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Abstract. We provide an explicit resolution of the existence problem for extremal
Kähler metrics on toric 4-orbifolds M with second Betti number b2(M) = 2. More
precisely we show that M admits such a metric if and only if its rational Delzant
polytope (which is a labelled quadrilateral) is K-polystable in the relative, toric
sense (as studied by S. Donaldson, E. Legendre, G. Székelyhidi et al.). Further-
more, in this case, the extremal Kähler metric is ambitoric, i.e., compatible with a
conformally equivalent, oppositely oriented toric Kähler metric, which turns out to
be extremal as well. These results provide a computational test for the K-stability
of labelled quadrilaterals.

Extremal ambitoric structures were classified locally in Part I of this work, but
herein we only use the straightforward fact that explicit Kähler metrics obtained
there are extremal, and the identification of Bach-flat (conformally Einstein) exam-
ples among them. Using our global results, the latter yield countably infinite fami-
lies of compact toric Bach-flat Kähler orbifolds, including examples which are glob-
ally conformally Einstein, and examples which are conformal to complete smooth
Einstein metrics on an open subset, thus extending the work of many authors.

Introduction

This paper concerns the explicit construction of extremal Kähler metrics on com-
pact 4-orbifolds, including Kähler metrics which are conformally Einstein (either glob-
ally or on the complement of real hypersurface). The examples we construct are toric
with second Betti number two, i.e., their rational Delzant polytope (which is the im-
age of the momentum map of the 2-torus action [24, 45])) is a quadrilateral. More
precisely, we use extremal ambitoric metrics, which we classified locally in Part I of
this work, to resolve completely the existence problem in the quadrilateral case.

There are several narratives to which this paper may be viewed as a contribution.
A general theme is the interplay between the abstract existence theory for a geomet-
ric PDE, and the construction of explicit solutions associated to special geometric
structures. Extremal Kähler metrics were introduced by E. Calabi [16, 17] to address
the problem of finding canonical Kähler metrics with Kähler form in a given coho-
mology class Ω on a compact complex manifold. The L2 norm of the scalar curvature
yields a functional on Ω, and its critical points are the extremal metrics. They are
thus natural generalizations of constant curvature metrics on Riemann surfaces; in
general, the Euler–Lagrange equation asserts that a Kähler metric is extremal if its
scalar curvature is hamiltonian for a Killing vector field. As a geometric PDE, this is
quasilinear of fourth order, and no general methods are currently available.

Nevertheless, considerable progress on the existence theory has been made, fol-
lowing the seminal work of Calabi [15] on the non-positive Kähler–Einstein case and
the resolution of his famous conjecture by T. Aubin [9] and S-T. Yau [59]. Con-
jectures going back to Yau [60], G. Tian [55] and S. Donaldson [26] state that the
obstruction to the existence of an extremal Kähler metric in the class Ω = 2πc1(L)
of a polarized complex manifold (M,L) should be a purely algebro-geometric “sta-
bility condition” on the pair (M,L), and these conjectures may be extended to orb-
ifolds [49]. Defining a precise notion of stability is part of the problem, one candidate
being “K-(poly)stability” [55, 26]: the necessity of K-polystability has been proven
for constant scalar curvature metrics [28, 19, 51, 47], and a version of K-polystability
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relative to a maximal torus of the automorphism group of (M,L), developed by
G. Székelyhidi [53, 54], is necessary for the existence of an extremal Kähler metric of
non-constant scalar curvature [52].

A major difficulty with the theory is that in practice it is not only difficult to
determine whether a given polarized variety admits an extremal Kähler metric—it is
also difficult to verify a proposed stability condition. Consequently classes of complex
manifolds or orbifolds for which extremality and stability are more tractable play an
important role. These examples come in two main flavours: ruled and toric. Using
a construction due to Calabi [16], ruled surfaces and other projective line bundles
provide a setting for many explicit extremal Kähler metrics [56, 37, 53, 7]. We refer
to these as metrics of Calabi type; they admit a hamiltonian 2-form of order one [4, 5].
The extremality equations reduce to ODEs with explicit polynomial solutions, and
stability amounts to a positivity condition on the solution [53, 8]. For toric varieties,
in contrast, the extremality equations only reduce to a nonlinear fourth order PDE
in the momenta; explicit solutions are hard to find, but the existence theory is well-
developed [26, 27] and there is a well-understood notion of “relative K-polystability
with respect to toric degenerations” which is widely believed to be equivalent to
existence [26, 54, 61, 62]. Explicit examples are largely limited to orthotoric 2m-
orbifolds, which admit a hamiltonian 2-form of order m and have a convex m-cube
(or degeneration) for their rational Delzant polytope [4, 7, 41].

In dimension four, examples and theory come together to provide a fairly complete
picture. Extremal Kähler surfaces of Calabi type are locally toric (as the base is a
constant curvature Riemann surface) and there are specific results for toric surfaces.
The equivalence of existence and (relative) K-polystability is established in [30, 29]
in the constant scalar curvature case, while more recent work [20] relaxes this to the
assumption that the zero locus of the scalar curvature does not contain a toric divisor.

Our paper is closely related to work of E. Legendre [41], who investigated system-
atically the extent to which explicit methods resolve the existence problem when the
rational Delzant polytope is a convex quadrilateral. Her solution highlighted the role
of the extremal affine function ζ on the rational Delzant polytope, a combinatorial
invariant which pulls back to the scalar curvature in the extremal case. Her main
results show that hamiltonian 2-form methods suffice only for “equipoised” quadrilat-
erals, for which ζ has equal values at the midpoints of the diagonals. A key ingredient
in Legendre’s work is the observation that ζ is linear in the inverse lengths of the nor-
mals. Using this, she resolved the existence problem for the codimension one family
of equipoised quadrilaterals using orthotoric, Calabi type or product metrics.

The theory of hamiltonian 2-forms in four dimensions [4] implies that these toric
metrics are in fact ambitoric, i.e., toric with respect to a pair of oppositely oriented
but conformally equivalent Kähler metrics. The local classification of ambitoric struc-
tures [6] implies that the “regular” examples (i.e., neither a product nor of Calabi type)
are determined by a quadratic polynomial q and two functions A,B of one variable.
Regular ambitoric structures reduce to orthotoric metrics precisely when q has van-
ishing discriminant. The extremality conditions for regular ambitoric structures can
be explicitly solved with A,B given by quartic polynomials [6], and this generalization
suffices to remove the equipoisedness constraint introduced by Legendre.

To prove this, we use, in addition to ambitoric geometry, two further ingredients.
The first is an analysis of rational Delzant quadrilaterals building on [42]. We compute
the extremal affine function ζ and establish a notion of “temperateness” for polystable
quadrilaterals which implies ζ is positive at the midpoints of the diagonals.

The second is the concept of a “factorization structure”, which makes precise the
separation of variables technique that underpins explicit solutions of geometric PDEs
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on toric 4-orbifolds. One can hope such an approach will work in 2m-dimensions when
the rational Delzant polytope is a convex m-cube (or degeneration), with the 2m
facets providing boundary conditions for the m functions of one variable determining
the solution. In particular, by the uniqueness of toric extremal Kähler metrics [34],
we might expect a rational Delzant polytope to select an essentially unique adapted
factorization structure for the solution. This is indeed what happens for m = 2.

The fruit of this analysis is Theorem 1, which establishes in an explicit was, and for
arbitrary quadrilaterals, the conjecture [26] that the existence of an extremal Kähler
metric is equivalent to relative K-polystability with respect to toric degenerations.
Indeed, we show that temperate quadrilaterals admit a factorization structure which
relates the polystability condition directly to the positivity of the quartics A and
B appearing in the expression for the extremal ambitoric metrics. This explicitly
computable criterion yields new examples both of extremal toric 4-orbifolds, and of
(unstable) toric 4-orbifolds admitting no extremal Kähler metric.

In our discussion of examples, we return to another motivation for ambitoric geome-
try: Kähler metrics which are conformally Einstein. Since the work of D. Page [48] and
E. Calabi [16], such metrics have been an important source of examples, with contribu-
tions by L. Bérard-Bergery [10], R. Bryant [14], A. Derdzinski [22], G. Maschler [23],
and C. LeBrun [38, 39, 40] among others. In part I of this work [6], we classified
locally 4-dimensional Einstein metrics with degenerate half-Weyl tensors using Bach-
flat ambitoric structures (which are extremal and locally conformally Einstein). Here
we show that Bach-flat ambitoric 4-orbifolds are abundant, and include examples
which are globally conformally Einstein, as well as examples with an open set where
the Kähler metric is conformal to a smooth, complete (conformally compact) Einstein
metric on a covering. These extend in particular the examples of R. Bryant [14].

The organization is as follows. In section 1 we review the theory of compact toric
Kähler orbifolds [2, 24, 26, 35, 45], but adopting an affine invariant viewpoint. We
begin our analysis of quadrilaterals in section 2 where affine invariance provides an
effective tool to compute, for example, the extremal vector field, without extensive
calculus. By considering the affine structure as a variable, we similarly use projective
invariance to simplify our later discussion of factorization structures. This approach
is closely related to 5-dimensional contact, CR and sasakian geometry, cf. [42], which
we discuss in Appendix C. The main results are established in sections 3–4 which
concern the compactification of ambitoric metrics in general, in terms of factorization
structures, and extremal ambitoric metrics in particular in terms of adapted factoriza-
tion structures. Examples, including the new Einstein metrics, are given in section 5.
In Appendix B, we study the set of inward normals for which a given quadrilateral is
K-semistable but not stable, and show that any quadrilateral which is not a parallel-
ogram can be made K-unstable by suitably chosen normals.

The first author was supported by an NSERC Discovery Grant and the second (par-
tially) by an Advanced Research Fellowship. The authors are grateful to Liana David
and the Centro Georgi, Pisa, for an opportunity to meet in 2006, and to the Simons
Institute, Stony Brook, for a workshop invitation in 2011. They also thank Miguel
Abreu, Hugues Auvray, Olivier Biquard, Claude LeBrun, Éveline Legendre, Gabor
Székelyhidi and Christina Tønnessen-Friedman for helpful discussions and comments.

1. Toric orbifolds, Kähler metrics and polystability

We review the theory of toric Kähler 2m-orbifolds M , primarily adopting the sym-
plectic point of view, as in [2, 24, 35, 36, 45]. We denote the m-torus acting on M by
T = t/2πΛ, where t is its (abelian) Lie algebra, and Λ its lattice of circle subgroups.
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Our applications have m = 2 and a geometry which may not be compatible with the
lattice or origin in t∗. Hence we use basis-independent and affine-invariant language.

1.1. Toric symplectic orbifolds. Let h be an (m+1)-dimensional real vector space,
and ι : R→ h a 1-dimensional subspace with quotient t. Dually, h∗ has t∗ as a subspace
with quotient ι> : h∗ → R. The inverse image of 1 ∈ R under ι> is an affine subspace
Ξ of h∗, modelled on t∗. The space of affine functions f on Ξ is canonically isomorphic
to h, where the constant functions are ι(c), c ∈ R, and the projection of f to t, viewed
as a linear form on t∗, is its derivative df (at every point of Ξ).

Definition 1. Let L1, . . . Ln be affine functions on Ξ such that the convex polytope

∆ := {ξ ∈ Ξ : Lj(ξ) ≥ 0, j = 1, . . . n}

is compact and nonempty.1 Then (∆, L1, . . . Ln) is a rational Delzant polytope in Ξ iff

(i) ∀ j ∈ {1, . . . n} the normals uj := dLj ∈ t belong to the lattice Λ ⊆ t and

(ii) ∀ξ ∈ ∆, Nξ := {uj ∈ t : Lj(ξ) = 0} is linearly independent in t.

The term “rational” refers to the fact that the normals uj span an m-dimensional
vector space over Q. If the affine normals Lj span an (m+1)-dimensional vector space
over Q, we say the polytope is strongly rational. The faces F of ∆ are intersections of
the facets (codimension one faces) Fj = ∆ ∩ {ξ ∈ Ξ : Lj(ξ) = 0} which have inward
normals uj . A rational Delzant polytope is simple or m-valent : m facets and m edges
meet at each vertex. The primitive inward normals, which are uniquely determined by
∆ and Λ, have the form uj/mj for some positive integer labelling mj of the facets Fj ,
so rational Delzant polytopes are also called labelled polytopes [45]. It is convenient
to encode the labelling in the row vector L = (L1, . . . Ln) ∈ Hom(Rn, h) ∼= h⊗Rn∗ of
affine normals, and denote the normals by dL = (u1, . . . un) ∈ Hom(Rn, t).

Compact toric symplectic 2m-orbifolds are classified (up to equivariant symplecto-
morphism) by rational Delzant polytopes (up to lattice preserving affine equiva-
lences) [24, 45]. In one direction, if (M,ω) is a toric symplectic orbifold under
the action of T, with Lie algebra t ⊆ C∞(M,TM), we let h ⊆ C∞(M,R) be
the space of hamiltonian generators f (with gradωf ∈ t) and µ : M → h∗ be the
natural momentum map (with 〈µ(x), f〉 = f(x)); then ∆ is the image of µ, and
(spanRuj ∩ Λ)/spanZuj

∼= Z/mjZ is the local uniformizing group of every point in
µ−1(F 0

j ). (For any face F , we denote by F 0 its interior.) Conversely, (∆,L) determines

(M,ω) as a symplectic quotient of Cn by an (n−m)-dimensional subgroup G of the
standard n-torus (S1)n = Rn/2πZn: G is the kernel of the map (S1)n → T = t/2πΛ
induced by the natural map dL : Rn → t (with kernel the Lie algebra g of G); the
composite of L> : h∗ → Rn∗ with the transpose Rn∗ → g∗ of the inclusion therefore
vanishes on t∗ and hence induces a map λ : R = h∗/t∗ → g∗—the momentum level for
the symplectic quotient of Cn by G is then λ(1).

Remark 1. Affine functions Lj defining a rational Delzant polytope ∆ ⊆ Ξ do so with
respect to any lattice containing the normals uj . There is clearly a smallest such
lattice Λ := spanZ{uj : j = 1, . . . n}, and any other such lattice Λ′ contains Λ as
a sublattice (of finite index). The torus T′ = t/2πΛ′ is the quotient of T = t/2πΛ
by a finite abelian group Γ ∼= Λ′/Λ, and the corresponding toric symplectic orbifolds
M and M ′ (under the tori T and T′) are related by a regular orbifold covering [57]:
M ′ = M/Γ. In fact M is a simply connected orbifold in the sense of W. Thurston [57]
and is the universal orbifold cover of M ′ [45]. We therefore say that the rational

1We implicitly assume each Lj vanishes somewhere on ∆, otherwise it may be discarded.
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Delzant polytope is simply connected. Simply connected rational Delzant polytopes
are entirely determined by the affine normals L.

1.2. Toric Kähler orbifolds. We next consider Kähler metrics compatible with a
toric symplectic structure. On the union M0 := µ−1(∆0) of the generic orbits, such
metrics have an explicit general expression due to V. Guillemin [35, 36]. In this
description, the momentum map µ : M0 → Ξ is supplemented by angular coordinates
t : M → t/2πΛ such that the kernel of dt is orthogonal to the torus orbits. These
action-angle coordinates (µ, t) identify each tangent space to M0 with t⊕ t∗, and the
symplectic form is ω = 〈dµ ∧ dt〉, where 〈·〉 denotes contraction of t and t∗. Hence
invariant ω-compatible Kähler metrics on M0 have the form

(1) g = 〈dµ,G, dµ〉+ 〈dt,H,dt〉,

where G is a positive definite S2t-valued function of µ, H is its pointwise inverse in
S2t∗ (at each point, G and H define mutually inverse linear maps t∗ → t and t→ t∗)
and 〈·, ·, ·〉 denotes the pointwise contraction t∗×S2t×t∗ → R or the dual contraction.
The corresponding almost complex structure is defined by

(2) Jdt = −〈G,dµ〉,

and J is integrable if and only if G is the Hessian of a function [35].
Necessary and sufficient conditions for H to come from a globally defined metric

on M are obtained in [2, 7, 27]. Here we use the first order boundary conditions given
in [7, §1]. In order to state them, we denote by tF ⊆ t (for any face F ⊆ ∆) the
vector subspace spanned by the inward normals uj ∈ t to facets containing F . Thus
the tangent plane to points in F 0 is the annihilator t0F

∼= (t/tF )∗ of tF in t∗.

Proposition 1. Let (M,ω) be a compact toric symplectic 2m-manifold or orbifold
with natural momentum map µ : M → ∆ ⊆ Ξ ⊆ h∗, and H be a positive definite S2t∗-
valued function on ∆0. Then H defines a T-invariant, ω-compatible almost Kähler
metric g via (1) if and only if it satisfies the following conditions:

• [smoothness] H is the restriction to ∆0 of a smooth S2t∗-valued function on ∆;
• [boundary values] for any point ξ on the facet Fj ⊆ ∆ with inward normal uj,

(3) Hξ(uj , ·) = 0 and (dH)ξ(uj , uj) = 2uj ,

where the differential dH is viewed as a smooth S2t∗ ⊗ t-valued function on ∆;
• [positivity] for any point ξ in interior of a face F ⊆ ∆, Hξ(·, ·) is positive definite

when viewed as a smooth function with values in S2(t/tF )∗.

1.3. The extremal affine function and K-polystability. Let (M,J, g, ω) be a
compact Kähler orbifold invariant under the action of a maximal torus G in the
reduced automorphism group H0(M,J) of (M,J). (By a result of Calabi [16], any
extremal Kähler metric is invariant under such a G.) Following [32], the extremal
potential is the L2-projection of the scalar curvature sg onto the space of Killing
potentials (with respect to ω) of elements of the Lie algebra g and the extremal vector
field is its symplectic gradient. A. Futaki and T. Mabuchi [32] show that the extremal
vector field is independent of the choice of aG-invariant Kähler metric within the given
Kähler class [ω] on (M,J). Since, the extremal vector field is central, G can also be
taken to be a maximal compact subgroup. Furthermore, by adopting the symplectic
viewpoint [31, 25, 43], the extremal potential becomes a natural deformation invariant
of the complex structure, for fixed (M,ω,G).

For toric symplectic orbifolds (M,ω,T), the extremal potential is an element ζ of
h, called the extremal affine function [8, 34, 43], and is defined (in the notation of
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§1.1) by the following vector equation in h∗:∫
ξ∈∆
〈ξ, ζ〉ξ dλ =

∫
ξ∈∆

sg(ξ)ξ dλ = 2

∫
ξ∈∂∆

ξ dν

where dλ is a (constant) volume form on Ξ, the (m−1)-form dν satisfies uj∧dν = −dλ
on the facet Fj of ∂∆ with normal uj , and sg is the scalar curvature of a compatible
Kähler metric viewed as a function on ∆. The combinatorial boundary integral for
the first moment of sg is an application of the Abreu formula [1]

(4) sg = −div δH := −
∑
r,s

∂2Hrs

∂ξr∂ξs

for the scalar curvature of the compatible metric defined by H, together with the di-
vergence theorem; the latter calculation uses only the boundary conditions of Propo-
sition 1, and not the positive definiteness of H on the faces of ∆, nor the fact that
H is the inverse hessian of a symplectic potential. We deduce that if H satisfies the
boundary conditions and −div δH is an affine function, then this is the extremal affine
function; such an H is called a formal extremal solution.

The extremal affine function is important not only as the scalar curvature of a
compatible extremal Kähler metric, but also because it may be used to define a relative
Futaki invariant and hence a combinatorial K-polystability criterion [26, 30, 54, 61].

Definition 2. The relative Futaki invariant F∆,L of a compact toric symplectic 2m-
orbifold (M,ω,T) with rational Delzant polytope (∆,L) is defined by

(5) F∆,L(f) :=

∫
ξ∈∂∆

f(ξ)dν − 1

2

∫
ξ∈∆
〈ξ, ζ〉f(ξ)dλ

for any continuous function f on ∆. Note that F∆,L vanishes on affine functions f .

Note that if H is a formal extremal solution, we may substitute ζ = −div δH in
this formula and integrate by parts to obtain

(6) F∆,L(f) =
1

2

∫
ξ∈∆

tr(H Hess f)dλ.

Let PL(∆) be the space of continuous piecewise-linear (PL) convex functions f on ∆
(thus f is the maximum of a finite collection of affine linear functions). Although (6)
involves two derivatives of f , it may be used in a distributional sense to compute
F∆,L(f) for f ∈ PL(∆). In particular (cf. [41]) let f be a simple convex PL function
with crease on the line {ξ ∈ Ξ : 〈ξ, uf 〉 = 0} (with uf normalized to be the change in
df along the line) and let Sf be the intersection of this line with ∆. Then

(7) F∆,L(f) =

∫
Sf

H(uf , uf )dνf ,

where νf is the positive measure on Sf such that uf ∧ dνf = dλ.

Definition 3. (M,ω,T) is said to be (analytically, relatively) K-polystable (with re-
spect to toric degenerations) provided that F∆,L(f) ≥ 0 for all f ∈ PL(∆), with
equality iff f is an affine function.

The main conjecture of [26] is that a compact toric orbifold (M,ω,T) admits a
compatible extremal Kähler metric if and only if is K-polystable in this toric sense.
The forward implication has been established by Zhou and Zhu [62]. Conversely,
in [30], Donaldson shows that for polygons with zero extremal vector field, this toric
K-polystability criterion implies existence of a CSC metric. The general extremal case
remains open, which motivates its study in the ambitoric context.
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2. Simplices and quadrilaterals

Rational Delzant polytopes may be considered from a projective viewpoint, not just
an affine one. To fix notation, for a real vector space V , we denote by P(V ) = V ×/R×
the nonzero vectors in V up to scale: P(V ) is isomorphic to the set of 1-dimensional
subspaces of V , where the equivalence class [v] ∈ P(V ) of a nonzero vector v ∈ V is
mapped to <v> ⊆ V , its span.

Given a rational Delzant polytope (∆,L), where ∆ ⊆ Ξ and Ξ ⊆ h∗ is the affine
subspace (modelled on t∗) introduced in §1.1, observe that Ξ is an affine chart for
P(h∗). Hence it is natural to identify ∆ with its image in P(h∗), and also with the
convex cone in h∗ of its nonnegative multiples. Dually, the space ∆∗ ⊆ h of affine
functions which are nonnegative on ∆ is a convex cone,2 given by the nonnegative
linear combinations of the affine normals L1, . . . Ln, which we may identify with its
image in P(h). The incarnations of ∆ determine one another uniquely, but depend
upon the choice of Ξ, or equivalently, the inclusion ι : R → h or the affine structure
ι(1) ∈ h; note that ι(1) is in the interior of ∆∗.

2.1. Rational Delzant simplices. The case of m-simplices is well understood, but
we summarize it briefly, both as a warm-up, and because we shall use the case of trian-
gles (m = 2) as a limiting case of quadrilaterals. All simplices are affine equivalent, so
simply connected rational Delzant simplices are parametrized by the choices of scale
for the normals. Concretely let ∆ ⊆ Ξ be the m-simplex on which `j(ξ) ≥ 0 for affine
functions `0, `1, . . . `m with `0+`1+· · ·+`m = 1 on Ξ, so that each `j = 1 at the vertex
vj opposite to the facet Fj on which it vanishes. Then for any r0, r1, . . . rm ∈ R+ with
rational ratios, affine normals Lj := `j/rj define a rational Delzant simplex (∆,L)
with L = (L0, L1, . . . Lm) and

∑m
j=0 rjLj = 1.

The corresponding symplectic orbifolds are weighted projective spaces: the vector
(r0, r1, . . . rm) spans the kernel of the map dL : Rm+1 → t sending (x0, x1, . . . xm) to∑m

j=0 xjuj (where uj = dLj), and some multiple (w0, w1, . . . wm) of (r0, r1, . . . rm) is
a list of positive integers with no common multiple; the rational Delzant construction
therefore yields the weighted projective space CPmw0,...wm

as the symplectic quotient

of Cm+1 by the diagonal action of S1 with weights w0, . . . wm. Each weighted projec-
tive space has a unique Kähler class (up to scale), and this class contains a unique
extremal Kähler metric (up to homothety and biholomorphism); moreover, this ex-
tremal Kähler metric is Bochner-flat [14]. In four dimensions, a Kähler metric is
Bochner-flat iff it is selfdual (W− = 0) which is equivalent to the existence of many
(local) opposite complex structures, although none of these are globally defined on a
weighted projective plane.

The toric geometry of weighted projective spaces (and their quotients) has been
worked out in detail by M. Abreu [2] in specific coordinates. Here we give an affine
invariant derivation, as we shall use similar ideas to simplify computation in the more
complicated case of quadrilaterals.

Lemma 1. Let ∆ be an m-simplex in Ξ as above, let λ be a translation invariant
measure on Ξ, and A1, A2 : Ξ → R be affine functions whose values on the vertices
v0, v1, . . . vm of ∆ are given by a1, a2 ∈ Rm+1. Then∫

∆
A1A2 dλ = B(a1, a2)λ(∆)

where B is the symmetric bilinear form on Rm+1 with Bjk =
1+δjk

(m+1)(m+2) .

2In fact ∆∗ is a strictly convex cone: it contains no nontrivial linear subspace.
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Proof. Since all m-simplices are affine equivalent, and any affine function is uniquely
determined by its values on the m+1 vertices of a simplex, the integral must have the
given form for some symmetric bilinear form B. The entries of B must be permutation
invariant, so Bjk = a+ bδjk. Substituting A1 = A2 = 1, we obtain (m+ 1)2a+ (m+
1)b = 1. If A1 = A2 = `0 (i.e., equal to 1 at v0 and 0 at v1, . . . vm), then we observe
that for 0 ≤ x ≤ 1, λ({p ∈ ∆ : `0(p)2 ≥ x}) = λ({p ∈ ∆ : 1 − `0(p) ≤ 1 −

√
x}) =

λ
(
(1 −

√
x)∆

)
= (1 −

√
x)mλ(∆), and integrating over x, the integral evaluates to

2λ(∆)/(m+1)(m+2). Thus (m+1)(m+2)(a+b) = 2 and a = b = 1/(m+1)(m+2). �

The measure ν, with uj ∧dν = −dλ on the facet Fj where `j = 0, satisfies ν(Fj) =
mrjλ(∆), since Lj = 1/rj at the opposite vertex vj . Consequently, for any affine
function A, ∫

Fj

Adν = rjλ(∆)
∑
k 6=j

A(vk).

Since (B−1)jk = (m+ 1)
(
(m+ 2)δjk − 1

)
, the extremal affine function ζ of (∆,L) is∑m

j=0 ζjrj where

ζj =

m∑
k=0

1
2(m+ 1)(2− (m+ 2)δjk)`k.

Note that ζ is linear in the parameters rj : this is the reason for using such an inverse
scale to parametrize the normals. For m = 2, ζ/3 = (−`0 + `1 + `2)r0 + (`0 − `1 +
`2)r1 + (`0 + `1 − `2)r2, which is positive on the interior of the medial triangle (with
vertices at the midpoints of the edges of ∆). This positivity has an analogue for
convex quadrilaterals, to which we now turn.

2.2. Rational Delzant quadrilaterals. Quadrilaterals are not all affine equivalent,
but they are projectively equivalent since the vertices (or the projective normals) give
four points in general position in P(h∗) (or P(h)). Consequently, quadrilaterals can
be parametrized conveniently by varying the affine structure, an approach adopted by
E. Legendre in [41, 42] and closely related to 5-dimensional toric sasakian geometry
(see Appendix C). Following Legendre, let ∆ = {[w, x, y] ∈ P(R3∗) : w ≥ |x|, w ≥ |y|}
be the quadrilateral with vertices [1,±1,±1]. In the affine subspace {(w, x, y) ∈ R3∗ :
w = 1} defined by (1, 0, 0) ∈ R3, ∆ is a square. More generally, affine subspaces
meeting ∆ in a compact convex quadrilateral are parametrized by vectors in the
interior of the dual cone ∆∗, spanned by (1,±1, 0) and (1, 0,±1). Any such vector is
a positive multiple of

(
1, 1

2(ε+η), 1
2(ε−η)

)
for some ε, η ∈ R with |ε| < 1 and |η| < 1.

The corresponding affine subspace is {(w, x, y) : 2w + (ε + η)x + (ε − η)y = 2} and
the vertices of ∆ in this subspace are

v00 =
(1,−1,−1)

1− ε
, v0∞ =

(1,−1, 1)

1− η
, v∞0 =

(1, 1,−1)

1 + η
, v∞∞ =

(1, 1, 1)

1 + ε

with v00 opposite to v∞∞ and v0∞ opposite to v∞0. An affine function A is uniquely
determined by its values at the vertices, but these values are constrained by the equal-
ity of two expressions for (twice) the value of A at the intersection of the diagonals:

(8) (1− ε)A(v00) + (1 + ε)A(v∞∞) = (1− η)A(v0∞) + (1 + η)A(v∞0).

The affine functions obtained by restricting w + x, w − x, w + y and w − y to this
affine subspace will be denoted `′α,0, `′α,∞, `′β,0 and `′β,∞ respectively. They clearly

satisfy `′α,0 + `′α,∞ = `′β,0 + `′β,∞. We also set

`α,0 = 1
4(1 + ε)(1 + η)`′α,0, `α,∞ = 1

4(1− ε)(1− η)`′α,∞,

`β,0 = 1
4(1 + ε)(1− η)`′β,0, `β,∞ = 1

4(1− ε)(1 + η)`′β,∞,
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which satisfy `α,0 + `α,∞ + `β,0 + `β,∞ = 1, and whose nonzero values on vertices are

`α,0(v∞0) = `β,0(v0∞) = 1
2(1 + ε), `α,0(v∞∞) = `β,∞(v00) = 1

2(1 + η)

`α,∞(v00) = `β,0(v∞∞) = 1
2(1− η) `α,∞(v0∞) = `β,∞(v∞0) = 1

2(1− ε).

These affine functions provide an affine invariant description of a family of quadri-
laterals ∆ε,η with (ε, η) ∈ (−1, 1)× (−1, 1), and we can drop the (w, x, y) coordinate
system. The parameters ε, η can be interpreted geometrically in terms of the diago-
nals, which bisect each other in the ratios 1− ε : 1 + ε and 1− η : 1 + η. The rescaled
affine normals Lα,k := `α,k/rα,k and Lβ,k := `β,k/rβ,k, where rα,k, rβ,k (k ∈ {0,∞})
are positive real numbers, define a rational Delzant quadrilateral (∆,L) in P(h∗) (with
an ordering of its vertices and the affine normals L indexed Lβ,0, Lα,0, Lβ,∞, Lα,∞)
provided that the normals uα,k = dLα,k and uβ,k = dLβ,k span a lattice in t.

The following diagram shows the projection of the quadrilateral onto the (x, y)
plane. This normal form is orthodiagonal and so its Varignon parallelogram (whose
vertices are the midpoints of the sides of the quadrilateral) is a rectangle. Also shown
are the midpoints vε, vη of the diagonals and the centroid v0.

•

•

v00 =
(−1,−1)
1−ε

v∞∞ = (1,1)
1+ε

•

•

v0∞ = (−1,1)
1−η

v∞0 =
(1,−1)
1+η

• (0, 0)

•vε =
−ε(1,1)
1−ε2

•vη = η(−1,1)
1−η2

•v0 =
vε+vη

2

Fβ,0

Fα,0

Fβ,∞

Fα,∞

Figure 1. A rational Delzant quadrilateral with its diagonals and Newton line.

When ε = η = 0, ∆ is a parallelogram (these are all affine equivalent); the as-
sociated simply connected symplectic 4-orbifolds are products of weighted projective
lines (including CP 1 × CP 1 when rα,0 = rα,∞ and rβ,0 = rβ,∞). If η = ±ε, ∆

is a trapezium3; the associated simply connected symplectic 4-orbifolds are orbifold
weighted projective line bundles over a weighted projective line (which include the
smooth Hirzebruch surfaces P(O ⊕O(k))→ CP 1).

The extremal affine function ζ may be written ζ = c(ε, η)
∑

k=0,∞(ζα,krα,k +

ζβ,krβ,k) where the normalization constant c(ε, η) will be chosen shortly. By sym-
metry, it suffices to compute ζα,0, noting that its integral over ∆ against any affine
function A depends only on the value of A at the midpoint of the edge v00v0∞.

3i.e., a quadrilateral with at least two parallel sides, also known as a trapezoid
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Lemma 2. ζα,0 satisfies the following equations:

ζα,0(v0∞) + ζα,0(v∞0) + (1− ε)ζα,0(v∞∞) = 0(9)

ζα,0(v00) + ζα,0(v∞∞) + (1− η)ζα,0(v∞0) = 0.(10)

Proof. Let Aε be an affine function which is constant on the diagonal v∞0v0∞ and
vanishes at the midpoint of v00v0∞. Up to scale, we may take Aε(v∞0) = Aε(v0∞) =
1 + ε, Aε(v00) = −(1 + ε), and Aε(v∞∞) = 3− ε (which verifies (8)). The integral of
ζα,0Aε over ∆ (which vanishes) may be computed using Lemma 1 by splitting ∆ into
two triangles along the diagonal v∞0v0∞. Up to a positive constant, the result is

(1− ε)(3 + ε)
(
ζα,0(v0∞) + ζα,0(v∞0)

)
+ 4(1− ε)ζα,0(v∞∞) + (1 + ε)2ζα,0(v0∞)

which readily yields (9); (10) follows similarly, using the diagonal v00v∞∞. �

It follows that ζα,0 is a constant multiple of the affine function(
2 + (1− ε)(1− η)

)
(`α,∞ − `α,0) +

(
2− (1− ε)(1− η)

)
(`β,0 + `β,∞)

= 2(1− 2`α,0) + (1− ε)(1− η)(2`α,∞ − 1).

With some further work we can compute the constant: if we set c(ε, η) = 1, it equals
24/
(
4− (1−ε2)(1−η2)

)
. We can instead take this constant as the definition of c(ε, η)

(by symmetry, it is the same for all four components of ζ). For ζα,0, we then have

ζα,0(v00) = 2− η(1− ε)(1− η) ζα,0(v∞∞) = −2 + (1 + ε)(1− η)

ζα,0(v0∞) = 2− ε(1− ε)(1− η) ζα,0(v∞0) = −2 + (1− ε)(1 + η)

2ζα,0(vε) = (1− η)(2− (1− ε)(1 + η)) 2ζα,0(vη) = (1− ε)(2− (1 + ε)(1− η))

(11) 4ζα,0(v0) = (1 + ε2)(1− η) + (1 + η2)(1− ε)

where vε = 1
2(v00 + v∞∞) and vη = 1

2(v0∞ + v∞0) are the midpoints of the diagonals,

and v0 = 1
2(vε + vη) is the centroid of ∆.

Lemma 3. The extremal affine function ζ is positive at the centroid of ∆, and is also
positive at the midpoints of the diagonals if (1+ |ε|)(1+ |η|) < 2. In general, the value
of ζ at the midpoint of a diagonal is a positive multiple of the Futaki invariant of a
simple PL convex function with crease along that diagonal.

Proof. By (11) and analogous formulae for the other components, ζ is positive at
the centroid v0, since |ε|, |η| < 1. Similarly, it is positive at the midpoints of the
diagonals for (1 + |ε|)(1 + |η|) < 2. We now compute the Futaki invariant of a simple
PL function H with a crease along the diagonal v00v∞∞ through vε. By symmetry, it
suffices to compute the rα,0 component ζα,0. Modulo an affine function (on which the
Futaki invariant vanishes), we may assume f vanishes on Fα,0, so that we only need to
compute the integral of −fζα,0 over the triangle T = v00v∞∞v∞0, on which we may
suppose f = `′α,0 − `′β,0, i.e., f(v∞0) = 2/(1 + η). By Lemma 1, the integral evaluates

to a universal constant positive multiple of −λ(T )f(v∞0)(ζα,0(v00) + ζα,0(v∞∞) +
2ζα,0(v∞0)). By Lemma 2, this is a universal constant positive multiple of

−
(
ζα,0(v00) + ζα,0(v∞∞)

)(
1− 2/(1− η)

)
(1 + ε)(1− ε)(1 + η)2

=
2ζα,0(vε)

(1 + ε)(1− ε)(1 + η)(1− η)
.

Hence the Futaki invariant is a positive multiple of ζ(vε), as required. The argument
for the other diagonal/midpoint is similar. �

We conclude that if a rational Delzant quadrilateral is K-polystable, then the ex-
tremal affine function must be positive at the diagonal midpoints.
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Definition 4. Let (∆,L) be a rational Delzant quadrilateral with vertices v00, v∞∞,
v0∞, v∞0 so that v00 and v∞∞ are opposite. Then ∆ is said to be equipoised if ζ(v00)+
ζ(v∞∞) = ζ(v0∞) + ζ(v∞0), and temperate if ζ(v00) + ζ(v∞∞) and ζ(v0∞) + ζ(v∞0)
are both positive.

The condition to be equipoised was introduced in [41], and means equivalently
that the extremal affine function has equal values on the midpoints vε and vη of the
diagonals of ∆. This is automatic if ∆ is a parallelogram (when vε = vη)—otherwise
it means that the extremal affine function is constant (hence positive by Lemma 3) on
the Newton line vεvη. The condition to be temperate is the much weaker condition
that ζ is positive on the line segment between vε and vη.

3. Orbifold compactifications of ambitoric structures

3.1. Ambitoric structures and their local classification. In [6], we studied the
following 4-dimensional geometric structure.

Definition 5. An ambikähler structure on a real 4-manifold or orbifold M consists
of a pair of Kähler metrics (g−, J−, ω−) and (g+, J+, ω+) such that

• g− and g+ induce the same conformal structure (i.e., g− = f2g+ for a positive
function f on M);
• J− and J+ have opposite orientations (equivalently the volume elements 1

2ω− ∧ω−
and 1

2ω+ ∧ ω+ on M have opposite signs).

The structure is said to be ambitoric if in addition

• there is a 2-dimensional subspace t of vector fields on M , linearly independent on
a dense open set, whose elements are hamiltonian and Poisson-commuting Killing
vector fields with respect to both (g−, ω−) and (g+, ω+).

ThusM has a pair of conformally equivalent but oppositely oriented Kähler metrics,
invariant under a local 2-torus action, and both locally toric with respect that action.

Examples. There are three classes of examples of ambitoric structures.

(i) Toric Kähler products. Let (Σ1, g1, J1, ω1) and (Σ2, g2, J2, ω2) be (locally)
toric 2-dimensional Kähler manifolds or orbifolds, with hamiltonian Killing vector
fields K1 and K2. Then M = Σ1×Σ2 is ambitoric, with g± = g1⊕g2, J± = J1⊕(±J2),
ω± = ω1 ⊕ (±ω2) and t spanned by K1 and K2.

(ii) Toric Calabi geometries. Let (Σ, g, J, ω) be a 2-dimensional Kähler manifold
or orbifold with hamiltonian Killing vector field K, let π : P → Σ be a circle bundle
with connection θ and curvature dθ = π∗ω, and let A be a positive function on an
open subset U of R+. Then M = P × U is ambitoric, with

g± = z±1
(
g +

(
z−1dz

)2
A(z)

+A(z)θ2
)
,

ω± = z±1
(
ω ± z−1dz ∧ θ

)
, J±(z−1dz) = ±A(z)θ,

and the local torus action spanned by K and the generator of the circle action. Here
z : M → R+ is the projection onto U ⊆ R+.

(iii) Regular ambitoric structures. Let q(z) = q0z
2 + 2q1z + q2 be a quadratic

polynomial and let M be a 4-dimensional manifold or orbifold with real-valued func-
tions (x, y, τ0, τ1, τ2) such that x > y, 2q1τ1 = q0τ2+q2τ0, and their exterior derivatives
span each cotangent space. Let t be the 2-dimensional space of vector fields K on
M with dx(K) = 0 = dy(K) and dτj(K) constant, and let A and B be positive
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functions on open neighbourhoods of the images of x and y in R, on whose product
q(x, y) := q0xy + q1(x+ y) + q2 is positive. Then M is ambitoric with

g± =

(
x− y
q(x, y)

)±1( dx2

A(x)
+

dy2

B(y)
(12)

+A(x)
(y2dτ0 + 2ydτ1 + dτ2

(x− y)q(x, y)

)2
+B(y)

(x2dτ0 + 2xdτ1 + dτ2

(x− y)q(x, y)

)2
)
,

ω± =

(
x− y
q(x, y)

)±1dx ∧ (y2dτ0 + 2ydτ1 + dτ2)± dy ∧ (x2dτ0 + 2xdτ1 + dτ2)

(x− y)q(x, y)
,(13)

J±dx = A(x)
y2dτ0 + 2ydτ1 + dτ2

(x− y)q(x, y)
, J±dy = ±B(y)

x2dτ0 + 2xdτ1 + dτ2

(x− y)q(x, y)
.(14)

If (g±, J±, ω±, t) is a regular ambitoric structure for which the quadratic form q has
vanishing discriminant, then (g+, J+, ω+) is orthotoric in the sense of [4]: see [6].

It is easy to check that these explicit geometries are ambitoric (cf. [4, 6]).

Theorem. [6] Let (M, g±, J±, ω±, t) be an ambitoric 4-manifold or orbifold. Then any
point in an open dense subset of M has a neighbourhood on which (g±, J±, ω±, t) is
either a toric Kähler product, a toric Calabi geometry, or a regular ambitoric structure.

3.2. Invariant geometry in momentum coordinates. In order to compactify
ambitoric structures using the approach of §1.2, we need to describe the metrics in
momentum coordinates. For toric Kähler products, toric Calabi geometries and ortho-
toric metrics, this has been done systematically by E. Legendre [41] in her resolution
of existence problem for extremal metrics over equipoised rational Delzant quadrilat-
erals. Hence we concentrate on the general regular ambitoric case.

We shall make essential use of the underlying geometry of regular ambitoric struc-
tures. For this we recall (from [6]) that there is a natural PSL(2,R) gauge freedom in
regular ambitoric structures, which may be described in an invariant geometric way
by viewing the codomain of the x and y coordinates as a projective line P(W ), where
W is a 2-dimensional real vector space on which we fix a (nonzero) area form κ. Note
that the tensor product O(1)⊗W of the dual tautological line bundle O(1) and the
trivial bundle P(W ) ×W has a tautological section which we use to embed P(W )
into the total space. We use bold font for the maps x,y : M → P(W ) ⊆ O(1) ⊗W
and x, y : M → R for their expression in an affine coordinate on P(W ); in the affine
trivialization of O(1), x,y are homogeneous coordinates corresponding to the inho-
mogeneous coordinates x, y.

The quadratic form q in (12)–(14) is naturally an element of S2W ∗ (i.e., an algebraic
section of O(2) → P(W )) and the Lie algebra t of the torus is the subspace S2

0,qW
∗

orthogonal to q with respect to the inner product κ⊗ κ on W ∗⊗W ∗ (which restricts
to the polarization of the discriminant on S2W ∗). Note that S2W ∗ ∼= sl(W ) has a Lie
algebra structure (the Poisson bracket, or Wronskian) and the Poisson bracket with
q induces an isomorphism adq : S2W ∗/<q> → S2

0,qW
∗. Following [6], we distinguish

these isomorphs of t by writing τ = adq(t) where τ and t take values in S2
0,qW

∗ and
S2W ∗/<q> respectively (modulo corresponding lattices). For z ∈ W , we denote by

z[ = κ(z, ·) the corresponding element of W ∗, using ] for the inverse isomorphism.

Definition 6. A regular ambitoric structure is said to be of elliptic, parabolic or
hyperbolic type if q has (respectively) zero, one or two distinct real roots (on P(W )).

The spaces h± of hamiltonian generators of the torus action with respect to ω±
are readily computed using (13) (see [6, (24)–(25)]); these yield the affine structures
ι±(1) ∈ h± and the natural momentum maps µ± : M → h±

∗ as functions of x and y.
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Negative structures. We identify h− with S2
0,qW

∗ ⊕∧2W ∗ ⊆W ∗ ⊗W ∗ and

(15) µ−(x,y) = −x⊗ y mod q]

κ(x,y)
in h−

∗ ∼= W ⊗W/<q]>,

where q] ∈ S2W is dual to q using κ (i.e., q](z[) = q(z)). Modulo a sign convention,
the affine structure is κ, with 〈µ−, κ〉 = 1. For γ ∈W (or in P(W ) ⊆ O(1)⊗W ), we

define λ(γ) = γ[⊗q(γ, ·) and ρ(γ) = q(γ, ·)⊗γ[, which are decomposables in W ∗⊗W ∗
orthogonal to q, and hence in h−. The contractions of λ(γ) and ρ(γ) with µ−(x,y)
vanish when x = γ or y = γ respectively. In affine coordinates on P(W ),

λ(γ)(x, y) = (x− γ)q(γ, y), ρ(γ)(x, y) = q(x, γ)(y − γ),

〈µ−(x, y), λ(γ)〉 = −(x− γ)q(y, γ)

x− y
, 〈µ−(x, y), ρ(γ)〉 = −(y − γ)q(x, γ)

x− y
.

Hence λ(γ) and ρ(γ) are dual (i.e., normal) to level surfaces of x and y respectively.

Positive structures. Here we have h+
∼= S2W ∗ and

(16) µ+(x,y) = − x� y
q(x,y)

in h+
∗ ∼= W ⊗W/∧2W ∼= S2W.

The affine structure is q, with 〈µ+, q〉 = 1. Decomposables now all have the form

σ(γ) = γ[ ⊗ γ[ ∈ h+ = S2W ∗ ⊆ W ∗ ⊗W ∗, for some γ ∈ W (or P(W ) ⊆ O(1)⊗W ).

The contraction of σ(γ) with µ+(x,y) vanishes when x = γ or y = γ. In affine

coordinates on P(W ), σ(γ) polarizes the quadratic σ(γ)(z) = (z − γ)2, with

σ(γ)(x, y) = (x− γ)(y − γ), 〈µ+(x, y), σ(γ)〉 = −(x− γ)(y − γ)

q(x, y)
.

Hence σ(γ) are dual (i.e., normal) to level surfaces of x and y.

The constants in h± are elements of <κ> = ∧2W ∗ and <q> ⊆ S2W ∗ respectively,
and the map w 7→ p = adq(w) : S2W ∗ → S2

0,qW
∗ sends a Killing potential with respect

to ω+ to a Killing potential for the same vector field with respect to ω−. We denote
by K(p) the corresponding vector field on M .

It is now straightforward to compute the torus metrics H± of g±:

H−
µ−(x,y)

(p, p̃) = g−(K(p),K(p̃)) =
A(x)p(y)p̃(y) +B(y)p(x)p̃(x)

(x− y)3 q(x, y)
,(17)

H+
µ+(x,y)

(p, p̃) = g+(K(p),K(p̃)) =
A(x)p(y)p̃(y) +B(y)p(x)p̃(x)

(x− y) q(x, y)3
,(18)

where p, p̃ in S2
0,qW

∗ ∼= t. Up to a constant multiple (depending on a choice of basis

for t∗), we have

(19) det H−
µ−(x,y)

=
A(x)B(y)

(x− y)4
, det H+

µ+(x,y)
=
A(x)B(y)

q(x, y)4
.

3.3. Orbifold compactifications of ambitoric Kähler surfaces. The existence
of an ambitoric structure on a compact 4-orbifold M places strong (and well-known)
constraints on the topology of M .

Proposition 2. Let M be a compact connected 4-orbifold with an effective action
of a 2-torus T, and suppose that (g±, J±, ω±) is an ambitoric structure on M with
respect to the derivative t ↪→ C∞(M,TM) of the T action. Then the images of the
momentum maps of the T action (with respect to ω+ and ω−) are quadrilaterals (i.e.,
b2(M) = 2). In particular, if M is smooth, then for some k ∈ N, (M,J+) and (M,J−)
are biholomorphic to a Hirzebruch surface P(O ⊕O(k))→ CP 1.
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Proof. If M is a compact Kähler surface admitting a holomorphic hamiltonian action
of a 2-torus T and M0 is the union of the generic T-orbits, then the anticanonical
bundle has a holomorphic section with zeroset M\M0. The canonical bundle therefore
has no holomorphic sections, and so h2,0 = h0,2 = 0. In the ambitoric case, the
deRham cohomology group H2(M) = H1,1(M) with respect to both J+ and J−,
hence is represented by a constant linear combination of the harmonic forms ω+ and
ω− (since g+ and g− are conformally equivalent). It follows that M has second Betti
number b2(M) = 2 (b+(M) = b−(M) = 1). Standard results about compact simply
connected 4-orbifolds with 2-torus actions (e.g. [12]) then imply that the rational
Delzant polygons have b2(M) + 2 = 4 sides. �

Remark 2. Conversely, it is well-known that any Hirzebruch surface M admits com-
patible ambitoric structures: indeed it admits toric extremal metrics of Calabi type
in each Kähler class [16], where the base metric gΣ is the Fubini–Study metric on
CP 1—such metrics are ambitoric by [6, Proposition 9]. Furthermore, any ambikähler
structure (g±, ω±) on M with g+ or g− extremal is of this type: if g+ is extremal, then
by uniqueness for extremal Kähler metrics in their Kähler class [19], we may assume
g+ is of Calabi type, hence ambitoric with respect to a negative complex structure
J̃−. However, g+ cannot have selfdual Weyl tensor, so J− must equal ±J̃−.

Note that we have assumed above that both Kähler metrics (g±, J±, ω±) are globally
defined on M , not just at points in generic T-orbits. In the following we shall weaken
this assumption slightly.

Definition 7. An ambitoric compactification is a compact connected oriented 4-
orbifold M with an effective action of a 2-torus T such that on the (dense) union
M0 of the free T-orbits, there is an ambitoric structure (g±, J±, ω±, t) (with t the Lie
algebra of T) for which at least one of the Kähler metrics extends smoothly to a toric
Kähler metric on (M,T). An ambitoric compactification is regular if the ambitoric
structure on M0 is regular with (x, y)-coordinates that are globally defined on M .

Henceforth, we consider only regular ambitoric compactifications (without loss of
generality if we are interested in extremal ambitoric metrics, as Theorem 1 below will
show). We say the ambitoric compactification M is positive and/or negative if g+

and/or g− extends smoothly to M . (M can be both positive and negative.)
By Proposition 1, if g± compactifies, the determinant (19) of H± must be smooth

on M , positive on M0, and vanish on (the pre-image of) the boundaries of ∆±.
Hence the image of M0 under (x, y) must be a domain D0 := (α0, α∞) × (β0, β∞)
where A(z) and B(z) are positive on (α0, α∞) and (β0, β∞) respectively, with zeros
at the endpoints; furthermore, if g+ and/or g− are globally defined, then q(x, y) 6= 0
and/or x − y 6= 0 on the closure D = [α0, α∞] × [β0, β∞] of D0. If both g+ and g−
are globally defined, α0 > β∞ and ∆± are both quadrilaterals. However, in order to
apply limiting arguments, we also need to allow β∞ = α0 when ∆+ is a simplex and
M is a weighted projective plane. In this case g− does not compactify.

The polytopes ∆± ⊆ h±
∗ are the images of D ⊆ P(W ) × P(W ) (using the chosen

affine chart on P(W )) under the formulae (15)–(16) for the momenta µ±(x,y). Since

the level surfaces x = γ, y = γ have normals λ(γ) and ρ(γ) (respectively) in the

negative case, and σ(γ) in the positive case, we can take γ = α0, α∞, β0 and β∞ to
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determine straightforwardly that

∆− =
{
ξ ∈ h−

∗ : 〈ξ, κ〉 = 1, 〈ξ, λ(α0)〉 ≤ 0, 〈ξ, λ(α∞)〉 ≥ 0,

〈ξ, ρ(β0)〉 ≤ 0, 〈ξ, ρ(β∞)〉 ≥ 0
}

;

∆+ =
{
ξ ∈ h+

∗ : 〈ξ, q〉 = 1, 〈ξ, σ(α0)〉 ≤ 0, 〈ξ, σ(α∞)〉 ≥ 0,

〈ξ, σ(β0)〉 ≥ 0, 〈ξ, σ(β∞)〉 ≤ 0
}
.

Normals to ∆± may be written u±α,k = p(αk)/r±α,k and u±β,k = p(βk)/r±β,k for k = 0,∞
and constants r±α,k and r±β,k, where p(γ) = γ[ � q(γ, ·) ∈ t has the affine expression

p(γ)(x, y) = 1
2

(
q(x, γ)(y − γ) + (x− γ)q(y, γ)

)
.

The boundary conditions H±
µ±(αk,y)

(u±α,k, ·) = 0 = H±
µ±(x,βk)

(u±β,k, ·) (see (3)) are

equivalent to A(αk) = 0 = B(βk), and the remaining boundary conditions simplify to
A′(αk) = 2r±α,k and B′(βk) = ∓2r±β,k, using e.g.,

dH+
µ+(α0,y)

(p(α0), p(α0)) =
A′(α0)(p(α0)(y))2

(α0 − y)q(α0, y)3
dx =

A′(α0)(α0 − y)

q(α0, y)
dx,

which is equal to −1
2A
′(α0)p(α0). We deduce that rα,k := r+

α,k = r−α,k and rβ,k := r+
β,k =

−r−β,k. The construction of (simply connected) regular ambitoric compactifications

is now completed by ensuring the normals are inward, and satisfy the integrality
condition that they span a lattice.

Proposition 3. Any compact, simply connected regular ambitoric compactification is
determined by the following data:

• real numbers αk, βk, rα,k, rβ,k (k = 0,∞), subject to the inequalities

β0 < β∞ ≤ α0 < α∞, rα,0 < 0 < rα,∞, rβ,0 > 0 > rβ,∞,

and the integrality condition that, with uα,k = p(αk)/rα,k and uβ,k = p(βk)/rβ,k,

(20) spanZ{uα,0, uα,∞, uβ,0, uβ,∞} ∼= Z2.

• a quadratic q(z) and two smooth functions of one variable, A(z) and B(z), satisfying
the positivity conditions that q(x, y) > 0 on D0 = (α0, α∞)× (β0, β∞), A(z) > 0 on
(α0, α∞) and B(z) > 0 on (β0, β∞), and the boundary conditions that

(21) A(αk) = 0 = B(βk), A′(αk) = −2rα,k, B′(βk) = 2rβ,k (k = 0,∞).

It is positive if q(x, y) > 0 on the closure D of D0, and negative if β∞ < α0.

Remark 3. A particular case where (20) holds automatically is when q has rational
coefficients and αk, βk and rα,k, rβ,k are all rational: since the condition (20) is clearly
invariant under an overall multiplication of rα,k and rβ,k by a nonzero real constant,
we can choose this constant such that uα,k and uβ,k have integer coordinates.

Remark 4. One can allow some (but not all) of rα,k and rβ,k in Proposition 3 to be
zero. In terms of the theory reviewed in section 1, this is a limiting case in which
some of the normals uj are infinite, and hence the measure dν on the corresponding
facet Fj is zero. On such an “omitted” facet Fj , the first order boundary conditions
of Proposition 1 become

(22) Hξ(ũj , ·) = 0 and (dH)ξ(ũj , ũj) = 0, ∀ξ ∈ Fj ,
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where ũj is any nonzero normal vector to Fj . This is the setting of [26, Conjecture
7.2.3] and [54, §3.1] and yields complete Kähler metrics on the complement of a toric
divisor (the inverse image of the omitted facets) in a compact toric orbifold M .

Proposition 3 extends the characterization of regular ambitoric compactifications
by allowing complete ends of this form. When rα,k or rβ,k is zero, the boundary

conditions (21) apply without change, but in (20), we replace uα,k = p(αk)/rα,k or

uβ,k = p(βk)/rβ,k by some other multiples of p(αk) or p(βk).

3.4. Factorization structures for triangles and quadrilaterals. In the previous
two subsections, we found that in an ambitoric compactification, the coordinate lines
(in particular, the facets) in ∆ ⊆ P(h∗) were dual to (projective) normals in P(h)
which were decomposable with respect to a inclusion of h into a tensor product of
2-dimensional vector spaces W ∗ ⊗W ∗. In order to obtain a converse, and determine
when a rational Delzant quadrilateral arises from an ambitoric compactification, we
formalize this phenomenon by introducing (2-dimensional) factorization structures;
for a more general context see Appendix A.

Throughout this section, we adopt the notation of §2.2 for (∆,L) in P(h∗): the
affine normals will be indexed Lβ,0, Lα,0, Lβ,∞, Lα,∞. We also allow the quadrilateral
to degenerate to a triangle with Lα,0 = Lβ,∞.

Definition 8. Let (∆,L) be a rational Delzant quadrilateral or a triangle in P(h∗),
let W1,W2 be 2-dimensional vector spaces, and let S : P(W1)×P(W2)→ P(W1⊗W2)
be the Segre embedding, sending ([w1], [w2]) to [w1 ⊗ w2]. A factorization structure
is a rational map Sϕ : P(W1) × P(W2) 99K P(h∗) obtained by composing S with a
projection P(W1 ⊗W2) 99K P(h∗) dual to a linear injection ϕ : h→W ∗1 ⊗W ∗2 .

(i) Sϕ is a Segre factorization structure if the image of ϕ is γ1
0⊗W ∗2 +W ∗1 ⊗γ2

0 ⊆
W ∗1 ⊗W ∗2 , where γj

0 ⊆W ∗j is the annihilator of some γj ∈Wj (for j = 1, 2).

[L    ]α,∞

[L    ]α,0
β,0[L    ]

β,∞[L    ]

C

C*

∆

Figure 2. Segre factorization compatible with ∆ ⊆ P(h∗): the induced conic is a
line-pair (singular conic) C passing through the projective normals in P(h); points in

∆ are parametrized by lines through the two points on the dual conic C∗ ⊆ P(h∗).

(ii) Sϕ is a Veronese factorization structure if there is an isomorphism W1
∼= W2 (so

we drop the index) such that the image of ϕ is S2W ∗ ⊆W ∗ ⊗W ∗.
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β,∞[L    ]

[L    ]α,0

[L    ]α,∞

β,0[L    ]

C*

C∆

Figure 3. Veronese factorization compatible with ∆ ⊆ P(h∗): the induced conic C is
a nonsingular conic passing through the projective normals in P(h); points in ∆ are

parameterized by pairs of tangent lines to the dual conic C∗ ⊆ P(h∗).

We say Sϕ is compatible with (∆,L) if Sϕ maps a product I1 × I2 of closed intervals
in P(W1)× P(W2) bijectively onto ∆.

The image of the Segre embedding S is a nonsingular ruled quadric surface, and
the pullback by ϕ is a hyperplane section. This is a conic C in P(h) which we call
the induced conic of the factorization structure; it is a line-pair in the Segre case, and
nonsingular (and nonempty) in the Veronese case. Conversely, any two nonsingular
ruled quadric surfaces are projectively equivalent, as are any two line-pairs, or any
two nonsingular nonempty conics, in a projective plane. Hence a Segre or Veronese
factorization structure is determined up to isomorphism by a line-pair or nonsingular
nonempty conic C in P(h).

Such a conic C in P(h) has a dual C∗ in P(h∗): in the Segre case (Figure 2), C∗ is a
“double” line (dual to the vertex of the line-pair C) with two marked points (dual to
the two lines), while in the Veronese case (Figure 3), C∗ is the conic of tangent lines
to C. The coordinate lines of the factorization structure (whose duals, i.e., projective
normals, are the points of C) are

• the lines through the two marked points on C∗ in the Segre case;
• the tangent lines to C∗ in the Veronese case.

For compatibility with (∆,L), the projective normals [Lβ,0], [Lα,0], [Lβ,∞], and
[Lα,∞] must be on C (so that the facets of ∆ are on coordinate lines). This is not quite
sufficient: in the Segre case, C∗ must not meet the interior of ∆, while in the Veronese
case, ∆ must be entirely in the “exterior” (union of tangent lines) of C∗. Using the
projectivized dual cone ∆∗ ⊆ P(h), the following ensures both requirements.

Condition 1. C meets the interior of ∆∗.

When ∆ is a quadrilateral (bounded by four lines in general position), there is a
pencil of conics through the four projective normals, and C can be any conic in the
pencil satisfying Condition 1.

To complete our analysis, we need to discuss what happens to the affine structure
ι(1) ∈ h under the factorization structure. In the Segre case, there are three possi-
bilities for ϕ(ι(1)): if ϕ(ι(1)) ∈ γ1

0 ⊗ γ2
0, then C∗ is the line at infinity and ∆ is a

parallelogram; otherwise ϕ(ι(1) is either decomposable, in which case ∆ is a trapez-
ium (two parallel sides), or indecomposable, in which case ∆ has no parallel sides. In
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the Veronese case, ϕ(ι(1)) = q ∈ S2W ∗ and there are also three possibilities: q may
have positive, zero or negative discriminant.

Proposition 4. Let (∆,L) be a rational Delzant quadrilateral, and C a conic through
the projective normals of ∆ which satisfies Condition 1. Then if C is nonsingular
(respectively [ι(1)] is not on C), there is a positive (respectively negative) ambitoric
compactification with rational Delzant polytope ∆ and induced conic C.

Proof. For C nonsingular, Condition 1 implies there is a Veronese factorization ϕ
compatible with (∆,L). We identify h with S2W ∗ using ϕ, and fix an area form κ

on W , hence an isomorphism γ 7→ γ[ ∈ γ0 from W to W ∗. Up to an overall sign,
the affine normals therefore have the form Lβ,0 = −β0

[ ⊗ β0
[, Lα,0 = α0

[ ⊗ α0
[,

Lβ,∞ = β∞
[ ⊗ β∞[ and Lα,∞ = α∞

[ ⊗α∞[; it is straightforward to check that [β0],
[β∞], [α0], [α∞] are in cyclic order on P(W ) and hence choose an affine chart in which
they are represented by β0 < β∞ ≤ α0 < α∞. Proposition 3 now implies that there
is a positive ambitoric compactification with rational Delzant polytope isomorphic to
∆ and induced conic C.

For negative compactifications, we identify C ⊆ P(h) with the conic of decompos-
ables in ψ0 ⊆ W ∗1 ⊗W ∗2 , where ψ ∈ W1 ⊗W2 is decomposable if C is singular, and
indecomposable otherwise. (By Appendix A.2, the factorization is Veronese if C is
nonsingular and Segre otherwise; in the singular case, C must be a line-pair, since
the projective normals are not collinear.) Now if ι(1) ∈ h is not on C, its image in
W ∗1 ⊗W ∗2 is not decomposable, and may be used to identify W1 and W2

∗; we may
identify W1 with W2 and drop subscripts by fixing also an area form κ. Then ψ is dual
to a quadratic form q ∈ S2W ∗, i.e., h = q⊥. We conclude, similarly to the positive
case, that Condition 1 implies that the normals have the form Lβ,0 = q(β0, ·) ⊗ β0

[,

Lα,0 = α0
[ ⊗ q(α0, ·), Lβ,∞ = −q(β∞, ·) ⊗ β∞[ and Lα,∞ = −α∞[ ⊗ q(α∞, ·); the

rest of the construction, using Proposition 3, follows the positive case. �

Remark 5. Both types of compactification exist if C is nonsingular and does not pass
through [ι(1)]. They are then related by interchanging the roles of q (nonsingular)
and κ. If neither exists, C is the line-pair joining opposite normals, and [ι(1)] lies on
one of its lines. In particular, ∆ is a trapezium or parallelogram.

Condition 1 means that the conic C∗ tangent to the four lines of ∆ (the dual conic
if C is nonsingular, or the double line dual to the vertex of C if it is a line-pair) does
not meet ∆, i.e., C∗ is not an inscribed ellipse, or a degeneration of such an ellipse
to a double line through opposite points of ∆. We conclude this section by using the
affine structure ι(1) ∈ ∆∗ to provide a sufficient criterion for Condition 1.

Proposition 5. Let (∆,L) be a rational Delzant quadrilateral with affine structure
ι(1) ∈ h and let C be a conic in the pencil through the four projective normals such
that [ι(1)] is not a singular point on C. Suppose there is an affine function orthogonal
to ι(1) with no zero on the segment of the Newton line between the midpoints of the
diagonals of ∆. Then C satisfies Condition 1.

Proof. The centre of C∗ is the point dual to the line orthogonal to [ι(1)] with respect to
C (or the midpoint of the vertices of ∆ on C∗ if C is singular). Thus all affine functions
orthogonal to ι(1) with respect to C vanish there. Newton’s theorem for convex
quadrilaterals implies that inscribed ellipses (or their degenerations) have centres (or
midpoints) on the segment of the Newton line between the midpoints of the diagonals
of ∆. Hence C∗ cannot be among these, so Condition 1 holds. �
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4. Extremal ambitoric 4-orbifolds and convex quadrilaterals

4.1. Extremal ambitoric metrics and adapted factorizations. A toric Kähler
metric is extremal if and only if its scalar curvature is equal to the extremal affine
function. For regular ambitoric structures, a straightforward computation of the scalar
curvatures of the two Kähler metrics yields the following result [6].

Theorem. Let (J+, J−, g+, g−, t) be a regular ambitoric structure given by a quadratic
q and functions of one variable A,B. Then (g+, J+) is an extremal Kähler metric if
and only if (g−, J−) is an extremal Kähler metric if and only if

A(z) = q(z)π(z) + P (z),

B(z) = q(z)π(z)− P (z),
(23)

where π is a polynomial of degree at most two orthogonal to q and P is polynomial of
degree at most four. In this case

s− = −24π(x, y)

x− y
,(24)

s+ = −w(x, y)

q(x, y)
,(25)

where the quadratic w (defining w(x, y) = w0xy +w1(x+ y) +w2) is equal to Cq(P ),
where Cq is a surjective linear map from quartics to quadratics orthogonal to q.

In [6], we also proved that the ambitoric structure is locally conformally Einstein
if in addition the quadratics π and w in this theorem are linearly dependent. We
shall use this to construct examples later. We shall also need the explicit formula for
Cq(P )(z), which is the Poisson bracket (with the normalization convention {f1, f2} :=
f ′1f2 − f1f

′
2) of q(z) with q(z)P ′′(z)− 3q′(z)P (z) + 6q′′(z)P (z).

For ambitoric compactifications, we deduce the following from the above theorem.

Corollary 1. For an extremal regular ambitoric compactification with induced conic
C, the extremal affine function ζ± ∈ h± of ω± is orthogonal to the affine structure
ι(1) ∈ h± with respect to C.

Given a rational Delzant quadrilateral (∆,L) in Ξ ⊆ P(h∗), there is a unique conic
C(∆,L) ⊆ P(h) in the pencil through the normals such that [ι(1)] is orthogonal to
[ζ]. Now C(∆,L) corresponds to a conic in P(h∗) such that ζ vanishes at its centre (if
nonsingular) or midpoint (if a double line). We now apply Proposition 5.

Lemma 4. A rational Delzant quadrilateral (∆,L) is equipoised iff [ι(1)] lies on the
conic C(∆,L); if (∆,L) is temperate, then the conic C(∆,L) satisfies Condition 1.

Consequently, by Proposition 4, for temperate rational Delzant quadrilaterals, there
is an ambitoric compactification unless C(∆,L) is the diagonal line pair, and the affine
structure [ι(1)] lies on one of the diagonals, i.e., ∆ is an equipoised trapezium.

4.2. Extremal ambitoric orbifolds and K-polystability. In order to construct
extremal ambitoric orbifolds, we specialize the discussion of §3.3 to the case that A(z)
and B(z) in Proposition 3 are polynomials of degree ≤ 4. Our approach follows [7, 8,
41, 43] to which we refer the reader for further details.

The boundary conditions (21) have the general solution

A(z) = (z − α0)(z − α∞)
(
(c+ d)(z − α0)(z − α∞) +Nα,0(z − α∞) +Nα,∞(z − α0)

)
B(z) = (z − β0)(z − β∞)

(
(c− d)(z − β0)(z − β∞) +Nβ,0(z − β∞) +Nβ,∞(z − β0)

)
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for A(z) and B(z) in terms of (αk, rα,k) and (βk, rβ,k) (for k = 0,∞), where Nα,k =
2rα,k/(α∞ − α0)2 and Nβ,k = 2rβ,k/(β∞ − β0)2 (for k = 0,∞), and c, d are two free
parameters. For fixed q(z), the extremality conditions of §4.1 state that A(z)+B(z) =
q(z)π(z) with π orthogonal to q. These impose three further linear conditions on A
and B, which we may solve for c and d, leaving one linear condition on (rα,k, rβ,k)
whose coefficients depend rationally on αk and βk (k = 0,∞).

Example 1. When q(z) = 1 (the orthotoric case), we have c = 0 and two formulae for
d whose equality yields the equation

(Nα,0 Nα,∞ Nβ,0 Nβ,∞)


(α0 + α∞ − β0 − β∞)2 + 2(α∞ − β0)(α∞ − β∞)
(α0 + α∞ − β0 − β∞)2 + 2(α0 − β0)(α0 − β∞)

(α0 + α∞ − β0 − β∞)2 + 2(β∞ − α0)(β∞ − α∞)
(α0 + α∞ − β0 − β∞)2 + 2(β0 − α0)(β0 − α∞)

 = 0

found by E. Legendre [41].4 She proved that this condition on (rα,k, rβ,k) is equivalent
to ∆+ being equipoised (relative to the corresponding normals) and thus showed that
the existence of extremal Kähler metrics is equivalent to (toric) K-polystability in
this case. However, it turns out that when ∆+ is equipoised, it is automatically
K-polystable: for q(z) = 1, deg(A + B) ≤ 1, and so between any maximum of A on
(α0, α∞) and B on (β0, β∞), the quadratic A′′ = −B′′ has a unique root; the boundary
conditions thus force A and B to be positive on (α0, α∞) and (β0, β∞) respectively.

For equipoised trapezia (which cannot be orthotoric), Legendre [41] established
similar existence and K-polystability results using ambitoric metrics of Calabi type.

We now generalize these results to arbitrary quadrilaterals, on which we relate the
existence of ambitoric extremal Kähler metrics to the toric K-polystability criteria.

Theorem 1. Let (M,ω,T) be a toric symplectic orbifold whose rational Delzant poly-
tope ∆ is a quadrilateral (i.e., b2(M) = 2). Then the following are equivalent :

(i) (M,ω) admits a T-invariant extremal Kähler metric;

(ii) (M,ω,T) is analytically relatively K-polystable wrt. toric degenerations;

(iii) (M,ω) admits a T-invariant ambitoric extremal Kähler metric g which is regular
on generic orbits, unless ∆ is an equipoised trapezium, in which case, g has Calabi
type or is a Kähler product.

In particular, if (M,ω,T) admits an extremal Kähler metric, it must be ambitoric.

Proof. We use the notation of §1.1 and §2.2, so that ∆ ⊆ Ξ ⊆ h∗, where ι>(Ξ) = {1}
for an affine structure ι : R→ h on P(h∗) which we identify with ι(1) ∈ h. Since ∆ is
convex, ι(1) is interior to the strictly convex cone spanned by the normal rays of ∆;
thus [ι(1)] is interior to the dual polytope ∆∗ ⊆ P(h) which is the projectivization of
this cone. Let ζ ∈ h be the extremal affine function and C(∆,L) the unique conic in
P(h) passing through the normals, and such that [ι(1)] and [ζ] are orthogonal.

Case 1. Suppose ∆ is temperate and C(∆,L) is nonsingular. Then by Lemma 4,
C(∆,L) satisfies Condition 1 and so Proposition 4 implies that there are positive am-
bitoric compactifications with rational Delzant polytope ∆ and induced conic C(∆,L).

Fixing C = C(∆,L) and the associated factorization structure, such compactifica-
tions also exist for arbitrary positive rational rescalings of the normals of ∆. Hence we
are in a position to apply an argument pioneered by E. Legendre [41] in the parabolic
case. The positive ambitoric Ansatz, with fixed αk, βk and q yields a linear condition
on the normal parameters rα,k, rβ,k for the existence of quartics A,B satisfying the
boundary conditions (21) such that A(z) + B(z) = q(z)π(z) with π orthogonal to q.

4Hence the linear system always determines c and d, since this condition is open and natural in q.
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If such A and B exist, then even if they do not satisfy the positivity requirement
to define an extremal Kähler metric, we can use them to compute that the extremal
affine function is orthogonal to q. However, this latter condition is also a linear condi-
tion on the normal parameters rα,k, rβ,k. We conclude that the two linear conditions
agree. For the normals L of ∆, ζ is orthogonal to q; hence there do exist quartics
A,B defining a formal extremal solution H = H+ on ∆ = ∆+.

Case 2. Suppose ∆ is temperate, but C(∆,L) is singular so that it is the line-pair in
the pencil of conics through the four normals which meets the interior of ∆∗. If [ι(1)] is
on C(∆,L), then ∆ is an equipoised trapezium, hence admits formal extremal solution
of Calabi type [41]. Otherwise, Proposition 4 implies that there are negative ambitoric
compactifications with rational Delzant polytope ∆. As in case 1, we conclude that
there are quartics A,B defining a formal extremal solution H = H− on ∆ = ∆−.

If ∆ is intemperate, it is not K-polystable by Lemma 3. Otherwise, either case 1
or case 2 provides a formal extremal solution. This may not yield a positive definite
metric, but it can be used to compute the toric K-polystability criterion. In the
Calabi or product case, this has been done in [41]; it remains to consider the regular
ambitoric case.

Let H be the formal extremal solution given by the quartics A,B as above. If
A is positive on (α0, α∞) and B is positive on (β0, β∞), then H is positive definite.
Hence (6) implies that F∆,L(f) > 0 for f ∈ PL(∆), unless Hess f = 0 on ∆, i.e., f is
affine. The rational Delzant polytope (∆,L) is therefore K-polystable.

To establish a converse, we consider special families of simple convex PL functions
determined by the ambitoric factorization. For any x0 ∈ (α0, α∞) consider the line
segment {(x0, y) : y ∈ (β0, β∞)}. Under µ± it transforms to a line segment Sx0
in the interior of ∆±. Let ux0 be a normal of Sx0 . It is straightforward to check
that H±(x0,y)(ux0 , ux0) is positive multiple of A(x0). Thus, if (M,ω) is analytically

relatively K-polystable with respect to toric degenerations, then (7) implies A(x0)
must be positive for any x0 ∈ (α0, α∞); the argument for B is similar.

Conclusion. We conclude that (ii) and (iii) are equivalent, and evidently (iii) im-
plies (i). The implication (i) ⇒ (ii) follows from [62, Theorem 1.3], and the final
assertion follows from the uniqueness of the extremal toric Kähler metrics, modulo
automorphisms, established in [34]. �

Remark 6. The general theory from [26] and [61] implies that in order to check the
K-polystability of a rational Delzant polygon (∆,L), it is only necessary to consider a
particular kind of PL convex function: the simple PL convex functions whose crease
meets the interior of the polytope ∆. Theorem 1 shows that in the case of a quadri-
lateral, it suffices to consider the cases that the crease is either one of the diagonals
or meets the polytope in a segment corresponding to {(x0, y) : y ∈ (β0, β∞)} or
{(x, y0) : x ∈ (α0, α∞)} under the unique ambitoric compactification given by the
conic C(∆,L), which may be found by solving linear equations.

In the light of [26] and its extension to orbifolds in [49], when the rational Delzant
polytope ∆ has rational vertices with respect to the dual lattice, one can also con-
sider a weaker version of algebraic relative (toric) K-polystability by requiring that
F∆,L(f) ≥ 0 for any rational PL continuous convex function f with equality if and
only if f is an affine function. Presumably, this condition corresponds to an algebro-
geometric notion of stability for the corresponding (log) variety. A key observation
in [26] is that in the case of a rational polygon with vanishing extremal vector field,
the algebraic relative K-polystability with respect to toric degenerations is equivalent
to the analytic one. This phenomenon is well demonstrated on our classification: if
αk, βk, rα,k, rβ,k are all rational numbers as in Remark 3 (so that the vertices of ∆
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are rational with respect to the dual lattice) and if F∆,L > 0 on rational PL convex
functions which are not affine on ∆, we then conclude as in the proof of Theorem 1
that A(z) must be positive at any rational point in (α0, α∞). It follows that A(z) ≥ 0
on (α0, α∞) with (possibly) a repeated irrational root in this interval. As the αk’s
and rα,k’s are rational, by the first order boundary conditions A(z) is a (multiple of)
degree 4 polynomial with rational coefficients with two simple (rational) roots α0 and
α∞. In particular, any double root of A (if any) must be rational too, showing that
A(z) must be strictly positive on (α0, α∞). Similarly, B(z) > 0 on (β0, β∞).

This provides a computational test for K-polystability of quadrilaterals which is
guaranteed to terminate in the unstable case. We will further use these observa-
tions in Appendix B to show that any compact convex quadrilateral which is not a
parallelogram can be made K-unstable by a suitable choice of the affine normals L.

Remark 7. In view of Remark 4, the equivalence (ii) ⇔ (iii) of Theorem 1 extends to
complements of toric divisors in compact toric orbifolds (with b2 = 2), for ambitoric
extremal Kähler metrics satisfying (21) with rα,k or rβ,k zero on omitted facets.

5. Examples

Our results show, as in [41], that for any convex quadrilateral, there is a nonempty
open subset of scales for the normals such that the corresponding toric 4-orbifold has
an extremal Kähler metric. By considering data close to well-known Bochner-flat
Kähler metrics, we shall demonstrate this explicitly. We shall restrict attention to
rational data in the sense of Remark 3. More precisely, if αk, βk and the coefficients
of q are rational, then the parameters ε and η defining the quadrilateral are rational,
and the normal scales rα,k, rβ,k are constrained by a single rational linear relation.

A 4-dimensional extremal Kähler metric with nonzero scalar curvature is locally
conformally Einstein iff it is Bach-flat, and globally so if the scalar curvature is non-
vanishing [22]; the compact smooth examples have been classified [18, 38, 39], so we
seek complete or compact orbifold examples.

A 4-dimensional Kähler metric is Bochner-flat iff it is selfdual (W− = 0); hence it is
Bach-flat and locally conformally Einstein. According to R. Bryant [14] such metrics
exist on weighted projective planes CP 2

w1,w2,w3
(where w1, w2, w3 are positive integers

with no common factor), cf. §2.1 and [2, 7]. Since W− = 0, there is some freedom
in the choice of negative complex structure J−, and hence a family of ambitoric
structures compatible with a given Bochner-flat Kähler metric (note however, that
J− is not globally defined).

5.1. Bochner-flat ambitoric structures on weighted projective planes. The
Kähler metric (g+, J+, ω+) of an ambitoric structure is Bochner-flat if A(z) = P (z),
B(z) = −P (z) for an arbitrary polynomial P of degree ≤ 4. The parabolic case (with
q(z) = 1) has been studied in [7]: we now consider arbitrary q.

We set P (z) = −(z − z0)(z − z1)(z − z2)(z − z3), where z0 < z1 < z2 < z3 and
q(x, y) is positive on [z2, z3] × [z1, z2] (e.g., q(z) positive on [z1, z3]). Since ∆+ is a
simplex, we are in the degenerate case of §3.3 where α0 = β∞, and we set β0 = z1,
β∞ = z2 = α0 and α∞ = z3. The boundary conditions give

rβ,0 = −2P ′(z1), rβ,∞ = rα,0 = −2P ′(z2), rα,∞ = −2P ′(z3),

which we can ensure are rational by taking z0, . . . z3 rational. By Remark 3, taking
q also rational gives condition (20) for the normals u1 := p(β0)/rβ,1, u2 := p(α0)/rα,1
and u3 := p(α∞)/rα,2. These normals are uj = −p(zj)/2P ′(zj), which satisfy

(z1 − z0)q(z2, z3)u1 + (z2 − z0)q(z1, z3)u2 + (z3 − z0)q(z1, z2)u3 = 0
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and so the weights w1, w2, w3 are a multiple of (z1 − z0)q(z2, z3), (z2 − z0)q(z1, z3),
(z3− z0)q(z1, z2). Any weighted projective plane CP 2

w1,w2,w3
with distinct weights has

a Bochner-flat ambitoric structure of any type (parabolic, hyperbolic or elliptic).
Since the scalar curvature s+ of g+ is an affine function of the momenta, it attains

its maximum and minimum values at the vertices of the momentum simplex, which
are the images of (x, y) = (z2, z1), (z3, z1) and (z3, z2). If we write, for 0 < i < j ≤ 3,
P (z) = −(z − zi)(z − zj)pij(z), then we compute from §4.1 that

s+(zj , zi) = 3
q(zi)pij(zj)− q(zj)pij(zi)

zj − zi
.

We deduce (assuming q(z) > 0 on [z1, z3]) that s+ is positive at (z3, z1); it is also
positive at (z3, z2) for z2 − z1 sufficiently small. On the other hand, at (z2, z1), for
z3−z2 small, s+ changes sign as a function of z0 ∈ (−∞, z1), being negative at z0 = z1,
but positive once z1 − z0 is sufficiently large.

Under these conditions, s+ is everywhere positive for z0 � z1, and hence g+ is
globally conformal to an Einstein hermitian metric s−2

+ g of positive scalar curvature.

On the other hand, as z0 increases, s+ becomes nonpositive on the preimage (µ+)−1(T )
of a triangle T ⊆ ∆+ containing the vertex (z2, z1). This preimage N a compact
orbifold with boundary (the latter being the zero locus of s+), but it is straightforward

to see that N is covered by a compact manifold Ñ with boundary, cf. [14]. Indeed let
C be the 2-dimensional cone defined by the two facets of ∆+ which bound T and let Λ
be the lattice generated by the normals to the these facets; Delzant theory identifies
(C,Λ) as the image by the momentum map of a (standard) toric C2; the preimage Ñ
of T ⊆ C is the closure of a bounded domain biholomorphic to the unit ball in C2.
The lift of g = s−2

+ g+ to Ñ \ ∂Ñ is a conformally compact, Einstein hermitian metric

of negative scalar curvature, which is complete since ds+ 6= 0 on ∂Ñ (cf. [3]).

5.2. Extremal ambitoric compactifications. In order to obtain new examples,
which have those of the previous subsection as limiting cases, we let P (z), q(z) and
z0 < z1 < z2 < z3 be as before, and consider rational αk and βk satisfying z1 ≈
β0 < β∞ . z2 . α0 < α∞ ≈ z3. We now set A(z) = q(z)πA(z) + P (z) and B(z) =
q(z)πB(z)−P (z) where πA and πB are quadratic polynomials uniquely determined by
three rational (affine) linear conditions: each is orthogonal to q, A(α0) = 0 = A(α∞)
and B(β0) = 0 = B(β∞). Note that A(z) + B(z) = q(z)(πA + πB)(z) and that
A(z)−B(z) = q(z)(πA − πB)(z) + 2P (z).

For β0 = z1, β∞ = z2 = α0, α∞ = z3, the unique solution is πA = πB = 0 and the
quartics A on (z3, z2) and B on (z2, z1) are positive and define a Bochner-flat extremal
metric. Hence for a small perturbation of the endpoints, A and B remain positive
on (α0, α∞) and (β0, β∞) respectively (having roots close to z1, z2, z3 and z0 < z1).
The boundary conditions rα,k = −2A′(αk), rα,k = 2B′(βk) give rational scales for
the normals with the right signs to obtain an extremal Kähler metrics over a rational
Delzant quadrilateral ∆+. Since β∞ and α0 are very close, the sides Fβ,∞ and Fα,0
are almost parallel, meaning that the quadrilateral ∆ = ∆+ has parameter η close to
−1, but ε ∈ (−1, 1) ∩Q is unconstrained.

The parametrization of these solutions by P, αk, βk is not effective, because P (z)
is only determined up to the addition of q(z)π(z) with π orthogonal to q. This
overcounting matches precisely with the dimension of the space of rational Delzant
quadrilaterals. By symmetry, we see that for quadrilaterals with rational parameters
ε and η, one of these being sufficiently close to ±1, there is a nonempty open subset
of rational normal scales—belonging, up to homothety, a nonempty open subset of
QP 3—for which the corresponding toric 4-orbifold has an extremal Kähler metric.



24 V. APOSTOLOV, D.M.J. CALDERBANK, AND P. GAUDUCHON

There are thus infinitely many ambitoric extremal compact 4-orbifolds with b2 = 2,
depending on 5 rational parameters.

5.3. Conformally Einstein Kähler orbifolds and complete Einstein metrics.
A regular extremal ambitoric structure, given by quartic polynomials A = qπ+P,B =
qπ − P is Bach-flat iff the quadratics π and Cq(P ) (which are both orthogonal to q)
are linearly dependent. For fixed q, this is a singular quadric hypersurface in the
QP 6 of coefficients of (π, P ) up to homothety. Bochner-flat metrics are Bach-flat
with π = 0, and so the quadric meets any open neighbourhood of π = 0. Hence, as
in the Bochner-flat case, we obtain locally or globally conformally Einstein metrics
according to whether the scalar curvature s+ of g+ changes sign or is positive.

We can make this more explicit using the approach developed in the previous two
subsections, where A = P , B = −P gives a known Bochner-flat Kähler metric with
nonzero scalar curvature. Fix π, π̃ := Cq(P ) as a basis for the quadratic polynomials
orthogonal to q, and consider the equations A + B = δ(λπ̃ + µπ)q, Cq(A − B) =
γ(λπ̃ + µπ), A(αk) = 0 = B(βk). For fixed (δ, γ) ≈ (0, 1) and z0 ≈ β0 < β∞ . z1 .
α0 < α∞ ≈ z2, this has a unique (and appropriately positive) solution up to scale
(with λ ≈ 2 and µ ≈ 0). The solution depends rationally on [δ : γ] up to scale, hence
for given αk, βk, we have a one parameter family of Bach-flat ambitoric orbifolds.

Positivity of s+ can be obtained by a limiting argument, provided P is chosen
so that the corresponding Bochner-flat metric (in 5.1) has positive scalar curvature.
We thus obtain infinitely many new examples of compact ambihermitian Einstein 4-
orbifolds of positive scalar curvature. If instead we choose P so that the corresponding
Bochner-flat metric has scalar curvature positive for (x, y) = (z3, z1), (z3, z2), (z2, z2),
and negative for (x, y) = (z2, z1), the analysis in 5.1 generalizes to yield new complete
ambihermitian Einstein 4-manifolds of negative scalar curvature.

We do not attempt to classify explicitly the data yielding Bach-flat (or extremal)
ambitoric compactifications, but examples are not confined to limiting cases. For
instance, let q(z) = z and consider the quartics A,B with parameters (s, t) given by

A(z) = tz4 + (s− 1)(t+ 1)z3 − (st+ 4s+ 2t− 2)z2 − 2s(t− 2)z

= z(z − 2)(tz2 + (st+ s+ t− 1)z + s(t− 2)),

B(z) = −tz4 + (s− 1)(t− 2)z3 + (st+ 4s+ 2t− 2)z2 − 2s(t+ 1)z

= −z(z − 1)(tz2 − (st− 2s− 2t+ 2)z − 2s(t+ 1)).

In this family, the roots z = 0, 1, 2 are fixed, which is a slightly special choice
because q(z) vanishes at z = 0, and so (A + B)(0) = 0 is a consequence of the
extremality condition. The latter equation is satisfied by the family, since

(A+B)(z) = z(2t− 1)
(
(s− 1)z2 − 2s

)
and the Bochner-flat case is t = 1/2, with A(z) = −B(z) = 1

2z(z − 1)(z − 2)(z + 3s).
With three roots fixed, the extremal family is parametrized by an open subset of
QP 3, and s, t are affine coordinates on the quadric surface given by the Bach-flatness
condition a1a3 = b1b3 on the coefficients of A and B.

For s > 0, after negating A,B, we are in the situation considered before, with
z0 = −3s, z1 = 0, z2 = 1 and z3 = 2: the Bochner-flat metric with β0 = 0, β∞ = 1
and α∞ = 2 has positive scalar curvature. Varying t in [2/3(s+ 2), 1/2], A has a root
1 < α0 < 2, yielding Bach-flat examples over [α0, 2]×[0, 1]. We also get such examples
for s < −2/3 using a slight variant of the same approach in which z0 = −3s > 2.
Here A,B (unnegated) satisfy positivity on [α0, 2] × [0, 1] with 1 < α0 < 2 provided
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−1 < s < −2/3 and 1/2 < t < 2/3(s+ 2), or s < −1 and 1/2 > t > 2/3(1− s). The
quadrilaterals corresponding to these examples have moduli ε = 1/2 and η = −1/α0.

Similar examples to these can be found by considering the Bochner-flat metrics
on [2,−3s] × [1, 2] for s < −2/3. However, there are plenty of examples which are
not deformations of the Bochner-flat family in this way. Other convenient families
are given by (s, t) coordinate lines tangent to the discriminant of A or B, so that
one of the quartics splits over Q(s) or Q(t). These lines are s = 0,−1, 1/3, 2/3, 2,∞
and t = 0,−1, 1/2, 2,∞. Many of these only yield singular or indefinite examples.
However, after multiplying A and B by −1/t, we have, for s = 1/3, t = 2/(1 + 3u),

A(z) = −z4 + (u+ 1)z3 − (u− 2)z2 − 2uz = −(z + 1)z(z − 2)(z − u)

B(z) = z4 − 2uz3 + (u− 2)z2 + (u+ 1)z = z(z − 1)
(
z2 − (2u− 1)z − (u+ 1)

)
,

and for u > 2, A(z) is positive on (2, u) while the nontrivial roots of B(z) have opposite
sign and sum at least 3, so that B(z) is positive on (0, 1). Hence after rescaling, we
obtain Bach-flat examples on [2, α∞] × [0, 1] with α∞ = u > 2. The quadrilaterals
corresponding to these examples have moduli ε = 1/α∞ and η = −1/2.

For a final example, let t = 0, scale by −1/(s− 1) and set s = u/(u− 1) so that

A(z) = −z3 + 2(u+ 1)z2 − 4uz = −z(z − 2)(z − 2u)

B(z) = 2z3 − 2(u+ 1)z2 + 2uz = 2z(z − 1)(z − u).

For 1
2 < u < 1 this yields Bach-flat examples on [α0, 2] × [0, β∞] with β∞ = u and

α0 = 2u, while for u > 1 we obtain instead examples on [2, α∞]× [0, 1] with α∞ = 2u.

5.4. Hirzebruch orbifold surfaces. Another interesting class of examples are the
toric orbifolds for which the rational Delzant polytope is a trapezium but not a par-
allelogram. It is shown in [41] that these are precisely the toric orbifolds which admit
toric Kähler metrics of Calabi type. Up to an orbifold covering, these orbifolds are
fibre bundles of the form M = P ×S1 CPw1,w2 → CPv1,v2 , where the fibre and the base
are weighted projective lines CPw1,w2 and CPv1,v2 respectively, and P is a principal
S1-orbibundle over CPv1,v2 . It follows from [41] that such a Hirzebrich orbifold sur-
face admits an extremal Kähler metric of Calabi type (in some and hence any Kähler
class) if and only if the base admits a CSC Kähler metric, i.e., v1 = v2 = 1. In
our formalism, this corresponds to the case when ∆ is an equipoised trapezium, and
(M,ω,T) is automatically K-polystable with respect to toric degenerations [41].

When v1 6= v2, the corresponding trapezia are not equipoised and extremal Kähler
metrics must be obtained from the hyperbolic ambitoric ansatz. Rational Delzant
trapezia which are close to but different from equipoised ones provide such examples.
On the other hand, one can readily find K-unstable trapezia by violating the condition
(1 + |ε|)(1 + |η|) < 2 in Lemma 3; then there exist affine normals such that the
trapezium is intemperate. More generally, Proposition 6 shows that any quadrilateral
which is not a parallelogram is K-unstable for some choice of affine normals.

Appendix A. Factorization structures

The idea behind factorization structures is to separate variables using a rational
map from a product of projective lines to projective space. In order to explain our
terminology, and place our constructions in a natural context, we discuss this idea in
greater generality than we need in the body of the paper.
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A.1. Factorization for rational Delzant polytopes. Let h be a real vector space
of dimension m+ 1 and ∆ ⊆ P(h∗) the image of a strictly convex cone in h∗.

Definition 9. A factorization structure over P(h∗) is an injective linear map ϕ : h→
V ∗1 ⊗ V ∗2 ⊗ · · · ⊗ V ∗m, where V1, . . . Vm are 2-dimensional real vector spaces, such that
composite Sϕ of the Segre embedding

P(V1)× · · · × P(Vm)→ P(V1 ⊗ · · · ⊗ Vm)

([v1], . . . [vm]) 7→ [v1 ⊗ · · · ⊗ vm]

with the dual projection P(V1⊗ · · · ⊗Vm) 99K P(h∗) maps any coordinate hyperplane
([vj ] constant for some j) into a hyperplane in P(h∗). We say ϕ is compatible with ∆
(or a factorization structure for ∆) if Sϕ maps a product I1 × · · · × Im of intervals
Ij ⊆ P(Vj) bijectively onto ∆ ⊆ P(h∗).

Note that the coordinate hyperplane condition is automatic for m ≤ 2 (since Sϕ
maps coordinate lines to lines). Also Sϕ maps the boundary of I1 × · · · × Im to the
boundary of ∆, so ∆ has at most 2m facets. In our application, ∆ and the intervals
Ij will be closed, so Sϕ is also a bijection between boundaries.

If ϕ is understood, we typically regard it as an inclusion and identify h with its
image ϕ(h) in V ∗1 ⊗ · · · ⊗ V ∗m. The examples we consider are all of the following form.

Examples. Let (m1, . . .mk) be a partition of m and let W1, . . .Wk be 2-dimensional

vector spaces. Then ϕ : h →
⊗k

i=1

(
⊗miW ∗i

)
is a Segre–Veronese factorization struc-

ture of type (m1, . . .mk) iff ϕ(h) =
∑k

i=1<π1> ⊗ · · · ⊗ SmiW ∗i ⊗ · · · ⊗ <πk> ⊆⊗k
i=1 S

miW ∗i for some decomposable πi = γi
�mi ∈ SmiW ∗i (for j = 1 . . . k, γj ∈W ∗j ).

The map Sϕ : P(W1)m1×· · ·×P(Wk)
mk → P(h∗) sends a coordinate hyperplane with

one component equal to [αj ] ∈ P(Wj) to the hyperplane in P(h∗) dual to [π1 ⊗ · · · ⊗
θj
�mj⊗· · ·⊗πk] ∈ P(h), where kerθj = <αj>. This is an element in the image of the

(dual) mixed Segre–Veronese embedding P(W ∗1 )× · · · × P(W ∗k )→ P
(⊗k

i=1 S
miW ∗i

)
.

The extreme partitions (1, 1, . . . 1) and (m) correspond to pure Segre and Veronese
embeddings respectively. For toric 4-orbifolds (m = 2), these are the only cases.

A.2. Factorizations on toric 4-orbifolds. When m := dim t = 2, the image of any
factorization structure h→W ∗1 ⊗W ∗2 (dimWi = 2) is the annihilator of an element χ
of W1⊗W2. If χ = γ1⊗γ2 is decomposable, the image of h is γ1

0⊗W ∗2 +W ∗1 ⊗γ2
0,

where γj
0 ⊆ W ∗j is the annihilator of γj ∈ Wj . If not, χ defines an isomorphism

W ∗1 →W2, and hence, fixing a nonzero area form on W1, an isomorphism W1 →W2.
Using this to identify W1 with W2 and dropping subscripts, the factorization structure
h→W ∗ ⊗W ∗ has image annihilating ∧2W ⊆W ⊗W , i.e., equal to S2W ∗.

Thus, up to isomorphism, any factorization structure is Segre–Veronese of type
(1, 1) or (2); these are the Segre and Veronese factorizations used in the paper. In the
Segre case, P(W1)× P(W2) 99K P(h∗) is projection away from the point [γ1 ⊗ γ2] on
the quadric surface in P(W1 ⊗W2); this is the famous birational map identifying the
blow-up of P(W1)×P(W2) at ([γ1], [γ2]) with the blow-up of P(h∗) at two points. In
the Veronese case, the map P(W )× P(W ) 99K P(h∗) is projection away from a point
off the quadric surface, which is a branched double cover over a conic.

Appendix B. The semistability surface

In this appendix we consider the dependence of the toric K-polystability condition
(and hence the existence of extremal metrics) on the rational Delzant quadrilateral
(∆,L), which is determined by a positivity property of its Futaki functional F∆,L on
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the space PL(∆) of PL convex functions. For a fixed quadrilateral ∆, F∆,L depends
linearly on inverse scales rα,k and rβ,k (k = 0,∞) for the normals L. We can thus
parameterize a choice of normals, up to overall scale, by a point [rα,0, rα,∞, rβ,0, rβ,∞]
in the positive quadrant of QP3, and a given choice will be K-polystable provided this
point lies in the open subset R∆ of RP3 on which the Futaki functional has constant
sign (with only trivial zeros). It follows from [41] that R∆ ⊆ RP3 has nonempty
intersection with the positive rational quadrant.

We refer to the boundary S∆ of R∆ as the semistability surface of ∆. At any point
in S∆ there must be a nontrivial Futaki invariant which is zero, and since it is linear
on RP3, this Futaki invariant defines a supporting hyperplane for R∆. Consequently,
we can hope to describe the dual surface of S∆ explicitly in terms of Futaki invariants,
and then consider its dependence on ∆.

It suffices to consider Futaki invariants defined by simple PL convex functions with
a crease meeting opposite sides of ∆ (including the diagonals of ∆ as extreme cases):
our main results show that the positivity of these invariants is not only necessary,
but sufficient, for toric K-polystability. These invariants are still quite formidable in
complexity, but are amenable to computation.

In our computations, we drop overall positive constants, such as the constant
c(ε, η) = 24/

(
4 − (1 − ε2)(1 − η2)

)
appearing in the extremal affine function, and

employ the dihedral symmetry (which acts projectively on ∆) to minimize duplica-
tion of effort. This symmetry group, determined by its action on vertices, is generated
by a “vertical” reflection (cf. Figure 1) σα : v00 7→ v∞0, v0∞ 7→ v∞∞ and a diagonal
reflection σε : v00 7→ v∞∞ fixing v0∞ and v∞0, so that ρ := σε ◦ σα is a π

2 rotation,
which acts on vertices and edges by

v00 7→ v∞0 7→ v∞∞ 7→ v0∞ 7→ v00,

Fα,0 7→ Fβ,0 7→ Fα,∞ 7→ Fβ,∞ 7→ Fα,0.

The remaining nonidentity elements consist of the other diagonal reflection ση =
σαρ = σασεσα, the “horizontal” reflection σβ = ρσε = σεσασε, ρ

2 = σησε and ρ3 =
ρ−1. The dihedral action is only affine after permuting the labelling, so there is an
induced action on the parameters (ε, η) which determine the affine class of ∆ as a
labelled quadrilateral. Explicitly, we have σα

∗(ε, η) = (η, ε) and σε
∗(ε, η) = (−ε, η),

and hence ρ∗(ε, η) = (η,−ε), σβ∗(ε, η) = (−η,−ε), ση∗(ε, η) = (ε,−η).
The two families of simple PL convex functions whose Futaki invariants we need

are fαs,t, with a crease joining s ∈ Fα,0 to t ∈ Fα,∞, and fβs,t, with a crease joining
s ∈ Fβ,0 to t ∈ Fβ,∞. We write

F∆,L(fαs,t) =
∑

j∈{α,β}×{0,∞}

Aj(ε, η, s, t)rj , F∆,L(fβs,t) =
∑

j∈{α,β}×{0,∞}

Bj(ε, η, s, t)rj

for functions Aj , Bj related by the following symmetries:

Aα,0(ε, η, s, t) = Aα,∞(−ε,−η, t, s) = Bβ,0(ε,−η, s, t) = Bβ,∞(−ε, η, t, s)
Bα,0(ε, η, s, t) = Bα,∞(−ε,−η, t, s) = Aβ,0(ε,−η, s, t) = Aβ,∞(−ε, η, t, s)

Aα,0(ε, η, s, t) = Aα,0(−η,−ε, s∗, t∗), Bα,0(ε, η, s, t) = Bα,0(−η,−ε, t∗, s∗),

where the star denotes the (harmonic) inversion interchanging the diagonals lε and lη
and fixing the midpoints of the sides. It thus suffices to compute Aα,0(ε, η, s, t) and
Bα,0(ε, η, s, t). To parameterize the points s, t on the edges, a convenient reference
space is the pencil of lines through the intersection O of the diagonals; this is a
projective line with four harmonically separated marked points (the two diagonals lε
and lη and the two lines lα and lβ joining O to intersection points of opposite sides).
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In the concrete description of §2.2, the diagonals are x = ±y and the other lines are
x = 0 and y = 0. We set lε = 0 = [1 : 0], lη =∞ = [0 : 1], so that we can use positive
homogeneous coordinates s = [s0 : s1], t = [t0 : t1] on the edges; this fixes sj and tj
up to independent scales. Each A,B is a polynomial of bidegree (3, 3) in s, t.

We compute that Aα,0(ε, η, s, t) is given (up to normalization) by

2 (s0 + s1)
(
(1 + η)t0 + (1 + ε)t1

) (
(1− η)s0t0 − (1− ε)s1t1

)2
− (1− ε)(1− η)

(
(1− η)s0 + (1− ε)s1

)
(t0 + t1)

(
(1 + η)s0t0 − (1 + ε)s1t1

)2
,

whereas Bα,0(ε, η, s, t) is given (up to normalization) by

(1− ε)(1 + η)(1 + ε− η + εη) s3
0t

3
0

+2(1 + εη + 1 + ε− η + εη) s2
0s1t

3
0

+2(1− ε)(1 + η)
(
4− (1− ε2)(1− η2)

)
s3

0t0t
2
1

+(1− ε)(1 + η)
(
(1 + ε)2 + (1− η)2 + (1 + εη)(2 + ε− η)

)
s3

0t
2
0t1

+
(
(1 + εη)(10 + ε− η + (1 + ε)(1− η)) + (1 + ε)2 + (1− η)2

)
s2

0s1t
2
0t1

+4(1 + εη) s0s
2
1t

2
0t1 + (40− 12(1− ε2)(1− η2)− 8εη) s2

0s1t0t
2
1

+
(
(1 + εη)(10− ε+ η + (1− ε)(1 + η)) + (1− ε)2 + (1 + η)2

)
s0s

2
1t0t

2
1

+(1 + ε)(1− η)
(
(1− ε)2 + (1 + η)2 + (1 + εη)(2− ε+ η)

)
s0s

2
1t

3
1

+2(1 + ε)(1− η)
(
4− (1− ε2)(1− η2)

)
s2

0s1t
3
1

+2(1 + εη + 1− ε+ η + εη) s3
1t0t

2
1

+(1 + ε)(1− η)(1− ε+ η + εη) s3
1t

3
1.

The latter expression typifies the contribution to the Futaki invariant from a side
which does not meet the crease. Only the first and last two coefficients can be negative,
and this can happen if and only if Bα,0(ε, η, 0, 0) (i.e., 1 + ε−η+ εη) or Bα,0(ε, η, 1, 1)
(i.e., 1− ε+ η + εη) is negative. This means that the expression already contributes
negatively to the Futaki invariant of one of the diagonals, in which case the normals
can be scaled to make the quadrilateral intemperate.

In contrast, the expression for Aα,0 typifies the contribution to the Futaki invariant
from a side which does meet the crease. Here we have found a surprising factorization
which shows that the contribution can be negative even when (1+ |ε|)(1+ |η|) < 2 (so
the quadrilateral is temperate for any choice of normals). We deduce the following.

Proposition 6. Let ∆ be a compact convex quadrilateral.

• If ∆ is a parallelogram, then for any affine normals L, (∆,L) is K-polystable.
• If ∆ is not a parallelogram, then there exist choices for the affine normals L such

that (∆,L) is K-polystable as well as choices such that (∆,L) is K-unstable.

Proof. The stability results are straightforward [41], but the instability results stated
in [41] are incorrect: by Example 1, equipoised rational Delzant quadrilaterals are
K-polystable. However, if ∆ is not a parallelogram, then either ε 6= η or ε 6= −η. In
the former case, put s0 = (1− η)t1 and s1 = (1− ε)t0 in fαs,t so that Aα,0 is negative.
Then F∆,L(fαs,t) can be made negative by taking rα,0 large relative to the other inverse
normals. When ε 6= −η a similar argument applies to F∆,L(fβs,t) and Bβ,0. �

Appendix C. Link with CR and sasakian 5-manifolds

There are well known connections between symplectic and Kähler geometry in
dimensions four and contact, CR and sasakian geometry in dimension five [11, 44, 50].
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In particular, quasiregular Sasaki–Einstein 5-manifolds have Kähler–Einstein orbifolds
as quotients by the Reeb vector field, and this provides one way of constructing them.
As observed by D. Martelli and J. Sparks [46, 50], the Sasaki–Einstein manifolds of
J. Gauntlett, D. Martelli, J. Sparks, D. Waldram [33] and M. Cvetic, H. Lu, D. Page,
and C. Pope [21] have quotients which are of Calabi type and orthotoric respectively.

The general ambitoric context does not provide further Kähler–Einstein examples,
but the extremal metrics may be used to construct continuous families of extremal
sasakian 5-manifolds, as well as Reeb directions which do not admit transversal ex-
tremal metrics (cf. [13, 41, 42]).

C.1. Contact, CR and sasakian structures. Recall that a contact manifold is an
odd dimensional manifold N with a maximally non-integrable codimension one distri-
bution H ⊆ TN , i.e., the Lie bracket (X,Y ) 7→ [X,Y ] mod H defines a nondegener-
ate TN/H-valued 2-form Ω onH called the Levi form. We assume that the line bundle
TN/H is oriented; positive sections η of the contact line bundle (TN/H)∗ ⊆ T ∗N are
called contact forms. Such a contact form has pointwise kernelH and induces a unique
vector field K with η(K) = 1 and LKη = 0, called the Reeb vector field of η.

An almost CR structure is a complex structure J on H such that the Levi form
is J-invariant, and (N,H, J) is said to be a CR manifold of Sasaki type if there is a
contact form η such that

g = dr2 + r2(dη(·, J ·) + η2), ω = d(r2η) = 2r dr ∧ η + r2 dη

is a Kähler metric on the cone N×R+. The corresponding metric gη = dη(·, J ·)+η2 on
M is called a compatible sasakian metric. On a CR manifold of Sasaki type the contact
forms η giving rise to compatible sasakian metrics are those for which (H, J,dη|H)
is invariant under the Reeb vector field and descends to a Kähler structure on local
quotients by K; it is called the transverse Kähler geometry. The sasakian structure
is said to be quasiregular if the quotient by K is an orbifold.

C.2. CR structure associated to positive ambitoric metrics. We observe here
that for fixed A(z) and B(z), the ambitoric Kähler metrics (g+, ω+) we obtain form
a family of sasakian metrics compatible with a fixed 5-dimensional CR-structure:
this is similar to the well-known identification of Bochner-flat Kähler metrics with
sasakian structures compatible with the standard CR structure on an odd-dimensional
sphere [58].

Suppose that (M, g±, J±, ω±, t) be a regular ambitoric 4-orbifold. Then on the
union M0 of the generic orbits the coordinates (x,y, t) provide a diffeomorphism of
M0 with D0 × t/2πΛ for a domain D0 in (an affine patch of) P(W )× P(W ). Recall
that t ∼= S2W ∗/<q> and the space of hamiltonians h+ is isomorphic to S2W ∗. By

passing to the universal cover of of t/2πΛ, or introducing a lattice Λ̃ ⊆ h+ covering
Λ, we can pull back the Kähler structure along πq : N0 = D0 × h+ → D0 × t. Then

π∗qω+ = dηq, where ηq = −〈dt,x⊗ y〉
q(x,y)

,

where dt is the tautological h+ = S2W ∗ valued 1-form on the 5-manifold. The kernel
H ∼= π∗qTM

0 of ηq, together with J+ defines a CR structure of sasakian type on N0.
The Reeb field of the contact form ηq is

Kq = −〈q,X〉 = −(q0∂t0 + q1∂t1 + q2∂t2),

where X ∈ h+
∗ ⊗C∞(N0, TN0) is dual to dt, and the corresponding sasakian metric

is g+ + ηq
2. Keeping the CR structure fixed, we now rescale the contact form and
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define

η =
q(x,y)

κ(x,y)
ηq = −〈dt,x⊗ y〉

κ(x,y)
with

dη =
−dx ∧ 〈dt,y ⊗ y〉+ dy ∧ 〈dt,x⊗ x〉

κ(x,y)
.

The corresponding Reeb vector field is

K = −〈x� y,X〉 = −∂t0 + (1/2)(x+ y)∂t1 − xy∂t2 .

This does not preserve the CR structure and hence only defines a normal contact
metric, not a sasakian metric. To compute this, we need to find the horizontal lift
of g0 = q(x, y)g+/(x − y). For this we observe that 〈dt, {q,y ⊗ y}〉 agrees with
q(x,y)〈dt,y ⊗ y〉/κ(x,y) on H (i.e., modulo η) and the latter vanishes on K. Sim-
ilarly, we replace 〈dt, {q,x ⊗ x}〉 by q(x,y)〈dt,x ⊗ x〉/κ(x,y). Introducing affine
coordinates, we conclude that the contact metric is

dx2

A(x)
+

dy2

B(y)
+A(x)

(y2dt0 + 2ydt1 + dt2
(x− y)2

)2
+B(y)

(x2dt0 + 2xdt1 + dt2
(x− y)2

)2

+
(xydt0 + (x+ y)dt1 + dt2

x− y

)2
,

which is manifestly independent of q. Consequently this CR structure has a family of
compatible sasakian structures ηq (with Reeb vector fields Kq) for q ∈ S2W ∗. If A(z)
and B(z) are quartics such that A(z) + B(z) = q1(z)q2(z) for orthogonal quadratic
forms q1 and q2, then both sasakian structures (q = q1 and q = q2) will be extremal.
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