppose D = Dg + ω is Einstein-Weyl on M with ω dual to
a Killing field of g. Then (M,D) cannot admit a Toda structure unless ∗FD is
orthogonal to ω.

Examining the explicit solutions in [12], one can easily determine for which spaces
this holds: in terms of the parameters in Case 1 of [11] (which is the generic case),
this condition is abc = 0. In particular, among the Berger spheres (given by b = ±c
and a 6= 0), only the round sphere is Toda, verifying (in another way) the final
remarks of [13].

3. Toda structures and symmetries

I turn now to the question: which Einstein-Weyl spaces admit more than a one
dimensional family of Toda structures? In the minitwistor space picture, two Toda
structures correspond to two holomorphic sections of K−1/2

S . Their Wronskian,
being a section of K−1

S ⊗ T ∗S ∼= TS, is a holomorphic vector field on S. This
symmetry of the minitwistor space induces a symmetry of the Einstein-Weyl space.

3.1. Proposition. Suppose X1 and X2 are the weight 1
2 vector fields of two Toda

structures. Then K = ∗(X1 ∧ X2) is a divergence-free twist-free conformal vector
field preserving the Weyl connection.

Proof. Differentiating K gives DK = ∗(σ1X2 − σ2X1) = 1
2d

DK where DXi =
σi id. This is skew and so K is a divergence-free conformal vector field. Also
〈K, .〉 ∧ dDK = 0 (since K is orthogonal to X1 and X2) so K is twist-free. Finally,
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to show that K preserves the Weyl connection, it suffices to show that the Lie
derivative LKD = d trDK +FD(K, .) of the Weyl derivative on L1 vanishes. Now
∗FD is orthogonal to X1 and X2, so FD(K, .) = 0, and trDK = 0 since K is
divergence-free. �

Remarkably, the necessary condition of this proposition is also sufficient.

3.2. Theorem. An Einstein-Weyl space has a two dimensional family of Toda
structures if and only if it admits a (nonzero) divergence-free, twist-free conformal
vector field preserving the Weyl connection.

The necessity is the previous proposition. For the converse, suppose that K is
a divergence-free, twist-free conformal vector field preserving the Weyl connection
D of an Einstein-Weyl space. Since the result is local, assume K is nonvanishing.
Then DK = αMK, for some 1-form α with α(K) = 0. Furthermore, if D|K| is
the Weyl derivative corresponding to the trivialisation of L1 given by the length of
K, then D = D|K| + α, and so LKα = 0. Next note that, since K is twist-free,
shear-free and divergence-free, it is surface-orthogonal and the integral surfaces of
K⊥ are totally geodesic. The above theorem is now an immediate consequence of
the following proposition.

3.3. Proposition. Given D, K, α as above, the covariant derivative defined by
D∗

XX = DXX −α(X )X is flat on the bundle of vector fields of weight 1
2 orthogonal

to K.

Proof. The curvature of D∗ is:

R∗X,Y X =
(
−1

6scalDX MY + 1
2F

D(X, .) MY − 1
2F

D(Y, .) MX + 1
2F

D(X,Y )id
)
(X )

−
(
(DXα)(X ) + α(X)α(X )

)
Y +

(
(DY α)(X ) + α(Y )α(X )

)
X.

Now since K is a conformal vector field preserving D, DX(DK) = RD
X,K . Also

DK = αMK, so DX(DK) = (DXα+α(X)α) MK. Contracting with K and using
the fact that α(K) = 0 and LKα = 0 (i.e., (DXα)(K) = −α(DXK) = 〈K,X〉|α|2)
gives

DXα+ α(X)α =
1
2
FD(X)− 1

6
scalDX⊥ + |α|2X ||,

where X || and X⊥ denote the components of X parallel and orthogonal to K.
Substituting this into the formula for R∗ gives, for X orthogonal to K,

R∗X,Y X = 1
2F

D(X,Y )X − 1
2〈X , Y 〉[F

D(X, .) + 1
2〈X , X〉[F

D(Y, .).

This vanishes for all X,Y because FD(K, .) = 0 and X is orthogonal to K, so
〈X , .〉 ∧ FD = 0. �

The parallel sections of D∗ satisfy DX = α(X )id and hence give a two dimen-
sional family of Toda structures.

A consequence of this theorem is the following converse to Corollary 2.7.

3.4. Proposition. Suppose D = Dg + ω is Einstein-Weyl on M with ω dual to
a Killing field of g and that ∗FD is orthogonal to ω. Then ∗FD is dual to a
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divergence-free twist-free conformal vector field preserving the Weyl connection,
and so M admits a two dimensional family of Toda structures.

Proof. Let K = µ3
g〈∗FD, .〉 be the vector field dual to ∗FD with respect to g,

where µg is the trivialisation of L1 determined by g. Now by Proposition 2.6,
DgK = −1

3scalDµ3
g ∗ω (here ∗ω is viewed as a skew endomorphism). Since D =

Dg + ω, DK = −1
3scalDµ3

g ∗ω + ωMK + ω(K)id. Now if ∗FD is orthogonal to
ω then ω(K) = 0 and −1

3scalDµ3
g∗ω = αg MK for some 1-form αg. Hence K

is a divergence-free twist-free conformal vector field, and it preserves the Weyl
connection since FD(K, .) = 0, by definition. �

This result could also be easily established by considering each case in turn (most
of which are straightforward). These spaces will feature in the final section.

4. Einstein-Weyl spaces with an axial symmetry

In this section, I will find explicitly all the Einstein-Weyl spaces admitting a
two dimensional family of Toda structures. According to the previous section, this
is equivalent to classifying the Einstein-Weyl spaces admitting a divergence-free
twist-free conformal vector field K preserving the Weyl connection. I will say that
these spaces are Einstein-Weyl with an axial symmetry. On such a space, there is
a two dimensional family of Toda structures given by the weight 1

2 vector fields X
orthogonal to K and satisfying DX = α(X )id, where DK = αMK. In particular,
DKX = α(X )K = DXK, so LKX = 0 and these Toda structures are K-invariant.

Pick one such Toda structure X . Then α(X/|X |) is the section τ of L−1 given
by this Toda structure, and it is only identically zero if X is a parallel vector field
(which can only happen on flat space). As shown by LeBrun [10], τ is a solution
of the abelian monopole equation and applying the Jones and Tod construction [8]
to this solution gives a hyperKähler metric with a Killing field X [1, 4]. The
Toda structure is K-invariant, so K lifts to give an additional Killing field of the
hyperKähler metric. Since K and X commute, some linear combination must
be a triholomorphic Killing field and hence the hyperKähler metric arises via the
Gibbons-Hawking Ansatz [6] from a harmonic function on R3. This harmonic
function is invariant under a Killing field of R3 and, since K is twist-free, one
readily finds that this Killing field must also be twist-free (see [2]). Hence it is a
rotational vector field, and the harmonic function is axially symmetric. This proves
the following result.

4.1. Theorem. Let M be Einstein-Weyl with an axial symmetry. Then if M is not
flat (with translational symmetry), it is one of Ward’s Einstein-Weyl spaces con-
structed from an axially symmetric harmonic function on R3 [16], and is therefore
given explicitly by:

g = (V 2
ρ + V 2

η )(dρ2 + dη2) + dψ2

ω =
2VρVη dη + (V 2

ρ − V 2
η )dρ

ρ(V 2
ρ + V 2

η )
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where (ρVρ)ρ + ρVηη = 0.

Note that the monopole on R3 is Vη: the choice of the integral V of Vη corresponds
to the choice of the quotient of the Gibbons-Hawking metric (see [2]). This freedom
involves adding multiples of log ρ to V . Note also that if V = log ρ, then the
monopole Vη degenerates, the Einstein-Weyl space above is R3 itself, and ∂/∂ψ is
the axial symmetry.

The equation for V may be viewed as an equation on H2, by thinking of V as
being in the kernel of the conformal Laplacian on R3 r R, which is conformal to
S1 × H2. More explicitly, if v = ρ1/2V , then vρρ + vηη = −1

4ρ
−2v and so v is an

eigenfunction of the Laplacian with eigenvalue 1
8scalH2 on the hyperbolic 2-space

H2 with metric (dρ2 + dη2)/ρ2.
The original choice of Toda structure X may be found by rescaling g by ρ2 to

obtain the Weyl structure in the LeBrun-Ward gauge (again, see [2]):

gLW = ρ2(V 2
ρ + V 2

η )(dρ2 + dη2) + ρ2 dψ2

= ρ2(dV 2 + dψ2) + (ρVη dρ− ρVρ dη)2

ωLW = − 2Vη

ρ2(V 2
ρ + V 2

η )
(ρVη dρ− ρVρ dη).

The 1-form ρVη dρ − ρVρ dη is locally exact, and may be integrated explicitly by
writing V = Uη with U axially symmetric and harmonic on R3, so that z = −ρUρ.

The other Toda structures come from the radial congruences on R3 centred
about points on the axis of symmetry. A more democratic approach involves the
relationship between these examples and Joyce’s construction of torus symmetric
scalar flat Kähler metrics [9] from a linear equation on hyperbolic 2-space. Indeed
this linear equation, given in Proposition 3.2.1 of [9], is the Cauchy-Riemann form
of the equation for V , tensored trivially with R2. Ignoring the R2 tensor factor,
simply take x1 = ρ, x2 = η, φ1 = ρVη, φ2 = −ρVρ to see that Joyce’s equation
is solved by axially symmetric harmonic functions. However, the advantage of his
approach is that the pair (ρVη,−ρVρ) is identified with a section Φ of a square root
of the canonical bundle of H2 satisfying an invariant equation. Now the Einstein-
Weyl structure may be written

g = |Φ|2gH2 + dψ2

ω = Φ2/|Φ|2

and so it does not actually depend upon the choice of coordinates (ρ, η) identifying
H2 with the upper half plane. Such an identification is given by a choice of a
point at infinity on the hyperbolic disc and each point in this circle gives a Toda
congruence.

Two solutions of Joyce’s equation generate a scalar-flat Kähler metric with two
Killing fields, and Ward’s Einstein-Weyl spaces arise as the quotients by each of
these Killing fields. Joyce finds the solution V = log ρ (which generates R3) and
superposes it with its image under isometries of hyperbolic 2-space (where these
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isometries are applied to Φ). In this way he obtains torus symmetric selfdual con-
formal structures on kCP 2, generalising (for k > 4) the torus symmetric examples
obtained from the hyperbolic Ansatz of LeBrun [10].

5. Examples

The simplest axially symmetric harmonic functions on R3 are the constant func-
tions and the fundamental solutions. The most trivial solution Vη = 0, V = log ρ
yields R3. If Vη = b or Vη = c/

√
ρ2 + η2 then the Gibbons-Hawking metric is

R4 and the triholomorphic Killing field is an infinitesimal translation or selfdual
rotation respectively. Hence the Einstein-Weyl spaces obtained are the quotients
of R4 by Killing fields (infinitesimal transrotations or rotations) given in [11].

To obtain more complicated examples, one can take linear combinations of funda-
mental solutions and constant solutions. In this way, one can find the Einstein-Weyl
quotients of the Taub-NUT and Eguchi-Hanson metrics, more or less by direct sub-
stitution, although more manageable expressions are obtained after transforming
the (ρ, η) coordinates.

The Taub-NUT solutions are given by V = a log ρ + bη + c log η+
√

ρ2+η2

ρ and
it is convenient to set ρ = r cos θ, η = r sin θ so that ρVη = (br + c) cos θ and
ρVρ = a− c sin θ. Then

gLW =
(
(br + c)2 cos2 θ + (a− c sin θ)2

)
(dr2 + r2 dθ2) + r2 cos2 θ dψ2

ωLW = − 2(br + c)
r
(
(br + c)2 cos2 θ + (a− c sin θ)2

) d(−ar sin θ + 1
2br

2 cos2 θ + cr
)
.

Note that bc = 0 gives the quotients of R4 mentioned briefly above.
The Eguchi-Hanson solutions are obtained from

V = a log ρ+ 1
2(b+ c/ε) log η−ε+

√
ρ2+(η−ε)2

ρ + 1
2(b− c/ε) log η+ε+

√
ρ2+(η+ε)2

ρ ,

where ε2 = ±1 (without loss of generality). When ε2 = −1 this is the potential
for an axially symmetric circle of charge, while ε2 = +1 corresponds to two point
sources on the axis of symmetry. These cases are sometimes referred to as Eguchi-
Hanson I and II respectively. The former is always incomplete, but its Einstein-
Weyl quotients are perhaps more interesting than those of Eguchi-Hanson II.

Coordinates adapted to these geometries are obtained via ρ =
√
R2 − ε2 sin θ

and η = R cos θ so that

ρVη =
(bR+ c cos θ)

√
R2 − ε2 sin θ

R2 − ε2 cos2 θ

ρVρ =
a(R2 − ε2 cos2 θ)− b(R2 − ε2) cos θ + cR sin2 θ

R2 − ε2 cos2 θ
.and
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The Toda structure is now given by:

gLW =
(
(a cos θ − b)2(R2 − ε2) + (aR+ c)2 sin2 θ

) (
dR2

R2 − ε2
+ dθ2

)
+ (R2 − ε2) sin2 θ dψ2

ωLW = − 2(bR+ c cos θ)
(a cos θ − b)2(R2 − ε2) + (aR+ c)2 sin2 θ

d
(
−aR cos θ + bR− c cos θ

)
.

The family given by a = 0, ε2 = −1 also arises as a quotient of the scalar flat Kähler
metric on S2 ×H2. If we write this as:

g =
dR2

R2 + 1
+ (R2 + 1)ds2 + dθ2 + sin2 θ dφ2

then K = b∂/∂s+ c∂/∂φ is a Killing field. Coordinates adapted to K are given by
χ = bs+ cφ, ψ = bφ− cs so that K is a multiple of ∂/∂χ and the quotient metric
g − g(K, .)/g(K,K) is

dR2

R2 + 1
+ dθ2 +

(R2 + 1) sin2 θ

b2(R2 + 1) + c2 sin2 θ
dψ2.

This is the same conformal structure as above, and one readily checks that the
Weyl structures also agree. Now S2 × H2 is conformal to R4 r R and so these
Weyl structures are globally defined on S3 for b 6= 0 (since ∂/∂s is a dilation).
Hence, as remarked in [2], these quotients of R4 by dilation plus planar rotation
are Toda (although the congruences are not globally defined on S3). Additionally,
the calculations of this section verify explicitly that they are Einstein-Weyl with
an axial symmetry, in accordance with Proposition 3.4, and arise from the Eguchi-
Hanson I metrics.
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