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Introduction

Compact complex manifolds which admit hamiltonian 2-forms of order 1
in the sense of [1, 2] — cf. Section 1.8 for a formal definition — have been
classified in [2] and extensively studied in [3]. The main motivation in [3]
for studying this class of Kähler manifolds is the fact that they provide a
fertile testing ground for the conjectures relating extremal and CSC Kähler
metrics to stability. In particular, by using recent results of X. Chen–G. Tian,
here quoted as Theorem 2.1, we were able to solve in [3] a long pending open
question since [41], namely the non-existence of extremal Kähler metrics in
“large” Kähler classes on “pseudo-Hirzebruch surfaces”, which was the last
missing step towards the full resolution of the existence problem of extremal
Kähler metrics on geometrically ruled complex surfaces [5].

The main goal of this paper is to present some salient results of our joint
work [3]. To simplify the exposition, we here only consider the simple case
of P1-bundles over a product of compact Kähler manifolds of constant scalar
curvature, which in the terminology in [3] is referred to as the case without
blow-downs. This allows us for a specific treatment, somewhat simpler than
the general case worked out in [3], to which we refer the reader for more
information and details.

For the comfort of the reader, we tried to make this paper as self-contained
and easy to read as possible. With regard to [3], we introduce in places
slightly different notation and terminology, that seem to be more adapted to
the specific situations worked out in this paper. Similarly, some computations
and arguments taken from [3] here appear in a slightly different and/or a
more detailed presentation. The paper also includes new pieces of information,
which were omitted or only sketched in [3], like Proposition 1.5 in Section 1.9,
Proposition A.1 in Appendix A, a specific account of the deformation to the
normal cone of the infinity section in admissible ruled manifolds, etc.

The paper is organized as follows.
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In Sections 1.1 to 1.7, we set the general framework of the paper by intro-
ducing the class of admissible ruled manifolds, the cone of admissible Kähler
classes, the set of admissible momenta and the associated set of of admissible
Kähler metrics, and by recalling the main geometric features of these metrics
(isometry groups, Ricci form, scalar curvature, etc.). In Section 1.8, we briefly
explain how hamiltonian 2-forms of order 1 arise in this setting. In Section 1.9,
we use a variant of the Calabi method in [8], also used in [41], to construct
extremal admissible Kähler metrics in a given admissible Kähler class Ω; as in
[41], we show that this method works successfully if and only if the extremal
polynomial FΩ, canonically attached to Ω, is positive on its interval of defini-
tion. Section 1.10 is devoted to the special case of admissible ruled surfaces,
here called Hirzebruch-like ruled surfaces.

In Section 2.1, we review some well-known general facts concerning the space
of Kähler metrics in a given Kähler class on a compact complex manifold. In
Section 2.2, we recall some basic results recently obtained by X. X. Chen and
G. Tian, here stated as Theorem 2.1, which play an important role in several
parts of the paper. In Section 2.3, we compute the relative Mabuchi K-energy
on the space of admissible Kähler metrics in any admissible Kähler class Ω and
we show that Ω admits an extremal Kähler metric, which is then admissible
up to automorphism, if and only if FΩ is positive on its interval of definition
(Theorem 2.2). Proposition A.1 established in Appendix A is used to complete
the proof of Theorem 2.2 in the borderline case, when FΩ is non-negative but
has zeros, possibly irrational, in its interval of definition.

In Section 3.1, we recall the interpretation given by Donaldson and adapted
by Székelyhidi to the relative case of the Futaki invariant of an S1-action on a
general polarized projective manifold. In Section 3.2, we construct the defor-
mation to the normal cone, D(M), of the infinity section Σ∞ of an admissible
ruled manifold M . In Section 3.3, for any admissible polarization Ω on M ,
we turn D(M) into a test configuration in the sense of Tian [40] and Donald-
son [15], by constructing a family of relative polarizations, parametrized by
rational numbers in the interval of definition of the extremal polynomial FΩ.
In Section 3.4, we extend to admissible ruled manifolds a beautiful computa-
tion done by G. Székelyhidi [36] for ruled surfaces, and we show that, for any
rational number x in (−1, 1), FΩ(x) is equal, up to a constant (negative) fac-
tor, to the relative Futaki invariant of the test configuration D(M) equipped
with the relative polarization determined by x, see Theorem 3.1. Together
with Theorem 2.2, this striking — and still mysterious — fact has the follow-
ing consequence: for admissible ruled manifolds and admissible Kähler classes,
the relative slope K-stability, as defined by J. Ross and R. Thomas [34, 35],
implies the existence of extremal Kähler metrics, cf. [3, Theorem 2]. For a
more detailed discussion on this matter, including the role of the examples of
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Section 2.4 in the current refined definitions of the slope stability, the reader
is referred to [3, Theorem 2].

Notation and convention: For any Kähler structure (g, J, ω), the riemannian

metric g, the complex structure J and the Kähler form ω are linked together by ω =

g(J ·, ·). The Levi-Civita connection of g, as a covariant derivative acting on any sorts

of tensor fields, will be denoted by Dg, or simply D when the metric is understood.

The twisted differential dc acting on exterior forms is defined by dc = JdJ−1, where

J acts on a p-form ϕ by (Jϕ)(X1, . . . , Xp) = ϕ(J−1X1, . . . , J
−1Xp); in terms of the

operators ∂ and ∂̄ we then have dc = i(∂̄−∂) and ddc = 2i∂∂̄. Our overall convention

for the curvature of a linear connection ∇ is R∇

X,Y = ∇[X,Y ] − [∇X ,∇Y ].

1. Extremal metrics on admissible ruled manifolds

1.1. Admissible ruled manifolds. — Unless otherwise specified, M will
denote a connected, compact, complex manifold of complex dimension m ≥ 2,
of the form

(1.1) M = P(1 ⊕ L),

where L denotes a holomorphic line bundle over some (connected, compact)
complex manifold S of complex dimension (m − 1). Here, 1 stands for the
trivial holomorphic line bundle S×C and P(1⊕L) then denotes the projective
line bundle associated to the holomorphic rank 2 vector bundle E = 1 ⊕ L:
an element ξ of M over a point y of S is then a complex line through the
origin in the complex 2-plane Ey = C ⊕ Ly, where Ey, Ly denote the fibres
of E,L at y; if ξ is generated by the pair (z, u) in C ⊕ Ly, we write ξ = (z :
u). The natural (holomorphic) projection π : M → S admits two natural
(holomorphic) sections: the zero section σ0 : y 7→ C ⊂ C⊕Ly, and the infinity
section σ∞ : y 7→ Ly ⊂ C ⊕ Ly. We denote by Σ0,Σ∞ the images of σ0, σ∞ in
M , still called zero section and infinity section, both identified with S via π.
Each element of M \Σ∞ over y has a unique generator of the form (1, u), with
u in Ly: we thus get a natural identification of M \ Σ∞ with L and M can
therefore be regarded as a compactification of (the total space of) L obtained
by adding a point at infinity to each fiber. The open set M0 = M \ (Σ0 ∪Σ∞)
is similarly identified with the set of non-zero elements of L.

The natural C∗-action on L extends to a holomorphic C∗-action on M de-
fined by: ζ · (z : u) = (z : ζ u). This action pointwise fixes Σ0 and Σ∞. The
vector field on M generating the induced S1-action is denoted by T .

We furthermore assume that S =
∏N

i=1 Si is the product of N ≥ 1 (con-
nected, compact) complex manifolds Si, of complex dimensions di, and that
L comes equipped with a (fiberwise) hermitian inner product, h, such that
the curvature, R∇, of the corresponding Chern connection, ∇, is of the form:
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R∇ = −i
∑N

i=1 εi ωSi
, where each ωSi

is the Kähler form of a Kähler metric,
gSi

, on Si (viewed as a 2-form on S. i.e. identified with p∗iωi, if pi denotes the
natural projection from S to Si), and εi is equal to 1 or to −1. In particular,
∑N

i=1 εi [ωSi
] = 2π c1(L

∗), where c1(L
∗) denotes the first Chern class of the

dual complex line bundle L∗ and [ωSi
] the class of ωSi

in H2(S,R).
Moreover, for i = 1, . . . , N , we assume that R∇i = −iεiωSi

is the Chern
curvature of a hermitian holomorphic line bundle, Li, on Si — so that (Si, ωSi

)

is polarized by L̃i = L−εi

i — and that L = ⊗N
i=1p

∗
iLi, equipped with the

induced (fiberwise) hermitian metric.

On M0, identified with L \ Σ0 as above, define t by

(1.2) t = log r,

where r = | · |h denotes the norm relative to h, viewed as a function on
L = M \ Σ∞. We then have

(1.3) dct(T ) = 1, ddct = π∗(
N
∑

i=1

εi ωSi
),

where the twisted differential operator dc, as defined above, is relative to the
natural complex structure of M . The latter, as well as the complex structures
of S and of each factor Si, will be uniformly denoted by J and will be kept
unchanged throughout the paper.

Definition 1.1. — Ruled manifolds of the above kind, with the additional
pieces of structure described in this section, will be referred to as admissible
ruled manifolds. Later on in this paper, we shall assume that the scalar curva-
ture of each factor (Si, gSi

) of S is constant, but this assumption is not needed
until Section 1.9.

1.2. Admissible Kähler classes. — We denote by e0, resp. e∞, the
Poincaré dual of (the homology class of) Σ0, resp. Σ∞, in H2(M,R) and
we set:

(1.4) Ξ = 2π(e0 + e∞).

The class e0 + e∞ can be regarded as a projective version of the Thom class
of L, whereas

(1.5) π∗c1(L) = e0 − e∞,

where c1(L) denotes the first Chern class of L (cf. Remark 1.1 below). Any
element, γ, of H2(M,R) can be written in a unique way as γ = aΞ + π∗α,
with a in R and α in H2(S,R). Moreover, in order that γ belong to the Kähler
cone of M , it certainly must satisfy the following two conditions: (i) its value
on each fiber of π is positive, hence a > 0; (ii) γ|Σ0

and γ|Σ∞
both belong
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to the Kähler cone of S, via the natural identification of Σ0 and Σ∞ with S.
Now, (e0 + e∞)|Σ0

= e0|Σ0
= − 1

2π

∑N
i=1 εi [ωSi

] and (e0 + e∞)|Σ∞
= e∞|Σ∞

=
1
2π

∑N
i=1 εi [ωSi

], via the natural identification of Σ0,Σ∞ with S (recall that
e0|Σ0

is the first Chern class of the normal bundle of Σ0 in M , identified with
L on S; similarly, e∞|Σ∞

is the first Chern class of the normal bundle of Σ∞ in
M , identified with L∗ on S). It follows that Ξ does not belong to the Kähler
cone of M , whereas

(1.6) Ωλ =

N
∑

i=1

λi π
∗[ωSi

] + Ξ

clearly satisfies the above conditions (i)-(ii) whenever all λi’s are real numbers
greater than 1. In fact, as will be checked in the next section (cf. Remark 1.2),
Ωλ is a Kähler class on M for any N -tuple λ = (λ1, . . . , λN ) of real numbers
such that λi > 1, i = 1, . . . , N . Such N -tuples of real numbers will be called
admissible.

Definition 1.2. — A normalized admissible Kähler class is a Kähler class
of the form (1.6), where λ is an admissible N -tuple of real numbers. The
characteristic polynomial, pΩλ

, of a normalized admissible Kähler class Ωλ is
defined by

(1.7) pΩλ
(x) =

N
∏

i=1

(λi + εi x)
di .

An admissible Kähler class is a multiple of a normalized one by a positive real
number. The admissible Kähler cone is the set of all admissible Kähler classes.

Remark 1.1. — Denote by OM (−1) the tautological line bundle on M and
by OM (1) its complex dual: for any ξ = (z : u) in M , the fiber of OM (−1) at ξ
is the complex line ξ itself, whereas the fiber of OM (1) at ξ is ξ∗ = Hom(ξ,C).
The natural projection of C ⊕ L on C determines a holomorphic section of
OM (1), whose zero locus is Σ∞; similarly, the natural projection of C ⊕ L on
L determines a holomorphic section of OM (1)⊗L, whose zero locus is Σ0. We
then have

(1.8) e∞ = c1(OM (1)), e0 = c1(OM (1)) + c1(π
∗L),

hence

(1.9) Ξ = 2π
(

2 c1(OM (1)) + π∗c1(L)
)

,

and

(1.10) Ωλ = 2π
(

2c1(OM (1) +

N
∑

i=1

(λi − εi) c1(π
∗L−εi

i )
)

.
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It follows that Ωλ/2π belongs to the image of H2(M,Z) in H2(M,R) if and
only if all λi’s are (positive) integers. If so, Ωλ/2π = c1(Fλ), with

(1.11) Fλ = OM (2) ⊗ π∗
(

⊗N
i=1 L

1−εiλi

i

)

.

1.3. Admissible momenta and Kähler metrics. — For each admissible
Kähler class we construct a distinguished family of Kähler metrics called ad-
missible. For convenience, we restrict our attention to normalized admissible
Kähler classes, i.e. to Kähler classes which are of the form (1.6). The other
ones are obtained by homothety.

Let z = z(t) be any smooth increasing function of t which, as a function on
M0, smoothy extends to M , with z|Σ0

≡ −1 and z|Σ∞
≡ +1. Equivalently, we

demand that z, as a function of t, satisfies the following boundary conditions:

• B−∞ : Near t = −∞, z(t) = Φ−∞(e2t), where Φ−∞ is smoothly defined on
[0, ε), for some ε > 0, with Φ−∞(0) = −1 and Φ′

−∞(0) > 0.

• B+∞ : Near t = +∞, z(t) = Φ+∞(e−2t), where Φ+∞ is smoothly defined on
[0, ε), for some ε > 0, with Φ+∞(0) = +1 and Φ′

+∞(0) < 0.

Definition 1.3. — A smooth, increasing function z : R → (−1, 1), satisfying
the boundary conditions B−∞ and B+∞ is called an admissible momentum.

For any admissible momentum z, the 2-form ψz = z
∑N

i=1 π
∗εi ωSi

+dz∧dct on
M0 smoothly extends to M . Because of (1.3), ψz is closed. Moreover, ψz |Σ0

=

−
∑N

i=1 εi ωSi
, ψz |Σ∞

=
∑N

i=1 εi ωSi
, and, for any fiber π−1(y),

∫

π−1(y) ψ = 4π,

meaning that [ψz] = Ξ for any admissible momentum z. For any admissible
Kähler class and for any admissible momentum z, we then define

ω = ωλ,z =

N
∑

i=1

λi π
∗ωSi

+ ψz

=
N
∑

i=1

(λi + εi z)π
∗ωSi

+ dz ∧ dct.

(1.12)

Then, ω is closed, with [ω] = Ωλ, and is positive definite with respect to J , as
z′(t), the derivative of z with respect to t, is positive; it is then the Kähler form
of a Kähler metric, g = gλ,z, in Ωλ. Moreover, by (1.3), ιTω = −z′(t)dt = −dz,
meaning that z is a momentum of T with respect to ω.

Definition 1.4. — A Kähler metric is called admissible if its Kähler form is
of the form (1.12) (for some admissible momentum z) or is a multiple of such
metric by a positive real number.
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Remark 1.2. — The above construction shows that Ωλ actually belongs to
the Kähler cône of M , as claimed in Section 1.2. This also shows that the
necessary conditions (i) and (ii) in Section 1.2 are also sufficient.

Remark 1.3. — In each admissible Kähler class Ωλ, admissible Kähler met-
rics are, by their very definition, in one-to-one correspondence with the space,
A say, of admissible momenta. Notice however that A is independent of Ωλ.

Remark 1.4. — For any admissible Kähler class Ωλ, the space of admissible
Kähler metrics in Ωλ is preserved by the natural C∗-action on M : each ad-
missible Kähler metric is S1-invariant whereas, for any real number c and any
admissible Kähler metric gλ,z, we have that ec · gλ,z = gλ,zc , where zc denotes
the translated admissible momentum defined by zc(t) = z(t+ c).

Proposition 1.1. — Let Ωλk
be a sequence of (normalized) admissible Kähler

classes converging to a (normalized) admissible Kähler class Ωλ, meaning that
λk converges to λ in RN for the usual topology. For each k, let gk be an
admissible Kähler metric in Ωλk

, determined by the admissible momentum
zk in A. Suppose that gk tends to a (smooth) riemannian metric g in the
C1-topology. Then, g is an admissible Kähler metric in Ωλ.

Proof. — Since the gk tend to g in the C1-topology, the limit, ω, of the cor-
responding Kähler forms ωk = gk(J ·, ·) is closed: g is then a Kähler metric
in Ω. On the other hand, ωk is of the form (1.12) for a well-defined zk in
A. Since the |zk| are bounded and the sequence dzk converges to −ιTω, the
sequence zk converges in the C0-topology to a smooth function z, which is
the momentum of T with respect to ω. This function z still factors through
t, satisfies the boundary conditions B−∞ − B+∞ and is still increasing, since
z′ = dz(T ) = g(T, T ); it then belongs to A and g is then the associated
admissible Kähler metric in Ω.

1.4. Admissible momentum profiles. — It is convenient to consider an
alternative parametrization of the space of admissible Kähler metrics by intro-
ducing, for any admissible momentum map z : R → (−1, 1), the momentum
profile Θ defined by

(1.13) Θ(x) = z′(z−1(x)),

for any x in the open interval (−1, 1), where, z−1 : (−1, 1) → R denote the
inverse of z, cf. [26]. Alternatively, for any x in (−1, 1), Θ(x) is the square
norm of T at any point of M0 in the level set z−1(x) with respect to the
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admissible Kähler metric determined by z. In particular, Θ is positive on
(−1, 1) and smoothly extends to the closed interval [−1, 1], with

(1.14) Θ(−1) = Θ(1) = 0.

Moreover, it easily follows from the boundary conditions B−∞andB+∞ for z
that Θ satisfies the following additional boundary conditions:

(1.15) Θ′(−1) = 2, Θ′(1) = −2,

where Θ′ denotes the derivative of Θ with respect to x.

Definition 1.5. — A positive function Θ : (−1, 1) → R>0 is called an admis-
sible momentum profile if it smoothy extends to a function Θ : [−1, 1] → R≥0

and satisfies the boundary conditions (1.14) and (1.15).

Proposition 1.2. — For any (normalized) admissible Kähler class Ωλ, there
is a natural 1–1 correspondence between the space of admissible momentum
profiles and the space of admissible Kähler metrics in Ωλ, up to the natural
C∗-action on M .

Proof. — We recover z from Θ by firstly defining t : (−1, 1) → R by means of
the differential equation dt

dx = 1
Θ(x) , then z : R → (−1, 1) as the inverse function

of t (notice that t = t(x) is increasing, as Θ is positive on (−1, 1)). It is then
easily checked that z = z(t) defined that way is an admissible momentum, i.e.
satisfies the boundary conditions B−∞–B+∞. Finally, t = t(x) is only defined
up to an additive constant; we already saw that the corresponding admissible
Kähler metric is only defined up to the natural C∗-action on M .

1.5. Standard admissible metrics. — Each admissible Kähler class Ωλ

contains a standard C∗-orbit of admissible Kähler metrics, namely admissible
Kähler metrics determined by the admissible momentum z0 = tanh t or the
translated momenta zc

0 = tanh (t+ c). For all of them, the momentum profile,
Θ0 is given by

(1.16) Θ0(x) = 1 − x2.

When restricted to the affine open set Ly \ {0} of each fiber π−1(y), the
Kähler form ωλ,z (corresponding to admissible momentum z = z(t)) is z′(t) dt∧
dct, or equivalently, is equal to ddcΦ(t), where the Kähler potential Φ(t) is a
primitive of z(t), defined up to an affine function of t. (Notice that the re-
striction of ddct on π−1(y) vanishes.) In the standard case, when the ad-
missible momentum is z0(t) = tanh t, we can choose as Kähler potential
Φ0(t) = log (1 + e2t) = log (1 + r2), which is the Kähler potential of the
Fubini-Study of P1 of sectional curvature +1. The resulting toric Kähler man-
ifold is then the standard unit sphere S2 = {u = (x1, x2, x3) | ∑3

i=1 x
2
i = 1}

in R3, equipped with: (i) the standard S1-action eiθ · (x1, x2, x3) = (cos θ x1 +
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sin θ x2,− sin θ x1 + cos θ x2, x3); (ii) the standard symplectic form ω0 = dx3 ∧
dθ; (iii) the standard complex structure JX = u × X for any X in TuS

2,
where × stands for the cross product in R3 with respect to the natural ori-
entation; (iv) the riemannian metric g0 induced by the standard flat metric
of R3. The momentum of the S1-action with respect to ω0 is then the map
z0 : u = (x1, x2, x3) 7→ x3.

For a general admissible Kähler metric in a normalized admissible Kähler
class, the induced toric Kähler structure on the fibres of π are again isomorphic
to S2, equipped with the same S1-action and the same complex structure J ,
and with symplectic form ω = f ω0 and the metric g = f g0, where f = f(x3)
denotes an S1-invariant invariant positive function on S2, submitted to the

only constraint that
∫

S2 f ω0 =
∫

S2 ω0 or, equivalently,
∫ 1
−1 f(x) dx = 2; the

corresponding admissible momentum is then

(1.17) z(t) = −1 +

∫ tanh t

−1
f(x) dx.

1.6. Symmetries of admissible Kähler metrics. — In general, for any
(connected) compact complex manifold (M,J), we denote by H(M,J) the
identity component of the group of complex automorphisms of (M,J) and by
h = h(M,J) its Lie algebra, which we regard as the Lie algebra of real vector
fields X such that LXJ = 0, where LX denotes the Lie derivative along X; X
is then called a (real) holomorphic vector field. Equivalently, X is the real part
of a complex vector field of type (1, 0), X1,0, which is a holomorphic section
of the holomorphic tangent bundle T 1,0M .

For any riemannian metric g which is Kähler with respect to J , a (real)

vector field X is holomorphic if and only if D−X[ = 0 — where X[ denotes
the riemannian dual 1-form of X and D−X[ denotes the J-anti-invariant part
of DX[ — and X can then be written in a unique way as

(1.18) X = XH + gradgf
X
g + Jgradgh

X
g ,

where XH is the dual of a g-harmonic (real) 1-form and fX
g , h

X
g are real func-

tions normalized by
∫

M fX
g vg =

∫

M hX
g vg = 0; fX

g , called the (real) potential

of X, is determined by LXω = ddcfX
g , where ω = g(J ·, ·) is the Kähler form

of the pair (g, J), cf. e.g. [27].
A (real) vector field X is called a Killing vector field with respect to g

if LXg = 0. The Lie algebra, denoted by k, of Killing vector fields is the
Lie algebra of the identity component, K(M,g), of the group of isometries of
(M,g). It is well-known(1) that K(M,g) is a (compact) subgroup of H(M,J).

(1)The easy argument goes as follows: for any γ in K(M, g), γ · ω is g-harmonic, as γ is an
isometry, and it belongs to the de Rham class [ω], as γ is homotopic to the identity; since
M is compact, this implies that γ · ω = ω, hence also γ · J = 0.
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In view of the above, k then coincides with the space of those (real) holomorphic
vector fields whose (real) potential is identically zero.

The space, h0, of (real) holomorphic vector fields such that XH ≡ 0 in
the decomposition (1.18) is the Lie algebra of a closed subgroup, H0(M,J), of
H(M,J), namely the kernel of the Albanese map from H(M,J) to the Albanese
torus of (M,J): h0 is then the space of (real) vector fields of the form X =
gradgf+Jgradgh, with D−(df+dch) = 0. It can be alternatively described as
the space of (real) holomorphic vector fields whose zero set is not empty [29].
The space k0 = k ∩ h0 is the Lie algebra of hamiltonian Killing vector fields,
i.e. the space of Killing vector fields of the form X = JgradhX

g = gradωh
X
g ; it

is the Lie algebra of a closed subgroup of K(M,g) denoted K0(M,g).
We denote by Pg the space of Killing potential with respect to g, i.e. the

space of a real functions, h, on M such that X = Jgradgh is a hamiltonian
Killing vector field (notice that constants are included in Pg). This space is the

kernel(2) of the Lichnerowicz fourth order differential operator (D−d)∗D−d.
The group H0(M,J) and its subgroup K0(M,g) will be referred to as the re-

duced automorphism group of (M,J) and the reduced isometry group of (M,g)
respectively. We then have (cf. [3, Proposition 2]):

Proposition 1.3. — (i) For any admissible ruled manifold M = P(1 ⊕ L),

H0(M,J) projects surjectively to H0(S, J) =
∏N

i=1 H0(Si, J), with kernel the
semi-direct product C∗ nH0(S,L±), where H0(S,L±) stands for the space of
holomorphic sections of L or L∗ = L−1 according as H0(S,L∗) or H0(S,L) is
reduced to zero(3).

(ii) For any admissible Kähler metric g on M , K0(M,g) projects surjectively
to K(S, gS) =

∏

K0(Si, gSi
), with kernel S1, which is contained in the center

of K(M,J). In particular, K0(M,g) is independent of the chosen admissible
Kähler metric.

Proof. — For any X in h(M,J) and for any y in S, the projection of X|π−1(y)

to TyS can be viewed as a holomorphic map from the fiber π−1(y) to T 1,0
y S,

which is then constant: each X in h is then projectable and we thus get a Lie
algebra homomorphism from h(M,J) to h(S, J). This implies that any element
of H(M,J) maps fiber to fiber, hence that the above Lie algebra homomor-
phism is induced by a homomorphism from H(M,J) to H(S, J). Moreover, if

(2)Since M is compact, f belongs to the kernel of (D−d )∗D−d if and only if the Hessian Ddf

is J-invariant, which amounts to saying that the hamiltonian vector field Jgradgf is Killing.
(3) For any non-trivial holomorphic line bundle over a connected compact complex manifold
M , either H0(M, L) or H0(M, L∗) is reduced to {0}: if σ belongs to H0(M, L) and α belongs
to H0(M, L∗), the holomorphic function 〈σ, α〉 is constant, as M is compact, hence identically
zero, as L is non-trivial; since M is connected, it follows that either σ or α is identically
zero.
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X belongs to h0(M,J), its projection on S belongs to h0(S, J), as each zero
of X is mapped to a zero of its projection. We denote by τ the resulting ho-
momorphism from h0(M,J) to h0(S, J) and by τ̃ the corresponding Lie group
homomorphism from H0(M,J) to H0(S, J). We show that τ is surjective by

constructing a right inverse. Any element V of h0(S, J) splits as V =
∑N

i=1 Vi,
with Vi in h0(Si, J); we can then assume that V = gradgSi

f + JgradgSi
h

belongs to h0(Si, J) for some i. Define V̂ by

(1.19) V̂ = Ṽ + εi(π
∗h)T − εi (π

∗f)JT

on M , where Ṽ denotes the horizontal lift of V on M0 with respect to the
Chern connection of L. In general, for any vector field X on any almost-
complex manifold (M,J), the Lie derivative of J along X is given by LXJ =
[X,J ·] − J [X, ·]; in particular, for any function f on M , we have:

(1.20) LfXJ = f LXJ + dcf ⊗X + df ⊗ JX.

We thus get:

LV̂ J = LṼ J + εi df ⊗ T + εi d
ch⊗ T

− εi d
cf ⊗ JT + εi dh⊗ JT.

(1.21)

In particular, (LV̂ J)(T ) = 0, as Ṽ commutes with T and JT for any vec-
tor field V on S. For any vector field Z on S, the horizontal component of
(LṼ J)(Z̃) = [Ṽ , J̃Z]− J [Ṽ , Z̃] is zero, as V is (real) holomorphic, whereas its
vertical component is equal to −εi ωi(V, JZ)T + εi ωi(V,Z)JT , hence to

−εi df(Z) − εi d
c(Z)T + εi d

cf(Z) − εi dh(Z)JT.

By substituting in (1.21), we get LV̂ J = 0. The map τ̂ : V 7→ V̂ is then a linear
map — in fact a Lie algebra homomorphism (easy verification) — from h0(S, J)
to h0(M,J), hence is right inverse of τ . The kernel of τ is the Lie algebra of
those holomorphic vector fields on M which are tangent to the fibers of π,
hence restrict to holomorphic vector fields on the projective lines P(C ⊕ Ly),
for all y on S: ker τ is then identified with the space H0(S,End0(1 ⊕ L)) of
holomorphic sections of the holomorphic vector bundle End0(E) of trace-free
endomorphisms of E = 1 ⊕ L, which is isomorphic to C ⊕ H0(S,L±), cf.
footnote 3 of page 11. The kernel of τ̃ in H0(M,J) is therefore identified with

C∗ nH0(S,L±)(4). This proves (i). For any admissible metric g = gλ,z, (1.19)
can be re-written as

(1.22) V̂ = gradg((λi + εi z)π
∗f) + J gradg((λi + εi z)π

∗h)

(4)An element α of H0(S, L∗) acts on M = P(1 ⊕ L) as follows: for any element ξ = (z : u)
of M over y in S, α · ξ = (z + 〈α(y), u〉 : u); similarly, any σ of H0(S, L) acts on M by:
σ · ξ = (z : u + z σ(y)). In the former case, C∗ acts on H0(S, L∗) by ζ · α = ζ−1 α, in the
latter case C∗ acts on H0(S, L) by ζ · σ = ζ σ.
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In particular, V̂ is Killing with respect to g if and only if V is Killing with
respect to gSi

. Moreover, all admissible Kähler metrics are invariant under
the natural S1-action; since S1 is a maximal subgroup of C∗ nH0(S.L±), we
get (ii).

In the sequel, the common reduced isometry group K0(M,g) for all admis-
sible Kähler metrics will be simply denoted by G. The Lie algebra, g, of G
splits as

(1.23) g = RT ⊕⊕N
i=1k0(Si, gSi

),

which is a Lie algebra direct sum; in particular, T belongs to the center of

g. For any X = aT +
∑N

i=1Xi in g and for any admissible metric g = gλ,z

in the (normalized) admissible Kähler class Ωλ, a Killing potential of X with
respect of g — cf. Section 1.6 — is hX

g = a z +
∑

i=1(λi + εi z)π
∗hi, where hi

is a Killing potential of Xi with respect to gSi
.

1.7. Ricci form and scalar curvature. — Throughout this section we fix
a (normalized) admissible Kähler class Ωλ. For any admissible momentum
z, pΩλ

(z) then denotes the function on M obtained by substituting z = x
in the characteristic polynomial; p′Ωλ

(z), p′′Ωλ
(z), . . . , etc. are defined simi-

larly, by substituting z = x in the derivatives of pΩλ
. We then have (cf. [1,

Section 5.1]):

Lemma 1.1. — For any admissible metric gλ,z in Ωλ, the Ricci form, ρ, and
the scalar curvature, s, of gλ,z, on M0, are given by

(1.24) ρ =
N
∑

i=1

π∗ρi −
1

2
ddc log (pΩλ

Θ)(z),

and

(1.25) s =

N
∑

i=1

π∗si

(λi + εi z)
− (pΩλ

Θ)′′(z)
pΩλ

(z)
,

where ρi and si denote the Ricci form and the scalar curvature of the Kähler
structure (gSi

, ωSi
) on Si.

Proof. — In general, the Ricci form of a Kähler structure (g, ω) of complex
dimension m is defined by ρ(·, ·) = r(J ·, ·), where r denotes the Ricci tensor
of g, and has the following local expression on the domain of any system of
holomorphic coordinates

(1.26) ρ =loc −
1

2
ddc log

vg

v0
,
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where vg = ωm

m! denotes the volume form of g and v0 stands for the volume
form of the standard flat Kähler metric determined by the chosen holomorphic
coordinates. (If these are denoted z1, . . . , zm, we then have v0 =

∏m
j=1

i
2dzj ∧

dz̄j , but the rhs of (1.26) is independent of this choice.)
For any admissible Kähler metric g, whose Kähler form is given by (1.12),

we clearly have

(1.27) vg = pΩλ
(z)

N
∏

i=1

vgSi
∧ dz ∧ dct = pΩλ

(z)Θ(z)

N
∏

i=1

vgSi
∧ dt ∧ dct.

To compute v0, we use holomorphic coordinates on each factor Si, viewed as
holomorphic coordinates onM , and complete them to a system of holomorphic
coordinates on an appropriate open subset of M0, by choosing any local non-
vanishing holomorphic section σ of L and adding the associated holomorphic
coordinate λ determined by u = λ(u)σ(π(u)) for any u in L (viewed as an
element of M0). We then have i

2dλ∧ dλ̄ = |λ|2 dt∧ dct up to terms which only
involve the differential of holomorphic coordinates coming from the base S,
hence contribute nothing to v0. We thus get

(1.28) v0 = |λ|2
N
∏

i=1

vi,0 ∧ dt ∧ dct,

where vi,0 denotes the volume form of the flat Kähler metric determined by the
chosen local holomorphic coordinates on Si. By comparing (1.27) and (1.28)
and by using (1.26), we get (1.24). The scalar curvature s is deduced from the
Ricci form ρ via the general identity:

(1.29) ρ ∧ ∗ω = ρ ∧ ωm−1

(m− 1)!
=
s

2
vg.

From (1.12), we infer(5)

ωm−1

(m− 1)!
= pΩλ

(z)

N
∏

i=1

π∗vgSi

+ pΩλ
(z)

N
∑

i=1

1

(λi + εi z)

π∗ωdi−1
i

(di − 1)!
∧
∏

k 6=i

π∗vgSk
∧ dz ∧ dct.

(1.31)

(5)In this and the above computation we use the general combinatorial identity

(1.30)
(
Pd

i=1 ai)
k

k!
=

X

k1,...,kd
P

ki=k

d
Y

i=1

a
ki
i

ki!
.
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The contribution of π∗ρi in ρ∧ ωm−1

(m−1)! only involves the second term in the rhs of

(1.31); by using (1.29) for each factor Si, this contribution is found to be equal

to 1
2(
∑N

i=1
π∗si

(λi+εi)
) vg. On the other hand, dc log Θ(z) = Θ′(z)

Θ(z) d
cz = Θ′(z) dct

and dc log pΩλ
(z) =

p′Ωλ
(z)

pΩλ
(z) d

cz =
p′Ωλ

(z) Θ(z)

pΩλ

dct, so that dc log (pΩλ
(z)Θ(z)) =

(pΩλ
Θ)′(z)

pΩλ
(z) dct; it follows that:

−1

2
ddc log (pΩλ

(z)Θ(z)) = −1

2

(pΩλ
Θ)′′(z)

pΩλ
(z)

dz ∧ dct

+
1

2

(pΩλ
Θ)′(z)

pΩλ
(z)

(

p′Ωλ
(z)

pΩλ
(z)

dz ∧ dct−
N
∑

i=1

εi ωSi

)

.

(1.32)

In the wedge product with ωm−1

(m−1)! , dz∧dct contributes via the first term in the

rhs of (1.31) only, whereas
∑N

i=1 εi ωSi
contributes via the second term only,

giving
∑N

i=1
diεi

(λi+εi z) vg =
p′Ωλ

(z)

pΩλ
(z) vg; the second term of (1.32) then contributes

to zero.

1.8. Hamiltonian 2-forms. — In general, a hamiltonian 2-form on a (con-
nected) Kähler manifold (M,g, J, ω) of complex dimension m is a J-invariant
real 2-form φ such that

(1.33) DXφ =
1

2
(d trφ ∧ JX[ − dc trφ ∧X[)

for any vector field X, where X[ denotes the dual 1-form of X with respect
to g and trϕ = (φ, ω) denotes the trace of φ with respect to g, defined as
follows: If φ is viewed as a skew-hermitian C-linear endomorphism of (TM,J)
via the metric g, so that φ(X,Y ) = g(φ(X), Y ), and if λ1 ≤ . . . ≤ λm de-
note the (real) eigenvalues of the corresponding hermitian operator −J ◦ φ,
then trφ :=

∑m
i=1 λi (for simplicity, the λi’s will be referred to as the eigen-

functions of φ). Hamiltonian 2-forms in Kähler geometry have nice prop-
erties, extensively studied in [1, 2, 3, 4]. In particular, for any hamil-
tonian 2-form φ, the elementary symmetric functions of its eigenfunctions
σ1 = trφ = λ1+. . .+λm, σ2 =

∑

i<j λiλj , . . . , σm = λ1 . . . λm are Poisson com-
muting Killing potentials. Moreover, if Kr = J gradgσr, r = 1, . . . ,m, denote
the corresponding hamiltonian vector fields, there exists an integer 0 ≤ ` ≤ m,
called the order of φ, and an open dense subset M0 of M such that K1, . . . ,K`

are linearly independent, whereas Kr linearly depends of K1, . . . ,K` for any
r > `. If ` = 1, the case of main interest in this paper, K = K1 = Jgradgtrφ
is called the hamiltonian Killing vector field of φ.
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Proposition 1.4. — Let M be an admissible ruled manifold and let Ωλ be a
normalized admissible Kähler class on M . Then, any admissible Kähler metric
g = gλ,z in Ωλ admits a hamiltonian 2-form of order 1, whose hamiltonian
Killing vector field is T , namely the 2-form ϕ defined by

(1.34) φ = −
N
∑

i=1

εiλi(λi + εiz)π
∗ωSi

+ z dz ∧ dct.

Proof. — We fist observe that the eigenfunctions of the J-invariant 2-form
ϕ defined by (1.34) with respect to g are the admissible momentum z, of
multiplicity 1, and the constant functions ξi = −εiλi, each of multiplicity di.
In particular,

(1.35) trφ = z −
N
∑

i=1

di εiλi.

The fact that ϕ is hamiltonian with respect to g is a straightforward con-
sequence of the following two lemmas, whose easy verification is left to the
reader:

Lemma 1.2. — The covariant derivative of T with respect to the Levi-Civita
connection of g is given by

DTT =
1

2
Θ′(z)JT, DJTT = −1

2
Θ′(z)T,

DX̃T =
1

2
Θ(z)

N
∑

i=1

εi JX̃i

(λi + εiz)

(1.36)

for any vector field X =
∑N

i=1Xi on S, where Xi sits in TSi, and X̃ =
∑N

i=1 X̃i denotes its horizontal lift on M with respect to the Chern connection
∇.

Lemma 1.3. — With the same notation, for i = 1, . . . , N , the covariant
derivative of π∗ωSi

is given by:

DT (π∗ωSi
) = 0, DJT (π∗ωSi

) = Θ(z)
N
∑

i=1

εiπ
∗ωSi

(λi + εiz)
,

DX̃(π∗ωSi
) =

1

2

N
∑

i=1

εi
(λi + εiz)

(

dcz ∧ π∗(X[
i ) − dz ∧ π∗(JX[

i )
)

,

(1.37)

where X[
i stands for the dual 1-form of Xi with respect to gSi

.
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1.9. Extremal admissible Kähler class. — In general, a Kähler structure
(g, J, ω) is called extremal if the scalar curvature s = sg is a Killing potential
with respect to g, i.e. if the hamiltonian vector field K = gradωs = Jgradgs,
is Killing or, equivalently, (real) holomorphic, cf. Section 1.6 and Section 2.1.

Proposition 1.5. — Let g be an admissible Kähler metric in a (normalized)
admissible Kähler class Ωλ, determined by an admissible momentum z. Then,
g is extremal if and only if its scalar curvature s is an affine function of z. In
this case the scalar curvatures of (Si, gSi

) are constant.

Proof. — For any i = 1, . . . , N , the dual vector field of dcπ∗si with respect to
the chosen admissible Kähler metric on M is 1

(λi+εi z) K̃i, where Ki denotes the

dual vector field of dcsi on Si with respect to gSi
, and K̃i denotes the horizontal

lift of Ki on M0. Notice that for any vector field, X, on S, the horizontal lift
X̃ commutes with T and JT ; we thus have [K̃i, T ] = [K̃i, JT ] = 0 for all i. On
the other hand, for any admissible Kähler metric, T is the symplectic gradient
of z. We thus infer from (1.25) the following expression of K:

(1.38) K =

N
∑

i=1

1

(λi + εi z)2
(K̃i − εi (π

∗si)T ) −
(

(pΩλ
Θ)′′

pΩλ

)′
(z)T.

By using (1.20), we infer:

LKJ =

N
∑

i=1

1

(λi + εi z)2
L(K̃i−εi (π∗si) T )J

+
N
∑

i=1

(

εi
(λi + εi z)2

)′
(z) (dcz ⊗ (K̃i − εi (π

∗si)T ) + dz ⊗ J(K̃i − εi (π
∗si)T ))

−
(

(pΩλ
Θ)′′

pΩλ

)′′
(z) (dcz ⊗ T + dz ⊗ JT ).

(1.39)

Since the K̃i’s commute with T and JT , we have that (L(K̃i−εi (π∗si) T )J)(T ) =

0, whereas dcz(T ) = Θ(z), dz(T ) = 0; we thus get
(1.40)

(LKJ)(T ) = Θ(z)
(

(

N
∑

i=1

( εi
(λi + εi z)2

)′
(K̃i − εi (π∗si)T ) −

((pΩλ
Θ)′′

pΩλ

)′′
T
)

.

Assume that the chosen admissible Kähler metric is extremal; then (LKJ)(T )

is identically zero. Since T and the K̃i’s sit in separate spaces, we infer that
the K̃i’s, hence the Ki’s are all identically zero; the scalar curvatures si are
then constant, so that s is a function of z. Moreover, the coefficient of T in
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the rhs of (1.40), which is identically zero, is then equal to d2s
dz2 , cf. (1.25); it

follows that s is an affine function of z. Conversely, if s is an affine function
of z, then K is a constant multiple of T , hence a Killing vector field, meaning
that g is extremal.

In view of Proposition 1.5, we henceforth assume without further comment
that the si’s are constant.

This assumption has in particular the following consequence, cf. [3, Propo-
sition 5]:

Proposition 1.6. — The common reduced isometry group G of all admissible
Kähler metrics — cf. Proposition 1.3 — is a maximal compact subgroup of
the reduced automorphism group H0(M,J).

Proof. — It is a well-known fact that for any compact Kähler manifold (M,J)
of constant scalar curvature the reduced isometry group K0(M,J) is a maxi-
mal compact subgroup of the reduced automorphism group H0(M,J). Propo-
sition 1.6 is then a direct consequence of Proposition 1.3.

For any (normalized) admissible Kähler class Ωλ, we infer from (1.25) and
Proposition 1.5 that an admissible Kähler metric g = gλ,z of momentum profile
Θ is extremal if and only if

(1.41) (pΩλ
Θ)′′(x) = R(x),

by setting

(1.42) R(x) = pΩλ
(x)

N
∑

i=1

si

(λi + εi x)
− pΩλ

(x)(αx + β),

for some (unknown) real constants α, β. All functions appearing in (1.41)–
(1.42) are defined on the open interval (−1, 1). Because of the boundary
conditions (1.14)–(1.15) for Θ, the polynomial R is subjected to the following
two constraints:

(1.43)

∫ 1

−1
R(x) dx = −2 pΩλ

(−1) − 2 pΩλ
(1),

(1.44)

∫ 1

−1
R(x)x dx = 2 pΩλ

(−1) − 2 pΩλ
(1).

These constraints in turn determine α, β, hence the polynomial R in terms of
the (constant) scalar curvatures si, and the characteristic polynomial pΩλ

(x).
In particular, R is entirely determined by the chosen admissible Kähler class
Ωλ, as are the constants α, β.
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In view of the extremality equation (1.41), we define F = F (x) — a poly-
nomial of degree at most (m+ 2) — by

(1.45) F ′′(x) = R(x)

and

(1.46) F (−1) = F (1) = 0,

cf. [3, Proposition 8]. The constraints (1.43)–(1.44) then insure that F also
satisfies:

(1.47) F ′(−1) = 2 pΩλ
(−1), F ′(1) = −2 pΩλ

(1).

Like R(x), the polynomial F (x) determined that way only depends of the
admissible Kähler Ωλ.

Definition 1.6. — For any (normalized) admissible Kähler class Ωλ on M ,
the polynomial F of degree at most (m + 2) determined by (1.45)–(1.46) is
called the extremal polynomial of Ωλ, henceforth denoted by FΩλ

.

From the above discussion, we readily infer:

(1.48) FΩλ
(x) = 2pΩλ

(−1)(1 + x) +

∫ x

−1
R(s)(x− s) ds.

Remark 1.5. — It readily follows from (1.42) and from the above definition
of the extremal polynomial FΩλ

that for each i = 1, . . . , N , the scalar curvature
si can be expressed by

(1.49) si =
F ′′

Ωλ
(−εiλi)

∏

k 6=i(λk − εkεiλi)

provided that εiλi 6= εkλk for k 6= i.

Proposition 1.7. — A (normalized) admissible Kähler class Ωλ on M ad-
mits an extremal admissible Kähler metric, g = gλ,z, for some admissible
momentum z, if and only if its extremal polynomial FΩλ

is positive on the
open interval (−1, 1). The momentum profile of g is then given by

(1.50) Θ(x) =
FΩλ

(x)

pΩλ
(x)

.

In particular, g is then uniquely defined up to the natural C∗-action on M .
Moreover, the scalar curvature s of g is given by

(1.51) s = α z + β,

where α, β are the real constants determined by (1.42)–(1.43)–(1.44). In partic-
ular, s is constant if and only if the leading coefficient of FΩλ

is equal to zero;
it is identically zero if and only if the leading and the sub-leading coefficients
of FΩλ

are both equal to zero.
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Proof. — In view of the above discussion, g is extremal if and only if its
momentum profile is given by (1.50). From (1.46)–(1.47), we deduce that the
function Θ defined by (1.50) is smoothy defined on the closed interval [−1, 1]
and satisfies the boundary conditions (1.14)–(1.15). It is then an admissible
momentum profile if and only if it is positive on (−1, 1). Since pΩλ

(x) is
positive on [−1, 1], this is equivalent to FΩλ

being positive on (−1, 1). In view
of Proposition 1.2, Θ is then the momentum profile of an extremal admissible
Kähler metric, uniquely defined up to the natural C∗-action. For a general
admissible Kähler metric in Ωλ, the scalar curvature is given by (1.25), or
equivalently,

(1.52) s = αz + β +
R(z) − (pΩλ

Θ)′′(z)
pΩλ

(z)
,

where the constants α, β are determined by (1.42)–(1.43)–(1.44). If g is ex-
tremal, this reduces to (1.51), because of (1.50) and (1.45). Moreover, from
(1.42) and (1.45), we readily infer that the extremal polynomial FΩλ

is of

the form FΩλ
(x) =

∑m+2
j=0 ajx

m+2−j , where the leading and the sub-leading
coefficients are given by

(1.53) a0 = ± α

(m+ 1)(m+ 2)
, a1 = ± β + (

∑N
k=1 dkλkεk)α

m(m+ 1)
,

with ± = −∏N
i=1 ε

di

i . The last statement of Proposition 1.7 follows immedi-
ately.

In view of of (1.53), the constants α, β will be referred to as the renormalized
leading coefficients of the extremal polynomial.

Definition 1.7. — An admissible Kähler class Ω is said to be far from the
boundary if Ω is a positive multiple of a normalized admissible Kähler class
Ωλ, with λi � 1, i = 1, . . . , N .

Lemma 1.4. — The extremal polynomial FΩλ
of a normalized admissible

Kähler class Ωλ far from the boundary has the following asymptotic behav-
ior:

(1.54) FΩλ
(x) =

(

N
∏

i=1

λdi

i

)

(1 − x2) + o(λ),

meaning that each coefficients of the polynomial
FΩλ

(x)
QN

i=1 λ
di
i

− (1− x2) tends to 0

when all λi’s tend to +∞.

Proof. — By dividing both sides of (1.43)–(1.44) by
∏N

i=1 λ
di

i and observing

that
(

∏N
i=1 λ

di

i

)−1
pΩλ

(x) tends to the constant polynomial 1 on [−1, 1] when
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the λi’s tend to +∞, we get the following limits for α = α(λ1, . . . , λN ) and
β = β(λ1, . . . , λN ):

(1.55) lim
λ1→+∞,...,λN→+∞

α = 0, lim
λ1→+∞,...,λN→+∞

β = 2.

This, in turn, implies that the polynomial R in (1.42) tends to the constant
polynomial −2; since R = F ′′

Ωλ
and FΩλ

(−1) = FΩλ
(1) = 0 for all λi’s, we

infer that FΩλ
tends to the polynomial 1 − x2 when all λi’s tend to 0.

Proposition 1.8. — Each admissible Kähler class far enough from the bound-
ary admits an extremal admissible Kähler metric.

Proof. — We can assume that Ω is a normalized admissible Kähler class Ωλ.
It follows from (1.54) that, when the λi’s go to infinity, all roots of the extremal
polynomial FΩλ

other than ±1 go to infinity. In particular, FΩλ
has no root in

the open interval (−1, 1) when Ωλ is far enough from the boundary; because of

the boundary conditions (1.46)–(1.47) and the fact that pΩλ
(−1) =

∏N
i=1(λi−

εi)
di and pΩλ

(1) =
∏N

i=1(λi+εi)
di are both positive, FΩλ

is positive on (−1, 1).
Proposition 1.8 then follows from Proposition 1.7.

A further consequence of Proposition 1.7 is the following result ([3, Proposi-
tion 11]):

Proposition 1.9. — In the case when all si are non-negative, any admissible
Kähler class admits an admissible extremal Kähler metric.

Proof. — By Proposition 1.7, it is sufficient to check that FΩλ
is positive on

(−1, 1) for any (normalized) admissible Kähler class Ωλ. Assume, for a con-
tradiction, that FΩλ

has zeros on (−1, 1). Because of the boundary conditions
(1.46)-(1.47), where pΩλ

(−1) and pΩλ
(1) are both positive, FΩλ

must have at
least two maxima and two inflection point on (−1, 1). Denote respectively by
xm < xM the smallest and greatest point of maxima in (−1, 1). Note also that
F ′′

Ωλ
= R(x) has at least two zeros in (−1, 1).

By (1.42), R(x) can be re-written as R(x) =
(

∏N
a=1(λa + εax)

da−1
)

q(x),

where q is the polynomial defined by

(1.56) q(x) =

N
∑

a=1

sa

∏

b6=a

(λb + εbx) − (αx+ β)

N
∏

a=1

(λa + εax).

In this expressions and in the sequel of the argument, we (temporarily) change
our overall notation in the following manner: N denotes the number of distinct
εiλi — that is to say the number of distinct constant values of the hamiltonian
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2-form φ, cf. Section 1.8 — and the latter are labeled by a, b = 1, . . . , N in
such a way that

(1.57) εKλK < . . . < ε1λ1 < −1 < 1 < εNλN < . . . < εK+1λK+1

where K is the number of negative εa’s. For each label a, we put da =
∑

i |εiλi=εaλa
di so that pΩλ

(x) =
∏N

a=1(λa + εax)
da and sa =

∑

i |εiλi=εaλa
si.

With this notation, the roots of R(x) are counted as follows: (1) the N real
numbers −εaλa — each with multiplicity da−1 — which all sit outside [−1, 1],
and (2) the roots of q. With our assumption, q has at least two roots, r1, r2
say, in (−1, 1), in fact in the subinterval (xm, xM ). Moreover, F ′′

Ωλ
(xm) and

F ′′
ΩxM

are both non-positive; since
∏N

a=1(λa + εax)
da−1 is positive on (−1, 1),

we then have q(xm) ≤ 0 and q(xM ) ≤ 0.
Denote by n−, resp. n+, the number of real roots of q in the interval

(−∞,−1], resp. in the interval [1,+∞) (counted with multiplicity). From
(1.56), we infer

(1.58) q(−εaλa) = sa

∏

b6=a

(λb − εbεaλa).

Since all si’s, hence all sa’s in the new notation, are non-negative, we infer
that q(−εaλa) q(−εbλb) ≤ 0 for any pair a, b, such that a, b ≤ K or a, b > K
and |a − b| = 1. There is then at least one real root of q between any two
consecutive −εaλa, −εbλb, with a, b ≤ K or a, b > K. It follows that

(1.59) n+ + 1 ≥ K, n− + 1 ≥ N −K,

hence

(1.60) n+ + n− + 2 ≥ N.

On the other hand,

(1.61) n+ + n− + 2 ≤ N + 1,

as the degree of q is at most equal to N + 1 and q has at least n+ + n− + 2
real roots: the 2 roots r1, r2 in (−1, 1) and n+ +n− roots outside this interval.
From (1.60) and (1.61), we infer that n+ + 1 = K or n− + 1 = N −K.

First assume that n+ + 1 = K; there is then exactly one root of q between
any two consecutive −εaλa,−εbλb, with i, j ≤ K and no roots in [1,+∞). In
particular, there is no root in the interval [1,−ε1λ1). From (1.58) we easily
infer q(−ε1λ1) ≥ 0, whereas q(xM ) ≤ 0; then, there exists a root, r3 say, of
q in the interval [xM , 1), hence distinct from r1, r2; we thus get at least three
roots of q in (−1, 1) and (1.61) can then be replaced by n+ + n− + 2 ≤ N ;
this, together with (1.60), implies n+ + n− + 2 = N , hence n− + 1 = N −K;
as above, we infer that there is no root of q in the interval (−εNλN ,−1]; by
(1.58) again, q(−εNλN ) ≥ 0, whereas q(xm) ≤ 0; there then exists a root of
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q, r4 say, in the interval (−1, xm], hence distinct from r1, r2 and r3; we thus
obtain (at least) four roots, r1, r2, r3, r4, of q in (−1, 1). It follows that (1.61)
can be improved by n+ + n− + 2 ≤ N − 1, which contradicts (1.60). Same
reasoning and same conclusion apply if we assume n− + 1 = N −K.

Remark 1.6. — Proposition 1.8 is a part of [3, Proposition 9]. Proposition
1.9 is [3, Proposition 10]; similar results have previously appeared in the lit-
erature, in particular in [25] and [21], cf. [3] for more details.

1.10. Hirzebruch-like surfaces. — In this section, we consider the par-
ticular case when N = 1 and the base S = S1 is a compact Riemann surface
of genus g. The resulting complex surface M = P(1 ⊕ L) will be called a
Hirzebruch-like surface of genus g: it is a genuine Hirzebruch surface [23]
when g = 0, a pseudo-Hirzebruch surface in the sense of [41] if g > 1. We as-
sume that the degree deg(L) = 〈c1(L), [S]〉 is negative — meaning that ε1 = 1
— equal to −`, and that gS is of constant scalar curvature s = 2κ. It then
follows from the Gauss-Bonnet formula that

(1.62) κ =
2(1 − g)

`
.

With the above assumption, for any real number λ > 1, the characteristic
polynomial of the (normalized) admissible Kähler Ωλ is simply

(1.63) pΩλ
(x) = λ+ x.

In view of (1.5), Ωλ can also be written:

(1.64) Ωλ = 2π (−(λ− 1) e0 + (λ+ 1) e∞)

for λ > 1. In the notation of Section 1.9, we have

(1.65) R(x) = −αx2 − (λα+ β)x+ 2κ− λβ.

The constraints (1.43)–(1.44) then read:
∫ 1

−1
R(x) dx = −2α

3
+ 4κ− 2λβ = −4λ,

∫ 1

−1
R(x)x dx = −2λα

3
− 2β

3
= −4,

(1.66)

so that

(1.67) α =
12λ− 6κ

3λ2 − 1
, β =

6λ2 + 6λκ− 6

3λ2 − 1
.

The extremal polynomial is then FΩλ
= (1 − x2)Q(x), with

(1.68) Q(x) = A(x2 − 1) + x+ λ,
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by setting

(1.69) A = A(λ) =
λ− κ/2

3λ2 − 1

(because of (1.62), A is positive; moreover, limλ→+∞A = 0). By Proposition
1.7, Ωλ admits an admissible extremal Kähler metric if and only if Q(x) is
positive on the open interval (−1, 1). Notice that Q(−1) = λ− 1 and Q(1) =

λ+1 are both positive, whereas Q′(−1) = 1−2A = (λ−1)(3λ+1)+κ
3λ2−1

and Q′(1) =

1 + 2A > 0. If κ ≥ 0, i.e. if the genus g of S is 0 or 1, then Q′(−1) > 0
and Q(x) is then positive on (−1, 1) for any λ > 1. If κ < 0, i.e. g > 1,
Q′(−1) is positive for large values of λ — hence Q(x) is positive on (−1, 1)
— but it takes negative values when λ is small, namely for any λ such that
(λ − 1)(3λ + 1) < −κ. For these values of λ, Q achieves its minimum at
x0 = − 1

2A ; this belongs to the open interval (−1, 0), as Q′(−1) = 1 − 2A < 0,

and Q(x0) = − D(λ)
4(3λ2−1)(λ−κ/2) , where

D(λ) = −3λ4 + 6κλ3 + 2λ2 − 6κλ+ 1 + κ2

= (λ2 − 1)(−3λ2 + 6κλ− 1) + κ2.
(1.70)

It is easyto check that, for any negative value of κ, the rhs of (1.70) decreases
from ∆(1) = κ2 > 0 up to −∞, when λ runs from 1 to +∞; it follows that
the equation D(λ) = 0 has a unique root greater than 1, called λ0. From this
and from Proposition 1.7 we infer:

Theorem 1.1. — Let M be a Hirzebruch-like surface of genus g. Then, each
Kähler class Ω is admissible, hence a positive multiple of a normalized admis-
sible Kähler class Ωλ for some λ > 1.

Denote by λ0 the unique root greater than 1 of the equation D(λ) = 0, where
D(λ) is defined by (1.70). Then:

(i) If g ≤ 1 or if g > 1 and λ > λ0, then Ωλ admits an extremal admissible
metric, unique up to the natural action of C∗.

(ii) If g > 1 and λ ≤ λ0, then Ωλ admits no extremal admissible Kähler
metric.

Remark 1.7. — The case when g = 0 in Theorem 1.1, and, more generally,
the case when S is a complex projective space of any dimensions, are due to
E. Calabi [8] and constitute the first examples of (compact) extremal Kähler
manifolds of non-constant scalar curvature (cf. also [38] for an alternative
approach). As mentioned earlier, our general approach can be viewed as a
generalization of Calabi’s method. The case when g = 1 was worked out
by A. Hwang in [25] and D. Guan in [21]. The case when g > 1 is due to
the fourth author [41] and constitute the first known family of examples of
(compact) Kähler manifolds where the extremal Kähler cone is non-empty but



EXTREMAL KÄHLER METRICS 25

does not fill the Kähler cone. Notice that in the latter case, Theorem 1.1 does
not imply the non-existence of — non-admissible — extremal Kähler metric if
λ ≥ λ0 (more on this point in [41]). This question will be settled in Section 2.3.

2. Relative K-energy and extremal metrics

2.1. The space of Kähler metrics. — In this section, we briefly review
some general facts concerning the space MΩ of Kähler metrics on a compact
complex manifold (M,J) of (complex) dimension m, in a fixed Kähler class
Ω. The presentation and the notations are taken from [19].

An element of MΩ will be indifferently designated by a Kähler riemannian
metric g or by its Kähler form ω = g(J ·, ·), with [ω] = Ω, or by the pair (g, ω).
As a consequence of the ddc-lemma in Kähler geometry, cf. e.g., [20], MΩ is
essentially a space of (real) functions. More precisely, for any fixed reference
element ω0 in MΩ, we have that

(2.1) MΩ = {ϕ |ω := ω0 + ddcϕ > 0},

where ϕ, the relative Kähler potential of ω relative to ω0, is well-defined up to
a (real) additive constant (here, ω > 0 means that g = ω(·, J ·) is a riemannian
metric). The relative potential can be normalized, cf. [14], in such a way
that, for any g in MΩ, the tangent space TgMΩ be identified with the space
of real functions f on M such that

∫

M f vg = 0. The L2-norm on this space
then gives MΩ a structure of riemannian Fréchet manifold, first introduced
and studied by T. Mabuchi [32].

The Mabuchi metric on MΩ admits a Levi-Civita connection, denoted by
D. For any real function f on M , let f̂ be the constant vector field on MΩ

defined by g 7→ f − f̄ , where f̄ =
R

M
fvg

VΩ
denotes the mean value of f . The

covariant derivative D is entirely determined by the Df̂ ’s, which are given by

(2.2) Df1 f̂2 = −(df1, df2)g +

∫

M (df1, df2) vg

VΩ

for any g in MΩ and any f1 in TgMΩ. In particular, a curve ωt = ω0 + ddcϕt,
t ∈ [0, 1], in MΩ is a geodesic if and only if

(2.3) ϕ̈t − (dϕ̇t, dϕ̇t)gt = 0.

As observed by S. Semmes [37], the geodesic equation (2.3) can be re-written
as a degenerate homogeneous Monge-Ampère equation my considering ϕt as
a function, Φ say, defined on the product M̂ := M × Σ, where Σ here stands
for the cylinder [0, 1] × S1, equipped with the complex structure determined
by J∂/∂t = ∂/∂s, where s denotes the natural parameter of the additional
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circle factor S1. By still denote by ω the pull-back of ω on M̂ , the geodesic
equation can be rewritten as

(2.4) (ω + ddcΦ)m+1 = 0

for S1-invariant functions Φ defined on M × Σ such that Φ(·, t) is a relative
Kähler potential on M with respect to ω0.

Remark 2.1. — The Monge-Ampère equation (2.4) makes sense when Σ is
replaced by any Riemann surface with boundary. Let Φ be a (smooth) solution
of (2.4), such that Φ(·, τ) is a relative Kähler potential on M with respect to
ω0 for any τ in Σ. Choose a local holomorphic coordinate z = t + is on Σ:
Φ then appears as a family of relative Kähler potentials parametrized by s, t,
ϕ = ϕ(t, s), and the Monge-Ampère equation (2.4) is then equivalent to

(2.5) ϕ̈tt + ϕ̈ss − |dϕ̇t − dcϕ̇s|2gt,s
= 0,

where gs,t denotes the Kähler metric of relative Kähler potential ϕ(s, t), cf. [14].
The Monge-Ampère equation (2.4) makes sense in particular when Σ is the

(closed) unit disk D in C. In this case, it has a nice interpretation in terms of
holomorphic disks [31], [37], [13], which plays a crucial rôle in the theory, in
particular in the proof given by Chen-Tian of Theorem 2.1 below.

The group H(M,J) — cf. Section 1.6 — acts on MΩ and preserves its
riemannian structure. For any (real) vector field X in its Lie algebra h and

any (g, ω) in MΩ, the induced vector field X̂ on MΩ is g 7→ fX
g , where fX

g

denotes the real potential of X with respect to g, as defined in Section 1.6.
The scalar curvature determines a vector field, ŝ, on MΩ via the assign-

ment g 7→ (sg − s̄), with s̄ =
R

M
sg vg

VΩ
(notice that

∫

M sg vg = 2π (c1(M) ∪
Ωm−1

(m−1)! )[M ] =: SΩ is independent of g in MΩ). The dual 1-form, σ, is

σ(g) = sg vg, via the duality relation 〈σ, f〉 =
∫

M sgfvg, for any f in TgMΩ.
Both ŝ and σ are left invariant by H(M,J). The covariant derivative of σ is
given by

(2.6) Dfσ = −2 (D−d )∗D−df vg,

for any g in MΩ and any f in TgMΩ, cf. e.g. [19, Chapter 4] and Section
1.6 for the notation. Recall, cf. Section 1.6, that the kernel of the operator
(D−d )∗D−d is the space Pg of Killing potentials for g. It then follows from
(2.6) that the critical point of the Calabi functional C(g) =

∫

M (sg − s̄)2 vg =
σg(ŝ) on MΩ are those metrics g in MΩ whose scalar curvature is a Killing
potential.

Since (D−d)∗D−d is self-adjoint, a further direct consequence of (2.6) is
that the 1-form σ is closed. Since σ is H(M,J)-invariant, by using the Cartan
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formula 0 = LX̂σ = ιX̂dσ+ d(ισ̂σ), we infer that σ(X̂) is constant on MΩ for
any X in h, cf. [7]. We thus obtain an R-linear form FΩ : h → R, defined by

(2.7) FΩ(X) = σ(X̂) =

∫

M
fX

g sg vg.

By the above discussion, the rhs of (2.7) is independent of the choice of the
metric g in MΩ. This linear form has been first introduced by A. Futaki in [17]
for Fano manifolds, then extended to general Kähler manifolds by E. Calabi
in [9]. It will be referred to as the Futaki invariant or the Futaki character(6)

of Ω.
We also consider the Futaki-Mabuchi bilinear form, BΩ, defined on h0, the

Lie algebra of the reduced group of automorphisms H0(M,J), cf. Section 1.6,
by

(2.8) BΩ(X,Y ) =

∫

M
fX

g f
Y
g vg −

∫

M
hX

g h
Y
g vg,

for any X = gradgf
X + Jgradgh

X , Y = gradgf
Y + Jgradgh

Y in h0. It can
be checked that the rhs of (2.8) is independent of the metric g in MΩ, cf.
[18]. Notice that BΩ(JX, JY ) = −BΩ(X,Y ), for any X,Y in h0 and that
BΩ is negative definite on the space, k0, of hamiltonian Killing vector fields,
and positive definite on Jk0 ⊂ h0. For any two elements X,Y in h0, with
BΩ(Y, Y ) 6= 0, we define the relative Futaki invariant of X with respect to Y
by

(2.9) FΩ(Xmod Y ) = FΩ(X) − BΩ(X,Y )

BΩ(Y, Y )
FΩ(Y ).

The Mabuch K-energy, E , is defined on MΩ by

(2.10) σ = −dE ,
i.e.

(2.11) dEg(f) = −
∫

M
f sg vg,

for any g in MΩ and any f in TgMΩ. Since σ is closed and MΩ is contractible,
E exists and is well-defined up to an additive constant; we denote by Eω0 the
unique determination of E which vanishes at the chosen base element ω0 on
MΩ. It follows from (2.6) that E is D-convex on MΩ, meaning that its Hessian
DdE is non-negative; moreover, for any g in MΩ, its kernel in TgMΩ is the
space of Killing potentials of mean value zero.

(6)It easily follows from its definition that FΩ is a character of the Lie algebra h, i.e. vanishes
on the derived ideal [h, h].
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Because of (2.10), the critical points of E are the zeros of σ, hence the metrics
of constant scalar curvature in MΩ. To generalize the setting to include
extremal metrics of non-constant scalar curvature — the case of main interest
in this paper — it is convenient to substitute a relative version introduced by
D. Guan in [22] and S. Simanca in [39]. This is done as follows.

Let G be a maximal compact subgroup of H0(M,J) and denote by MG
Ω the

space ofG-invariant Kähler metrics in Ω. MG
Ω is a totally geodesic submanifold

of MΩ. In virtue of a celebrated theorem of Calabi [9], any extremal Kähler
metric in MΩ — if any — belongs to the H0(M,J)-orbit of an element of
MG

Ω . Since G is maximal in H0(M,J), its Lie algebra, g, is the Lie algebra of
all hamiltonian Killing vector fields for each element, g, of MG

Ω . Notice that,
while the latter is independent of g, the space, Pg, of Killing potentials with
respect to g does depend of g.

For any g in MG
Ω , of scalar curvature sg, the Killing part, ΠG

g (sg), of sg

is defined as the L2-projection of s relative to g in Pg. The reduced scalar

curvature of g, denoted by sG
g , is defined by

(2.12) sG
g = sg − ΠG

g (sg).

Then, g is extremal if and only if its reduced scalar curvature sG
g is identically

zero.
The vector field ZG

Ω = grad(ΠG
g (s)) — called the extremal vector field of the

pair (Ω, G) — is independent of g in MG
Ω and can be alternatively determined

by

(2.13) FΩ(JX) = BΩ(JX,ZG
Ω ),

for any X in g. Notice that ZG
Ω belongs to the center z of g. Its lift, ẐG

Ω , on

MG
Ω is the vector field g 7→ ΠG

g (sg). It turns out that ẐG
Ω is D-parallel, and so

is its dual 1-form ζG
Ω , cf. [19]. We now consider the 1-form on MG

Ω defined by

(2.14) σG = σ|MG
Ω
− ζG

Ω .

Since ζG
Ω is D-parallel, we infer from (2.6)

(2.15) Dfσ
G = −2 (D−d )∗D−df,

for any f in TgMG
Ω . In particular, σG is closed.

Denote by HG(M,J) the normalizer of G in H0(M,G) and by hG the Lie
algebra of HG(M,J). The group HG(M,J) acts on MG

Ω and we define as
above the relative Futaki character FG

Ω : hG → R by

(2.16) FG
Ω (X) = σG(X̂) =

∫

M
fX

g sG
g vg.

As before, Ω : hG → R is independent of g in MG
Ω .
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The relative K-energy EG is defined by

(2.17) σG = −dEG,

i.e. by

(2.18) dEG
g (f) = −

∫

M
f sG

g vg,

for any g in MG
Ω and any f in TgMG

Ω . Since σG is closed and MG
Ω is con-

tractible, EG is well-defined up to an additive real constant. As before, we
denote by EG

ω0
the determination of EG which is zero at the chosen base point

ω0. By (2.17), the critical points of EG are the zeros of σG, hence the extremal
metrics in MG

Ω . Moreover, since DσG = Dσ|MG
Ω
, EG is D-convex and, at each

g in MG
Ω , the kernel of the Hessian DdEG is the space of G-invariant Killing

potentials relative to g.

2.2. The Chen-Tian Theorem. — The K-energy E and the relative K-
energy EG defined in Section 2.1 play an important role in the theory of ex-
tremal Kähler metrics, due in particular to the following observation.

Proposition 2.1 (S. Donaldson [14]). — Let ω0, ω be any two elements
of MG

Ω . Assume that ω0 is extremal. Assume, moreover, that there exists a
geodesic ωt = ω0 + ddcϕt, t ∈ [0, 1], between ω0 and ω = ω1. Then

(2.19) EG(ω) ≥ EG(ω0)

and equality holds if and only if ω is extremal. If so, ω belongs to the H0(M,J)-
orbit of ω0.

Proof. — (Sketch) To simplify notation, let’s write f(t) for EG(ωt); we can
assume f(0) = 0. By (2.17), we have that f ′(t) = −σG(T ), where T denotes
the tangent vector field along the geodesic ωt, given by the assignment t 7→
ϕ̇t ∈ TωtMG

Ω . In particular, f ′(0) = 0, since ω0 is extremal. By using (2.15),
we get:

f ′′(t) = −(DTσ
G)(T ) − σG(DTT )

= −(DTσ
G)(T ) = 2

∫

M
((D−d )D−dϕ̇t, ϕ̇t) vgt

= 2

∫

M
|D−dϕ̇t|2 vgt

(2.20)

The last term is non-negative and is zero if and only if ϕ̇t is a Killing potential
with respect to gt for each t in [0, 1], cf. Section 1.6. Proposition 2.1 follows
easily.

This argument has been extended by X. X. Chen and G. Tian in the following
way (cf. also Remark 2.1 for the notation):
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Proposition 2.2 (X. Chen–G. Tian [13]). — Let ω0 be a fixed element of
MG

Ω and let Φ be a smooth G-invariant solution of the Monge-Ampère equation
(2.4) defined on M × Σ for any Riemann surface with boundary Σ. Suppose
that, for any τ in Σ, Φ(·, p) is the relative Kähler potential of an element

ω(τ) = ω0 + ddcΦ(·, τ) in MG
Ω , so that the relative energy EG(τ) := EG(ω(τ))

can be regarded as a function defined on Σ. Let z = t+is be a local holomorphic
coordinate on Σ. Then, with the notation of Remark 2.1, EG(τ) satisfies the
following equality

(2.21)
d2EG

dt2
+
d2EG

ds2
= 2

∫

M
|D−(dϕ̇t − dcϕ̇s)|2ω(τ)

vg(τ)
.

In particular, d2EG

dt2
+ d2EG

ds2 ≥ 0, with equality if and only if Z := gradgt,s
ϕ̇t −

Jgradgt,s
ϕ̇s is a (real) holomorphic vector field on M for any τ in Σ.

Proof. — From (2.18), we infer dEG

dt = −
∫

M sG
g(τ)ϕ̇t vg(τ) . It is easily deduced

from (2.15) that, in general, the first variation of the reduced scalar curvature
at g in MG

Ω in the direction of f is given by

(2.22) ˙sG(f) = −2(D−d)∗D−df + (dsG
g , f),

whereas the first variation of the volume form is given by v̇g(f) = −∆gf vg.

The second derivative of EG with respect to t is then given by

(2.23)
d2EG

dt2
= 2

∫

M
|D−dϕ̇t|2 vg −

∫

M
(ϕ̈tt − (dϕ̇t, dϕ̇t)g(τ)) sG

g(τ)vg(τ) .

We get a similar formula by replacing t by s, hence, by using (2.5):

d2EG

dt2
+
d2EG

ds2
= 2

∫

M
|D−(dϕ̇t − dcϕ̇s)|2 vgτ

+ 2

∫

M

(

2(D−dϕ̇t,D
−dcϕ̇s) + (dϕ̇t, d

cϕ̇s) s
G
gτ

)

vgτ

(2.24)

where the second term in the rhs is actually zero(7). The last assertion of
Proposition 2.2 follows easily (see Section 1.6).

(7)This is an easy consequence of the following general formula (see Section 1.6 for the
notation):

(2.25) (D−

d)∗D−

d
c
f = −

1

2
LKf,

for any function f on a Kähler manifold of scalar curvature sg, with K := Jgradgsg. Here,
(2.25) is applied to f = ϕ̇s. Moreover, since ϕ̇s is G-invariant, K can be replaced by
KG := JgradgsG

g .
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The argument in Proposition 2.1 only holds for metrics which are linked to
extremal metrics by a geodesic. On the other hand, the existence issue for
geodesics in MΩ has remained an open question, principally because of the
lack of regularity for solutions of the Monge-Ampère equation (2.4). In [13],
X. X. Chen and G. Tian established a (weak) regularity theorem for solutions
of (2.4), improving a previous regularity result by X. X. Chen [10] which
asserts the existence of solutions in the class C1,1. From this, and by using
the above Proposition 2.2, they were able to deduce the following fudamental
results:

Theorem 2.1 (X. X. Chen–G. Tian [11], [12], [13])
(i) All extremal metrics in MΩ, if any, belong to a unique H0(M,J)-orbit.
(ii) Let ω0 be an extremal metric in MΩ. Without loss of generality, assume

that ω0 belongs to MG
Ω. Then,

(2.26) EG(ω) ≥ EG(ω0),

with equality if and only if ω is extremal.

2.3. The relative energy of admissible metrics. — Denote by Madm
Ωλ

the space of admissible Kähler metrics in a given (normalized) admissible
Kähler class Ωλ. Then, Madm

Ωλ
⊂ MG

Ωλ
, where G is the maximal compact

subgroup of H0(M,J) given by Propositions 1.3–1.6, and the reduced scalar
curvature is given by the following proposition (cf. [3, Proposition 6]):

Proposition 2.3. — For any (normalized) admissible Kähler class Ωλ and
for any admissible Kähler metric g = gλ,z in Ωλ, of scalar curvature sg, the
Killing part of sg is given by

(2.27) ΠG
g (sg) = α z + β,

where α, β denote the renormalized leading coefficients of the extremal poly-
nomial FΩλ

, defined by (1.53), whereas the reduced scalar curvature has the
following expression:

(2.28) sG
g =

(FΩλ
− pΩλ

Θ)′′(z)
pΩλ

(z)
.

Proof. — For any admissible Kähler metric in a (normalized) Kähler class, it
follows from (1.23) that the space Pg of Killing potentials relative to g splits
as

(2.29) Pg = R ⊕ R z ⊕
(

⊕N
i=1P

0
gSi

)

,

where: R denotes the space of constant functions; R z the space generated by
z; P 0

gSi
denotes the space of Killing potentials of mean value zero on (Si, gSi

).

By (1.52), the scalar curvature s is a function of z only; by (1.27), s is then
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L2-orthogonal to all Killing potentials in ⊕N
i=1P

0
gSi

. In order to prove (2.27),

it is sufficient to check that
R(x)−(pΩλ

Θ)′′(x)

pΩλ
(x) is orthogonal to 1 and to z. In

view of (1.27), this amounts to checking that
∫ 1
−1(R(x)− (pΩλ

Θ)′′(x)) dx = 0

and
∫ 1
−1(R(x) − (pΩλ

Θ)′′(x))x dx = 0; in view of the boundary conditions

(1.14)–(1.15) for Θ, these two conditions are equivalent to (1.43)–(1.44); since
R = F ′′

Ωλ
, (2.28) follows from (2.27) and (1.52).

Corollary 2.1. — For any admissible Kähler class Ωλ, denote by ZG
Ωλ

the

extremal vector field relative to the pair (G,Ωλ), see Section 2.1. Then

(2.30) JZG
Ωλ

= αT.

Proof. — By definition, ZG
Ωλ

= gradg(Π
G
g (sg), for any g in MG

Ωλ
, hence for

gλ,z. Since, −JT = gradgλ,z
z, (2.30) readily follows from (2.27).

Corollary 2.2. — For any admissible Kähler class Ωλ, we have

FΩλ
(−JT ) =

2πV (S)
∫ 1
−1 pΩλ

(s)ds
×

α
(

∫ 1

−1
s2pΩλ

(s)ds

∫ 1

−1
pΩλ

(s)ds−
∫ 1

−1
s pΩλ

(s)ds

∫ 1

−1
s pΩλ

(s)ds
)

(2.31)

and

BΩλ
(−JT,−JT ) =

2πV (S)
∫ 1
−1 pΩλ

(s)ds
×

(

∫ 1

−1
s2pΩλ

(s)ds

∫ 1

−1
pΩλ

(s)ds−
∫ 1

−1
s pΩλ

(s)ds

∫ 1

−1
s pΩλ

(s)ds
)

,

(2.32)

where V (S) =
∏

V (Si, gSi
) denotes the volume of S. In particular,

(2.33) FΩλ
(−JT ) = αBΩλ

(−JT,−JT ).

Proof. — Since T is a hamiltonian Killing vector field of momentum z, −JT
belongs to Jg and its real holomorphic potential is z − z̄, where z̄ =

R

M
zvg

R

M
vg

is the mean value of z. Since z − z̄ belongs to Pg, in (2.7) only the Killing
part ΠG

g (sg) = αz + β contributes: we then get FΩ(−JT ) = α
∫

M (z − z̄)zvg

and BΩλ
(−JT,−JT ) =

∫

M (z − z̄)2 vg. By using the expression (1.27) of vg,
we readily get (2.31) and (2.32); (2.33) follows readily; alternatively, (2.33)
follows from (2.32) and Corollary 2.1, via (2.13).
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Choose a reference element in Madm
Ωλ

, e.g. the standard admissible metric

ω0 corresponding to the admissible momentum z0(t) = tanh t, cf. Section 1.5.
Any other element ω of Madm

Ωλ
can be written ω = ω0 + ddcφ, where φ = φ(t),

called the relative potential of ω, is uniquely determined by ω up to an additive
constant. Notice that

(2.34) z = z0 +
dφ

dt
.

For any curve ωs in Madm
Ωλ

we set ω̇ = dωs

ds |s=0
and we denote similarly the first

variations of all objects determined by ω; we thus have: ω̇ = ddcφ̇, ż = dφ̇
dt ,

etc. By identifying ω̇ with φ̇ we identify each tangent space TgMadm
Ωλ

of Madm
Ωλ

with the space of all smooth real functions of t mod constant functions.
Although it is a hard task to get an explicit expression of the relative energy

EG(g) for a general element of MG
Ωλ

, it turns out that the restriction of EG to

Madm
Ωλ

admits a simple explicit expression in terms of the extremal polynomial

FΩλ
, given by the following proposition (cf. [3, Proposition 7]):

Proposition 2.4. — For any admissible metric g in Ωλ, of momentum pro-
file Θ, we have

(2.35) EG(g) = C

∫ 1

−1

(

FΩλ
(x)

Θ(x)
+ pΩλ

(x) log Θ(x)

)

dx mod R,

with C = 2π
∏N

i=1 Vi, where Vi denotes the volume of (Si, gSi
).

Proof. — The restriction of EG to Madm
Ωλ

is determined by

(2.36) dEG
g (φ̇) = −

∫

M
sG
g φ̇ vg

for any g = gλ,z in Madm
Ωλ

and for φ̇ = φ̇(t), any function of t mod R, where,

we recall, sG
g denotes the reduced scalar curvature of g with respect to G. By

using (2.28) and (1.27), we get

(2.37) (dEG)g(φ̇) = −C
∫ 1

−1
(FΩλ

− pΩλ
Θ)′′ (x)f(x) dx,

where C is as above and by setting

(2.38) f(x) = φ̇(z−1(x)).

By integrating by part twice and by observing that at each step the intregrated
terms vanish because of (1.14)–(1.15)–(1.46)–(1.47), we get

(2.39) (dEG)g(φ̇) = −C
∫ 1

−1
(FΩλ

− pΩλ
Θ) (x)f ′′(x) dx.
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From (2.38) we get f ′(x) = ż(z−1(x))
Θ(x) , hence f ′′(x) = 1

Θ2(x)

(

dż
dt (z

−1(x)) − Θ′(x)(ż(z−1(x))
)

.

On the other hand, from (1.13), we get Θ̇(x) = dż
dt (z

−1(x)) − Θ′(x)ż(z−1(x)).
We thus end up with

(2.40) f ′′(x) =
Θ̇(x)

Θ2(x)
.

By substituting in (2.39), we eventually obtain

(2.41) (dEG)g(φ̇) = C

∫ 1

−1

(

−FΩλ
(x)

Θ2(x)
+
pΩλ

(x)

Θ(x)

)

Θ̇(x) dx,

for any φ̇ = φ̇(t) in TgMadm
Ωλ

, where the extremal polynomial FΩλ
and the

characteristic polynomial pΩλ
are both independent of g in MΩλ

. The rhs of
(2.41) is then the first derivative in Madm

Ωλ
of the rhs of (2.35).

Proposition 2.5. — Let Ωλ be any admissible Kähler class on M .
(i) Assume that FΩλ

is positive on (−1, 1) and denote by g0 an admissible

extremal Kähler metric in Ωλ, of momentum profile Θ0 =
FΩλ

pΩλ

(cf. Proposition

1.7). Then, for any admissible Kähler metric in Ωλ, we have

(2.42) EG(g) ≥ EG(g0),

with equality if and only if g is extremal, hence equal to g0 up to the natural
R>0-action on M .

(ii) Assume that FΩλ
is negative on a non-empty open subinterval I of

(−1, 1). Then, for any admissible Kähler metric g in Ωλ, there exists a half-
line gs of admissible Kähler metrics in Ωλ, with s in [0,+∞) and g0 = g, such
that EG(gs) tends to −∞ when s tends to +∞.

Proof. — (i) From (2.35) we infer

(2.43) EG(g0) = C

∫ 1

−1
(1 + log

FΩλ
(x)

pΩλ

(x)) pΩλ
(x) dx,

whereas

(2.44) EG(g) = C

∫ 1

−1
(

FΩλ
(x)

pΩλ
(x)Θ(x)

+ log Θ(x)) pΩλ
(x) dx.

We thus get

(2.45) EG(g) − EG(g0) = C

∫ 1

−1
(A(x) − 1 − logA(x)) pΩλ

(x) dx

by setting

(2.46) A(x) =
FΩλ

(x)

pΩλ
(x)Θ(x)

.
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Now, A(x) is positive for any x in (−1, 1) by hypothesis and, by Proposi-
tion 1.7, is identically equal to 1 if and only if g is extremal. It is easy to check
that the function φ(t) := t − 1 − log t defined on (0,+∞) is convex, tends to
+∞ when t tends to 0 or to +∞, and reaches its unique minimum 0 at t = 1.
It follows that the rhs of (2.45) is positive except when A = A(x) is identically
equal to 1, i.e. when g is extremal.

(ii) Let Θ be the momentum profile of any admissible Kähler metric g in
Ωλ. Let ϕ be a non-negative, non-constant smooth function on (−1, 1) which
is compactly supported in the interval I, and set

(2.47) Θs(x) =
Θ(x)

1 + s ϕ(x)Θ(x)
,

for any non-negative real number s. By Proposition 1.2, Θs is the momentum
profile of an admissible Kähler metric, gs, in Ωλ for any s ≥ 0, with g0 = g.
Moreover

EG(gs) =EG(g) + C

∫ 1

−1
s ϕ(x)FΩλ

(x) dx

− C

∫ 1

−1
log (1 + s ϕ(x)Θ(x)) dx

(2.48)

where,
∫ 1
−1 s ϕ(x)FΩλ

(x)) dx =
∫

I ϕ(x)FΩλ
(x)) dx is a negative multiple of s.

It follows that the rhs of (2.48) tends to −∞ when s tends to +∞.

Remark 2.2. — The expression (2.35) of the (relative) energy of admissible
metrics, as well as the argument in Proposition 2.5, are quite reminiscent to
Donaldson’s paper [15] for toric manifolds.

Now we are ready to state and prove the main result of [3]:

Theorem 2.2. — Let M = P(1 ⊕ L) be any admissible ruled manifold and
let Ωλ be any (normalized) admissible Kähler class on M . Then, Ωλ contains
an extremal Kähler metric — which is then admissible up to the action of
H0(M,J) — if and only if the extremal polynomial FΩλ

is (strictly) positive
on (−1, 1).

Proof. — By Proposition 1.7, if FΩλ
is positive on (−1, 1), Ωλ contains an

admissible extremal Kähler metrics. By Proposition 2.5, if FΩλ
is negative

on some open subinterval of (−1, 1), the relative K-energy EG is not bounded
from below: by Theorem 2.1 (ii), Ωλ contains no extremal Kähler metric.

It remains to consider the limiting case, when FΩλ
is non-negative but has

(repeated) zeros on (−1, 1). Suppose that FΩλ
is of this form and assume, for a

contradiction, that Ω = Ωλ contains an extremal Kähler metric, (g, ω) say. In
view of the already mentioned Calabi theorem, we can assume that the pair
(g, ω) is G-invariant (cf. Proposition 1.6). By LeBrun-Simanca’s openness
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theorem [29, 30], any (normalized) admissible Kähler class Ωλ′ , with λ′ close
to λ in RN , contains an extremal Kähler metric. More precisely, LeBrun-
Simanca’s theorem asserts the existence of a sequence of extremal Kähler
metrics (g̃k, ω̃k), with [ω̃k] = Ωk, which converges to (g, ω) in the Fréchet
topology and the (g̃k, ω̃k) can be again chosen G-invariant.

Two cases then may a priori occur: (i) either, FΩλ′
has repeated roots

on (−1, 1) for all λ′ in some open neighborhood of λ in RN , or else: (ii)
there exists a sequence of (normalized) admissible Kähler classes Ωk = Ωλk

converging to Ω — meaning that λk converges to λ in the usual sense — such
that FΩk

is positive on (−1, 1) for each k.
Case (i) would imply that the discriminant of FΩλ

is zero as a polynomial
with coefficients in the fieldR(λ1, . . . , λN ) of rational fractions in {λ1, . . . , λN}:
this would contradict Proposition A.1 in Appendix A (by substituting λi = εiλ
in FΩλ

, regarded as a polynomial with coefficients in R(λ1, . . . , λN ), up to a

factor
∏N

i=1 ε
di

i , we get the extremal polynomial of an admissible Kähler class
Ωλ, as a polynomial with coefficient in R(λ), on an admissible ruled manifold

with N = 1, d =
∑

i=1 di and s =
∑N

i=1 si). Case (i) is thus discarded.
Now assume, again for a contradiction, that Case (ii) occurs. LeBrun-

Simanca openness theorem actually guarantees the existence of a sequence,
(g̃k, ω̃k), of G-invariant extremal Kähler metrics, with [ω̃k] = Ωk for each
k, which converges to (g, ω) in the Fréchet topology. On the other hand,
since FΩk

is positive on (−1, 1), Proposition 1.7 guarantees the existence of an
admissible extremal Kähler metric, (gk, ωk) say, in each Ωk, unique up to the

natural C∗-action, with ωk =
∑N

i=1((λk)i + εi zk)π
∗ωi + dzk ∧ dct, cf. Section

1.3.
By Theorem 2.1, for any k the extremal Kähler metrics (gk, ωk) and (g̃k, ω̃k)

in Ωk are linked together by g̃k = Ψk ·gk, for some Ψk in H0(M,J). Moreover,
from the invariance of the extremal vector field ZG

Ωk
of each pair (Ωk, G) — see

Sections 2.1 and 2.3 — we get ZG
Ωk

= gradgk
sgk

= gradg̃k
sg̃k

= Ψk · gradgk
sgk

,

meaning that ZG
Ωk

, hence also T by Corollary 2.1, are preserved by Ψk for
any k. We infer that the Ψk’s all belong to the subgroup of elements of
H0(M,J) which commute with C∗, hence, by Proposition 1.3, to the extension
of H0(S, J) by C∗. Moreover, since the (gk, ωk) are only defined up to the
natural C∗-action, we can actually arrange that the Ψk’s all belong to a lift
of H0(S, J) in H0(M,J), meaning that each Ψk is induced by a linear lift
on L of an element, Φk say, of H0(S, J). Each ω̃k is then of the form ω̃k =
∑N

i=1((λk)i+εi Ψk ·zk)π∗(Φk ·ωi)+d(Ψk ·zk)∧dc(Ψk ·t), hence the Kähler form
of an (extremal) admissible Kähler metrics on the admissible ruled manifold

obtained by simply substituting the hermitian inner product h̃k = Ψk · h
on L. Since any two hermitian inner products on L are conformal, h̃k can
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be alternatively written as h̃k = e2Fk h for some well-defined (real) smooth
function Fk on S and we then have t̃k = Ψk · t = t+ π∗Fk. Since Ψk · T = T ,
we also have that z̃k = Ψk · zk is a momentum of T with respect to ω̃k.

By assumption, the sequence ω̃k converges to ω in the Fréchet topology: it
follows that z̃k converges to a momentum of T with respect to ω; similarly,
since ιJT ω̃k = −g̃k(T, T ) dc t̃k = −g̃k(T, T ) dc(t+ π∗Fk), the sequence Fk con-

verges to a smooth function F on S, meaning that the sequence h̃k converges
to the hermitian inner product h̃ = e2F h, whereas each Ψk · ωi converges to
ω̃i, which is the curvature form of L−εi equipped with the hermitian inner
product induced by h̃.

It follows that ω is the Kähler form of an extremal admissible Kähler metric
on M with respect to (L, h̃). Since the extremal polynomial FΩ of Ω only
depends of the N -tuple λ and of the εi’s, FΩ should then be positive on
(−1, 1) by Proposition 1.7 again. Case (ii) is then discarded as well.

2.4. A borderline case example. — In this section, we present a family
of examples of (normalized) admissible Kähler classes on an admissible rules
manifold M = P(1 ⊕ L) → S whose extremal polynomials are non-negative
but have a repeated root, which can be chosen irrational, on (−1, 1).

The simplest examples are obtained by considering (complex) four-dimensional

admissible ruled manifolds for which S =
∏3

i=1 Si, where each Si is a Riemann
surfaces of genus gi greater than one. For i = 1, 2, 3, the (constant) scalar cur-
vatures si of Si is then negative; more precisely, by the Gauss-Bonnet formula,

(2.49) si =
4(1 − gi)

ki
,

where ki denotes the degree of the polarizing line bundle L̃i = L−εi

i (cf. Section
1.1 and formula (1.62) in Section 1.10). In particular, each si can be made
equal to any negative rational number by an appropriate choice of the genus
gi and of the degree ki.

Our aim is to construct a family of (normalized) admissible Kähler classes
Ωλ on M , for an appropriate choice of the scalar curvatures si — hence of the
line bundles Li on Si by (2.49) — in such a way that the extremal polynomials
be of the form

(2.50) FΩλ
(x) = C(1 − x2)(x2 + rx− 1)2,

for some positive constants C and r. The polynomial in the rhs of (2.50)
satisfies the first boundary condition (1.46) for extremal polynomials and is
non-negative on (−1, 1). It has two repeated roots: a positive one, r+ =
−r+

√
r2+4

2 , in the open interval (0, 1); a negative one, r− = −r−
√

r2+4
2 , in

(−∞,−1). The first and second derivatives of FΩλ
are given by:

(2.51) F ′
Ωλ

(x) = C(−6x5 − 10rx4 + 4(3 − r2)x3 + 12rx2 + 2(r2 − 3)x− 2r)
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and

(2.52) F ′′
Ωλ

(x) = C(−30x4 − 40rx3 + 12(3 − r2)x2 + 24rx+ 2(r2 − 3)).

In particular, F ′
Ωλ

(−1) = 2Cr2 and F ′
Ωλ

= −2Cr2. It follows that FΩλ
satisfies

the second boundary condition (1.47) for extremal polynomials if and only if

(2.53) pΩλ
(−1) = pΩλ

(1) = Cr2,

where pΩλ
(x) =

∏3
i=1(λi + εix) denotes the characteristic polynomial (8) of

Ωλ, cf. (1.7). If we write pΩλ
(x) =

∑3
j=0 pjx

3−j , with p0 = ε1ε2ε3, p1 =
∑

ijk εiεjλk, p2 =
∑

ijk εiλjλk, p3 = λ1λ2λ3 (summation over the circular

permutation of (1, 2, 3)), (2.53) is equivalent to the two conditions:

(2.54) p0 + p2 = 0,

(2.55) p1 + p3 = Cr2.

The condition (2.54) cannot be satisfied if all εi are equal to 1 or −1: We then
assume

(2.56) ε1 = ε2 = 1, ε3 = −1,

and (2.54) then reads:

(2.57) λ3 =
1 + λ1λ2

λ1 + λ2
.

Notice that 1+λ1λ2
λ1+λ2

= 1 + (λ1−1)(λ2−1)
λ1+λ2

> 1. The condition (2.55) determines
the constant C as follows:

(2.58) C =
p1 + p3

r2
=
λ1λ2λ3 + λ3 − λ1 − λ2

r2
.

Notice, by using (2.57), that λ1λ2λ3 + λ3 − λ1 − λ2 = (1+λ1λ2)2−(λ1+λ2)2

λ1+λ2
=

(λ2
1−1)(λ2

2−1)
λ1+λ2

> 0. Also notice that

(2.59) λ1 − λ3 =
λ2

1 − 1

λ1 + λ2
> 0, λ2 − λ3 =

λ2
2 − 1

λ1 + λ2
> 0.

Now, for any positive real number r and for any admissible triple λ = {λ1, λ2, λ3}
satisfying (2.57), the polynomial FΩλ

defined by (2.50), where C is defined
by (2.58), is actually the extremal polynomial of the (normalized) admissible

(8) As long as the si and the εi — hence the Si and the polarizing line bundles L
−εi
i over

Si — have not been fixed, Ωλ is only a “virtual” admissible Kähler class encoded by an
admissible triple λ = {λ1, λ2, λ3}.
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Kähler class Ωλ if and only if F ′′
Ωλ

(x) = R(x), where, in general, R(x) is defined

by (1.42) in Section 1.9. In the present situation, this condition is then:

F ′′
Ωλ

(x) = s1(λ2 + x)(λ3 − x) + s2(λ3 − x)(λ1 + x) + s3(λ1 + x)(λ2 + x)

− (αx+ β)(λ1 + x)(λ2 + x)(λ3 − x),

(2.60)

where α, β are real constants. In view of (2.60), we now assume that λ1 and
λ2 are distinct, hence λ1 > λ2 say. This implies that the si’s are uniquely
determined by
(2.61)

s1 =
F ′′

Ωλ
(−λ1)

(λ2 − λ1)(λ3 + λ1)
, s2 =

F ′′
Ωλ

(−λ2)

(λ1 − λ2)(λ3 + λ2)
, s3 =

F ′′
Ωλ

(λ3)

(λ1 + λ3)(λ2 + λ3)
,

a special case of the general formula (1.49). By using (2.52), this can be
re-written as

(2.62) s1 =
2C

(λ1 − λ2)(λ1 + λ3)

(

(6λ2
1−1) r2−4λ1(5λ

2
1−3) r+15λ4

1−18λ2
1+3)

)

,

(2.63)

s2 =
2C

(λ1 − λ2)(λ2 + λ3)

(

− (6λ2
2 − 1) r2 + 4λ2(5λ

2
2 − 3) r − 15λ4

2 + 18λ2
2 − 3)

)

,

(2.64)

s3 =
2C

(λ1 + λ3)(λ2 + λ3)

(

− (6λ2
3 − 1) r2 − 4λ3(5λ

2
3 − 3) r − 15λ4

3 + 18λ2
3 − 3)

)

.

Conversely, if s1, s2, s3 are given these values, then F ′′
Ωλ

(x) is of the form (2.60)

— as F ′′
Ωλ

(x)− s1(λ2 + x)(λ3 − x) + s2(λ3 − x)(λ1 + x) + s3(λ1 + x)(λ2 + x) is

then divisible by (λ1 +x)(λ2 +x)(λ3−x) — so that FΩλ
is indeed an extremal

polynomial provided however that the real numbers si defined by (2.62)-(2.63)-
(2.64) can be realized as the scalar curvatures of Riemann surfaces Si of genus
greater than 1, polarized by a holomorphic line bundle L−εi

i . According to
(2.49), this can be done whenever si are (arbitrary) negative rational numbers.
This forces us to assume that λ1, λ2 — hence also λ3 by (2.57) — are rational,
as well as the parameter r.

By (2.64), s3 is negative for any r > 0 and any admissible triple {λ1, λ2, λ3}.
By (2.63)-(2.64), s1 is negative if and only if

(2.65) ψ−(λ1) < r < ψ+(λ1),

and s2 is negative if and only if

(2.66) r < ψ−(λ2) or r > ψ+(λ2),
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by setting

(2.67) ψ±(λ) =
2λ(5λ2 − 3) ±

√
10λ6 + 3λ4 + 3

6λ2 − 1
.

It is easy to check that ψ− is increasing from ψ−(1) = 0 to +∞ and that ψ+

is increasing from ψ+(1) = 8/5 to ∞ when λ runs from 1 to +∞. We readily
infer: For any (rational) admissible triple {λ1, λ2, λ3} satisfying (2.57) and
λ1 > λ2, the (rational) numbers s1, s2, s3 given by (2.62)-(2.63)-(2.64) are all
negative if and only if

(2.68) ψ−(λ1) < r < ψ+(λ1)

if ψ−(λ1) ≥ ψ+(λ2), or

(2.69) ψ+(λ2) < r < ψ+(λ1),

if ψ−(λ1) ≤ ψ+(λ2). The above discussion can be summarized by the following
statement ([3, Example 1]):

Proposition 2.6. — For any admissible triple λ = {λ1, λ2, λ3} of rational
numbers satisfying (2.57) and λ1 > λ2, denote by Iλ the open interval in
(8/5,+∞) defined by (2.68)-(2.69). Then, for any rational number r in Iλ,
there exists a (complex) four-dimensional ruled manifold M = P(1 ⊕ L) →
S =

∏3
i=1 Si, where each Si is a Riemann surface of hyperbolic type, such that

Ωλ is a (normalized) admissible Kähler class on M whose extremal polynomial
FΩλ

is of the form (2.50), with C defined by (2.58).

Remark 2.3. — In view of the current conjectures concerning the link be-
tween the existence of extremal Kähler metrics and stability questions consid-
ered in the next chapter, the case of particular interest in Proposition 2.6 is

when r is chosen so that the repeated root r+ = −1+
√

r2+4
2 of FΩλ

in (0, 1)
is irrational. If r is written as r = p/q, for two (relatively prime) positive
integers, this happens if and only if the integer p2 + 4q2 is not a square, hence
for “most” rational numbers in Iλ.

3. Extremal metrics and stability

3.1. The Futaki character on polarized manifolds. — In this section,
M = (M,J, g, ω) denotes a general compact Kähler manifold of complex di-
mension m, polarized by a hermitian holomorphic line bundle L, meaning
that R∇ = iω, i.e. that the Kähler form ω is the curvature form of the Chern
connection ∇ of L. In particular, Ω = [ω] = 2π c1(L). We denote by π the
projection of L on M . As usual, L is viewed as a complex manifold of complex
dimension m+ 1.
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We consider an S1-action on M which preserves the whole Kähler struc-
ture. Denote by X the generator of this action, i.e. the (real) vector field X
defined by X(x) = d

dt |t=0
eit · x, for any x in M . We assume that the action is

hamiltonian, i.e. that X = gradωf
X = Jgradgf

X , for some real function fX

well-defined up to an additive constant.
For any choice of fX , X lifts to a vector field X̂ on L, preserving the

natural complex structure of L, defined by X̂ = X̃ − (π∗fX)T , where X̃
denotes the horizontal lift of X on L determined by ∇ and T the generator
of the standard S1-action on L (= the usual multiplication by S1 on each

fiber). Moreover, for an appropriate choice of fX , X̂ is the generator of a
holomorphic S1-action on L which lifts the given S1-action on M , cf. e.g. [19,
Proposition 7.5.1]. Such a distinguished momentum is well-defined up to an

additive integer. We henceforth assume that X̂ is the generator of a lifted
S1-action on L, corresponding to the distinguished momentum fX . Notice
that the lifted action on L determines a lifted S1-action on all tensor powers
Lk of L.

The lifted action induces a C-linear S1-action on the space, Γ(L), of smooth
sections of L, defined by

(3.1) (ζ · s)(x) = ζ · (s (ζ−1 · x)),
for any s in Γ(L), any ζ in S1 and any x in M . According to the general
definition of the Lie derivative, we then define:

(3.2) LXs = − d

dt |t=0
eit · s,

for any s in Γ(L) and any x in M . In terms of covariant derivative, this can
be rewritten as

(3.3) LXs = ∇Xs+ ifX s.

The Lie derivative LX preserves the subspace H0(M,L) of holomorphic sec-
tions of L and thus induces a C-linear, skew-symmetric action on H0(M,L)
and, more generally, on H0(M,Lk) for any positive integer k.

Definition 3.1. — The infinitesimal weight of the lifted S1-action on L is
the trace of the hermitian operator −iLX on H0(M,L).

Example 3.1. — Let (V, 〈·, ·〉) be any hermitian (m + 1)-dimensional com-
plex vector space and denote by P(V ) the corresponding complex projective
space, equipped with the induced Fubini-Study Kähler metric of holomor-
phic sectional curvature equal to 2: the Kähler form ω is then the curvature
form −iR∇ of the Chern connection of the dual tautological line bundle O(1),
equipped with the induced hermitian inner product, cf. Section 1.1. Any
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hermitian endomorphism A of V with integer eigenvalues a0, a1, . . . , am deter-
mines an S1-action on P(V ) by: eit · x = eitA(x), for any x in P(V ). This
action preserves the whole Kähler metric. The generator of this action is the
(real) Hamiltonian Killing vector field XA defined by XA(x) : u ∈ x 7→ iA(u)
mod x (we here the natural identification TxP(V ) = Hom(x, V/x)). This ac-
tion has a natural, tautological, lift on the tautological bundle O(−1), namely
eit · u = eitA(u), for any x in P(V ) and any u in the complex line x. The dual
S1-action on O(1) is then (eit · α)(u) = α(e−itA(u)), for any α in O(1)x = x∗.
This is a lift of the above S1-action on O(1), corresponding to the distin-

guished momentum defined by fXA
(x) = 〈Au, u〉, for any unit generator u

of x. The space H0(P(V ),O(1)) is naturally identified with the dual space
V ∗: each element α of V ∗ can be viewed as a holomorphic section of O(1) by
setting α(x) = α|x. From the above discussion, we readily infer LXAα = α◦A.

In particular, the infinitesimal weight of XA is the trace of A, i.e.
∑m

i=0 ai.

It is a far reaching observation by S. Donaldson [15] that FΩ(−JX) can
be computed by using the asymptotic expansions of the infinitesimal weights,
wk(X), of the lifted S1-action on Lk, when k tends to infinity. More precisely,
denote by dk the (complex) dimension of H0(M,Lk); then

(3.4)
wk(X)

k dk
=

∫

M fX vg

VΩ
+

1

4

FΩ(−JX)

VΩ
k−1 +O(k−2),

where fX denotes the distinguished momentum ofX determined by the chosen
lifted S1-action on L and VΩ the volume of (M,Ω).

If Y is the generator of another hamiltonian S1-action on M , preserving
the whole Kähler structure, the combined infinitesimal weight w(X,Y ) on L
is defined as the trace of the product operator (−iLX)◦ (−iLY ) on H0(M,L).
Denote by wk(X,Y ) the combined infinitesimal weight on H0(M,Lk). We
then have

(3.5)
wk(X,Y )

k2dk
− wk(X)

kdk

wk(Y )

kdk
=
BΩ(−JX,−JY )

VΩ
+O(k−1).

The key point is that formulae (3.4)-(3.5) can be used to define FΩ(−JX) and
BΩ(−JX,−JY ) in the case when M is singular and these objects cannot be
defined directly in geometric terms. Such situations occur in particular when
considering test configurations introduced by G. Tian [40] and S. Donaldson
[15] to check the stability of polarized projective manifolds.

3.2. Deformation to the normal cone. — In general, for any closed
subscheme Σ of a complex variety M , the deformation to the normal cone of Σ
in M is a classical construction in algebraic geometry, by which the embedding
of Σ in M is connected to its embedding in its normal cone C = CΣM as the
zero section.
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This is done by considering the blow-up — call it D(M) — of the product
M × P1 along Σ× (1 : 0), where (1 : 0) is the point at infinity of the standard
complex projective line P, and the induced projection p : D(M) → P1. Denote
by q : D(M) → M × P1 the blow-down mapping: the exceptional divisor
q−1(Σ × (1 : 0)) is then the projectivized normal cone P(C ⊕ 1) of Σ × (1 : 0)
in M × P1. For each (λ : µ) 6= (1 : 0) in P1, the fiber p−1((λ : µ)) is naturally
identified with M , whereas the central fiber p−1((1 : 0)) splits into two pieces:

(i) the exceptional divisor P(1 ⊕ C), and

(ii) the blow-up M̂ of M along Σ.

Notice that the two pieces M̂ and P(1⊕C) of the central fiber intersect at
the divisor at infinity P(C) in P(1 ⊕ C), which is also the exceptional divisor
of the blow-up of M along Σ.

Since the blow-up of Σ × P1 along Σ × ((1 : 0)) is Σ × P1 again, Σ × P1

is naturally embedded over P1 in D(M): For any (λ : µ) 6= (1 : 0) in P1,
the induced embedding Σ ↪→ p−1((λ : µ)) ∼= M is isomorphic to the initial
embedding Σ ↪→ M , whereas, over (1 : 0), Σ is embedded in p−1(1 : 0)) =

P(1 ⊕ C) ∪ M̂ as the zero section in the normal cone C ⊂ P(1 ⊕ C) (cf. [16,
Chapter 5] for details).

In this paper, we consider this construction in the case when M = P(1⊕L)
is an admissible ruled manifold and Σ = Σ∞ is the infinity section(9). Since
Σ∞ is smooth, its normal cone C is simply the normal bundle TM|Σ∞

/TΣ∞ ∼=
(π∗L∗)|Σ∞

. With the above notation, the central fiber p−1((1 : 0)) is the union
of

(i) M̂ , identified with M , as Σ∞ is a divisor of M , and

(ii) the exceptional divisor P(C⊕1), identified with P(L∗⊕1) via the natural
identification Σ∞ = S.

Via the natural isomorphism P(L∗ ⊕ 1) = P(1 ⊕ L) obtained by tensoring
L∗⊕ 1 by L, P(C⊕ 1) is naturally identified with M again and its intersection

with M̂ = M in D(M) is then the zero section Σ0.
As observed in Remark 1.1 of Section 1.2, Σ∞ is the zero divisor of the

holomorphic section of OM (1), s say, determined by the natural projection
of 1 ⊕ L to the trivial bundle 1 = S × C. This allows for the following
alternative description of D(M), which is a particular case of the general
MacPherson’s graph construction [33]. Let P(1⊕OM (−1)) denote the natural
compactification of OM (−1) over M and consider the embedding M×(P1\(1 :
0)) ↪→ P(1 ⊕OM (−1)) × P1 defined by

(3.6)
(

ξ = (z : u), (λ : µ)
)

→
(

(λz : µ (z, u)), (λ : µ)
)

∈ P(C ⊕ ξ) × P1,

(9)The choice of Σ∞ instead of the zero section Σ0 is inessential.
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for any ξ = (z : u) ∈ P(C ⊕ Ly) in M — cf. Section 1.1 for the notation
— and for any (λ : µ) 6= (1 : 0) in P1. In (3.6), λz has to be regarded as
λ s(ξ)((z, u)). Then, D(M) is alternatively defined as the closure of the image
of M × (P1 \ (1 : 0)) in P(1⊕OM (−1))× P1 by the embedding (3.6), hence as
the (closed) complex submanifold of P(1⊕OM (−1))× P1 whose elements are
of the form ((α : (β, u)), (λ : µ)), for any pair (α, β) of complex numbers such
that λβ − µα = 0, cf. Example 5.1.2 and Example 18.1.6 (d) in [16].

We denote by π̃ : D(M) → S the natural projection induced by π : M → S;
for any y in S, we set D(M)y = π̃−1(y).

In order to get a more concrete grasp on D(M)y, we write P1 = P(C1⊕C2),
where C1 and C2 stand for two copies of C, we rewrite My = π−1(y) = P(C2⊕
Ly) and we introduce the complex projective plane P2

y = P(C1 ⊕ C2 ⊕ Ly):
D(M)y can then be viewed as a (compact) complex submanifold of the product
My ×P1×P2

y, namely the space of
(

(z : u), (λ : µ), (α : β : v)
)

in My ×P1×P2
y

such that (α, β) belongs to the complex line (λ : µ) (in P1 = P(C1 ⊕ C2)) and
(β, v) belongs to the complex line (z : u) (in My = P(C2 ⊕Ly)), that is to say
the 2-dimensional (compact, smooth) complex submanifold of My × P1 × P2

y

defined by the equations:

(3.7) µα− λβ = 0, zv − βu = 0.

For any y in S, denote by p1,y : D(M)y → My, p2,y : D(M)y → P1, p3,y :
D(M)y → P2

y the induced projections and by C1,y, C2,y, C3,y the (complex)
curves in D(M)y defined by

(3.8) C1,y = {
(

(z : u), (1 : 0), (1 : 0 : 0)
)

, (z : u) ∈My = P(C2 ⊕ Ly)},

(3.9) C2,y = {
(

(0 : u), (λ : µ), (0 : 0 : u)
)

, (λ : µ) ∈ P1 = P(C1 ⊕ C2)},

(3.10) C3,y = {
(

(0 : u), (1 : 0), (α : 0 : v)
)

, (α : v) ∈ P(C1 ⊕ Ly)}.

The curves C1,y and C2,y are tautologically identified with My and P1 respec-
tively, whereas C3,y will be identified with My via the the natural identification
C1 = C2, i.e. via the map (α : v) ∈ P(C1 ⊕ Ly) = P(C2 ⊕ Ly) 7→

(

(0 : u), (1 :

0), (α : 0 : v)
)

. The curves C1,y and C2,y are disjoint; the intersection C1,y∩C3,y

is σ∞(y) in C1,y = My and σ0(y) in C3,y = My; the intersection C2,y ∩ C3,y is
(1 : 0) in C2,y = P1 and σ∞(y) in C3,y = My.

Each fiber D(M)y of π̃ : D(M) → S is a blow-up of P2
y at two points, via

the map p3,y, which contracts the curves C1,y and C2,y to the points [C1] and
[Ly] of P2

y respectively, and a blow-up of My × P1 at one point, via the map
(p1,y, p2,y), which contracts the curve C3,y to the point ([Ly] = σ∞(y), (1 : 0))
of My × P1.
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Denote by q : D(M) → M × P1, resp. p : D(M) → P1, the map whose
restriction to each D(M)y is (p1,y, p2,y), resp. p2,y. Then, q realizes D(M)
as a blow-up of M × P1 along Σ∞ × (1 : 0), hence as the deformation to the
normal cone of Σ∞, according to the general construction described at the
beginning of this section, and p is the induced projection on P1. Accordingly,
each (p1,y, p2,y), resp. p2,y, will be renamed qy, resp. py.

For any y in S and for any (λ : µ) 6= (1 : 0), p−1
y ((λ : µ)) is isomorphic to

My, via the embedding My ↪→ D(M)y defined by:

(3.11) (z : u) 7→
(

(z : u), (λ : µ), (λz : µz : µu)
)

.

This family of embeddings parametrized by P1 \ (1 : 0) can be viewed as
a unique embedding of M × (P1 \ (1 : 0)) in D(M)y. The restriction of this
embedding to σ∞(y)×(P1\(1 : 0)) then extends to an embedding of σ∞(y)×P1

in D(M)y), given by

(3.12) ((0 : u), (λ : µ)) 7→
(

(0 : u), (λ : µ), (0 : 0 : u)
)

,

whose image is C2,y.

The central fiber p−1
y ((1 : 0)) is C1,y ∪ C3,y over each y in S. By setting

C1 = ∪y∈SC1,y, C2 = ∪y∈SC2,y and C3 = ∪y∈SC3,y, we then get

(3.13) p−1((1 : 0)) = C1 ∪ C3,

where C1 and C3 are both identified with M as explained above. The in-
tersection C1 ∩ C3 is then identified with Σ0 in C1

∼= M and with Σ∞ in
C3

∼= M .

3.3. The space D(M) as a test configuration: Polarizations. —
For any y in S, denote by Λ1,y,Λ2,y,Λ3,y the holomorphic line bundles on
D(M)y defined by p∗1,y(OMy(1)), p∗2,y(OP1(1)), p∗3,y(OP2

y
(1)) respectively. Each

Λ1,y,Λ2,y,Λ3,y admits a distinguished holomorphic section whose zero divisor
is C2,y +C3,y, C1,y +C3,y, C1,y +C2,y +C3,y respectively. If C1,y, C2,y, C3,y are
regarded a elements of H2(D(M)y,Z), by Poincaré duality, we then have

C1,y = c1(Λ
−1
1,y ⊗ Λ3,y),

C2,y = c1(Λ
−1
2,y ⊗ Λ3,y),

C3,y = c1(Λ1,y ⊗ Λ2,y ⊗ Λ−1
3,y),

(3.14)

where c1(·) stands for the (first) Chern class.
We now choose an admissible polarization on M , i.e. an admissible Kähler

class Ωλ on M in the image of H2(M,Z) in H2(M,R). By Remark 1.1, this
means that the λi’s are integers and that Ω/2π = c1(Fλ), where Fλ is given
by (1.11).
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In order to turn D(M) into a test configuration compatible with this po-
larization, we need a hermitian holomorphic line bundle, L, on D(M), whose
restriction to p−1((λ : µ)) is the chosen polarization of M = p−1((λ : µ)) if
(λ : µ) 6= (1 : 0) and which induces, in some sense, a polarization on the
central fiber p−1((1 : 0)) (however, L is not required to be a polarization on
the whole space D(M)).

For each D(M)y, this will be done by twisting the pull-back of (Fλ)|My

on D(M)y by an appropriate multiple −aC3,y of the exceptional divisor, i.e.
by tensoring the pull-back of (Fλ)|My

by Λ−a
1,y ⊗ Λ−a

2,y ⊗ Λa
3,y for some positive

rational number a (strictly speaking, a should be chosen an integer but, for
our purposes, it will be sufficient that ka be an integer for k a positive integer
growing to infinity). By using (1.11), we thus get:

(3.15) L|D(M)y
= Λ2−a

1,y ⊗ Λ−a
2,y ⊗ Λa

3,y ⊗ (

N
⊗

i=1

L1−εiλi

i )y.

We now show that the restriction of L to each fiber p−1((λ : µ)), is ample
whenever 0 < a < 2.

We first consider the case when (λ : µ) 6= (1; 0). From (3.11) we infer that
the restriction of Λ3,y to p−1

y ((λ : µ)) is naturally identified with the restriction
of Λ1,y ⊗ Λ2,y, so that:

(3.16) L|p−1
y ((λ:µ)) = Λ2

1,y ⊗ (
N
⊗

i=1

L1−εiλi

i )y = (Fλ)|My
,

for any a.

We now consider the central fiber p−1((1 : 0)), which is C1,y ∪ C3,y in each
D(M)y. On C1,y, we have Λ2,y = Λ3,y = C∗

1, so that:

L|C1,y
= Λ2−a

1,y ⊗ (

N
⊗

i=1

L1−εiλi

i )y

= (F (1− a
2
)

λ
)|My

⊗ (
N
⊗

i=1

L1−εiλi

i )
a
2
y ,

(3.17)

whereas, on C3,y, we have Λ1,y = L∗
y, Λ2,y = C∗

1, Λ3,y = Λ1,y, so that:

L|C3,y
= Λa

1,y ⊗ Ca
1 ⊗ La−2

y ⊗ (

N
⊗

i=1

L1−εiλi

i )y

= (F
a
2
λ )|My

⊗ (

N
⊗

i=1

L−1−εiλi

i )
1− a

2
y .

(3.18)
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By setting: Ω(0) = 2πc1(L|C1
) and Ω(∞) = 2πc1(L|C3

), both regarded as
defined on M , we thus get

(3.19) Ω(0) = (1 − a/2)
(

Ξ +

N
∑

i=1

λi − a/2 εi
1 − a/2

π∗[ωSi
]
)

,

and

(3.20) Ω(∞) = a/2
(

Ξ +

N
∑

i=1

λi + (1 − a/2) εi
a/2

π∗[ωSi
]
)

.

These evidently belong to the (admissible) Kähler cone of M if and only if
0 < a < 2. Moreover, via the common identification Σ0 = Σ∞ = S, the
restriction of Ω(0) to Σ∞ coincides with the restriction of Ω(∞) to Σ0, as it
must be. More precisely, by setting

(3.21) a = 1 − x,

we have

(3.22) Ω
(0)
|Σ∞

= Ω
(∞)
|Σ0

=

N
∑

i=1

(λi + xεi) [ωSi
],

which is the class of the Kähler form of the Kähler reduction of M , equipped
with the admissible Kähler metric (1.12) in Ωλ, for the level set z = x. We
infer that the pair (Ω(0),Ω(∞)) determines a well-defined “polarization” on
the (singular) central fiber p−1((1 : 0)). This polarization depends on the

parameter x in (−1, 1) and will be therefore denoted by Ω̃(x).

3.4. The space D(M) as a test configuration: C∗-actions. — The C∗-
action on P1 defined by ζ ·(λ : µ) = (ζ−1λ : µ) determines a C∗-action, denoted
by α, on D(M), defined by:

(3.23) ζ ·α
(

(z : u), (λ : µ), (α : β : v)
)

=
(

(z : u), (ζ−1λ : µ), (ζ−1 α : β : v)
)

.

This action moves the fibers of p. It fixes the fiber p−1((0 : 1)) (this is smooth,
identified with M , and plays no particular role in the story), and the central
fiber p−1((1 : 0)) = C1 ∪ C3: the action α is then trivial on C1 and coincides
with the natural C∗-action on C3 = M .

The natural C∗-action on M = P(1 ⊕ L) — cf. Section 1.1 — induces an
C∗-action on D(M), denoted by β, defined by

(3.24) ζ ·β
(

(z : u), (λ : µ), (α : β : v)
)

=
(

(z : ζu), (λ : µ), (α : β : ζv)
)

,

for ζ in C∗. This action preserves the fibers of p and coincides with the natural
C∗-action on each fiber p−1((λ : µ)), (λ : µ) 6= (1 : 0), via the embedding
(3.11). On the central fiber p−1((1 : 0) = C1 ∪ C3, where C1 and C3 are both
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identified with M as explained above, the action β coincides with the natural
C∗-action on M .

Notice that these actions preserve each fiber of π̃ : D(M) → S and are
therefore entirely determined by their induced actions on D(M)y for each y
in S. Moreover, on each D(M)y, both α and β have natural lifts on the line
bundles Λ1,y,Λ2,y,Λ3,y. This determines an α- and a β-action on L as well as
on the vector space of its holomorphic sections.

For each fiber p−1((λ : µ)), and each positive integer k, the space of holomor-
phic sections of Lk

|p−1((λ:µ)), coincides with the space of holomorphic sections

of the holomorphic vector bundle, Ek,(λ:µ), on S whose fiber E
k,(λ:µ)
y at y is the

space of holomorphic sections of Lk
|p−1

y ((λ:µ))
.

If (λ;µ) 6= (1 : 0), we infer from (3.16):

Ek,(λ:µ)
y = S2k((C2 ⊕ Ly)

∗) ⊗ (
M
⊗

i=1

L1−εiλi

i )ky

=

2k
∑

j=0

L−j
y ⊗ (

M
⊗

i=1

L1−εiλi

i )ky ,

(3.25)

where, in general, S`(V ) denotes the `-th symmetric tensor power of V . We
thus have

(3.26) H0(p−1((λ : µ)),Lk
|p−1((λ:µ))) =

2k
∑

j=0

H0(S, (

M
⊗

i=1

L1−εiλi

i )k ⊗ L−j).

On the central fiber p−1((1 : 0)), E
k,(1:0)
y is obtained by considering the direct

sum of the spaces of holomorphic sections of Lk on C1 and C3 separately, then
removing the common part on C1 ∩ C3. From (3.17), we infer

H0(C1,y,Lk
|C1,y

) = (
N
⊗

i=1

L1−εiλi

i )ky ⊗ Sk(2−a)((C2 ⊕ Ly)
∗)

= (

N
⊗

i=1

L1−εiλi

i )ky ⊗
k(2−a)
∑

j=0

L−j
y .

(3.27)

Moreover, the infinitesimal weight of α, as defined in Definition 3.1, is 0 on this
space, whereas the infinitesimal weight of β is j on each factor (

⊗N
i=1 L

1−εiλi

i )ky⊗
L−j (for this computation and similar ones in the sequel, compare with Ex-
ample 3.1 in Section 3.1).
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From (3.18), we infer

H0(C3,y,Lk
|C1,y

) = (
N
⊗

i=1

L1−εiλi

i )ky ⊗ Cka
1 ⊗ L−k(2−a)

y ⊗ Ska((C1 ⊕ Ly)
∗)

= (

N
⊗

i=1

L1−εiλi

i )ky ⊗
2k
∑

j=k(2−a)

C
j−k(2−a)
1 ⊗ L−j

y .

(3.28)

Moreover, on each factor (
⊗N

i=1 L
1−εiλi

i )ky ⊗C
j−k(2−a)
1 ⊗L−j

y , the infinitesimal
weight of α is j − k(2 − a), whereas the infinitesimal weight of β is j.

Finally, H0(C1,y ∩C3,y,Lk) = (
⊗N

i=1 L
1−εiλi

i )ky ⊗L
−k(2−a)
y , which appears in

both expressions with weight 0 for α.
By removing this term from the rhs of (3.27) or (3.28), and by removing

the factors C
j−k(2−a)
1 appearing in the rhs of (3.28) — but keeping them in

mind for weight issues — we eventually get

(3.29) Ek,(1:0)
y = (

N
⊗

i=1

L1−εiλi

i )ky ⊗
2k
∑

j=0

L−j
y ,

hence

(3.30) H0(p−1(1 : 0),Lk
|p−1((1:0))) =

2k
∑

j=0

H0(S, (

N
⊗

i=1

L1−εiλi

i )k ⊗ L−j).

It is convenient to rewrite (3.30) as follows

(3.31) H0(p−1((1 : 0)),Lk
|p−1((1:0))) =

k
∑

`=−k

H0(S, (

N
⊗

i=1

L̃
λi+`/k εi

i )k),

where each L̃i = L−εi

i is ample and polarizes (Si, ωSi
) — cf. Section 1.1 —

and where we changed the index by setting

(3.32) ` = j − k.

Moreover, the infinitesimal weight of α on H0(S, (
⊗N

i=1 L̃
λi+`/k εi

i )k) is

0 if ` ≤ k(1 − a) = kx

`− kx if kx ≤ ` ≤ k,
(3.33)

whereas the infinitesimal weight of β on H0(S, (
⊗N

i=1 L̃
λi+`/k εi

i )k) is

(3.34) k + `, −k ≤ ` ≤ k.
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3.5. The relative Futaki invariant of D(M). — For any x in (−1, 1)∩Q,
the Futaki invariant of the C∗-action α on the central fiber p−1((1 : 0))

with respect to the polarization Ω̃
(x)
λ

is defined by F (x)(α) = F
Ω̃

(x)
λ

(−JX),

where X denotes the generator of the S1-action induced by α. We simi-
larly define: F (x)(β) = F

Ω̃
(x)
λ

(−JY ), where Y denotes the generator of the

S1-action induced by β, B(x)(α,β) = B
Ω̃

(x)
λ

(−JX,−JY ) and B(β,β) =

B
Ω̃

(x)
λ

(−JY,−JY ) (as we shall see below, F(β) and B(β,β) are independent

of x). The relative Futaki invariant of α with respect to β, in the sense of
(2.9), is then

(3.35) F (x)
β

(α) = F (x)
β

(α) − B(x)(α,β)

B(β,β)
F(β).

The aim of this section is to provide a self-contained computation of F (x)
β (α)

by using (3.4)-(3.5) and to prove the following theorem, first established by
G. Székelyhidi in [36] in the case of pseudo-Hirzebruch surfaces, then extended
to the general case in [3, Section 4.4]:

Theorem 3.1. — For any x in (-1, 1), we have

(3.36) F (x)
β

(α) = −2πV (S)
FΩλ

(x)
∫ 1
−1 pΩλ

(s)ds
,

where V (S) =
∏N

i=1 V (Si, gSi
) denotes the volume of S and, we recall, pΩλ

and
FΩλ

denote the characteristic and the extremal polynomial of Ωλ respectively.

Proof. — Denote by dk(`) the (complex) dimension ofH0(S, (
⊗N

i=1 L̃
λi+`/k εi

i )k)

and by dk the dimension of H0(p−1((1 : 0)),Lk
|p−1((1:0))); by (3.31), we then

have

(3.37) dk =

k
∑

`=−k

dk(`).

We denote by wk(α), resp. wk(β), the infinitesimal weight of α, resp. β, and
by wk(α,β), resp. wk(β,β), the combined infinitesimal weight — as defined in
Section 3.1 — of α,β, resp. of β,β, on the space H0(p−1((1 : 0)),Lk

|p−1((1:0))).

From (3.33)-(3.34), we readily infer:

(3.38) wk(α) =

k
∑

`=kx

(`− kx) dk(`), wk(β) =

k
∑

`=−k

(`+ k) dk(`),
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(3.39) wk(α,β) =

k
∑

`=kx

(`+ k)(`− kx) dk(`), wk(β,β) =

k
∑

`=−k

(`+ k)2 dk(`).

Lemma 3.1. — When k tends to infinity, dk(`) has the asymptotic expansion

dk(`) =
V (S)

(2π)d
(

kdpΩλ
(`/k)

+
kd−1

4

(

R(`/k) + pΩλ
(`/k)(α `/k + β)

)

+O(kd−2)

(3.40)

where, we recall, pΩλ
denotes the characteristic polynomial of Ωλ, defined by

(1.7); R is the polynomial defined in (1.42); α, β are the normalized leading
coefficients of the extremal polynomial FΩλ

, i.e. the constant appearing in the
rhs of (1.42).

Proof. — Since L̃i is ample on Si, and 0 < λi−1 ≤ λi+`/k εi ≤ λi+1 for each

−k ≤ ` ≤ k, for k large enough dk(`) is equal to χ((
⊗N

i=1 L̃
λi+`/k εi

i )k), the

holomorphic Euler characteristic of (
⊗N

i=1 L̃
λi+`/k εi

i )k. By the Riemann-Roch
theorem, we have that

(3.41) χ((

N
⊗

i=1

L̃
λi+`/k εi

i )k) =

∫

S
ch((

N
⊗

i=1

L̃
λi+`/k εi

i )k) td(S),

where ch((
⊗N

i=1 L̃
λi+`/k εi

i )k) denotes the Chern character of the complex line

bundle (
⊗N

i=1 L̃
λi+`/k εi

i )k and td(S) the Todd class of the holomorphic tangent
bundle of S. Recall that the Chern character of any complex line bundle L
is defined by ch(L) = ec1(L) =

∑∞
r=0

c1(L)r

r! , whereas the Todd class is the
multiplicative characteristic class associated to the generating series x/(1 −
e−x); in particular td(S) = 1 + c1(S)/2 + · · · , cf. e.g. [24]. We thus get:

dk(`) =

d
∑

r=0

kr

(2π)r

∫

S

(
∑N

i=1(λi + `/k εi) [ωSi
])r

r!
(1 + c1(S)/2 + · · · )

=
kd

(2π)d

∫

S

(
∑N

i=1(λi + `/k εi) [ωSi
])d

d!

+
kd−1

(2π)d

∫

S

(
∑N

i=1(λi + `/k εi) [ωSi
])d−1

(d− 1)!
∧ c1(S)

2
+O(kd−2)

=
V (S)

(2π)d
(

kdpΩλ
(`/k) + kd−1pΩλ

(`/k)

N
∑

i=1

si/4

λi + `/k εi
+O(kd−2)

)

.

(3.42)

We conclude by using (1.42).
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In order to evaluate the asymptotic expansions of the sums in (3.37), (3.38)
etc. we use the following asymptotic formula, known as the trapezium rule:

(3.43)

bk
∑

`=ak

f(`/k) = k

∫ b

a
f(t) dt+

1

2
(f(a) + f(b)) +O(k−1)

for any polynomial f , where ak ≤ bk are integers, and ` runs over all integers
between ka and kb.

For convenience, we assume, without loss of generality, that V (S) = (2π)d

and we simply write p(t) for pΩλ
(t).

Corollary 3.1. — When k tends to infinity, dk has the asymptotic expansion

(3.44) dk = kd+1

∫ 1

−1
p(s) ds+

kd

4

∫ 1

−1
(αs + β) p(s)ds+O(kd−1).

Proof. — Direct consequence of Lemma 3.1 and of the trapezium rule (3.43).

Corollary 3.2. — When k tends to infinity, wk(α) has the asymptotic ex-
pansion

wk(α) = −kd+2

∫ 1

x
(s− x) p(s)ds

− kd+1

4

(

FΩλ
(x) +

∫ 1

x
(s− x)(αs + β) p(s)ds

)

+O(kd).

(3.45)

In particular,

wk(α)

kdk
= −

∫ 1
x (s− x) p(s)ds
∫ 1
−1 p(s) ds

− 1

4

FΩλ
(x)

∫ 1
−1 p(s)ds

k−1

− α

4

∫ 1
x s(s− x) p(s)ds

∫ 1
−1 p(s)ds−

∫ 1
x (s− x) p(s)ds

∫ 1
−1 s p(s)ds

( ∫ 1
−1 p(s)ds

)2 k−1

+O(k−2)

(3.46)

Proof. — (3.45) is a direct consequence of Lemma 3.1 and of (3.43), by using
the identity (1.43)-(1.44) and the expression (1.48) of the extremal polynomial
FΩλ

; (3.46) readily follows from (3.45) and (3.44).

Corollary 3.3. — When k tends to infinity, wk(β) has the asymptotic ex-
pansion
(3.47)

wk(β) = −kd+2

∫ 1

−1
(s+ 1) p(s)ds − kd+1

4

∫ 1

−1
(αs + β)(s+ 1) p(s)ds +O(kd).
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In particular,

wk(β)

k dk
=

∫ 1
−1(1 + s) p(s)ds
∫ 1
−1 p(s)ds

+
α

4

( ∫ 1
−1 s

2 p(s)ds
∫ 1
−1 p(s)ds−

∫ 1
−1 s p(s)ds

∫ 1
−1 s p(s)ds

)

( ∫ 1
−1 p(s)ds

)2 k−1

+O(k−2).

(3.48)

Proof. — Direct consequence of Lemma 3.1 and of (3.43).

Corollary 3.4. — When k tends to infinity, wk(α,β) has the asymptotic
expansion

(3.49) wk(α,β) = −kd+3

∫ 1

x
(s− x)(s+ 1) p(s)ds +O(kd+2).

In particular,

wk(α,β)

k2dk
− wk(α)

kdk

wk(β)

kdk
=

−
∫ 1
x s (s− x) p(s)ds

∫ 1
−1 p(s)ds−

∫ 1
x (s− x) p(s)ds

∫ 1
−1 s p(s)ds

( ∫ 1
−1 p(s)ds

)2

+O(k−1)

(3.50)

Proof. — Direct consequence of Lemma 3.1 and of (3.43).

Corollary 3.5. — When k tends to infinity, wk(β,β) has the following asymp-
totic expansion:

(3.51) wk(β,β) = kd+3

∫ 1

−1
(s+ 1)2 p(s)ds+O(kd+2).

In particular,

wk(β,β)

k2dk
− wk(β)

kdk

wk(β)

kdk
=

∫ 1
−1 s

2 p(s)ds
∫ 1
−1 p(s)ds−

∫ 1
−1 t p(s)ds

∫ 1
−1 s p(s)ds

( ∫ 1
−1 p(s)ds

)2

+O(k−1)

(3.52)

Proof. — Direct consequence of Lemma 3.1 and of (3.43).
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By using (3.4)-(3.5) and VΩλ
= 2π V (S)

∫ 1
−1 p(s)ds (deduced from (1.27)), we

obtain (by temporarily omitting the overall factor 2πV (S)/
∫ 1
−1 p(s)ds)

F (x)(α) = −FΩλ
(x)

− α
(

∫ 1

x
s(s− x) p(s)ds

∫ 1

−1
p(s)ds−

∫ 1

x
(s− x) p(s)ds

∫ 1

−1
s p(s)ds

)

,

(3.53)

(3.54) F(β) = α
(

∫ 1

−1
s2 p(s)ds

∫ 1

−1
p(s)ds−

∫ 1

−1
s p(s)ds

∫ 1

−1
s p(s)ds

)

,

(3.55)

B(x)(α,β) = −
∫ 1

x
s (s−x) p(s)ds

∫ 1

−1
p(s)ds−

∫ 1

x
(s−x) p(s)ds

∫ 1

−1
s p(s)ds,

(3.56) B(β,β) =

∫ 1

−1
s2 p(s)ds

∫ 1

−1
p(s)ds−

∫ 1

−1
s p(s)ds

∫ 1

−1
s p(s)ds.

Notice that F(β) = αB(β,β) — cf. Remark 3.1 below — whereas F (x)(α) =

−F (x)
Ωλ

(x) +αB(x)(α,β). By restoring the missing factor 2πV (S)/
∫ 1
−1 p(s)ds,

we get (3.36).

Remark 3.1. — By comparing (3.54) and (3.56) with (2.31) and (2.32) in
Corollary 2.2, we get:

(3.57) F(β) = FΩ(−JT ), B(β,β) = BΩ(−JT,−JT ).

This was in fact quite expected as the β action is the same on any fiber
p−1((λ : µ)) and coincides with the natural S1-action on M .

Remark 3.2. — The extremal polynomial FΩλ
is of degree less than m+2 if

and only the normalized leading coefficient α is zero. In this case, F(β) = 0,
by (3.54), and, by (3.53), (3.36) then reduces to

(3.58) F (x)(α) = −2πV (S)
FΩλ

(x)
∫ 1
−1 pΩλ

(s) ds
.

Appendix A

The extremal polynomial for N = 1

We here compute the extremal polynomial FΩλ
of any (admissible) Kähler

class on an admissible ruled manifold M : P(1 ⊕ L) → S =
∏N

i=1 Si in the
case when N = 1. The Kähler class Ωλ is then determined by a unique real
number λ > 1, the chosen (constant) scalar curvature s of S = S1 and ε = ε1
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which, without loss of generality, will be chosen equal to 1, see Section 1.1.
For convenience, we set

(A.1) κ =
s

d(d+ 1)
,

where d denotes the complex dimension of S (we then have dimCM = d + 1
and FΩλ

is of degree at most d + 3) and we replace the variable x in (−1, 1)
by

(A.2) X := λ+ x,

in the interval (λ − 1, λ + 1) and we set P (X) = FΩλ
(x): P = P (X) will be

referred to as the modified extremal polynomial of Ωλ; it will be occasionally
denoted by Pκ(X) or Pκ(X,λ) to emphasize the dependence in κ and λ; it
will be most often regarded as a polynomial in X with coefficients in the field
R(λ) of rational fractions in λ; in particular, except for poles, Pκ(X,λ) is well-
defined for any real (or complex) value of λ, not only for admissible λ > 1.
In terms of the modified extremal polynomial P (X), the boundary conditions
(1.46)-(1.47) read as follows

P (λ− 1) = P (λ+ 1) = 0,

P ′(λ− 1) = 2(λ− 1)d, P ′(λ+ 1) = −2(λ+ 1)2,
(A.3)

whereas the second derivative of P has the form

(A.4) P ′′(X) = −αXd+1 + (αλ− β)Xd + d(d + 1)κXd−1,

where α, β are determined by (A.3), cf. Section 1.9. In particular, P is of the
form

(A.5) Pκ(X,λ) = a0(λ)Xd+3 + a1(λ)Xd+2 + κXd+1 + a3(λ)X + a4(λ),

where a0, a1, a3, a4 are rational fractions in λ, which depend on κ in an affine
way. For convenience, we introduce

(A.6) Sk(λ) = (λ+ 1)k + (λ− 1)k, Ak(λ) = (λ+ 1)k − (λ− 1)k.

Then, a0, a1 are solutions of the linear system:

(d+ 3)Ad+2(λ) a0 + (d+ 2)Ad+1(λ) a1 = −(d+ 1)Ad(λ)κ− 2Sd(λ),

((d+ 3)Sd+2(λ) −Ad+3)(λ) a0 + ((d+ 2)Sd+1(λ) −Ad+2)(λ) a1

= (Ad+1(λ) − (d+ 1)Sd(λ))κ − 2Ad(λ),

(A.7)

whereas a3, a4 are deduced from a0, a1 by

a3 = −1

2
(Ad+3(λ) a0 +Ad+2(λ) a1 + κAd+1(λ)),

a4 =
1

2
(λ2 − 1)(Ad+2(λ) a0 +Ad+1(λ) a1 + κAd(λ)),

(A.8)
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We thus get (see also [8]):

a0 =
κ

∆(λ)

(

−S2d+2(λ) + 2(λ2 − 1)d+1 + 4(d + 1)2(λ2 − 1)d
)

+
1

∆(λ)

(

2A2d+2(λ) − 8(d+ 1)λ(λ2 − 1)d
)

,
(A.9)

a1 =
κ

∆(λ)

(

2S2d+3(λ) − 4λ(λ2 − 1)d+1 − 8(d+ 1)(d + 2)λ(λ2 − 1)d
)

+
1

∆(λ)

(

−2A2d+3(λ) + 4(2d + 3)(λ2 − 1)d+1 + 16(d + 2)(λ2 − 1)d
)

,

(A.10)

a3 =
(λ2 − 1)d κ

∆(λ)

(

− 1

2
(λ2 − 1)3Ad−1(λ) − 2(d+ 2)2(λ2 − 1)Ad+1(λ) + 2λ(λ2 − 1)Ad+2(λ)

+ 4(d+ 1)(d + 2)λAd+2(λ) − 3

2
(λ2 − 1)Ad+3(λ) − 2(d+ 1)2Ad+3(λ)

)

+
(λ2 − 1)d

∆(λ)

(

− 2(λ2 − 1)2Ad − 2(2d + 3)(λ2 − 1)Ad+2(λ)

− 8(d+ 2)Ad+2(λ) + 4(d+ 1)λAd+3(λ)
)

,

(A.11)

a4 =
(λ2 − 1)d+1 κ

∆(λ)

(3

2
(λ2 − 1)2Ad(λ) + 2(d + 2)2(λ2 − 1)Ad(λ) − 2λ(λ2 − 1)Ad+1(λ)

− 4(d+ 1)(d + 2)λAd+1(λ) + 2(d + 1)2Ad+2(λ) +
1

2
Ad+4(λ)

)

+
(λ2 − 1)d+1

∆(λ)

(

4(d+ 2)(λ2 + 1)Ad+1(λ) − 4(d + 1)λAd+2(λ)
)

,

(A.12)

where we have set:

(A.13) ∆(λ) = −S2d+4(λ) + 4(d+ 2)2(λ2 − 1)d+1 + 2(λ2 − 1)d+2.

Proposition A.1. — For any real number κ, the discriminant of Pκ(X) is
non-zero in R(λ).
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Proof. — In general, for any polynomial f(X) =
∑n

i=0 aiX
n−i = a0

∏n
j=1(X−

tj) with coefficients in some field K, with a0 6= 0 and n ≥ 1, the discrimi-

nant(10), D(f), of f is defined by

(A.14) D(f) = a−1
0 R(f, f ′) = a2n−2

0

∏

j 6=k

(tj − tk) = an−2
0

n
∏

j=1

f ′(tj),

where R(f, f ′) denotes the resultant(11) of f and its derivative f ′, and tj,

j = 1, . . . , n, denote the n roots of f in a suitable field extension K̃ of K.

In the present case, we observe that Pκ(X), defined by (A.5), can be written
as

(A.16) Pκ(X) = Φ(X) +
(

X +
a4(λ)

a3(λ)

)

P ′
κ(X),

by setting Φ(X) = −XdQ(X) and

Q(X) = (d+ 2) a0(λ)X3 +
(

(d+ 3) a0(λ)
a4(λ)

a3(λ)
+ (d+ 1) a1(λ)

)

X2

+
(

(d+ 2) a1(λ)
a4(λ)

a3(λ)
+ dκ

)

X + (d+ 1)κ
a4(λ)

a3(λ)
.

(A.17)

We then have R(P,P ′) = R(Φ, P ′), hence

(A.18) D(P ) = (−1)d(d+ 2)d+3a0(λ)d+3a3(λ)d
3
∏

i=1

P ′(βi),

where β1, β2, β3 denote the roots of Q in a suitable field extension, R̃(λ), of

R(λ). It follows that D(P ) is zero in R(λ) if and only if P ′(βi) = 0 in R̃(λ)
for some i = 1, 2 or 3. We show that this cannot happen by considering the

(10)We here adopt the definition which appears in [28]. The definition in [6] differs by a

factor (−1)
n(n−1)

2 .
(11)Recall that the resultant R(f, g) of two polynomials f(X) =

Pn

i=0 aiX
n−i = a0

Qn

j=1(X−

tj) and g =
Pm

i=0 biX
m−i = b0

Qm

r=1(X − ur), with a0b0 6= 0, has the following expressions:

(A.15) R(f, g) = a
m
0 b

n
0

n
Y

j=1

m
Y

r=1

(tj − ur) = a
m
0

n
Y

j=1

g(tj) = (−1)mn
b
n
0

m
Y

r=1

f(ur).
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behaviour of the product
∏3

i=1 P
′(βi) near λ = ±1. Notice that

a0(λ) ∼= 1

4
(κ∓ 2),

a1(λ) ∼= −κ± 1,

a3(λ) ∼= (−(d+ 1)κ) ± 2) (λ∓ 1)d,

a4(λ) ∼= (dκ ∓ 2)(λ∓ 1)d+1,

(A.19)

modulo terms of higher orders in (λ∓1) near λ = ±1. We temporarily assume

that κ 6= 2
d and κ 6= 2

d+1 , so that a4(λ)
a3(λ) is exactly of order 1 in (λ ∓ 1) near

λ = ±1. We also assume κ 6= ±2 and κ 6= 0. It then follows that one root, β3

say, of Q is of order 1 as well, with

(A.20) β3
∼=

κ∓ 2
d

κ∓ 2
d+1

(λ∓ 1),

whereas the other two, β1, β2 tend to the roots, r1, r2 say, of the equation

(A.21)
(d+ 2)

4
(κ∓ 2)X2 + (d+ 1)(−κ± 1)X + dκ = 0,

which are both finite (as κ 6= ±2) and non zero (as κ 6= 0). It is easily
checked that, for i = 1, 2, the limit of P ′(βi) at λ = ±1, which is equal to

rd
i

( (d+3)
4 r2i + (d + 2)(−κ ± 1)ri + (d + 1)κ

)

, is non-zero for any value of κ ;
indeed, a common root, r, of (A.21) and of the equation

(A.22)
(d+ 3)

4
(κ∓ 2)X2 + (d+ 2)(−κ± 1)X + (d+ 1)κ = 0.

would satisfy r = −2(−κ±1)
κ∓2 = − 2κ

(−κ±1) , which is clearly impossible. In partic-

ular, P ′(β1) and P ′(β2) are both non zero in K. As for P ′(β3), we have

)

P ′(β3) ∼= a3(λ) + (d+ 1)a2β
d
3

= − (d+ 1)

(κ∓ 2
d+1 )d

(

(κ∓ 2

d+ 1
)d+1 − κ(κ∓ 2

d
)d
)

(λ∓ 1)d
(A.23)

modulo terms of higher orders in λ ∓ 1. If P ′(β3) was zero in K, the rhs of
(A.23) would be zero for λ = −1 and λ = 1, meaning that κ and −κ would be
both a root of the equation

(A.24) (X +
2

d+ 1
)d+1 −X(X +

2

d
)d = 0.

On the other hand, if h(X) =
∑d+1

j=0 cjX
d+1−j denotes the polynomial in the

rhs of (A.24), we have that

(A.25) cj =
2j
(

d
j

)

(d+ 1 − j)(d + 1)j−1dj
ϕj−1(d),
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for j = 0, . . . , d+ 1, by setting ϕk(x) = xk+1 − (x− k)(x+ 1)k, for any integer
k. It follows that c0 = c1 = 0, whereas cj > 0 for any j ≥ 2. To prove the
last assertion, it is sufficient to check that ϕk(x) is positive on [1,+∞) for
all integers k ≥ 1. Observe that ϕ′

k(x) = (k + 1)ϕk−1(x). We then conclude
by a simple argument by induction: if ϕk−1 is positive, then ϕk is increasing,
hence positive on [1,+∞), as ϕk(1) = 1; the argument by induction is then
completed by observing that ϕ1(x) ≡ 1. We infer that κ and −κ cannot be
simultaneously roots of (A.24), proving that P ′(β3) is non-zero in K. The case
when κ is ±2,±2

d ,± 2
d+1 which were discarded in the argument, is solved by

using the same argument at λ = −1 or at λ = 1 and by observing that none of
these values is a root of the equation (A.24). If κ = 0, we observe that (A.16)

holds with Φ = −Xd+1 Q̃(X) and

Q̃(X) = (d+ 2)a0(λ)X2 +
(

(d+ 3) a0(λ)
a4(λ)

a3(λ)
+ (d+ 1) a1(λ)

)

X2

+ (d+ 2) a1(λ)
a4(λ)

a3(λ)
.

(A.26)

This polynomial has two roots, α1, α2, in some extension of R(λ) and, as
before, the discriminant of P is zero if and only if P ′(α1) or P ′(α2) is 0 in this

extension. One of these roots, α2 say, is zero at λ = ±1, with α2
∼= (d+2)

(d+1) (λ∓1),

whereas α1 = 2(d+1)
(d+2) . Then, P ′(α1) = ±2d+1(d+1)d+1

(d+2)d+2 6= 0 at λ = ±1, whereas

P ′(α1) ∼= a3(λ) is non-zero in R(λ). This completes the proof of Proposition
A.1.
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