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A Weyl manifold is a conformal manifold equipped with a torsion free connec-
tion preserving the conformal structure, called a Weyl connection. It is said to be
Einstein-Weyl if the symmetric tracefree part of the Ricci tensor of this connection
vanishes. In particular, if the connection is the Levi-Civita connection of a com-
patible Riemannian metric, then this metric is Einstein. Such an approach has two
immediate advantages: firstly, the homothety invariance of the Einstein condition
is made explicit by focusing on the connection rather than the metric; and sec-
ondly, not every Weyl connection is a Levi-Civita connection, and so Einstein-Weyl
manifolds provide a natural generalisation of Einstein geometry.

The simplest examples of this generalisation are the locally conformally Einstein
manifolds. A Weyl connection on a conformal manifold is said to be closed if it
is locally the Levi-Civita connection of a compatible metric; but it need not be a
global metric connection unless the manifold is simply connected. Closed Einstein-
Weyl structures are then locally (but not necessarily globally) Einstein, and provide
an interpretation of the Einstein condition which is perhaps more appropriate for
multiply connected manifolds. For example, S1×Sn−1 admits flat Weyl structures,
which are therefore closed Einstein-Weyl. These closed structures arise naturally
in complex and quaternionic geometry.

Einstein-Weyl geometry not only provides a different way of viewing Einstein
manifolds, but also a broader setting in which to look for and study them. For
instance, few compact Einstein manifolds with positive scalar curvature and con-
tinuous isometries are known to have Einstein deformations, yet we shall see that it
is precisely under these two conditions that nontrivial Einstein-Weyl deformations
can be shown to exist, at least infinitesimally.

The Einstein-Weyl condition is particularly interesting in three dimensions,
where the only Einstein manifolds are the spaces of constant curvature. In contrast,
three dimensional Einstein-Weyl geometry is extremely rich [16, 68, 72], and has an
equivalent formulation in twistor theory [34] which provides a tool for constructing
selfdual four dimensional geometries. In section 10, we shall discuss a construction
relating Einstein-Weyl 3-manifolds and hyperKähler 4-manifolds [40, 29, 50, 79].
Twistor methods also yield complete selfdual Einstein metrics of negative scalar
curvature with prescribed conformal infinity [48, 35]. An important special case
of this construction is the case of an Einstein-Weyl conformal infinity [34, 61].

Although Einstein-Weyl manifolds can be studied, along with Einstein mani-
folds, in a Riemannian framework, the natural context is Weyl geometry [23]. We
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take this point of view seriously, because of the insight it provides into the for-
mulation of ideas and results about Einstein-Weyl manifolds. For this reason, and
because the approach is less familiar, the first few pages of this essay are devoted to
a brief presentation of some concepts invaluable in Weyl geometry, such as densi-
ties, Weyl derivatives and conformal metrics; these concepts, despite being as basic
as tangent vectors, linear connections and Riemannian metrics, are not common
currency.

In section 3, Einstein-Weyl manifolds are introduced. After giving a few ex-
amples, we present the initial results of the theory. A key role is played by the
contracted Bianchi identity, which implies the constancy of the scalar curvature in
the Einstein case. The implications in Einstein-Weyl geometry are more subtle and
are described in Theorem 3.6: closed Einstein-Weyl structures have parallel scalar
curvature, and the converse holds in the compact case [27] or when the dimension
is not four [12]. We also give the definition of Einstein-Weyl manifolds in two
dimensions [11] and we indicate throughout how general results apply to this case.

Many of the general theorems about compact Einstein-Weyl manifolds follow
from the existence of a distinguished compatible metric, the Gauduchon metric [24].
These results are given in section 4 and imply that, apart from in the Einstein case,
the isometry group of the Gauduchon metric on a compact Einstein-Weyl manifold
is at least one dimensional [72]. We also observe that the sign of the scalar curvature
is constant in four or more dimensions [67, 12], contrary to some previous claims.
In section 10 we show that this need not hold in dimensions two and three.

In section 6 we give an extensive supply of examples of Einstein-Weyl manifolds.
These examples are often obtained from Riemannian submersions, which we discuss,
in section 5, within the more general framework of conformal submersions. In par-
ticular we give an Ansatz aimed at a study of submersions between Einstein-Weyl
manifolds, which includes as special cases both circle bundles over Kähler-Einstein
manifolds [66, 56] and hypercomplex 4-manifolds (which are Einstein-Weyl) over
Einstein-Weyl 3-manifolds [17, 29]. We discuss this latter case in section 10, where
we use submersions to give a direct proof of the result, of Jones and Tod [40], con-
cerning the construction of three dimensional Einstein-Weyl spaces from selfdual
4-manifolds with a conformal vector field. The Jones and Tod construction was
used in [68] to obtain the full moduli of Einstein-Weyl structures near the round
metric on the 3-sphere. More generally, in section 7 we study Einstein-Weyl moduli
spaces near Einstein metrics [65].

The material in section 8 illustrates how additional conditions on Einstein-Weyl
manifolds often lead to closed structures (see [39] for another instance of this), and
also highlights the role of Weyl structures in complex and quaternionic geome-
try [58, 59, 63]. This is further amplified in following section on four dimensions,
where Weyl geometry and complex geometry are intimately linked. However, as
shown by Gauduchon and Ivanov [28], in the compact case the Einstein-Weyl condi-
tion again gives only closed structures. Also in section 9 we discuss the interactions
between four dimensional Weyl geometry and twistor theory [25, 66], and give a lo-
cal formula for the Bach tensor on an Einstein-Weyl manifold [12]. In the compact
case, a similar formula was given in [67], where it was used to show that compact
Einstein-Weyl manifolds with selfdual Weyl curvature are closed. This fact was
obtained in a different way in [27] and may be combined with the results of [66]
to give a classification of the compact selfdual examples. It is now known that,
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even locally, half conformally flat Einstein-Weyl structures are “half-closed” [12]
and therefore Einstein or locally hypercomplex [66]. We briefly discuss some local
examples taken from [4].

It is far from being true, however, that the only compact Einstein-Weyl mani-
folds in dimension four are the closed ones. After discussing topological constraints
given by an analogue of the Hitchin-Thorpe inequality [64], we end section 9 by
presenting the classification [54] of four dimensional Einstein-Weyl manifolds with
symmetry group of dimension at least four.

In section 10, after discussing the twistor theory of Einstein-Weyl 3-manifolds
and the Jones and Tod construction, we present some special classes of three dimen-
sional Einstein-Weyl geometries [17, 29, 50, 79] and place them in a unified frame-
work [14]. We also explain why the possible geometries on compact 3-manifolds
are all obtained as quotients of R4 and review their classification [72]. Finally we
give the analogous classification result in dimension two [11].
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1. Density line bundles and Weyl derivatives

Definition 1.1. Let V be a real n-dimensional vector space and w any real
number. Then a density of weight w or w-density on V is defined to be a map
ρ : (ΛnV )r0 → R such that ρ(λω) = |λ|−w/nρ(ω) for all λ ∈ R× and ω ∈ (ΛnV )r0.
The space of densities of weight w is denoted Lw = Lw(V ).

Remarks. Lw naturally carries the representation λ.ρ = |λ|wρ of the centre of
GL(V ) or equivalently the representation A.ρ = |detA|w/nρ of GL(V ). Note also:

• Lw is an oriented one dimensional linear space with dual space L−w, and
L0 is canonically isomorphic to R.

• The absolute value defines a map from ΛnV ∗ to L−n. If V is oriented
then the (−n)-densities can be identified with the volume forms.

• The densities of L−1 ⊗ V are canonically isomorphic to R.

Now let M be any manifold. Then the density line bundle Lw = Lw
TM of M is

defined to be the bundle whose fibre at x ∈ M is Lw(TxM). Equivalently it is the
associated bundle GL(M) ×GL(n) L

w(n) where GL(M) is the frame bundle of M
and Lw(n) is the space of w-densities of Rn.

One advantage of using densities is that they permit a simple geometric dimen-
sional analysis to be carried out on tensors. Sections of L = L1 are scalar fields
with dimensions of length. More generally:

Definition 1.2. The tensor bundle Lw⊗(TM)j⊗(T ∗M)k (and any subbundle,
quotient bundle, element or section) will be said to have weight w + j − k, or
dimensions of [length]w+j−k.
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It is quite common in the literature to call a section of such a bundle a tensor
field of weight w, or perhaps −w, w/2, w/n ... various normalisations are possible.
In view (for instance) of the isomorphism ΛnT ∗M ∼= L−n on an oriented manifold,
such notions of weight would not permit a reasonable dimensional analysis.

On the other hand, the weight defined above can be interpreted invariantly as
the representation of the centre of GL(TM). It is additive under tensor product,
compatible with contractions, and gives tangent vectors dimensions of length. Here
“length” has been identified with weight +1, which is not the only reasonable choice.
For instance in Fegan [22], the weight +1 is assigned to cotangent vectors.

Notation 1.3. When tensoring a vector bundle with some Lw, we shall often
omit the tensor product sign.

The real line bundles Lw are oriented and hence trivialisable. However, there is
generally no preferred trivialisation, and so we prefer to make such a choice explicit.

Definition 1.4. A nonvanishing (usually positive) section of L1 (or Lw for
w 6= 0) will be called a length scale or gauge (of weight w).

It can be convenient in computation and examples to choose a length scale.
Nevertheless, the following will be viewed as being more geometrically fundamental.

Definition 1.5. A Weyl derivative is a covariant derivativeD on L1. It induces
covariant derivatives on Lw for all w. The curvature of D is a real 2-form FD which
will be called the Faraday curvature. If FD = 0 then D is said to be closed, and
there exist local length scales µ with Dµ = 0. If such a length scale exists globally,
then D is said to be exact.

Note that the Weyl derivatives form an affine space modelled on the space of
1-forms, while the spaces of closed and exact Weyl derivatives are modelled on the
closed and exact 1-forms respectively.

A length scale µ induces an exact Weyl derivative Dµ such that Dµµ = 0.
Consequently we shall sometimes call an exact Weyl derivative a gauge, but note
that cµ induces the same derivative for any c ∈ R+. If D is any other Weyl
derivative then D = Dµ + ωµ for the 1-form ωµ = µ−1Dµ.

A gauge transformation on M is a positive function ef which rescales a gauge
µ ∈ C∞(M,Lw) to give ewfµ. Gauge transformations also act on Weyl derivatives
via ef ·D = ef ◦D ◦ e−f = D − df . However, we shall normally only consider the
action on length scales, so that if, for a fixed Weyl derivative D and any length
scale µ, we write D = Dµ + ωµ = Def µ + ωef µ, then ωef µ = ωµ + df .

Remarks. The theory of Weyl derivatives is a gauge theory with gauge group
R+, and is a geometrisation of classical electromagnetism: the Faraday curvature
represents the electromagnetic field. Indeed this is the original gauge theory of
“metrical relationships” introduced by Weyl [80]. As a model for electromagnetism,
however, it was subsequently rejected in favour of a U(1) gauge theory. An unfortu-
nate consequence of this is that Weyl derivatives have suffered a period of neglect in
differential geometry, although there are several contexts in which they are useful.

Example 1.6. Let Ω be a nondegenerate 2-form on Mn. Then Ωm (n = 2m)
equips M with an orientation and a length scale (hence an exact Weyl derivative).
Suppose instead that Ω ∈ C∞(M,L2Λ2T ∗M) and that Ωm is a constant nonzero
section of the orientation line bundle LnΛnT ∗M . Now dΩ is no longer well defined:
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for each Weyl derivative D on L1 one can define dDΩ, but if γ is a 1-form then
dD+γΩ = dDΩ+2γ∧Ω. However, for 2m > 2, the nondegeneracy of Ω implies that
there is a unique Weyl derivative such that trΩ d

DΩ = 0. In four dimensions this
forces dDΩ = 0, so that every weightless almost symplectic form is “symplectic”
with respect to a unique Weyl derivative: it is symplectic in the usual sense iff
the Weyl derivative is exact. This Weyl derivative is a manifestly scale invariant
version of the Lee form [75], which appears naturally in Hermitian geometry, since
the Kähler form of an orthogonal almost complex structure on a conformal manifold
is a weightless nondegenerate 2-form.

Weyl derivatives also arise in (oriented) contact and CR geometry, where they
are induced by complementary subspaces to the contact distribution. The exact
Weyl derivatives correspond to global contact forms.

Finally, whenever a geometry has a preferred family of linear connections affinely
modelled on the space of 1-forms, these linear connections are usually parameterised
by Weyl derivatives. This occurs in quaternionic geometry, projective geometry and
the example of interest here: conformal geometry.

2. Conformal geometry

The modern approach to gauge theory has provided much geometrical clarifi-
cation by identifying it as a theory of connections rather than potentials and gauge
transformations. Yet this approach has not filtered back to conformal geometry,
where the gauge is constantly being fixed by a metric, and then transformations
under rescaling are considered. Part of the problem is that the standard definition
of a conformal manifold is a manifold equipped with an equivalence class of Rie-
mannian metrics. The very notation, [g], for the conformal structure leads one to
fix the gauge.

A conformal structure may alternatively be defined as a reduction of the frame
bundle to a principal CO(n)-bundle, just as a Riemannian metric is equivalently
an O(n)-structure. However, this definition has the disadvantage that although
the group of invariance of the geometry is clear, it is not made clear exactly what
remains invariant, and so a Riemannian metric is usually introduced. As coun-
terpoint to the tendency to do conformal geometry in a Riemannian framework,
we would like to suggest that a conformal structure is more fundamental than a
Riemannian structure by defining the latter in terms of the former.

One motivation for this is that the notion of a Riemannian metric is dimen-
sionally incorrect, since the length of a tangent vector should be a length, not a
number. One can only turn it into a number by choosing a length scale.

Definition 2.1. (See e.g., Hitchin [33]) A conformal structure on a mani-
fold M is an L2 valued inner product on TM . More precisely it is a section
c ∈ C∞(M,L2S2T ∗M) which is everywhere positive definite. Furthermore, we
shall always take it to be normalised in the sense that |det c| = 1. Equivalently c is
a normalised metric on the weightless tangent bundle L−1TM . The normalisation
condition makes sense because the densities of L−1TM are canonically trivial.

In physics, where dimensional analysis is part of the culture, the determinant
of a metric is often set to unity: physical metrics assign a length, not a number, to
a vector. On the other hand a Riemannian metric is not dimensionless, and so it
is meaningless to normalise it. Instead it defines a preferred length scale.
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Definition 2.2. A Riemannian structure on M is a conformal structure c
together with a length scale µ. The metric is g = µ−2c ∈ C∞(M,S2T ∗M) and we
write (cg, µg) for the corresponding conformal structure and length scale.

This decomposition of a Riemannian structure into two pieces is reflected in
the linearised theory: the bundle S2T ∗M is not irreducible under the orthogonal
group, but decomposes into a trace and a tracefree part.

An alternative definition of a Riemannian structure is a conformal structure
together with an exact Weyl derivative. Such a definition does not distinguish
between homothetic metrics, which is often appropriate in practice. The existence
and uniqueness of the Levi-Civita connection inducing this exact Weyl derivative
is then a special case of the following foundational result.

Theorem 2.3 (The Fundamental Theorem of Conformal Geometry). [80] On
a conformal manifold M there is an affine bijection between Weyl derivatives and
torsion free connections on TM preserving the conformal structure. More explicitly,
the torsion free connection on TM is determined by the Koszul formula

2〈DXY, Z〉 = DX 〈Y, Z〉+DY 〈X,Z〉 −DZ 〈X,Y 〉
+ 〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉,

where 〈X,Y 〉 ∈ C∞(M,L2) denotes the conformal inner product of vector fields.
(Note also that we shall write |X|2 for 〈X,X〉.) The corresponding linear map sends
a 1-form γ to the co(TM)-valued 1-form Γ defined by ΓX = γ(X)id + γ MX, where
(γ MX)(Y ) = γ(Y )X − 〈X,Y 〉γ. Here γ is viewed as a vector field of weight −1
using the natural isomorphism ] : T ∗M → L−2TM given by the conformal structure.

Henceforth, we identify a Weyl derivative on a conformal manifold with the
induced “Weyl connection” on the tangent bundle and all associated bundles. We
also use the sharp isomorphism freely, only writing it explicitly to avoid ambiguity.

Definition 2.4. A conformal structure c and a Weyl derivative D define a
Weyl structure on M , making it into a Weyl manifold. For each w ∈ R, RD,w will
denote the curvature altD2 of D on Lw−1TM : it is a section of Λ2T ∗M ⊗ co(TM).
We write RD = RD,1 for the curvature of the torsion free connection D on TM .

A basic fact in Weyl geometry is the existence of a weight −2 tensor rD, called
the normalised Ricci endomorphism of the Weyl structure, such that the curvature
of D decomposes as follows:

RD,w
X,Y = WX,Y + wFD(X,Y )id − rD(X) MY + rD(Y ) MX.

Here W is the Weyl curvature of c, which is independent of D and is tracefree.
One way to establish this (and hence find rD) is to study the way in which

the curvature RD,w depends upon the choice of D. Since this is useful for other
reasons, we state the result explicitly.

Proposition 2.5. Suppose D and D̃ = D+γ are Weyl derivatives on a confor-
mal manifold (Mn, c). Then the curvatures of D and D̃ are related by the formula:

RD̃,w
X,Y = RD,w

X,Y + w dγ(X,Y )id

+
(
DXγ − γ(X)γ + 1

2〈γ, γ〉X
)
MY

−
(
DY γ − γ(Y )γ + 1

2〈γ, γ〉Y
)
MX.



EINSTEIN-WEYL GEOMETRY 7

The proof is a matter of computing dDΓ + Γ∧Γ where Γ is related to γ by 2.3.
The first term, w dγ, is simply the change in the Faraday curvature FD on Lw,
while the remainder is given in terms of the expression Dγ − γ ⊗ γ + 1

2〈γ, γ〉id. In
order to find a tensor rD transforming in this way, define, for each w ∈ R, a section
of L−2 EndTM by

RicD,w(X) =
∑

iR
D,w
X,ei

ei,

where ei is a weightless orthonormal basis. This Ricci endomorphism is not neces-
sarily symmetric: its skew part turns out to be (w − n−2

2 )FD, where FD is viewed
as the endomorphism X 7→ ]ιXF

D = ]FD(X, .). The symmetric part of RicD,w

is independent of w and hence so is the trace scalD, which is a section of L−2

called the scalar curvature of D. Let rD
0 = 1

n−2 sym0 RicD,w be the (normalised)
symmetric tracefree part, and define

rD = rD
0 + 1

2n(n−1)scalDid − 1
2F

D.

Proposition 2.6. If D and D̃ = D + γ are Weyl derivatives on (Mn, c) then:

rD̃
0 = rD

0 − sym0Dγ + (γ ⊗ γ − 1
n〈γ, γ〉id)

scalD̃ = scalD − 2(n− 1) trDγ − (n− 1)(n− 2)〈γ, γ〉

rD̃ = rD − (Dγ − γ ⊗ γ + 1
2〈γ, γ〉id).

This follows from 2.5 by taking traces, and also shows that W is independent of D.

Proposition 2.7. On any Weyl manifold of dimension n > 2,

divD
(
rD
0 − 1

2nscalDid + 1
2F

D
)

= 0,

where divD = trc ◦D and in particular, divD FD =
∑

i(DeiF
D)(ei, .).

This is a consequence of the differential Bianchi identity dDRD,0 = 0.
The exterior divergence δ on sections of L−nΛkTM (multivector densities) is

an invariant operator, just like the exterior derivative on forms. In fact, up to sign,
these divergences form a complex formally adjoint to the deRham complex. Our
convention is to define δ = trD, the trace being taken with the first entry. On
forms, divD can therefore be identified with a twisted exterior divergence δD. Such
twisted divergences no longer form a complex in general. One consequence of this
is the following.

Proposition 2.8. [12] Let D be a Weyl derivative on a conformal n-manifold
M . Then (δD)2FD = −(n − 4)|FD|2. If n 6= 4 it follows that divD FD = 0 iff
FD = 0.

Proof. FD is a section of Λ2T ∗M ∼= Ln−4L−nΛ2TM and so the divergence
has been twisted by D on Ln−4. The formula follows by direct computation using
a trivialisation of Ln−4. �

3. The Einstein-Weyl equation

We now come to the main definition of this essay.

Definition 3.1. [16, 34] Let (M, c, D) be a Weyl manifold of dimension at
least three. Then M is said to be Einstein-Weyl iff rD

0 = 0; equivalently, the
symmetric tracefree part of the Ricci tensor vanishes.
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Examples 3.2. We illustrate the three types of Einstein-Weyl manifold.
(i) M is Einstein-Weyl with D exact iff it is Einstein, in the sense that each

length scale µ with Dµ = 0 defines an Einstein metric.
(ii) Suppose M = S1×Sn−1 ∼= (Rn r{0})/Z, where the Z action is generated

by x 7→ 2x. This action preserves the flat conformal structure and the
flat Levi-Civita derivative on Rn, but not the flat metric. Hence M has
a natural flat Weyl structure, which is therefore Einstein-Weyl, but the
Weyl derivative, although closed, is not exact [66, 68]. Note that S1×S2

and S1 × S3 admit no Einstein metric [3], yet both are Einstein-Weyl in
a simple way.

(iii) The simplest example of an Einstein-Weyl manifold with nonzero Faraday
curvature is the following Weyl structure on the Berger sphere [40]:

g = dθ2 + sin2 θdφ2 + a2(dψ + cos θdφ)2

ω = b(dψ + cos θdφ).

Here D = Dg + ω and a, b are constants with b2 = a2(1 − a2). This
example is related to the Hopf fibration over S2, and will be discussed
again in section 6.

Remark. In two dimensions, there is no symmetric tracefree Ricci tensor, and
so the Einstein-Weyl condition is vacuous. A 2-manifold is usually said to be
Einstein iff it has constant scalar curvature, since this follows from the contracted
Bianchi identity in higher dimensions. There is a natural generalisation in Einstein-
Weyl geometry.

Proposition 3.3. [68, 27] Suppose M is Einstein-Weyl of dimension n > 2.
Then DscalD −n divD FD = 0. (As before, the trace is with the first entry of FD.)

This is immediate from 2.7, and suggests the following definition.

Definition 3.4. A Weyl manifold (M, c, D) of dimension two is said to be
Einstein-Weyl iff DscalD − 2 divD FD = 0.

Another justification for this definition is that a Weyl derivative D on a confor-
mal 2-manifold defines an (almost) Möbius structure [11], and this Möbius structure
is integrable (in other words, a complex projective structure) iff D is Einstein-Weyl.

The contracted Bianchi identity has several useful consequences.

Proposition 3.5. [12, 67] Let M be an n-dimensional Einstein-Weyl manifold.
Then ∆DscalD = −n(n− 4)|FD|2, where ∆D = trD2.

We also obtain the following result, essentially given in [27, 31], although by
using 2.8 compactness assumptions can be avoided except in dimension four [12].

Theorem 3.6. If (Mn, D) is Einstein-Weyl, the following are equivalent:
(i) Either D is closed or n = 4, M is noncompact and FD is harmonic.
(ii) divD FD = 0.
(iii) DscalD = 0.
(iv) Either D is exact or scalD is identically zero.

Proof. (ii) and (iii) are equivalent by 3.3, and clearly (iii) =⇒ (iv) =⇒ (ii)
or (iii). The equivalence of (i) and (ii) follows from 2.8, together with the conformal
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invariance of the divergence on 2-forms in four dimensions, and the fact that an
exact coclosed 2-form on a compact 4-manifold necessarily vanishes (write FD = dγ
and integrate the section |FD|2 of L−4 by parts). �

4. The Gauduchon gauge

In electromagnetism it is common to fix the gauge by requiring the potential to
be divergence free. In Weyl geometry, there are several possible ways to interpret
this. However, it is the following gauge that has become the most important, thanks
to its global existence and the wealth of results that follow from it [24, 27, 72].

Definition 4.1. Let (M, c, D) be a Weyl manifold. Then a length scale µ
is called a Gauduchon gauge iff D = Dµ + ωµ with trcD

µωµ = 0. The exact
Weyl derivative Dµ will be called the Gauduchon derivative and ωµ the Gauduchon
1-form.

Note that it is the gauge derivative being used to define the divergence and so
a priori this condition is nonlinear, except in two dimensions where the divergence
on 1-forms is conformally invariant. However, in higher dimensions the condition
is easily linearised by using a length scale of weight 2− n.

Proposition 4.2. Suppose (M, c, D) is a Weyl manifold of dimension n > 3.
Then a length scale λ of weight 2−n is a Gauduchon gauge iff div Dλ := trD2λ = 0.

This follows from the invariance of the divergence on L−nTM ∼= L2−nT ∗M .
On an oriented 3-manifold, a Gauduchon gauge is an “abelian monopole”: the

Gauduchon gauge condition means that ∗Dλ is a closed 2-form, which is locally
equivalent to ∗Dλ = dθ for some 1-form θ. On an Einstein-Weyl 4-manifold,
Proposition 3.5 shows that the scalar curvature scalD defines a Gauduchon gauge
wherever it is nonzero. More generally, there is the following theorem.

Theorem 4.3. [24] A compact Weyl manifold admits a Gauduchon gauge,
unique up to homothety (i.e., the Gauduchon derivative is uniquely determined).

Proof. If n = 2 a Gauduchon gauge is a coclosed representative for the space
of 1-forms γ such that D − γ is exact (in particular dγ = FD). The result in this
case is therefore a consequence of the Hodge decomposition. Now suppose n > 2.
• The formal adjoint of trD2 : J2Lw → Lw−2 is trD2 : J2L−w+2−n → L−w−n.

Now let ∆D denote this Weyl Laplacian on functions, and ∆∗
D its formal adjoint

on sections of L2−n. By Proposition 4.2 a positive section λ of L2−n defines a
Gauduchon gauge iff ∆∗

Dλ = 0.
• Since ∆D and ∆∗

D have the same principal symbol (after trivialising L1), they
have the same index, which is therefore zero, since they are adjoints. Consequently
dim ker∆∗

D = dim ker ∆D = 1 by the maximum principle.
• No φ ∈ ker ∆∗

D may change sign: if it did, its integral in a gauge could take any
real value and so in particular there would exist positive sections of L−2 orthogonal
to φ. However, the image of ∆D cannot contain such a positive section, since
the Hopf maximum principle implies that supersolutions of ∆D must be constant.
Therefore any φ ∈ ker ∆∗

D is everywhere nonnegative or nonpositive, and so (by the
Hopf maximum principle again) any nonzero φ is nowhere vanishing, whence ker∆∗

D

consists precisely of the constant multiples of some positive section of L2−n. �
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The Gauduchon gauge is particularly powerful on compact Einstein-Weyl man-
ifolds, because it is a Killing gauge in the sense that the Gauduchon 1-form is dual
to a Killing field. This result of Tod [72] is closely related to the existence of a
Gauduchon constant [27] generalising the constant scalar curvature on an Einstein
manifold.

Theorem 4.4. Let M be a compact Einstein-Weyl n-manifold and suppose that
D = Dg + ωg in the Gauduchon gauge. Then the section

κ = scalg − (n+ 2)|ωg |2 = scalD + n(n− 4)|ωg |2

of L−2 is constant and ]ωg is a Killing field with respect to Dg . The Ricci endo-
morphism of Dg is given by

(4.1) Ricg = 1
nscalDid + (n− 2)

(
〈ωg , ωg〉id − ωg ⊗ ωg

)
.

Conversely suppose that M is Riemannian with Levi-Civita derivative Dg and that
ωg is a 1-form such that ]ωg is a Killing field and the Ricci tensor of Dg is of
the above form, where scalD = scalg − (n − 1)(n − 2)|ωg |2. Then D = Dg ± ωg

is Einstein-Weyl with Gauduchon derivative Dg . (In two dimensions it is also
necessary to suppose that scalg − 4|ωg |2 is constant with respect to Dg .)

The proof of this theorem involves the contracted Bianchi identity for Dg . In
general, let µ be a gauge on a conformal n-manifold. Then for n > 2, rµ

0 − 1
2nscalµid

is divergence free. If M is Einstein-Weyl, rµ
0 may also be defined by the difference

sym0(Dµ)2 − sym0D
2, and this definition works in dimension two: the contracted

Bianchi identity for Dµ is then a consequence of the two dimensional Einstein-Weyl
equation. From these observations, the following identities are obtained.

Proposition 4.5. Let M be Einstein-Weyl and let µ be any gauge. Then

rµ
0 − 1

2nscalµid = sym0D
µωµ − ωµ ⊗ ωµ + 1

n

(
〈ωµ, ωµ〉 − 1

2scalµ
)
id

is divergence free with respect to µ and consequently:

divµ(sym0D
µωµ)

= 2〈sym0D
µωµ, ωµ〉+ n+2

n (divµ ωµ)ωµ + 1
2nD

µ
(
scalµ − (n+ 2)|ωµ|2

)
divµ

(
〈sym0D

µωµ, ωµ〉 − 1
2n

(
scalµ + (n− 2)|ωµ|2

)
ωµ

)
= 2| sym0D

µωµ|2 − 1
2n

(
scalµ − (n+ 2)|ωµ|2

)
divµ ωµ.

On a compact manifold, taking µ to be a Gauduchon gauge and integrating the
second of these identities immediately gives the main part of Theorem 4.4. The
rest of the theorem is now straightforward.

If (M,D) is an Einstein-Weyl manifold with Killing gauge D = Dg + ωg then
2Dgωg = FD and Dg〈ωg , ωg〉 = −FD(ωg , .). Consequently the contracted Bianchi
identity 3.3 and the constancy of κ imply:

2 tr(Dg)2ωg = divg FD = − 2
nscalDωg(4.2)

∆g |ωg |2 + 2
nscalD|ωg |2 = |FD|2(4.3)

∆gscalD − 2(n− 4)|ωg |2scalD = −n(n− 4)|FD|2(4.4)

We now collect some geometrical consequences.

Theorem 4.6. [12, 27, 37, 67, 68, 72] Let Mn be a compact Einstein-Weyl
manifold with D = Dg + ωg in the Gauduchon gauge. Then
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(i) If D is not exact, then the isometry group of the Gauduchon metric is at
least one dimensional.

(ii) Contracting (4.2) with ωg and integrating gives:∫
M
|FD|2 =

2
n

∫
M

scalD|ωg |2.

Consequently, if scalD 6 0 then D is closed.
(iii) D closed =⇒ Dgωg = 0 and, if D is not exact, |ωg |−1 is a Gauduchon

gauge.
(iv) If scalD > 0 then Ricg > 0, while if scalD > 0 then Ricg > 0, and scalg

is strictly positive if n > 4 or n = 3 and κ 6= 0.
(v) The Hopf maximum principle applied to (4.4) implies that if n > 4 and

scalD is not everywhere positive, then it is constant in the Gauduchon
gauge.

Theorems 3.6 and 4.6 together give the following rough classification result.

Theorem 4.7. If M is compact Einstein-Weyl, one of the following holds:
(i) scalD is negative and D is exact.
(ii) scalD is identically zero, D is closed and if D is not exact, M admits a

metric of positive scalar curvature (zero scalar curvature in two dimen-
sions).

(iii) scalD is positive and M admits a metric of positive Ricci curvature.
(iv) scalD is of nonconstant sign, dimM 6 3, κ 6 0 and FD is nonzero.

We also obtain topological consequences of the Einstein-Weyl condition.

Theorem 4.8. [27, 66] Let M be a compact Einstein-Weyl manifold. Then if
scalD is positive, M has finite fundamental group. Also if D is not exact and M is
a spin manifold, then the Â-genus of M vanishes.

Theorem 4.9. [27, 67] Let Mn be a compact Einstein-Weyl manifold (n > 2)
with D closed but not exact. Then the parallel 1-forms on M are precisely the
multiples of the Gauduchon 1-form and so the first Betti number of M is one.
Also, the universal cover of M is R × Σ where Σ is a simply connected Einstein
manifold of positive scalar curvature. If n 6 4 then Σ = Sn−1 and D is flat.

Proof. These results all follow easily from the formula (4.1) for the Ricci
endomorphism of the Gauduchon gauge, together with the fact that ωg is Dg -
parallel. The first part can be proven either by a Bochner argument [67] or as a
consequence of the second part [27]. The flatness of D for n = 3 is immediate from
its Ricci-flatness, while for n = 4 it follows because R× S3 is conformally flat. �

The flat nonexact compact Weyl manifolds, or manifolds of type S1 × Sn−1,
therefore exhaust the closed Einstein-Weyl manifolds in dimension less than or
equal to four. A detailed study of the four dimensional case can be found in [27].

5. Conformal submersions

As in Einstein geometry, many examples of Einstein-Weyl manifolds arise from
submersions. Although we shall mainly focus on Riemannian submersions with
totally geodesic fibres [3], we would like to place these in a conformal context.
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Definition 5.1. Let π : M → B be a smooth surjective map between conformal
manifolds and let the horizontal bundle H be the orthogonal complement to the
vertical bundle V of π in TM . Then π will be called a conformal submersion iff for
all x ∈M , dπx|Hx

is a nonzero conformal linear map.

It is not at all necessary to restrict attention to submersions in the following.
The base could, for instance, be an orbifold, or be replaced altogether by the hori-
zontal geometry of a foliation (see [60]). However, since we are primarily interested
in the local geometry, we shall, for convenience of exposition, take the base to be a
manifold. A bundle H complementary to V is often called a connection on π.

Proposition 5.2. If π : M → B is a submersion onto a conformal manifold B,
then conformal structures on M making π into a conformal submersion correspond
bijectively to triples (H, cV , ρ), where H is a connection on π, cV is a conformal
structure on the fibres, and ρ : π∗L1

B
∼= L1

H → L1
V is a (positive) isomorphism.

The final ingredient ρ in this construction will be called a relative length scale,
since it allows vertical and horizontal lengths to be compared. The freedom to vary
ρ generalises the so called “canonical variation” of a Riemannian submersion, in
which the fibre metric is rescaled, while the base metric remains constant.

Definition 5.3. Let π : M → B be a conformal submersion and D a Weyl
derivative on M . Then, following O’Neill [57], we define fundamental forms AD, IID

by AD(X,Y ) = (DXY )V for X,Y ∈ H and IID(U, V ) = (DUV )H for U, V ∈ V,
where (...)V and (...)H denote the vertical and horizontal components.

A remarkable feature of conformal submersions is the existence of a preferred
Weyl derivative, much like the Bott connection of a foliation.

Proposition 5.4. Suppose M is conformal and TM = V ⊕⊥ H with V,H
nontrivial. Then if D is any Weyl derivative, U 7→ trHDU and X 7→ trV DX are
tensorial for U ∈ V and X ∈ H, and there is a unique D = D0 such that V and H
are minimal, in the sense that these mean curvature tensors are zero.

(The last part follows by comparing the mean curvature tensors of D and D + γ.)
For a conformal submersion, D0 will be called the minimal Weyl derivative,

and the corresponding fundamental forms will be denoted II0 and A0. The in-
tegrability of V implies that for any D, IID is symmetric in U, V (it is just the
second fundamental form of the fibres), and so II0 is symmetric and trace free. On
the other hand, the conformal property of π implies that the symmetric part of
〈AD(X,Y ), U〉 = −〈DXU, Y 〉 is a pure trace, and so A0 is skew in X,Y . If D0 is
exact, then in this gauge, the submersion is Riemannian and the fibres are minimal
submanifolds.

The O’Neill formulae [57, 30] carry over to the conformal setting without sub-
stantial change, but here we restrict attention to the case of one dimensional fibres.
A foliation of a conformal manifold with oriented one dimensional leaves is equiv-
alently given by the weightless unit vector field tangent to the leaves. In this case
the properties of D0 can be reinterpreted as follows.

Proposition 5.5. Let ξ be a weightless unit vector field on a conformal man-
ifold. Then the minimal Weyl derivative of the corresponding foliation is char-
acterised by D0

ξξ = 0 and trD0ξ = 0 and the foliation is (locally) a conformal
submersion iff D0ξ is skew. D0 is exact iff there is a conformal vector field K with
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K = |K|ξ, in which case D0|K| = 0 and so D0 is the Levi-Civita derivative of
g = |K|−2c and K is a unit Killing field.

In other words, if a conformal submersion is given by the flow of a nonvanishing
conformal vector field K then D0 is the constant length gauge of K.

Let π : Mn+1 → Bn be a conformal submersion with one dimensional fibres and
D0 exact (this is equivalently a Riemannian submersion with totally geodesic fibres
and D0 is the Levi-Civita derivative). Then D0 is well defined on the base, and
any other Weyl derivative on B is of the form D0 + ω for some 1-form ω. On the
total space M , we now consider the Weyl derivative D = D0 + n−2

n−1π
∗ω+ λξ where

ξ is the weightless (co)tangent vector to the fibres and λ is a section of L−1.
Using the well known submersion formulae for the Ricci tensor of D0 [3], to-

gether with the formulae in 2.6 we obtain the following.

Proposition 5.6. Let D = D0 + n−2
n−1π

∗ω + λξ. Then:

sym RicD
M (X,Y ) = sym RicD0+ω

B (X,Y )− 2〈A0
X , A

0
Y 〉 −

(
D0

ξλ+ (n− 1)λ2
)
〈X,Y 〉

− n−2
n−1 ω(X)ω(Y ) + 1

n−1

(
div0 ω + (n− 2)|ω|2

)
〈X,Y 〉

sym RicD
M (ξ,X) =

∑
i〈(D

0
ei
A0)(ei, X), ξ〉 − 1

2(n− 1)D0
Xλ

+ (n− 2)
(
ω(X)λ− 〈A0(X,ω), ξ〉

)
sym RicD

M (ξ, ξ) = |A0|2 − nD0
ξλ

− n−2
n−1

(
div0 ω + (n− 2)|ω|2

)
where X,Y are horizontal, e1, ..en, ξ is a weightless orthonormal basis with ξ verti-
cal, 〈A0

X , A
0
Y 〉 =

∑
i〈A0(X, ei), A0(Y, ei)〉 and |A0|2 =

∑
i〈A0

ei
, A0

ei
〉.

The factor n−2
n−1 eliminates the difficult terms involving D0ω. It occurs naturally

in the case of a hypercomplex 4-manifold over an Einstein-Weyl 3-manifold [29],
which we shall discuss in section 10. In this section, though, we shall only treat the
case ω = 0, as considered by Pedersen and Swann [66].

Theorem 5.7. [66, 56] Let π : Mn+1 → Bn be a Riemannian submersion,
over an Einstein manifold B, with complete totally geodesic one dimensional fibres.
Suppose that M admits an Einstein-Weyl structure of the form D = D0 +λξ. Then

(i) scal0B > (n+ 2)|A0|2 + n(n− 1)λ2 and scalDM > n|A0|2, with equality (in
both) iff λ is constant on the fibres (which necessarily holds if the fibres
are compact).

(ii) In the D0 gauge, A0 defines a symplectic form on the open subset of B
where it is nonzero, and so n is even unless A0 is identically zero. If |A0|2
is a nonzero constant then B is almost Kähler and M is almost Sasakian.

Proof. By the submersion formulae, the Einstein-Weyl condition gives rise to
the following three equations:

〈A0
X , A

0
Y 〉 = 1

n |A
0|2〈X,Y 〉∑

i〈(D
0
ei
A0)(ei, X), ξ〉 = 1

2(n− 1)D0
Xλ

n(n− 1)(λ2 −D0
ξλ) = scal0B − (n+ 2)|A0|2.

(5.1)

The last equation and the completeness of the fibres together imply that along
each fibre, λ is either constant or a negative hyperbolic tangent with respect to
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D0. Hence D0
ξλ is nonpositive and the first part readily follows. The first equation

implies that (X,Y ) 7→ 〈A0(X,Y ), ξ〉 is either zero or nondegenerate at each point.
Also, if µ is a D0-parallel length scale, then 〈A0(X,Y ), µ−1ξ〉 = −1

2d(µ
−1ξ), which

is a closed basic 2-form π∗Ω. If A0 is nonzero, the metric µ|A0|c on B is almost
Hermitian with Kähler form Ω and so if D0|A0| = 0 then B is almost Kähler and
M is almost Sasakian. �

Examining this theorem more closely, we see that the Einstein-Weyl equations
on M have in fact been encoded on B, suggesting that there should be an inverse
construction. In fact one parameter families of Einstein-Weyl structures can be
found on S1-bundles in this way.

Suppose π : M → B is a fibration over an almost Kähler-Einstein manifold of
positive scalar curvature and that it has a connection H with curvature kπ∗Ω⊗U ,
where Ω is the Kähler form on B, U is a nonvanishing vertical vector field and k
is constant. If for some choice of relative length scale, M becomes a Riemannian
submersion with totally geodesic fibres and U constant, then the same holds for
any constant multiple of this relative length scale, giving a one parameter family of
metrics gt = π∗gB + t2g(U, .)2 called the canonical variation. The equations (5.1)
with constant λ may be satisfied provided scal0B > (n + 2)|A0|2t . If A0 = 0 this
holds for all t, while for A0 6= 0, it is only possible for 0 < t 6 t0 where gt0 is an
Einstein metric.

Theorem 5.8. [66] Let B be a Kähler-Einstein manifold of positive scalar cur-
vature and let M be a principal S1-bundle with connection whose curvature is a
multiple of the Kähler form. Then M admits a one parameter family of Einstein-
Weyl structures.

These results fit in with the idea that Einstein-Weyl geometry is a natural
deformation of Einstein geometry, which we shall discuss again in section 7.

6. Examples

Examples of Einstein-Weyl structures on S1-bundles include the following.
1. The basic example of a nontrivial S1-bundle over a Kähler-Einstein base is the
Hopf fibration S3 → S2. If σ is a left invariant 1-form on S3 then the biinvariant
(round) metric is g = π∗g

S2 + σ2 where π is the Riemannian submersion generated
by the Killing field dual to σ. If we now consider the U(2) invariant Berger metric
ga = π∗g

S2 + a2σ2, we find that for 0 < a < 1 there is a unique b up to sign such
that D = Dga + bσ is Einstein-Weyl. This is the example given in 3.2 and it easily
generalises to the higher dimensional Hopf fibration S2n+1 → CPn. The Einstein-
Weyl structures are parameterised by a point (a, b) on an ellipse, where the two
points on the axis of symmetry b = 0 are respectively degenerate and Einstein [65].
2. The unit tangent bundle T1S

n of Sn is an S1-bundle over the Grassmannian
G̃r2(Rn+1) of oriented 2-planes in Rn+1. Since G̃r2(Rn+1) is Kähler-Einstein, T1S

n

admits a one parameter family of Einstein-Weyl structures.
3. The twistor space Z of a quaternionic manifold M possesses a natural S1-
bundle S. If M is quaternionic Kähler with positive scalar curvature, then Z is
Kähler-Einstein and S is a 3-Sasakian manifold admitting a one parameter family
of Einstein-Weyl structures which fibre over M with Berger 3-spheres as fibres.
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Riemannian submersions have also been used [67] to construct Einstein-Weyl
structures on S2- or RP 2-bundles over compact Kähler-Einstein manifolds of posi-
tive scalar curvature. For instance, we find Einstein-Weyl structures with scalD > 0
on P (O(k)⊕O) over CPn for |k| 6 n (i.e., S2 × S2 or CP 2#CP 2 when n = 1).

In all these bundle constructions the base manifold may be taken to be a product
M1 × · · · × Mm of Kähler-Einstein manifolds (Mi, gi) with c1(Mi) positive and
proportional to an indivisible class αi:
1. Let π : P →M1×· · ·×Mm be a principal T r-bundle with characteristic classes
βi =

∑m
j=1 bijπ

∗
jαj , for i = 1, . . . , r 6 m + 1, where(bij) is a matrix of integers of

rank at least r − 1. Then there is a family of Einstein-Weyl structures (g, ω) on P
such that π is a Riemannian submersion with flat totally geodesic fibres, the metric
on B is of the form x1g1 + · · ·+ xmgm, and the 1-form ω is vertical.

More explicitly, for r = 1, let θ be the principal connection and set ω = fθ for
some function f . Let g be the metric x1π

∗g1 + · · ·+ xnπ
∗gn + θ2. Then, using the

Riemannian submersion formula 5.6, the Einstein-Weyl equation forces the function
f to be constant. A fixed point argument modelled on that of Wang and Ziller [78]
shows the existence of a solution. For general r the technical condition on the rank
of (bij) turns out to be equivalent to the necessary condition b1(P ) 6 1 for the
existence of an Einstein-Weyl solution [66].
2. Similarly, there are solutions on S2- or RP 2-bundles over M1 × · · · ×Mm. For
integers qi, the cohomology class q1α1 + · · ·+ qmαm is the Euler class of a principal
circle bundle P with curvature Ω =

∑
i qiΩi where Ωi is the Kähler form on Mi.

Then there are Einstein-Weyl structures on M = P ×S1 S2, of the form

h = dt2 + f(t)2σ2 +
∑

ihi(t)2gi

ω = Adt+Bfσ,

where dσ is the pullback of Ω [77].
Another important reservoir of examples is provided by looking for Einstein-

Weyl manifolds with a high degree of symmetry [52, 54]. The natural group of
symmetries on a Weyl manifold is the group of automorphisms preserving both the
conformal structure c (the conformal transformations) and the Weyl connection D
(the affine transformations). One may argue that it is equally natural to consider
projective transformations but on a Weyl manifold conformal projective transfor-
mations are automatically affine: if D1 and D2 are projectively equivalent then
D1

X −D2
X = α(X)id + α⊗X, whereas if D1 and D2 are both compatible with the

conformal structure, then D1
X −D2

X has to be a section of co(TM) for all X, which
forces α = 0. Furthermore, we can generally assume that the symmetry groups
preserve the Gauduchon metrics:

Proposition 6.1. Let G act by symmetries on a compact Weyl manifold M .
Then G preserves the Gauduchon derivative Dg and so acts by homotheties of each
Gauduchon metric. If G is compact then it acts by isometries. (If M is not the
n-sphere then G is compact by the theorems of Obata and Lelong-Ferrand [46].)

Proof. The Gauduchon gauge Dg satisfies trDgωg = 0. For each a ∈ G we
have D = a∗D = a∗Dg + a∗ωg . The pullback of an exact Weyl derivative is exact
and tr(a∗Dg)a∗ωg = a∗ trDgωg = 0, so uniqueness implies that a∗Dg = Dg and
a∗ωg = ωg . The action of G on the homothety class of Gauduchon metrics is thus
described by a homomorphism ρ : G→ R. If G is compact, ρ is constant. �
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Corollary 6.2. Let G be the symmetry group of a compact Weyl manifold M
with Weyl derivative D = Dg + ωg in the Gauduchon gauge. Then G preserves ωg

and hence for each x ∈ M either ωg
x = 0 or the isotropy representation at x has a

trivial summand tangent to the orbit.

This greatly restricts the possible nonexact homogeneous Weyl structures. If
one then imposes the Einstein-Weyl equation, only a few examples are known. For
instance, there are the S1-bundles S2n+1 and T1S

n with scalD > 0 given above, and
examples of type S1×Sn−1 with scalD = 0. Together with an additional family on
S4n+3, these are the only homogeneous examples on symmetric spaces [43].

We turn now to some explicit examples of compact Einstein-Weyl n-manifolds
M of cohomogeneity one under a group of symmetries G. The principal orbits are
therefore homogeneous submanifolds G/H of dimension n − 1 and M/G is either
a closed interval or a circle. In the latter case M will not have finite fundamental
group and therefore (for n > 4) the Weyl derivative is closed. Consequently we
restrict attention to the case M/G = [0, `].

Motivated by the possible actions in low dimensions (in particular see Theo-
rem 9.13 for a classification result in dimension four) we look for Einstein-Weyl
manifolds of cohomogeneity one under SO(n), S1 × SO(n− 1) or U(2m) (n = 2m)
with principal orbits covered by Sn−1, S1 × Sn−2 or S2m−1 respectively.

The case of SO(n) gives only Einstein manifolds by 6.2, since the principal orbits
are isotropy irreducible. In the other cases, nonclosed Einstein-Weyl structures may
be constructed explicitly via the solution of ODEs with boundary conditions.

Consider, for example, S1 × SO(n − 1) symmetry. First of all we study the
possible S1 × SO(n − 1)-invariant Einstein-Weyl structures on (0, `) × S1 × Sn−2.
In the Gauduchon gauge they are easily seen to be of the form:

g = dt2 + f(t)2dθ2 + h(t)2gcan

ω = Af(t)2dθ

where gcan is the round metric on Sn−2 of sectional curvature one. Here f and h
are smooth functions on [0, `] with f, h > 0 on (0, `) and A is constant. With this
Ansatz the Einstein-Weyl equation becomes:

−f
′′

f
− (n− 2)

h′′

h
= Λ

−f
′′

f
− (n− 2)

f ′h′

fh
+ (n− 2)A2f2 = Λ

−h
′′

h
− (n− 3)

h′2

h2
− f ′h′

fh
+
n− 3
h2

= Λ.

At the boundary points 0, ` we seek subgroups K such that SO(n − 2) < K 6
S1 × SO(n − 1) with K/SO(n − 2) a sphere. For instance, M = Sn is obtained if
we take K1 = SO(n− 1) at t = 0 and K2 = S1×SO(n− 2) at t = `. The boundary
conditions at t = 0 are then seen to be f > 0, f ′, h, h′′ = 0, h′ = 1 while at t = `, we
have h > 0, f, f ′′, h′ = 0, f ′ = −1. Solutions matching these boundary conditions
can be found explicitly. In particular, when n = 4 we find the following solutions
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on S4.

g =
1− a cot a

y cot y − a cot a
dy2 +

4(1− a cot a)(y cot y − a cot a)
(a+ a cot2 a− cot a)2

dθ2 + sin2 y gcan

ω =
2(y cot y − a cot a)
a+ a cot2 a− cot a

dθ.

(6.1)

Here sin y = h(t) and (y, θ) ∈ (0, a) × (0, 2π), where 0 6 a < π and a = 0
corresponds to the standard Einstein metric on S4.

In this way we find one parameter families of S1×SO(n−1) symmetric Einstein-
Weyl structures on Sn and S2 × Sn−2. Relaxing the boundary conditions gives
solutions on line bundles over compact manifolds [52].

A similar calculation leads to families of solutions with U(m) symmetry on S2m,
CPm and P (O(k) ⊕ O) (0 < |k| < m) over CPm−1. This last case fits into the
framework of Einstein-Weyl structures on S2-bundles discussed earlier (the Fubini-
Study metric on CPm−1 being the Kähler-Einstein base).

One motivation for studying these highly symmetric examples is that the prin-
cipal orbits provide an interesting family of submanifolds [65]. For instance, in the
case of Sn with principal orbits S1× Sn−2 there exists t0 ∈ [0, `] such that the cor-
responding S1 × Sn−2 is minimal in the Gauduchon metric of Sn. This generalises
the Clifford torus in the round 3-sphere. Likewise S2m with the Gauduchon metric
has a totally geodesic equator S2m−1 (t = `

2).
It should be pointed out, however, that the induced structures on the subman-

ifolds S1 × Sn−2 in Sn−1 and and S2m−1 in S2m are not Einstein-Weyl. Of course,
both S1×Sn−2 and S2m−1 are Einstein-Weyl with respect to other Weyl structures
and in fact these structures do sit as minimal hypersurfaces in some Einstein-Weyl
space due to the following theorem which is inspired by the work of Koiso [44].

Theorem 6.3. [65] Let (M, c, D) be a real analytic Weyl manifold with an
analytic symmetric bilinear form β taking values in a real line bundle over M .
Then, there is a germ unique Einstein-Weyl space (M̄, c̄, D̄) in which (M, c, D)
is embedded as a hypersurface with second fundamental form β. In particular the
embedding could be minimal or totally geodesic.

7. Moduli spaces of Einstein-Weyl structures

A possible motivation for studying Einstein-Weyl geometry in arbitrary dimen-
sions is that Einstein manifolds with Killing fields often admit continuous families
of Einstein-Weyl structures, as discussed in section 5. Since such Einstein manifolds
are often rigid [3], the Einstein-Weyl condition may provide nontrivial deformations
which would otherwise be lacking. One might then hope to get new Einstein met-
rics by going to the boundary of the Einstein-Weyl moduli space. So far, though,
only known Einstein metrics have been obtained in this way.

Let M be compact and let the diffeomorphism group Diff(M) act on Weyl
structures (c, D) by pullback. Since the quotient space is not a manifold, we need
to fix a slice to this action. One way of doing this is to describe Weyl structures in
the Gauduchon gauge and use the Ebin slice [21] near a suitable Gauduchon metric
g0. The homothety factor of this metric may be fixed by specifying the Gauduchon
constant κ. To do this, note that for n > 4, an Einstein-Weyl structure with κ 6 0
is either Einstein or belongs to the known family of four dimensional manifolds of
type S1×S3. In dimensions two and three there is a classification of Einstein-Weyl
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geometries on compact manifolds (see section 10), and so we may focus here on the
case of positive Gauduchon constant and fix κ = 1. The Ebin slice S(g0) is now
given infinitesimally by divg0 ġ = 0, where ġ is a tangent vector at g0 to the space
of metrics. This fixes the action of Diff(M) up to isometries of g0.

Definition 7.1. Suppose (g0, ω0) is an Einstein-Weyl solution in the Gaudu-
chon gauge on M and let S(g0) be the Ebin slice. The subset M̃ of S(g0)× Ω1M
given by divg ω = 0, κ = 1 and ricg = 1

nscalDg + (n − 2)(|ω|2g − ω ⊗ ω) is called
the premoduli space of Einstein-Weyl structures around (g0, ω0). The local moduli
space M near (g0, ω0) is the quotient of M̃ by the isometry group of g0.

We now study the Einstein-Weyl moduli space near an Einstein metric.

Theorem 7.2. [65] Suppose (gt, ωt) is a smooth curve in M̃ with (g0, ω0) =
(g, 0), so that g is Einstein with scalg = 1, and let (ġ, ω̇) be the tangent at t = 0.

Then ω̇ is a Killing field of g and ġ satisfies the linearised Einstein equation.
This equation is elliptic and the space of Einstein-Weyl deformations is finite di-
mensional. In particular, if the Einstein metric has no infinitesimal Einstein defor-
mations then (M, g) has at most an m-dimensional family of infinitesimal Einstein-
Weyl deformations, where m is the rank of the isometry group of g.

Proof. The Killing condition symDgtωt = 0 implies that symDgω̇ = 0, so ω̇
is dual to a Killing field. Next, differentiating the equation defining the Gauduchon
constant and using κ̇ = 0 gives ˙scalD = 0 as the derivative of the quadratic term
involving ωt vanish. Differentiating the Einstein-Weyl equation

ricgt = 1
nscalD

t
gt + (n− 2)(|ωt|2gt − ωt ⊗ ωt)

now gives the linearised Einstein equation since ωt = 0 and scalD
t

= 1 at t = 0.
Together with the infinitesimal Ebin slice condition, this equation is known to be
elliptic [3], which gives the finite dimensionality.

If the Einstein metric has no infinitesimal deformations then there remain only
the deformations of ω, namely the Killing fields of g modulo isometries. The dimen-
sion of a generic orbit is the corank of the isometry group (since the stabiliser is a
maximal torus), which gives the bound on the dimension of the moduli space. �

Remark. More generally, following [18], it has been shown [68, 67] that the
Einstein-Weyl equation is elliptic in harmonic coordinates, at least once supple-
mented by the Bianchi identities 2.7, 3.5. Consequently, Einstein-Weyl manifolds
are real analytic, and on compact manifolds the moduli space is finite dimensional.

We will now give some examples which show that at least some of these defor-
mations may be integrated to give a nontrivial moduli space.
1. Theorem 7.2 implies in particular that the number of infinitesimal Einstein-
Weyl deformations of the standard n-sphere is equal to the rank b(n + 1)/2c
of SO(n+ 1).

On S3 the number of infinitesimal deformations is two and all these have been
integrated [68], using a relationship between three dimensional Einstein-Weyl man-
ifolds and four dimensional selfdual manifolds, which we shall describe in section 10.

On S4, as we discussed in section 6, there is a one parameter family with
S1 × SO(3) symmetry and a one parameter family with U(2) symmetry, but so far
a two parameter family of solutions integrating all the infinitesimal deformations
has not been found.
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2. Further examples where the rank of the isometry group agrees with the dimen-
sion of the space of known deformations can be found amongst the Einstein-Weyl
structures on r-torus bundles over products of m > r Kähler-Einstein manifolds, as
described in section 6. The family of solutions is r-dimensional and the Einstein-
Weyl structures are close to the Einstein metrics found by Wang and Ziller [78]. In
particular, if the base manifold is a product of Kähler-Einstein manifolds without
a continuous family of isometries (such as those found by Tian and Yau [71] on
k-fold blow-ups of CP 2 for 4 6 k 6 8) then the isometry group of the Einstein
metric on the torus bundle is the torus T r itself, which has rank r. Note however,
that the Einstein metrics on these T r-bundles are not known to be rigid, so the full
moduli space of Einstein-Weyl deformations could be larger.
3. Let (M, g0) be a locally symmetric Einstein manifold of compact type and let∏N

a=1Ma be the irreducible decomposition of the universal Riemannian covering
manifold M̃ . Consider the following lists of compact symmetric manifolds.

A.
SU(p+ q)

S(U(p)×U(q))
(p > q > 2),

E6

F4
,

SU(`)
SO(`)

,
SU(2`)
Sp(`)

, SU(`) (` > 3);

B.
G2

SO(4)
, G2, or a Hermitian symmetric space of dimension > 4;

C. S2.

If N = 1 and Ma is not on list A, or N = 2 and Ma is not on lists A–B, or N = 3
and Ma is not on the lists A–C, then (M, g0) has no infinitesimal Einstein deforma-
tions [45]. Thus, for example, S2×S2 can have at most a two parameter family of
Einstein-Weyl solutions near the Einstein metric. An explicit one parameter family
can be found using the constructions of section 6 [54].

As an example of a moduli of Einstein-Weyl structures away from an Einstein
metric, we should mention the moduli of flat Weyl structures on the manifold
S1 × Sn−1. In four dimensions, all Einstein-Weyl structures on S1 × S3 are flat, as
we shall see in section 9.

8. Complex and quaternionic structures

Definition 8.1. A conformal manifold (M, c) will be called Kähler Weyl iff
it is equipped with an almost complex structure J ∈ C∞(M, so(TM)) and a Weyl
connection D such that DJ = 0.

Remark. These manifolds were called “Hermitian Weyl” in [63], since repre-
sentative metrics for c are generally only Hermitian. From the perspective adopted
here, however, properties of representative metrics are less relevant, and so, since
DJ = 0 is a Kähler condition on D, we would like to advocate this change of
terminology, which is also consonant with the term “locally (conformally) Kähler”.

Since D is torsion-free, DJ = 0 implies that J is integrable. It also implies that
dDΩ = 0 where Ω is the weightless Kähler form associated to J using c. Therefore
0 = (dD)2Ω = 2FD ∧ Ω and so FD vanishes in dimension 2m > 4 [63, 75]. It
then follows that if µ is a parallel local length scale, the metric g = µ−2c is a local
Kähler metric. If D is exact, such a length scale exists globally and M is Kähler.

Conversely, a locally Kähler manifold is Kähler Weyl: the complex structure is
the one given and the Weyl connection is locally the Levi-Civita connection of the
compatible local Kähler metrics.
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Since we shall discuss the four dimensional case in section 9, we confine ourselves
here to the case that D is closed. Therefore if D = Dg + ωg in the Gauduchon
gauge, then ωg is harmonic with respect to Dg . If also M is compact and Einstein-
Weyl and D is not exact, then ωg is a nontrivial Dg -parallel 1-form (see 4.6) and
we may take g = |ωg |2c as the Gauduchon metric.

One easily sees that ]ωg , J]ωg are commuting holomorphic Killing fields. Let
B be the foliation generated by ]ωg and let E be generated by ]ωg and J]ωg .

Proposition 8.2. [63] Let M be a compact Kähler Einstein-Weyl manifold of
dimension n = 2m > 4 which is not exact. If the leaves of B and E are compact
then there is a commutative diagram

M - P

N
?

-

where P = M/B and N = M/E are Einstein orbifolds with positive scalar curvature
and N is Kähler.

Proof. Let ν be the 1-form −ωg ◦ J . Then h = g − (ωg)2 − ν2 descends to
a Hermitian metric on N with Kähler form Ωg + ωg ∧ ν = dν, where Ωg is the
Kähler form of J with respect to g. Since dωg = 0, the Einstein-Weyl equation
on M implies that gP = h + ν2 is an Einstein metric on P with scalar curvature
(n− 1)(n− 2). Similarly, the submersion formulae for P → N show that N is also
Einstein. �

The example to keep in mind is M = S1 × S2n−1 = (Cn r {0})/Z where the Z
action is generated by x 7→ 2x. Then P = S2n−1 and N = CPn−1.

Conversely, if N is a Kähler-Einstein manifold, then the Calabi metric on L\0,
where L is a maximal root of the canonical bundle of N , gives a Kähler Einstein-
Weyl structure on the universal cover of M [63].

Next we turn to the quaternions.

Definition 8.3. A conformal manifold (M, c) of dimension n > 4 will be called
quaternion Kähler Weyl iff it is equipped with a rank 3 subbundle Q 6 so(TM)
pointwise isomorphic to Im H = sp(1), and a Weyl connection D preserving Q. It
is (locally) hyperKähler Weyl iff the induced covariant derivative on Q is (locally)
trivial. (We discuss the four dimensional case in section 9.)

Since D is torsion free, a quaternion Kähler Weyl manifold is quaternionic and
a (locally) hyperKähler Weyl manifold is (locally) hypercomplex.

Proposition 8.4. [63] Let M be a conformal manifold with dimM > 4. Then
M is quaternion Kähler Weyl iff it is locally quaternion Kähler, in which case it is
closed Einstein-Weyl. A nonexact quaternion Kähler Weyl manifold is locally hy-
perKähler Weyl, and any locally hyperKähler Weyl manifold is locally hyperKähler.

Proof. If M is quaternion Kähler Weyl then the weightless 4-form Ω of the
quaternionic structure satisfies dDΩ = 0, so FD ∧ Ω = 0 and therefore FD = 0
if dimM > 4. Parallel local length scales are therefore Einstein, and so D is
Einstein-Weyl. If D is not exact then scalD must vanish by Theorem 3.6. �
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Assuming D is not exact, we can again use the Gauduchon metric with |ωg | = 1
and consider the foliation B, as in the complex case. Also, let D be the foliation
given by the quaternionic span of ]ωg . Then Proposition 8.2 has a quaternionic
analogue. We concentrate on the following results of Ornea and Piccinni [59].

Proposition 8.5. Let M be a compact quaternion Kähler Weyl manifold such
that the foliations B and D have compact leaves. Then there is a finite hyperKähler
Weyl covering M̃ of M and a commutative diagram

M̃
S1

- P̃
S3/H

- Ñ

M
? S1

- P
?S3/G

- N
?

with finite coverings as vertical arrows and Riemannian submersions over orbifolds
as horizontal arrows. The orbifolds P and P̃ carry respectively local and global
3-Sasakian structures, while N and Ñ are quaternion Kähler orbifolds with posi-
tive scalar curvature. The fibres of P → N and P̃ → Ñ are spherical space forms,
respectively locally and globally homogeneous. On M there is a global integrable com-
patible complex structure and M/E is the twistor space of N (see Proposition 8.2).

Proof. Let M π−→ P be a flat S1-bundle with connection ωg . If (φα, ξα) is a
locally defined 3-Sasakian structure on P , a quaternionic structure on M may be
defined by

IαY = −φαY − g(ξα, Y )]ωg , Iα]ω
g = ξα

and this is compatible with the metrics gM = π∗gP + (ωg)2.
Now since all the leaves of P → N are spherical space forms S3/G, each leaf has

a global Sasakian structure induced by a conjugate complex structure on S3 ⊆ C2.
The unit vector field also belongs to the locally 3-Sasakian distribution in TP . Thus
P has a global Sasakian structure which may be lifted to a complex structure J
on M using the formulae above. Then ]ωg and J]ωg generate the foliation E and
M/E is the twistor space of N . �

Remarks. 1. The relation to 3-Sasakian geometry leads to a classification
of compact homogeneous hyperKähler Weyl manifolds using the classification of
homogeneous 3-Sasakian manifolds [10, 58].

2. Similarly, results on Betti numbers of 3-Sasakian geometry imply topological
constraints and relations on M and N above [58, 59]. One such constraint is
b1(M) = 1, which is also known to hold for closed nonexact Einstein-Weyl manifolds
for other reasons.

Example 8.6. Let G be a discrete subgroup of GL(1,H)Sp(1) = CO+(4) and
let M = (Hn r{0})/G, where G is acting diagonally. Equip M with the metric g =( ∑

α qαq̄α
)−1 ∑

α dqα⊗dq̄α. Then (M, g) is a quaternion Kähler Weyl manifold (the
Weyl connection coincides locally with the Levi-Civita connection of a quaternion
Kähler metric). In fact G 6 GL(n,H)Sp(1) and by choosing G so it is contained
in GL(n,H), M becomes hyperKähler Weyl. If G is chosen inside GL(n,H)U(1) ⊆
GL(2n,C) there is a global integrable complex structure on M [58].
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9. Einstein-Weyl geometry in four dimensions

On an oriented conformal 4-manifold, the bundle Λ2T ∗M decomposes as the
direct sum of the bundles of selfdual and antiselfdual 2-forms, Λ2

+T
∗M and Λ2

−T
∗M .

For any Weyl derivative D there is a corresponding decomposition FD = FD
+ +FD

−

of the Faraday curvature. The same is true of the bundle of Weyl tensors, and so
the Weyl curvature W of the conformal structure splits into two components W+

and W−. When one of these components vanishes, it is well known [2, 3] that the
conformal geometry of M may be studied in terms of the holomorphic geometry of
an associated complex manifold or “twistor space”.

Definition 9.1. The twistor space Z of M is the bundle of negatively ori-
ented orthogonal almost complex structures on TM , which is a sphere bundle in
L2Λ2

−T
∗M . The fibres are the real twistor lines of Z.

There is also a spinorial representation of the twistor space. Equipping M
(at least locally) with a spin structure, there are weightless spinor bundles V+, V−
(complex symplectic with rank 2) such that the complexified tangent bundle CTM
is isomorphic to L1 ⊗ (V+ ⊗C V−).

The twistor space Z is then isomorphic to P (LwV−) for any w, although the
tautological line bundle over this projectivised bundle will depend on the weight.
Because the twistor operator is conformally invariant on L1/2V− ∼= (L−1/2V−)∗, the
following choice of projective structure is the “right” one.

Notation 9.2. If M is a spin manifold, then the twistor space Z of M will be
identified with P (L−1/2V−) and O(−1) will denote the corresponding tautological
line bundle. Note that for m even, O(m) makes sense globally even if M is not
spin. In particular the canonical bundle of Z is KZ

∼= O(−4). Let LC denote the
complexified pullback of L1 → M to Z. The Euler sequence on each fibre then
implies that the vertical tangent bundle V of Z →M is L−1

C O(2) = L−1
C K

−1/2
Z .

Let us now compare the standard twistor theory on a conformal manifold with
twistor theory on a Weyl manifold.

Theorem 9.3. Let M be an oriented conformal manifold with twistor space Z.
(i) [2, 33] Z carries a natural almost complex structure, which is integrable

if and only if W− = 0. The complex line bundles O(m) are then holo-
morphic, and their (real) holomorphic sections correspond to solutions of
conformally invariant differential equations on M [22].

(ii) [25, 26, 27, 66] Suppose now that W− = 0 and let D be a Weyl derivative
on M . Then for w 6= 0, the complex line bundle Lw

C over Z carries a
preholomorphic structure depending on D which is integrable if and only
if FD

− = 0. Holomorphic sections of Lw
C⊗O(m) for w 6= 0 then correspond

to solutions of differential equations on M depending on D.

In particular if W− = FD
− = 0, then D defines a holomorphic structure on

V = L−1
C O(2) and the holomorphic sections correspond to solutions of a twistor-type

equation on the bundle of antiselfdual endomorphisms of TM . Gauduchon [25, 26]
has used this equation to prove that a compact selfdual conformal manifold which
admits a gauge of negative scalar curvature does not admit a global antiselfdual
complex structure. In [27] he also uses twistor theory to analyse conformal vector
fields on Weyl manifolds, and to study manifolds of type S1 × S3.
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The above theorem suggests that we will only be able to obtain a twistor in-
terpretation of the Einstein-Weyl condition when W− = FD

− = 0. Following the
constructions in the metric case [3] mutatis mutandis, we obtain:

Theorem 9.4. [27, 66] Let M be an Einstein-Weyl 4-manifold with W− =
FD
− = 0. Then there is a twisted 1-form θ ∈ H0(Z,Ω1 ⊗ V) which is holomorphic

iff M is Einstein-Weyl. Furthermore, θ∧ dθ ∈ H0(Z,L−2
C ) is a nonzero multiple of

the pullback of scalD. In particular θ defines a holomorphic map Z → CP 1 iff the
symmetrised Ricci endomorphism of D is identically zero.

On a compact 4-manifold M , any Weyl derivative D with selfdual Faraday
curvature is closed (since selfdual exact 2-forms must vanish). If M is also Einstein-
Weyl then D is flat by 4.9. The selfduality of FD therefore seems very restrictive,
but is inevitable in view of the following result.

Theorem 9.5. [12] Let M,D be an Einstein-Weyl 4-manifold with selfdual
Weyl tensor. Then FD is also selfdual.

Corollary 9.6. [27, 67] Let M,D be a compact Einstein-Weyl 4-manifold
with selfdual Weyl tensor. Then D is closed.

This corollary may be established directly by using the classification of 4-
manifolds admitting selfdual metrics with positive Ricci curvature [27], or by using
the vanishing of the Bach tensor [67].

Even without assuming compactness, Theorem 3.6 shows that if D is Einstein-
Weyl with FD

− = 0, then DscalD = 0 and so either scalD is identically zero or M is
Einstein. In the selfdual case this can be seen on the twistor space as follows [66].

Let S be the divisor of θ∧ dθ. Then S is either empty or it meets every twistor
line [70]. However, L−2

C is a pullback from M and so it is trivial on twistor lines.
Therefore, if S is non-empty, it must contain all twistor lines and therefore be all of
Z, meaning that θ ∧ dθ is identically zero. Otherwise, θ ∧ dθ is nowhere vanishing,
which implies the existence of a section of Ω1 ⊗K

−1/2
Z and therefore, by standard

twistor theory, an Einstein gauge of nonzero scalar curvature.
Consequently, all nonexact selfdual Einstein-Weyl 4-manifolds are scalar flat

with selfdual Faraday curvature. The twistor space fibres over CP 1 and D defines
a flat connection on the bundle of antiselfdual complex structures. Conversely if D
is flat on this bundle, W is selfdual and FD ∧ΩJ = 0 for each antiselfdual complex
structure J , so FD is also selfdual. In fact we have the following equivalence.

Proposition 9.7. [66] A Weyl 4-manifold is Einstein-Weyl with W− = FD
− =

scalD = 0 iff it is locally hypercomplex with Obata connection D.

The antiselfdual complex structures on a 4-manifold M form a bundle isomor-
phic to the imaginary quaternions and any Weyl derivative D preserves this bun-
dle. By analogy with Theorem 8.4, we say that M is quaternion Kähler Weyl iff it
Einstein-Weyl with W− = FD

− = 0 and locally hyperKähler Weyl if also scalD = 0.
The compact examples may be classified as follows [66, 67].

Theorem 9.8. A compact selfdual Einstein-Weyl 4-manifold is isometric to S4,
CP 2 or an Einstein manifold of negative scalar curvature, or is covered by a flat
torus, a K3 surface or a coordinate quaternionic Hopf surface [3, 8].

One might hope to obtain more examples by replacing selfduality by the vanish-
ing of the Bach tensor. This is a symmetric traceless bilinear form B obtained from
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the Weyl tensor by applying a conformally invariant second order differential opera-
tor. It arises on compact manifolds as the gradient of the functional c 7→

∫
M |W c|2.

In terms of an arbitrary Weyl derivative

B(X,Y ) =
∑

i(DeiC
D
ei,XY − 〈Wei,X

rD(ei), Y 〉)

where CD is the Cotton-York tensor of D, which is a vector valued 2-form defined
by CD

X,Y := DXr
D(Y ) − DY r

D(X) = −
∑

iDeiWX,Y ei (by the second Bianchi
identity). The Bach tensor may also be computed by applying the same formula to
W+ or W− and doubling it (see [12]) and it therefore vanishes if c is (anti)selfdual.
If M is Einstein-Weyl then we can compute B with the help of Proposition 3.3 to
obtain the following result.

Theorem 9.9. [12, 67] Let M be an Einstein-Weyl 4-manifold. Then

B(X,Y ) = 1
24

(
D2

X,Y scalD +D2
Y,XscalD

)
−〈FD

+ (X), FD
− (Y )〉 − 〈FD

− (X), FD
+ (Y )〉

and so if B = 0 and scalD = 0 then FD is (anti)selfdual [12]. When M is compact
the formula for B in the Gauduchon gauge D = Dg + ωg becomes

B(X,Y ) = 2
3scalD(ωg ⊗0 ω

g)(X,Y )− 〈FD
+ (X), FD

− (Y )〉 − 〈FD
− (X), FD

+ (Y )〉

and it follows that if B = 0 then D is closed [67].

We now turn to four dimensional Kähler Weyl geometry, which is richer than
the higher dimensional case of the previous section. Indeed if (c, J) is any conformal
Hermitian structure on a 4-manifold M , it follows from Example 1.6 that there is
a unique Weyl derivative D with DJ = 0 [75]. We choose the orientation so that
J is antiselfdual. Therefore 〈FD

− , J〉 = 0, and since [RD, J ] = 0, rD
0 is J-invariant

and also (see [1])

W
− = 1

4scalD
(

1
3 idΛ2

−
− 1

2ΩJ ⊗ ΩJ

)
− 1

2(JFD
− ⊗ ΩJ + ΩJ ⊗ JFD

− ).

In particular, W− vanishes iff FD
− and scalD both vanish, and so a compact selfdual

Hermitian 4-manifold is locally scalar flat Kähler. (See [7], and also [69] for a
twistor proof.)

Despite the wide generality of Kähler Weyl geometry, the Einstein-Weyl con-
dition is much more restrictive. The following result is due to Gauduchon and
Ivanov [28], although we sketch a different proof.

Theorem 9.10. Let M be a compact Kähler Einstein-Weyl 4-manifold. Then
the Weyl derivative D is closed.

Proof. By 4.4, D = Dg + ωg with K = ]ωg a Killing field, which implies

〈Rg
JK,Kei, Jei〉 = 〈Dg

JK(DgK)ei
, Jei〉 = −〈Dg

ei
K, (Dg

JKJ)ei〉.

This vanishes, since Dg
XJ + [ωg MX, J ] = DXJ = 0 and when X = JK we have

[ωg M JK, J ] = 0. Now 〈RD
JK,Kei, Jei〉 is also zero, since RD

X,Y commutes with J .
Comparing these using 2.5, we find that scalD|ωg |2 = 0 and so either D is exact or
scalD = 0. In the latter case D is closed by 3.6. �

This conclusion continues to hold even if the complex structure is not integrable:
Kamada [42] shows that a compact almost Kähler Einstein-Weyl manifold with
non-negative scalar curvature is in fact Kähler Einstein-Weyl.
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In contrast to these negative results we now present some noncompact examples
and examples which are not (anti)selfdual. One interesting class of examples are
those of Bianchi type IX, i.e., admitting a (possibly local) SU(2) action with three
dimensional orbits. Apart from the Einstein case, the solutions are all diagonal,
biaxial and conformally Kähler [5, 53] and so there is actually a (local) U(2) action.
Madsen [53] obtains the (anti)selfdual examples, and the general solutions can be
found in [4, 54], although the latter reference is concerned with the compact case,
to which we shall return at the end of this section.

We write the solutions in the form D = Dg + ω, where g is a Kähler metric,
and we have reorganised Bonneau’s parameters to simplify and unify the various
cases. We use the coordinates of Madsen; in particular, σi are invariant 1-forms
with dσ1 = σ2 ∧ σ3 etc.

g = V (ρ)−1dρ2 + 1
4ρ

2(σ2
1 + σ2

2 + V (ρ)σ2
3)(9.1)

ω = − ρ(b+ 2cρ2)
a+ bρ2 + cρ4

dρ± 1
2ρ

2V (ρ)
√

4ac− b2

a+ bρ2 + cρ4
σ3

V (ρ) =
(a+ bρ2 + cρ4)

(
a+ cρ4 + λ(a− cρ4)

)
2acρ4

+ µ
a+ bρ2 + cρ4

ρ4(b+ 2cρ2)

[
1− 4c(a− cρ4)

4ac− b2

(
1− b+ 2cρ2

√
4ac− b2

arccot
b+ 2cρ2

√
4ac− b2

)]
The parameters are constrained by 4ac > b2 and the requirement that V (ρ) should
be somewhere positive. The solution is homogeneous in (a, b, c) and is also invariant
under the transformation ρ 7→ kρ, a 7→ k2a, c 7→ k−2c, µ 7→ k2µ, g 7→ k2g, so there
are only three independent parameters. The Einstein case occurs when b2 = 4ac:
note that 1− x arccotx ≈ 1/(3x2) for x large, and so the µ term has a well defined
limit. In this situation, and also when µ = 0, V (ρ) is of the form

V (ρ) = 1 +A+ρ2 +B+ρ4 +
A−

ρ2
+
B−

ρ4

where A+A− = 4B+B− in the Einstein case and A2
+B− + A2

−B+ = A+A− in the
case µ = 0. The latter constraint is simply the condition for V to factorise as
(a + bρ2 + cρ4)

(
(1 + λ)a + (1 − λ)cρ4

)
/2acρ4. The scalar curvature of the Kähler

metric is −24(A+ + 2B+ρ2), but note that replacing ρ by 1/ρ and rescaling by ρ4

gives a metric of the same form with A+ and B+ interchanged with A− and B−.
Consequently these conformal metrics admit Kähler complex structures of both
orientations. The µ = 0 Einstein-Weyl structures satisfy scalD = 0, giving Ricci
flat metrics when b2 = 4ac. Also they are conformally Einstein for λ = ±1, when
the Weyl curvature is (anti)selfdual. If we fix the orientation by W− = 0, these
selfdual conformal structures each admit:

• a compatible Einstein metric [62]
• a compatible scalar flat Kähler metric [49]
• a compatible selfdual Kähler metric [4]
• a compatible hypercomplex structure [53].

On the other hand, for µ = 0, λ 6= ±1, 4ac > b2, we have examples of scalar flat
Einstein-Weyl structures where FD is not (anti)selfdual [4].

We turn now to the search for more compact examples and begin by noting that
there are topological constraints on compact 4-manifolds admitting Einstein-Weyl
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structures, given by an analogue of the Hitchin-Thorpe inequality [32]. Related
to this is a a generalisation of the Lafontaine inequality [47], and also the fact
that four dimensional Einstein-Weyl manifolds minimise a quadratic total curvature
functional. These constraints were previously established using the Gauduchon
gauge [64, 65], but we sketch here how they can be obtained in Weyl geometry.
One advantage of this approach is that we find a quadratic total curvature functional
minimised by all Einstein-Weyl structures, not just the closed ones.

The key idea is that a Weyl connection is a metric connection on L−1TM . Since
L−1 is a trivialisable bundle, the Euler characteristic of M is given by the integral
of a multiple of the Pfaffian of RD,0. This may be computed by viewing RD,0 as
a weight −2 endomorphism of Λ2T ∗M and splitting into selfdual and antiselfdual
parts. The Pfaffian of RD,0 reduces to 〈RD,0, ∗RD,0∗〉. In block diagonal form RD,0

may be written
[

A+ B
B A−

]
, where A± is given by the action of W±, scalD and FD

± ,

whereas B is given by the action of rD
0 . Hence the Pfaffian integrand is |RD,0|2

with the rD
0 term negated. A straightforward computation of

∑
i<j,k<l

〈RD,0
ei,ejek, el〉2

gives:

|RD,0|2 = |W+|2 + |W−|2 + |FD
+ |2 + |FD

− |2 +
1
24

(
scalD

)2 + 2|rD
0 |2,

where S2
0T

∗M is given the tensor product norm, and Λ2T ∗M its usual norm.
It follows that we have the following integral formulae for the Euler character-

istic, the signature and the trivial characteristic of L1:

2χ(M) =
1

4π2

∫
M
|W+|2 + |W−|2 + |FD

+ |2 + |FD
− |2 +

1
24

(
scalD

)2 − 2|rD
0 |2

3τ(M) =
1

4π2

∫
M
|W+|2 − |W−|2, 0 =

1
4π2

∫
M
|FD

+ |2 − |FD
− |2.

Theorem 9.11. Let M be a compact 4-manifold. Then the quadratic total
curvature functional

∫
M |RD,0|2 is minimised by Einstein-Weyl structures and also

by half conformally flat, scalar flat, closed Weyl structures. If D is Einstein-Weyl
then

2χ(M) > 3|τ(M)|+ 1
2π2

∫
M
|FD
± |2

with equality iff scalD = 0 and W is (anti)selfdual. Similarly, if M,D is a Weyl
manifold with scalD = 0 and W (anti)selfdual, then the reverse inequality holds,
with equality iff M is Einstein-Weyl.

It follows from this [64, 67], that ifM is a torus orK3 surface thenM admits no
nonexact Einstein-Weyl structures, and M#M admits no Einstein-Weyl structures
at all. Also kCP 2 can only be Einstein-Weyl for k 6 3. Finally, any Einstein-Weyl
structure on S1 × S3 is closed and therefore flat by 4.9.

We end this section with the classification of compact Einstein-Weyl 4-manifolds
with large symmetry group. First let us consider the homogeneous case.

Theorem 9.12. [54] A compact homogeneous Einstein-Weyl 4-manifold is ei-
ther finitely covered by S1 × S3 with its standard Einstein-Weyl structure or is a
homogeneous Einstein manifold.
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Proof. Assume D is not exact and let M = G/H where G is the symmetry
group. Theorem 9.8 implies that the only conformally flat Einstein-Weyl structures
on S4 are the Einstein metrics, and so (as noted in 6.1) we may assumeG is compact.
Let m be an AdH invariant complement to h in g. Then m = kerωg ⊕ (kerωg)⊥

where ωg is the Gauduchon 1-form. Therefore h < o(3)⊕ o(1) so the rank of h is at
most 1 and dim g at most 7. The classification of compact Lie groups now implies
that we only need to consider a few cases which either gives M finitely covered by
S1×S3 or b1(M) > 2. But we have seen that b1(M) 6 1 for nonexact Einstein-Weyl
manifolds with equality iff M is flat (see 4.9 and 9.11). Indeed, the manifolds of
type S1 × S3 exhaust the compact closed Einstein-Weyl manifolds. �

Inspired by the work of Berard-Bergery [3] on Einstein manifolds with large
symmetry group, we now consider the following situation.

Theorem 9.13. [54] Let G be the symmetry group of a compact four dimen-
sional inhomogeneous Einstein-Weyl manifold with nonclosed structure and assume
that dimG > 4. Then the Einstein-Weyl structure is of cohomogeneity one and it
is defined on S4, CP 2, S2 × S2, CP 2#CP 2 or some of their finite quotients. The
solutions in each case come in one dimensional families.

Proof. If M is not homogeneous then as G preserves the metric on the princi-
pal orbit Pn, and so we must have 4 6 dimG 6 1

2n(n+1) and hence n = dimP = 3.
There are now only the following cases to consider:

• SO(4) with principal orbit S3 = SO(4)/SO(3)
• S1 × SO(3) with orbit S1 × S2 = S1 × SO(3)/SO(2)
• U(2) with orbit S3 = U(2)/U(1)

or finite quotients of these. We have studied Einstein-Weyl manifolds with this
kind of symmetry in section 6: the Einstein-Weyl equation reduces to a collection
of ODEs over a closed interval or circle, the latter case yielding only closed struc-
tures. When M/G = [0, `], it is convenient to write M = [G/K1 |G/H |G/K2 ]
for the manifold with principal orbit G/H and special orbits G/Ki, i = 1, 2 at the
endpoints.

For each symmetry group we classify the possible diffeomorphism types using
Lie theory and the known topological constraints on Einstein-Weyl geometry. Then
we impose the appropriate boundary conditions on the ODEs and solve explicitly.
The case of SO(4) symmetry yields only closed Einstein-Weyl structures so let us
consider S1 × SO(3) symmetry.

Some of the topologies here do not carry any Einstein-Weyl solutions. Firstly,
if M/G is a circle then M is finitely covered by T 2 × S2 which cannot be Einstein-
Weyl. When M/G is an interval with special orbits RP 1 × S2 we have:

M = [ RP 1 × S2 |S1 × S2 |RP 1 × S2 ]

= [ RP 1 |S1 |RP 1 ]× S2

=
(
[ RP 1 |S1 |pt ]#[ pt |S1 |RP 1 ]

)
× S2

= K2 × S2,

where K2 is the Klein bottle. However, K2 is double-covered by T 2 and T 2 × S2

is not Einstein-Weyl. Also, not all finite quotients of S1×S2 are possible principal
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orbits. For instance:

M = [ RP 1 × RP 2 |S1 × RP 2 |RP 1 × RP 2 ]

= K2 × RP 2

which again cannot be Einstein-Weyl. The remaining cases give one parameter
families on S4, S2 × S2 and some finite quotients, such as RP 2 × S2. The family
on S4 was given in (6.1).

The U(2) symmetric examples are obtained from the family given in (9.1). For
S4, CP 2, and CP 2#CP 2, the boundary value problem leads to one parameter
families of solutions, and these and these descend to the finite quotients RP 4 and
CP 2#RP 4.

We refer to [54] for the full details of all the cases, but note that this reference
contains some errors in the U(2) case, corrected by Bonneau [6]. �

10. Einstein-Weyl geometry in three dimensions

In three dimensions, there is also a twistor theory of Einstein-Weyl manifolds,
but unlike the four dimensional case, where twistor methods are limited to the
selfdual structures, in three dimensions “minitwistor theory” applies to all Einstein-
Weyl spaces. Indeed this was the case first studied, by Cartan [16], who showed
that the Einstein-Weyl equation is the integrability condition for the existence, in
a complex three dimensional Weyl manifold, of a two parameter family of totally
geodesic null hypersurfaces. Consequently, the space of oriented geodesics in a real
three dimensional Einstein-Weyl manifold is a complex surface. Hitchin showed that
this surface contains projective lines with normal bundle O(2) and conversely, that
given such a complex surface (with a real structure), the real points in the Kodaira
moduli space of these lines form a three dimensional Einstein-Weyl manifold [34].
In other words there is a twistor construction, the Hitchin correspondence, for three
dimensional Einstein-Weyl manifolds, in terms of a class of complex surfaces called
minitwistor spaces. The conformal structure of the Einstein-Weyl space is given
by the condition for nearby “minitwistor lines” to intersect to second order, and
the Weyl derivative can be obtained via a construction of projective structures on
moduli spaces [55].

For example, the quadric surface P1 × P1, together with the plane sections,
generates the Einstein space S3 or H3 depending on the real structure, and the
minitwistor space of R3 is the punctured cone TP1, together with its sections over
P1. The following result shows that other minitwistor spaces are more complicated.

Proposition 10.1. A minitwistor space which is an open set of a compact
surface generates the Einstein-Weyl geometry of a space of constant curvature. The
compact surface can be taken to be the cone or the quadric surface.

Despite this, we can construct minitwistor spaces locally by taking blow-ups
and branched covers. For instance, a (1, n)-curve in P1×P1 is rational with normal
bundle O(2n). If we take a branched n-fold covering, then in the covering the
normal bundle is O(2) and we have a minitwistor space [61], although the covering
cannot extend to all of the quadric.

There are close connections between minitwistor theory and twistor theory in
four dimensions. In [40], Jones and Tod observed that, given a selfdual conformal
4-manifold M with a conformal vector field K, the quotient of the twistor space Z
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of M by the induced holomorphic vector field is a minitwistor space. They then
wrote down a Weyl structure on the orbit space B = M/K and showed that this
agreed with the Weyl structure coming from the Hitchin correspondence. In other
words, the quotient of a selfdual conformal manifold by a conformal vector field is
Einstein-Weyl.

Although such a result would have been difficult to find without twistor theory,
the twistor theoretic proof that the Jones-Tod Weyl structure is Einstein-Weyl is
rather indirect. More direct arguments, sometimes only in special cases, have been
given in [14, 29, 41, 50] and we would like to sketch the approach of [14], which has
the advantage that it extends to a more general class of conformal submersions [13],
although we shall treat only conformal vector fields here.

Let M be a selfdual conformal manifold with a conformal vector field K, and
by restricting to an open set if necessary, assume K is nowhere vanishing. Then
|K| is a length scale on M and induces an exact Weyl derivative D0, the constant
length gauge of K. One can compute D0 in terms of an arbitrary Weyl derivative
D by the formula

D0 = D − 〈DK,K〉
〈K,K〉

= D − 1
4

(trDK)K
〈K,K〉

+
1
2

(dDK)(K, .)
〈K,K〉

.

Note that 〈D0K, .〉 is a weightless 2-form. The crucial observation is that there
is a unique Weyl derivative Dsd on M such that 〈DsdK, .〉 is a weightless selfdual
2-form. One way to see this is to observe that ω = (∗dDK)(K, .)/〈K,K〉 is a 1-form
independent of the choice of D and define:

Dsd = D0 − 1
2
ω = D − 1

4
(trDK)K
〈K,K〉

+
1
2

(dDK)(K, .)− (∗dDK)(K, .)
〈K,K〉

.

Since D is arbitrary, we may take D = Dsd to see that (DsdK − ∗DsdK)(K, .) = 0
from which it is immediate that DsdK = ∗DsdK since an antiselfdual 2-form is
uniquely determined by its contraction with a nonzero vector field.

Next recall that for any vector field K and torsion free connection D on TM ,
(LKD)X = DXDK −RD

X,K . There is an analogous formula for Weyl derivatives.

Proposition 10.2. Let X be a vector field, µ a section of Lw and D a Weyl
derivative on Mn. Then LXµ = DXµ − w

n (divD X)µ and so the Lie derivative of
the Weyl derivative on L1 is: (LKD)X = 1

n∂X(divD K)− FD(X,K).

Now if K is conformal then the Lie derivative (along K) of a Weyl connection
D on TM is given by the linearised Koszul formula applied to the Lie derivative of
D on L1. Hence

DXDK = RD
X,K + γK (X)id + γK MX,

where γK = 1
nd(trDK) + FD(K, .). (This formula also appears in [27].)

Applying this with D = Dsd and decomposing the curvature gives:

Dsd
XD

sdK = WX,K + rsd(K) MX − rsd(X) MK + F sd(K, .) MX.

Now Dsd
XD

sdK and WX,K are both selfdual 2-forms and hence so is the sum of the
remaining terms. This implies that if 〈X,K〉 = 〈Y,K〉 = 0 then

rsd(X,Y )〈K,K〉+ rsd(K,K)〈X,Y 〉 = ∗
(
K ∧ (rsd + F sd)(K) ∧X ∧ Y

)
.

Symmetrising in X,Y , we see that the horizontal part of the symmetric Ricci
endomorphism of Dsd is a multiple of the identity. It now looks as if Dsd = D0− 1

2ω
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might be the Einstein-Weyl structure we seek. In fact this is not the case: instead
it is D0 − ω which is Einstein-Weyl on B.

Theorem 10.3. [40] Suppose M is a selfdual 4-manifold and K a conformal
vector field such that B = M/K is a manifold. Let D0 be the constant length gauge
of K and ω = 2(∗D0K)(K, .)/〈K,K〉. Then D = D0 − ω is Einstein-Weyl on B
and D0 is a Gauduchon gauge.

Conversely, if (B,D) is an Einstein-Weyl 3-manifold and w ∈ C∞(B,L−1)
is a nonvanishing solution of the monopole equation d∗Dw = 0 then there is a
selfdual 4-manifold M with symmetry over B such that ∗Dw is the curvature of the
connection defined by the horizontal distribution.

Proof. The conformal structure and Weyl derivative descend to B because K
is Killing in the constant length gauge and ω is a basic 1-form. The first submersion
formula in 5.6 relates the Ricci curvature of D on B to that of Dsd on M :

sym RicD
B (X,Y ) = sym Ricsd

M (X,Y ) + 2〈D0
XK,D

0
YK〉+ 1

2ω(X)ω(Y ) + µ−2〈X,Y 〉

for some section µ of L1. We have shown that sym Ricsd(X,Y ) is a multiple of
〈X,Y 〉. Since D0

KK = 0, ω vanishes on the plane spanned by D0K, and so by
comparing the lengths of ω andD0K one verifies that 2〈D0

XK,D
0
YK〉+

1
2ω(X)ω(Y )q

is also a multiple of 〈X,Y 〉, and hence B is Einstein-Weyl. Now D0K is a closed 2-
form with respect to D0 on M , so ω is coclosed with respect to D0 on B and D0 is a
Gauduchon gauge. Finally one sees that no information is lost in this construction.
Indeed if ∗Dw = dθ (locally) then the metric gM = π∗w2cB + (dt+ θ)2 is selfdual
and ∂/∂t is a unit Killing field. (More invariantly, let G be the group of D0-parallel
sections of L1 under addition so thatM is a principal G-bundle. Then the monopole
equation ∗Dw = Ω, with Ω closed, couples a relative length scale w : L1 →M ×G g
to the curvature Ω of a principal connection on M .) �

Two special cases of this construction have received particular attention. The
first is the case of a scalar flat Kähler 4-manifold with a Killing field. In this case,
the Einstein-Weyl structure on B, which we call a LeBrun-Ward geometry [50, 79],
is given locally by

g = eu(dx2 + dy2) + dz2

ω = −uzdz
(10.1)

where D = Dg + ω and where u satisfies the Toda equation

uxx + uyy + (eu)zz = 0.

Consequently these Einstein-Weyl geometries are also said to be Toda. Examples
can be found in [15, 73, 79].

Corresponding to a solution of the monopole equation d∗Dw = 0 on B, is the
scalar-flat Kähler manifold M given by the metric

g = euw(dx2 + dy2) + wdz2 + w−1(dt+ θ)2

and ∂/∂t is a Killing field. In this gauge, the monopole equation turns out to be
equivalent to the linearised Toda equation

wxx + wyy + (euw)zz = 0.

It follows that w = uz is a distinguished monopole on B; if this monopole is used
to construct M , then M is found to be hyperKähler [9, 50].
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The LeBrun-Ward spaces may be characterised invariantly as the Einstein-Weyl
spaces locally fibering as a conformal submersion with geodesic one dimensional
fibres and integrable horizontal distribution (i.e., they admit a shear-free, twist-
free congruence of geodesics). In the above description, these geodesics are the
curves of constant (x, y) [73].

The extra data on the minitwistor space S given by this Toda structure is a
real holomorphic section of K−1/2

S and the particular form in (10.1) is obtained by
choosing a holomorphic coordinate x+ iy on the corresponding divisor.

Minitwistor theory can be used to prove some of these claims [50, 51]. The
monopole solution w is given, via the minitwistor Ward correspondence, by a holo-
morphic line bundle L → S with c1(L) = 0. If N denotes the normal bundle to the
lifted minitwistor lines, then the obstruction to the splitting of

0 → O → N → O(2) → 0

over a twistor line CP 1
x is an element of H1(CP 1

x ,O(−2)) and may be identified
with w(x). Therefore, for w(x) > 0, N ∼= O(1) ⊕ O(1) and so L\0 is a twistor
space. The two orientations of the distinguished family of geodesics correspond to
two curves C, C in S and x+ iy is a complex coordinate on C. We shall now show
that the line bundle represented by the divisor C + C is K−1/2

S .
Choose a monopole (w , θ) and consider the twistor space Z of the corresponding

scalar-flat Kähler metric. The vector field ∂/∂t lifts to Z so we may assume Z is
a line bundle over S. Let D ⊆ Z be the section of Z π−→ M corresponding to the
complex structure on M . The projection Z → S maps a complex structure J at a
point of M to the geodesic in B in the direction J ∂

∂t . The image of D is therefore
C and D maps to C. From [69] we know that [D + D] = K

−1/2
Z and so, since the

vertical tangent bundle of Z → S is trivial, it follows that [C + C] = K
−1/2
S .

The second special case is the case of hypercomplex 4-manifolds with triholo-
morphic conformal vector fields. These were studied in connection with local het-
erotic geometries by Chave, Tod and Valent in [17]—see also [74]. In [29], Gaudu-
chon and Tod showed that the Einstein-Weyl quotients arising in this situation are
characterised by the presence of what might be called a “scalar curvature mono-
pole”: the scalar curvature is nonnegative and if κ2 = 1

6scalD then κ satisfies the
special monopole equation ∗Dκ = 1

2F
D. Together with the Einstein-Weyl equation,

this is equivalent to the flatness of the connection D − κ ∗1 on L−1TM and the
parallel weightless unit vector fields are shear-free divergence-free geodesic congru-
ences. We call these Einstein-Weyl spaces Gauduchon-Tod geometries or say that
they are hyperCR. Their minitwistor spaces fibre over CP 1 and the only compact
examples, apart from the manifolds of constant nonnegative curvature, are S1×S2,
the Berger spheres [29], and some finite quotients of these.

The total space M of an arbitrary monopole over a Gauduchon-Tod geometry
carries a hypercomplex structure, and this provides an example of the Ansatz we
have given in 5.6. If the scalar curvature monopole itself is used, then M turns out
to be hyperKähler with a triholomorphic homothetic vector field.

There are clearly close parallels between these two cases.

• The LeBrun-Ward structures arise as quotients of scalar flat Kähler mani-
folds by a holomorphic Killing field. They have a special monopole (given
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in terms of a solution to the Toda field equation) which may be used to
construct a hyperKähler manifold with a holomorphic Killing field.

• Hypercomplex manifolds with triholomorphic conformal Killing fields give
rise to Gauduchon-Tod structures on the space of orbits. Again there is
a special monopole (namely the scalar curvature monopole) leading to a
hyperKähler metric, this time with a triholomorphic homothetic vector
field.

The two situations may be unified and generalised by considering a selfdual
4-manifold with an antiselfdual complex structure and a holomorphic conformal
vector field. It can be shown [14] that the complex structure induces a shear-free
geodesic congruence on the quotient Einstein-Weyl geometry B. The twist κ and
divergence τ of this congruence turn out to be “special” monopoles on B. The κ
monopole, if nonzero, gives a scalar flat Kähler 4-manifold over B with a holomor-
phic conformal vector field, while the τ monopole, if nonzero, gives a hypercomplex
4-manifold over B with a holomorphic conformal vector field. HyperKähler mani-
folds are obtained when κ and τ are linearly dependent.

We have seen that hyperKähler 4-manifolds with special conformal vector fields
give rise to interesting Einstein-Weyl geometries. It is natural to ask which geome-
tries arise as (local) quotients of R4. Now, R4 is conformal to S4 (minus a point)
and so this question has been answered by Pedersen and Tod in [68]. Viewing S4

as the lightcone in R5,1, conformal vector fields correspond to elements of the Lie
algebra so(5, 1). There are no globally nonvanishing conformal vector fields and
so, since conjugate elements of so(5, 1) will produce equivalent quotients, we may
conjugate into a normal form in which they vanish at ∞ and then stereographically
project. There are essentially three distinct cases: the hyperbolic elements (with a
nontrivial infinitesimal dilation); the elliptic elements (generating rotations); and
the parabolic elements (generating transrotations). The corresponding Einstein-
Weyl geometries are given explicitly in [68], as Cases (1, a 6= 0), (1, a = 0) and (2)
respectively. The generic case is the hyperbolic case, which gives a two dimensional
moduli space of Einstein-Weyl structures near the Einstein metric on S3.

In fact, these quotients of R4 exhaust the possible geometries on compact
Einstein-Weyl manifolds.

Theorem 10.4. Let B,D be an Einstein-Weyl 3-manifold with Killing gauge
D = Dg + ωg . Then B is locally isomorphic, as a Weyl manifold, to the quotient
of an open subset of R4 by a conformal vector field with its induced Einstein-Weyl
structure.

Proof. Let M be the total space of the monopole given by Dg . Then, by the
inverse Jones and Tod construction, M is a selfdual conformal 4-manifold. However,
since Dg is a Killing gauge, Dg − ωg is also Einstein-Weyl. Now if ∗ωg = dA then
∗(−ωg) = d(−A) and dt + (−A) = −(d(−t) + A). Hence changing the sign of ωg

does not alter the conformal structure on M , only the orientation. Therefore M is
both selfdual and antiselfdual, and thus conformally flat. The local isomorphisms
are now given by conformal charts on M . �

This theorem was originally established by Tod [72] as a consequence of his
classification of the possible local geometries on compact Einstein-Weyl 3-manifolds.
He did this by solving the Einstein-Weyl equation in the Gauduchon gauge, using
the fact that B fibres locally over a surface since ωg is a Killing field. The freedom
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in the choice of isothermal coordinates on this surface may be used to reduce the
Einstein-Weyl equation to an ODE, which is readily integrated. It is perhaps worth
remarking that the additional symmetry which arises comes from the Faraday 2-
form: generically ∗FD and ωg are dual to linearly independent Killing fields. These
generic solutions are of the form [72]:

g = P (v)−1dv2 + P (v)dy2 + v2(dt+ Cv−2dy)2

ω = 2λv2(dt+ Cv−2dy),

P (v) = −λ2v4 +Av2 +B − C2v−2where

and λ,A,B,C are arbitrary constants. The isothermal coordinates (x, y) can be
found by solving the equation v′(x) = P (v). Another change of coordinates relates
these geometries to the quotients of S4 in [68]. The parameters λ,A,B,C above
are related to the parameters a, b, c in [68] by:

A = −a2 + b2 + c2, λ2B = a2b2 + a2c2 − b2c2, λ4C2 = a2b2c2.

Examining Tod’s argument, we find that the Gauduchon constant is −6A and
so scalD = −6A + 3|ω|2 = 6(a2 − b2 − c2 + 2λ2v2). Also, the range of λ2v2 when
P (v) > 0 is the interval [b2, c2]. Therefore, for |b2 − c2| > a2, the scalar curvature
has nonconstant sign [12].

In particular, there are Einstein-Weyl geometries globally defined on S3 with
scalar curvature of nonconstant sign, contrary to remarks made in [67, 68]. Such
examples are “far” from the Berger spheres, which are given by b2 = c2 (and a2 6= 0),
but include some examples in the one parameter family given in [52].

We would also like to emphasise that, although most of the solutions above are
globally defined on S3, Tod’s result [72] claims only to classify the local forms of
solutions which can exist on compact manifolds. It should be possible to work out
which compact 3-manifolds carry which local forms using the cohomogeneity one
torus action given by the Killing fields ∂/∂y and ∂/∂t, but care needs to be taken
when considering the possible flows of ∂/∂t in this torus.

We now briefly treat the two dimensional case, where matters are simplified by
the fact that the only compact 2-manifolds admitting metrics with Killing fields
are S2 and S1×S1. Hence only these manifolds can admit nonexact Einstein-Weyl
structures.

In the Gauduchon gauge (g, ω), ]gω is holomorphic, so we may locally choose a
complex coordinate x + it such that ]gω = ∂/∂t. The Einstein-Weyl equation 3.4
immediately reduces to an ODE for a function of x, and we find [11]

g = P (v)−1dv2 + v2dt2

ω = Av2 dt,

P (v) = −A2v4 +Bv2 + Cwhere

and A,B,C are arbitrary constants. This time v′(x)2 = P (v)v2, but it is perhaps
simpler to introduce a new coordinate r by v′(r)2 = P (v). The metric is now

g = dr2 + v(r)2dt2
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and v(r) is an elliptic function since P is a quartic polynomial. In terms of Jacobian
elliptic functions (assuming P (v) is somewhere positive),

v(r) =

{
λ cn(µr + α, k) or λ sd(µr + α, k) if C > 0 (1)
λ dn(µr + α, k) or λ nd(µr + α, k) if C < 0 (2),

where α is a constant of integration and λ, µ, k are constants depending on A,B,C.
The two forms given in each case are equivalent by period translation, but behave
differently in the limit k → 1 when the (real) period becomes infinite. The Gaudu-
chon constant is −2B which is always negative in (2), but is proportional to 1−2k2

in (1). If w ranges over a half-period of cn or sd, (1) gives a family of global solu-
tions on S2, whereas dn and nd are periodic and nonvanishing, and so the solutions
in (2) are defined on S1 × S1. In particular, there are nonclosed Einstein-Weyl
structures on S1 × S1 in stark contrast to the situation on S1 × Sn−1 for n > 4.

11. Further horizons

Notwithstanding the pioneering work of Cartan and Hitchin, a detailed under-
standing of the nature of Einstein-Weyl spaces from a differential geometric point
of view has only matured during the last fifteen years. We believe that there is now
a good supply of concepts, examples and results about Einstein-Weyl geometry.
Nevertheless many basic questions remain unanswered and there are interesting
avenues still to be explored.
1. Is there a Lagrangian for the Einstein-Weyl equations? The calculations made
to date suggest that the Einstein-Weyl equations may not be the Euler-Lagrange
equations of a natural functional, but there are at least interesting functionals
which have Einstein-Weyl spaces as a special class of minima (see [36] for the
Euler-Lagrange equations of total curvature functionals).
2. Three dimensional Einstein-Weyl manifolds with a Gauduchon gauge corre-
spond to four dimensional selfdual manifolds with symmetry, and these minimise
the L2-norm of the Weyl curvature. The critical points of this functional are the
Bach flat manifolds. What is the symmetry reduction of this functional and of the
Bach flatness condition?
3. The classification of compact three dimensional Einstein-Weyl manifolds needs
to be completed.
4. So far, interesting interactions of nonclosed Einstein-Weyl geometry with special
conditions on compact 4-manifolds have not been found. Nevertheless there is a
good supply of highly symmetric examples and so we would like to know what
special properties they have.
5. We have seen that there are global obstructions to the existence of Einstein-
Weyl structures, but the question of local existence of Einstein-Weyl structures
compatible with a given conformal structure is a nontrivial problem. In [19, 20],
Eastwood and Tod have shown that there are conformal structures which do not
admit compatible Einstein-Weyl structures even locally. For instance, in three
dimensions, the general left invariant metric on S3 and Thurston’s Sol geometry do
not admit Einstein-Weyl structures. In four dimensions the product of two spheres
of different sizes is not locally Einstein-Weyl. Nevertheless, local questions still
remain. We would like to know, for instance, whether the scalar curvature of a
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Bach flat Einstein-Weyl structure is necessarily zero. A similar question can be
asked about Kähler Einstein-Weyl structures.
6. The theory of submersions between Einstein-Weyl spaces with one dimensional
fibres has not been studied when the total space is even dimensional, except in the
case of selfdual 4-manifolds, when we have hypercomplex structures and selfdual
Einstein metrics with symmetry (the latter are conformally scalar flat Kähler). The
Ansatz we have presented in 5.6 might be useful for generalising these situations.
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