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Abstract. We develop in detail the theory of c-projective geometry, a natural ana-
logue of projective differential geometry adapted to complex manifolds. We realise it
as a type of parabolic geometry and describe the associated Cartan or tractor con-
nection. A Kähler manifold gives rise to a c-projective structure and this is one of
the primary motivations for its study. The existence of two or more Kähler metrics
underlying a given c-projective structure has many ramifications, which we explore
in depth. As a consequence of this analysis, we prove the Yano–Obata Conjecture
for complete Kähler manifolds: if such a manifold admits a one parameter group of
c-projective transformations that are not affine, then it is complex projective space,
equipped with a multiple of the Fubini–Study metric.

Introduction

C-projective geometry is a natural analogue of real projective differential geometry
for complex manifolds. Like projective geometry, it has many facets, which have been
discovered and explored independently and repeatedly over the past sixty years. Our
aim in this work is to develop in detail a unified theory of c-projective geometry, which
highlights its relation with real projective geometry as well as its differences.

Projective geometry is a classical subject concerned with the behaviour of straight
lines, or more generally, (unparametrised) geodesic curves of a metric or affine connec-
tion. It has been known for some time [66, 99] that two non-proportional metrics can
have the same geodesic curves: central projection takes great circles on the n-sphere,
namely the geodesics for the round metric, to straight lines in Euclidean n-space,
namely geodesics for the flat metric. The quotient of the round n-sphere under the an-
tipodal identification may be identified with the flat model for n-dimensional projective
geometry: the real projective n-space RPn, viewed as a homogeneous space under the
group PSL(n+1,R) of projective transformations, which preserve the family of (linearly
embedded) projective lines RP1 ↪→ RPn. More generally, a projective structure on a
smooth n-manifold (for n ≥ 2) is an equivalence class of torsion-free affine connections
having the same geodesic curves. In this setting, it is a nontrivial and interesting ques-
tion whether these curves are the geodesic curves of a (pseudo-)Riemannian metric,
i.e. whether any connection in the projective equivalence class preserves a nondegen-
erate metric, possibly of indefinite signature. Such projective structures are called
metrisable and the corresponding metrics compatible. Rather surprisingly, the partial
differential equations controlling the metrisability of a given projective structure can

This article was initiated when its authors participated in a workshop at the Kioloa campus of the
Australian National University in March 2013. We would like to thank the The Edith and Joy London
Foundation for providing the excellent facilities at Kioloa. We would also like to thank the Group
of Eight, Deutscher Akademischer Austausch Dienst, Australia-Germany Joint Research Cooperation
Scheme for financially supporting the workshop in 2013 and a subsequent Kioloa workshop in 2014; for
the latter, we thank, in addition, FSU Jena and the Deutsche Forschungsgemeinschaft (GK 1523/2)
for their financial support. The fourth author was also supported during part of this project by the
Eduard Čech Institute. We would also like to thank the latter for supporting a meeting of the first,
second and fourth author at the Mathematical Institute at Charles University in July 2014.

1



2 D.M.J. CALDERBANK, M.G. EASTWOOD, V.S. MATVEEV, AND K. NEUSSER

be set up as a linear system [13, 40, 70, 94]. More precisely, there is a projectively
invariant linear differential operator acting on symmetric contravariant 2-tensors such
that the nondegenerate elements of its kernel correspond to compatible metrics.

In modern language, a projective structure determines a canonical Cartan con-
nection [39] modelled on RPn, and hence projective geometry is a parabolic geome-
try [36, 42]. In these terms, the metrisability operator is a first BGG (Bernstein–
Gelfand–Gelfand) operator, which is a differential operator of finite type [43]. Its
solutions correspond to parallel sections of a bundle with connection, which is, up to
curvature corrections, a linear representation of the Cartan connection. The kernel is
thus finite-dimensional; it is zero for generic projective structures, with the maximal
dimension attained on the flat model RPn. The parabolic viewpoint on projective
geometry has proven to be very useful, for example in understanding projective com-
pactifications of Einstein metrics [31, 34], the geometry of holonomy reductions of
projective structures [6], and (solving problems posed by Sophus Lie in 1882) projec-
tive vector fields on surfaces [22, 75].

Projective geometry has been linked to the theory of finite dimensional integrable
systems with great success: the equation for symmetric Killing tensors is projectively
invariant [42], and (consequently) the existence of two projectively equivalent metrics
on a manifold implies the existence of nontrivial integrals for the geodesic flows of
both metrics. This method has been effectively employed when the manifold is closed
or complete (see e.g. [72, 74]). Moreover, the integrability of many classically stud-
ied integrable geodesic flows (e.g., on ellipsoids) is closely related to the existence of
a projectively compatible metric, and many geometric structures that lead to such
integrable geodesic flows have been directly related to the existence of a projectively
compatible metric, see e.g. [9, 13].

C-projective geometry arises when one retells this story, mutatis mutandis, for com-
plex or, indeed, almost complex manifolds, i.e. smooth manifolds equipped with an
almost complex structure J , which is a smooth endomorphism of the tangent bundle
such that J2 = − Id. On such a manifoldM , the relevant (pseudo-)Riemannian metrics
are Hermitian with respect to J , i.e. J-invariant, and the relevant affine connections
are those which preserve J , called complex connections. Such connections cannot be
torsion-free unless the almost complex structure is integrable, i.e. its Nijenhuis tensor
vanishes identically [89]. This holds in particular if the Levi-Civita connection of a
Hermitian metric g preserves J , in which case g is called a (pseudo-)Kähler metric.

In 1947, Bochner [12, Theorem 2] observed that any two metrics that are Kähler
with respect to the same complex structure cannot be projectively equivalent (i.e. have
the same geodesic curves) unless they are affinely equivalent (i.e. have the same Levi-
Civita connection). This led Otsuki and Tashiro [90] to introduce a broader class
of curves, which they called “holomorphically flat”, and which depend on both the
connection and the (almost) complex structure. We refer to these curves as J-planar :
whereas a geodesic curve for an affine connection ∇ is a curve c whose acceleration
∇ċċ is proportional to its velocity ċ, a J-planar curve is one whose acceleration is in
the linear span of ċ and Jċ. On a Riemann surface, therefore, all curves are J-planar.
The other common manifold where it is possible to see all J-planar curves without
computation is complex projective space with its Fubini–Study connection. The point
here is that the linearly embedded complex lines CP1 ↪→ CPn are totally geodesic.
Therefore, the J-planar curves on CPn are precisely the smooth curves lying within
such complex lines. Viewed in a standard affine coordinate patch Cn ↪→ CPn, the
J-planar curves are again the smooth curves lying inside an arbitrary complex line
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{az+b} ⊂ Cn but otherwise unconstrained. Evidently, these are the intrinsic J-planar
curves for the flat connection on Cn.

The J-planar curves provide a nontrivial notion of projective equivalence in com-
plex differential geometry, due to Otsuki and Tashiro [90] in the Kähler setting, and
Tashiro [98] for almost complex manifolds in general. Two complex connections on
an almost complex manifold (M,J) are c-projectively equivalent if they have the same
torsion and the same J-planar curves. An almost c-projective manifold is a complex
manifold (M,J) equipped with a c-projective equivalence class of such connections.
If J is integrable, we follow the usual convention and drop the word “almost” to ar-
rive at the notion of a c-projective manifold. We caution the reader that Otsuki and
Tashiro [90], and many later researchers, refer to “holomorphically projective corre-
spondences”, rather than c-projective equivalences, and many authors use the termi-
nology “h-projective” or “holomorphic(ally) projective” instead of “c-projective”. We
avoid their terminology because the connections in a c-projective class are typically
not holomorphic, even if the complex structure is integrable; similarly, we avoid the
term “complex projective structure”, which is often used for the holomorphic analogue
of a real projective structure, or related concepts.

During the decades following Otsuki and Tashiro’s 1954 paper, c-projective struc-
tures provided a prominent research direction in Japanese and Soviet differential geom-
etry. Many of the researchers involved had some background in projective geometry,
and the dominant line of investigation sought to generalise methods and results from
projective geometry to the c-projective setting. This was a very productive direc-
tion, with more than 300 publications appearing in the relatively short period from
1960 to 1990. One can compare, for example, the surveys by Mikeš [82, 83], or the
papers of Hiramatu [53, 54], to see how successfully c-projective analogues of results
in projective geometry were found. In particular, the linear system for c-projectively
equivalent Kähler metrics was obtained by Domashev and Mikeš [41], and its finite
type prolongation to a connection was given by Mikeš [81].

Relatively recently, the linear system for c-projectively equivalent Kähler metrics
has been rediscovered, under different names and with different motivations. On a
fixed complex manifold, a compatible (pseudo-)Kähler metric is determined uniquely
by its Kähler form (a compatible symplectic form), and under this correspondence,
c-projectively equivalent Kähler metrics are essentially the same as Hamiltonian 2-
forms defined and investigated in Apostolov et al. [2, 3, 4, 5]: the defining equation [2,
(12)] for a Hamiltonian 2-form is actually algebraically equivalent to the metrisability
equation (125). In dimension ≥ 6, c-projectively equivalent metrics are also essentially
the same as conformal Killing (or twistor) (1, 1)-forms studied in [86, 92, 93], see [2,
Appendix A] or [78, §1.3] for details.

The work of [2, 3] provides, a postiori, local and global classification results for
c-projectively equivalent Kähler metrics, although the authors were unaware of this
interpretation, nor the pre-existing literature. Instead, as explained in [2, 3] and [26],
the notion and study of Hamiltonian 2-forms was motivated by their natural appear-
ance in many interesting problems in Kähler geometry, and the unifying role they play
in the construction of explicit Kähler metrics on projective bundles. In subsequent
papers, e.g. [4, 5], Hamiltonian 2-form methods were used to construct many new
examples of Kähler manifolds and orbifolds with interesting properties.

Another independent line of research closely related to c-projectively equivalent met-
rics (and perhaps underpinning the utility of Hamiltonian 2-forms) appeared within
the theory of finitely dimensional integrable systems. C-projectively equivalent metrics
are closely related (see e.g. [61]) to the so-called Kähler–Liouville integrable systems
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of type A introduced and studied by Kiyohara in [59]. In fact, Topalov [100] (see
also [60]) shows that generic c-projectively equivalent Kähler metrics have integrable
geodesic flows, cf. [101] for the analogous result in the projective case. On the one
hand, integrability provides, as in projective geometry, a number of new methods that
can be used in c-projective geometry. On the other hand, examples from c-projective
geometry turn out to be interesting for the theory of integrable systems, since there
are only a few known examples of Kähler metrics with integrable geodesic flows.

Despite the many analogies between results in projective and c-projective geometry,
there seem to be very few attempts in the literature to explain why these two subjects
are so similar. In 1978, it was noted by Yoshimatsu [103] that c-projective manifolds
admit canonical Cartan connections, and this was generalised to almost c-projective
manifolds by Hrdina [55] in 2009. Thus c-projective geometry, like projective geometry,
is a parabolic geometry; its flat model is CPn, viewed as a homogeneous space under
the group PSL(n + 1,C) of projective transformations, which preserve the J-planar
curves described above. Despite this, c-projective structures have received very little
attention in the parabolic geometry literature: apart from the work of Hrdina, and
some work in dimension 4 [28, 80], they have only been studied in [6], where they
appear as holonomy reductions of projective geometries. A possible explanation for
this oversight is that PSL(n+1,C) appears in c-projective geometry as a real Lie group
and, as such, its complexification is semisimple, but not simple. This is related to the
subtle point that most interesting c-projective structures are not holomorphic.

The development of c-projective geometry, as described above, has been rather non-
linear until relatively recently, when a number of independent threads have converged
on a coherent set of ideas. However, a thorough description of almost c-projective
manifolds in the framework of parabolic geometries is lacking in the literature. We
therefore believe it is timely to lay down the fundamentals of such a theory.

The article is organised as follows. In Section 1, we survey the background on almost
complex manifolds and complex connections. As we review in Section 1.2, the torsion
of any complex connection on an almost complex manifold, of real dimension 2n ≥ 4,
naturally decomposes into five irreducible pieces, one of which is invariantly defined
and can be identified as the Nijenhuis tensor. All other pieces can be eliminated by a
suitable choice of complex connection, which we call minimal. In first four sections of
the article we carry along the Nijenhuis tensor in almost all calculations and discussions.

Section 2 begins with the classical viewpoint on almost c-projective structures, based
on J-planar curves and equivalence classes of minimal complex connections [90]. We
then recall the notion of parabolic geometries and establish, in Theorem 2.8, an equiv-
alence of categories between almost c-projective manifolds and parabolic geometries
with a normal Cartan connection, modelled on CPn.

As a consequence of this parabolic viewpoint, we can associate a fundamental local
invariant to an almost c-projective manifold, namely the curvature κ of its normal
Cartan connection; furthermore, κ ≡ 0 if and only if the almost c-projective manifold is
locally isomorphic to CPn equipped with its standard c-projective structure. Since the
Cartan connection is normal (for this we need the complex connections to be minimal),
its curvature is a 2-cycle for Lie algebra homology, and is uniquely determined by its
homology class, also known as the harmonic curvature. We construct and discuss this
curvature in section 2.7. For almost c-projective structures there are three irreducible
parts to the harmonic curvature. One of the pieces is the Nijenhuis tensor, which is
precisely the obstruction to the underlying almost complex manifold actually being
complex. One of the other two parts is precisely the obstruction to there being a
holomorphic connection in the c-projective class. When it vanishes we end up with



C-PROJECTIVE GEOMETRY 5

holomorphic projective geometry, i.e. ordinary projective differential geometry but in
the holomorphic category. The remaining piece can then be identified with the classical
projective Weyl curvature (for n ≥ 3) or Liouville curvature (for n = 2).

Another consequence of the parabolic perspective is that representation theory is
brought to the fore, both as the appropriate language for discussing natural bundles
on almost c-projective manifolds, and also as the correct tool for understanding invari-
ant differential operators on the flat model, and their curved analogues. The various
BGG complexes on CPn and their curved analogues are systematically introduced and
discussed in Section 3.

In particular, there is a BGG operator that controls themetrisability of a c-projective
structure just as happens in the projective setting. A large part of this article is de-
voted to the metrisability equation, which we introduce in Section 4, where we also
obtain its prolongation to a connection, not only for compatible (pseudo-)Kähler met-
ric, but also in the non-integrable case of quasi-Kähler or (2,1)-symplectic structures.
For the remainder of the article, we suppose that the Nijenhuis tensor vanishes, in
other words that we are starting with a complex manifold. In this case, a compatible
metric is exactly a (pseudo-)Kähler metric (and a normal solution of the metrisability
equation corresponds to a (pseudo-)Kähler–Einstein metric). We shall also restrict
our attention to metric c-projective structures, i.e. to the metrisable case where the
c-projective structure arises from a (pseudo-)Kähler metric. Borrowing terminology
from the projective case, we refer to the dimension of the solution space of the metris-
ability equation as the (degree of ) mobility of the metric c-projective structure (or of
any compatible (pseudo-)Kähler metric). We are mainly interested in understanding
when the metric c-projective structure has mobility at least two, and the consequences
this has for the geometry and topology of the manifold.

In Section 5, we develop the consequences of mobility for integrability, by showing
that a pencil (two dimensional family) of solutions to the metrisability equation gen-
erates a family of holomorphic Killing vector fields and Hermitian symmetric Killing
tensors, which together provide commuting linear and quadratic integrals for the ge-
odesic flow of any metric in the pencil. In Section 6, we study an important, but
somewhat mysterious, phenomenon in which tractor bundles for metric c-projective
geometries are naturally equipped with congenial connections, which are neither in-
duced by the normal Cartan connection nor equal to the prolongation connection, but
which have the property that their covariant constant sections nevertheless correspond
to solutions of the corresponding first BGG operator.

We bring these tools together in Section 7, where we establish the Yano–Obata
Conjecture for complete Kähler manifolds, namely that the identity component of the
group of c-projective transformations of the manifold consists of affine transformations
unless the manifold is complex projective space equipped with a multiple of the Fubini–
Study metric. This result is an analogue of the the Projective Lichnerowicz Conjecture
obtained in [73, 74], but the proof given there does not generalise directly to the c-
projective situation. Our proof also differs from the proof for closed manifolds given
in [77], and makes use of many preliminary results obtained by the methods of parabolic
geometry, which also apply in the projective case.

Here, and throughout the article, we see that not only results from projective geom-
etry, but also methods and proofs, can be generalised to the c-projective case, and we
explain why and how. We hope that this article will set the scene for what promises
to be an interesting series of further developments in c-projective geometry. In fact,
several such developments already appeared during our work on this article, which we
discuss in Section 8.
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1. Almost complex manifolds

Recall that an almost complex structure on a smooth manifold M is a smooth en-
domorphism J of the tangent bundle TM of M that satisfies J2 = − Id. Equivalently,
an almost complex structure makes TM into a complex vector bundle in which multi-
plication by i is decreed to be the real endomorphism J . In particular, the dimension
of M is necessarily even, say 2n, and an almost complex structure is yet equivalently
a reduction of structure group to GL(n,C) ⊂ GL(2n,R).

1.1. Real and complex viewpoints. If M is a complex manifold in the usual sense
of being equipped with holomorphic transition functions, then TM is a complex vector
bundle and multiplication by i defines a real endomorphism TM → TM , which we
write as J . This is enough to define the holomorphic structure on M : holomorphic
functions may be characterised amongst all smooth complex-valued functions f = u+iv
as satisfying Xu = (JX)v for all vector fields X (the Cauchy–Riemann equations).

Thus, complex manifolds may be regarded as a subclass of almost complex manifolds
and the celebrated Newlander–Nirenberg Theorem tells us how to recognise them:

Theorem 1.1 (Newlander–Nirenberg, [89]). An almost complex manifold (M,J) is a
complex manifold if and only if the tensor

NJ(X, Y ) := [X, Y ]− [JX, JY ] + J([JX, Y ] + [X, JY ]) (1)

vanishes for all vector fields X and Y on M , where [ , ] denotes the Lie bracket of
vector fields.

Note that NJ : TM × TM → TM is a 2-form with values in TM , which satisfies
NJ(JX, Y ) = −JNJ(X, Y ). It is called the Nijenhuis tensor of J . When NJ van-
ishes we say that the almost complex structure J is integrable. This viewpoint on
complex manifolds, as even-dimensional smooth manifolds equipped with integrable
almost complex structures, turns out to be very useful especially from the differential
geometric viewpoint.

It is useful to complexify the tangent bundle of M and decompose the result into
eigenbundles under the action of J . Specifically,

CTM = T 1,0M ⊕ T 0,1M = {X s.t. JX = iX} ⊕ {X s.t. JX = −iX}. (2)

Notice that T 0,1M = T 1,0M . There is a corresponding decomposition of the com-
plexified cotangent bundle, which we write as ∧1M or simply ∧1 if M is understood.
Specifically,

∧1 = ∧0,1 ⊕∧1,0 = {ω s.t. Jω = −iω} ⊕ {ω s.t. Jω = iω}, (3)

where sections of ∧1,0 respectively of ∧0,1 are known as 1-forms of type (1, 0) respec-
tively (0, 1), see e.g. [62]. Notice that the canonical complex linear pairing between
CTM and ∧1M induces natural isomorphisms ∧0,1 = (T 0,1)∗ and ∧1,0 = (T 1,0)∗ of
complex vector bundles.

It is convenient to introduce abstract indices [91] for real or complex tensors on M
and also for sections of the bundles T 1,0M , ∧0,1, and so on. Let us write Xα for real or
complex fields and ωα for real or complex 1-forms on M . In local coordinates α would
range over 1, 2, . . . , 2n where 2n is the dimension of M . Let us denote by Xa a section
of T 1,0M . In any frame, the index a would then range over 1, 2, . . . , n. Similarly, let us
write X ā for a section of T 0,1M and the conjugate linear isomorphism T 0,1M = T 1,0M
as Xa 7→ Xa = X ā. Accordingly, sections of ∧1,0 and ∧0,1 will be denoted by ωa
and ωā respectively, and the canonical pairings between T 1,0M and ∧1,0, respectively
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T 0,1M and ∧0,1, written as Xaωa, respectively X āωā, an abstract index counterpart to
the Einstein summation convention.

We shall need the complex linear homomorphism CTM → T 1,0M defined as pro-
jection onto the first summand in the decomposition (2) and given explicitly as X 7→
1
2
(X − iJX). It is useful to write it in abstract indices as

Xα 7→ Πa
αX

α.

It follows that the dual homomorphism ∧1,0 ↪→ ∧1 is given in abstract indices by

ωa 7→ Πa
αωa

and also that the homomorphisms CTM → T 0,1M and ∧0,1 ↪→ ∧1 are given by

Xα 7→ Πā
αX

α and ωā 7→ Πā
αωā,

respectively.
Let us denote by Xa 7→ Πα

aX
a, the inclusion T 1,0M ↪→ CTM , paying attention to

the distinction in their indices between Πa
α and Πα

a . Various identities follow, such
as Πα

aΠb
α = δa

b, where the Kronecker delta δa
b denotes the identity transformation

on T 1,0M . The symbol Πα
a also gives us access to the dual and conjugate homomor-

phisms. Thus,
ωα 7→ Πα

āωα

extracts the (0, 1)-part of a complex-valued 1-form ωα on M . The following identities
are immediate from the definitions

Πa
αΠβ

a = 1
2
(δα

β − iJαβ) Πā
αΠβ

ā = 1
2
(δα

β + iJα
β)

Πα
aJα

β = iΠβ
a Πα

āJα
β = −iΠβ

ā (4)

Jα
βΠa

β = iΠa
α Jα

βΠā
β = −iΠā

α.

They are indispensable for the calculations in the following sections. Further useful
abstract index conventions are as follows. Quantities endowed with several indices
denote sections of the tensor product of the corresponding vector bundles. Thus,
a section of TM ⊗ TM would be denoted Xαβ whilst Φα

β is necessarily a section
of T ∗M ⊗ TM or, equivalently, an endomorphism of TM , namely Xβ 7→ Φα

βXα, yet
equivalently an endomorphism of T ∗M , namely ωα 7→ Φα

βωβ. We have already seen
this notation for an almost complex structure Jαβ. But it is unnecessary notationally
to distinguish between real- and complex-valued tensors. Thus, by ωα we can mean a
section of T ∗M or of ∧1M := CT ∗M and if a distinction is warranted, then it can be
made in words or by context. For example, an almost complex structure Jαβ is a real
endomorphism whereas Πa

α is necessarily complex.
Symmetry operations can also be written in abstract index notation. For example,

the skew part of a covariant 2-tensor φαβ is 1
2
(φαβ − φβα), which we write as φ[αβ].

Similarly, we write φ(αβ) = 1
2
(φαβ + φβα) for the symmetric part and then φαβ =

φ(αβ) + φ[αβ] realises the decomposition of vector bundles ∧1 ⊗ ∧1 = S2∧1 ⊕ ∧2. In
general, round brackets symmetrise over the indices they enclose whilst square brackets
take the skew part, e.g.

Rαβ
γ
δ 7→ R[αβ

γ
δ] = 1

6
(Rαβ

γ
δ +Rβδ

γ
α +Rδα

γ
β −Rβα

γ
δ −Rαδ

γ
β −Rδβ

γ
α).

By (3) differential forms on almost complex manifolds can be naturally decomposed
according to type (see e.g. [62]). We pause to examine the decomposition of 2-forms,
especially from the abstract index point of view. From (3) it follows that the bundle
∧2 of complex-valued 2-forms decomposes into types according to

∧2 = ∧2(∧0,1 ⊕∧1,0) = ∧0,2 ⊕∧1,1 ⊕∧2,0 (5)
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and, as we shall make precise in Section 3.3, there is no finer decomposition available
(it is a decomposition into irreducibles). Using the projectors Πa

α and Πα
a , we can

explicitly execute this decomposition:

ωαβ 7→
(
Πα
āΠβ

b̄
ωαβ,Π

α
aΠβ

b̄
ωαβ,Π

α
aΠβ

bωαβ
)

Πā
αΠb̄

βωāb̄ + 2Πa
[αΠ

b̄

β]ωab̄ + Πa
αΠb

βωab ← (ωāb̄, ωab̄, ωab)

in accordance with (4). Notice that we made a choice here, namely to identify ∧1,1 as
∧1,0⊗∧0,1 in this order and, consequently, write forms of type (1, 1) as ωab̄. We could
equally well choose the opposite convention or, indeed, use both conventions simulta-
neously representing a (1, 1) form as ωab̄ and/or ωāb but now subject to ωab̄ = −ωb̄a.
Strictly speaking, this goes against the conventions of the abstract index notation [91]
but we shall allow ourselves this extra leeway when it is useful. For example, the
reconstructed form ωαβ may then be written as

ωαβ = Πa
αΠb̄

βωab̄ + Πā
αΠb

βωāb.

Two-forms of various types may be characterised as
ωαβ is type (0, 2) ⇐⇒ Jα

γωβγ = iωαβ

ωαγ is type (1, 1) ⇐⇒ J[α
γωβ]γ = 0

ωαβ is type (2, 0) ⇐⇒ Jα
γωβγ = −iωαβ

(6)

but already this is a little awkward and becomes more so for higher forms and ex-
tremely awkward when attempting to decompose more general tensors as we shall
have cause to do when considering torsion and curvature. Notice that forms of type
(1, 1) in (6) are characterised by a real condition. Indeed, the complex bundle ∧1,1 is
the complexification of a real irreducible bundle whose sections are the real 2-forms
satisfying J[α

γωβ]γ = 0. As for forms of types (0, 2) and (2, 0), there is a real bundle
whose sections satisfy

Jα
γJβ

δωγδ = −ωαβ
(as opposed to JαγJβδωγδ = ωαβ for sections of ∧1,1) and whose complexification is
∧0,2⊕∧2,0. Thus, the real 2-forms split irreducibly into just two kinds but the complex
2-forms split into three types (5).

Notice that if E is a complex vector bundle on M , then we can decompose 2-forms
with values in E into types by using the same formulae (6). In particular, we can do
this on an almost complex manifold when E = TM , regarded as a complex bundle via
the action of J . Writing this out explicitly, a real tensor Tαβγ = T[αβ]

γ is said to be

of type (0, 2) ⇐⇒ Jα
γTβγ

δ = Tαβ
γJγ

δ

of type (1, 1) ⇐⇒ J[α
γTβ]γ

δ = 0

of type (2, 0) ⇐⇒ Jα
γTβγ

δ = −TαβγJγδ.
(7)

For example, as the Nijenhuis tensor (1) satisfies NJ(Y, JX) = JNJ(X, Y ), it is of
type (0, 2). Further to investigate this decomposition (7), it is useful to apply the
projectors Πa

α and Πα
a to obtain

Tāb̄
c̄ ≡ Πα

āΠβ

b̄
Πc̄
γTαβ

γ Tab̄
c̄ ≡ Πα

aΠβ

b̄
Πc̄
γTαβ

γ Tab
c̄ ≡ Πα

aΠβ
bΠc̄

γTαβ
γ

Tāb̄
c ≡ Πα

āΠβ

b̄
Πc
γTαβ

γ Tab̄
c ≡ Πα

aΠβ

b̄
Πc
γTαβ

γ Tab
c ≡ Πα

aΠβ
bΠc

γTαβ
γ

satisfying
Tab

c = T[ab]
c Tāb̄

c = T[āb̄]
c Tab

c̄ = T[ab]
c̄ Tāb̄

c̄ = T[āb̄]
c̄

Tabc = Tāb̄
c̄ Tab̄

c = −Tbāc̄ Tabc̄ = Tāb̄
c



10 D.M.J. CALDERBANK, M.G. EASTWOOD, V.S. MATVEEV, AND K. NEUSSER

and from which we can recover Tαβγ according to

Tαβ
γ = Πā

αΠb̄
βΠγ

c̄Tāb̄
c̄ + 2Πa

[αΠ
b̄

β]Π
γ
c̄Tab̄

c̄ + Πa
αΠb

βΠγ
c̄Tab

c̄

+ Πā
αΠb̄

βΠγ
cTāb̄

c + 2Πa
[αΠ

b̄

β]Π
γ
cTab̄

c + Πa
αΠb

βΠγ
cTab

c.

From (4) and (7), the splitting of Tαβγ into types corresponds exactly to components

type (0, 2)↔ (Tab
c̄, Tāb̄

c)

type (1, 1)↔ (Tab̄
c, Tab̄

c̄)

type (2, 0)↔ (Tab
c, Tāb̄

c̄).

(8)

Notice that, for each of types (1, 1) and (2, 0), a complex-valued 1-form can be invari-
antly extracted:

type (1, 1) :φα ≡ Πa
αTab̄

b̄ = 1
2

(
Tαβ

β + iTαβ
γJγ

β
)

type (2, 0) :ψα ≡ Πa
αTab

b = 1
2

(
Tαβ

β − iTαβγJγβ
)
.

On the other hand, just from the index structure, tensors Tαβγ = T[αβ]
γ of type (0, 2)

seemingly cannot be further decomposed (and this is confirmed in Section 3.3). In
any case, it follows easily from Jα

γTβγ
δ = Tαβ

γJγ
δ that Tαβγ of type (0, 2) satisfy

Tαβ
β = 0 = Tαβ

γJγ
β.

1.2. Complex connections. The geometrically useful affine connections ∇ on an
almost complex manifold (M,J) are those that preserve Jαβ, i.e. ∇αJβ

γ = 0. We call
them complex connections. The space of complex connections is an affine space over
the vector space that consists of 1-forms with values in the complex endomorphisms
gl(TM, J) of TM . A complex connection ∇ naturally extends to a linear connection
on CTM that preserves the decomposition into types (2). Indeed, preservation of type
is also a sufficient condition for an affine connection to be complex.

Given a complex connection ∇, we denote by Tαβ
γ its torsion, which is a 2-form

with values in TM . As such Tαβγ naturally splits according to type into a direct sum
of three components as in (7). A straightforward computation shows that the (0, 2)-
component of the torsion of any complex connection equals −1

4
NJ . In particular, this

component is an invariant of the almost complex structure and cannot be eliminated
by a suitable choice of complex connection. However, all other components can be
removed. To see this, suppose ∇̂ is another complex connection. Then there is an
element υ ∈ T ∗M ⊗ gl(TM, J) such that ∇̂ = ∇+ υ. It follows that their torsions are
related by the formula T̂ = T + ∂υ, where ∂ is the composition

T ∗M ⊗ gl(TM, J) ↪→ T ∗M ⊗ T ∗M ⊗ TM → ∧2T ∗M ⊗ TM
υαβ

γ 7→ 2υ[αβ]
γ.

Notice that the image of ∂ is spanned by 2-forms of type (2, 0) and (1, 1). Consequently,
its cokernel can be identified with forms of type (0, 2). Hence, any complex connection
can be deformed in such a way that its torsion is of type (0, 2). We have shown the
following classical result:

Proposition 1.2 ([62, 69]). On any almost complex manifold (M,J) there is a complex
connection such that T = −1

4
NJ .

Since ∂ is not injective such a complex connection is not unique. Complex connec-
tions ∇ with T = −1

4
NJ form an affine space over

ker ∂ = (S2T ∗M ⊗ TM) ∩ (T ∗M ⊗ gl(TM, J)) (9)
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and are called minimal connections.
From Proposition 1.2 and the above discussion one also deduces immediately:

Corollary 1.3. There exists a complex torsion-free connection on an almost complex
manifold (M,J) if and only if NJ ≡ 0.

Remark 1.1. We have already noted that the cokernel of ∂ can be identified with
tensors Tαβγ such that

T(αβ)
γ = 0 Jα

γTβγ
δ = Tαβ

γJγ
δ.

Consequently, Tαββ = Tαβ
γJγ

β = 0. As we shall see in Section 3.3, such tensors are
irreducible. More precisely, the natural vector bundles on an almost complex manifold
(M,J) correspond to representations of GL(n,C) and we shall see that coker ∂ corre-
sponds to an irreducible representation of GL(n,C). On the other hand, its kernel (9)
decomposes into two irreducible components, namely a trace-free part and a trace part.
We shall see in the next section that deforming a complex connection by an element
from the latter space exactly corresponds to changing a connection c-projectively.

2. Elements of c-projective geometry

We now introduce almost c-projective structures, first from the classical perspective
of J-planar curves and equivalence classes of complex affine connections [90], then
from the modern viewpoint of parabolic geometries [36, 55, 103]. The (categorical)
equivalence between these approaches is established in Theorem 2.8. This leads us to
study the intrinsic curvature of an almost c-projective manifold, namely the harmonic
curvature of its canonical normal Cartan connection.

2.1. Almost c-projective structures. Recall that affine connections ∇ and ∇̂ on a
manifold M are projectively equivalent if there is a 1-form Υα on M such that

∇̂αX
γ = ∇αX

γ + ΥαX
γ + δα

γΥβX
β. (10)

Suppose now that (M,J) is an almost complex manifold. Then ∇ and ∇̂ are called
c-projectively equivalent, if there is a (real) 1-form Υα on M such that

∇̂αX
γ = ∇αX

γ + υαβ
γXβ, (11)

where υαβ
γ := 1

2
(Υαδβ

γ + δα
γΥβ − JαδΥδJβ

γ − JαγΥδJβ
δ).

Note that υαβγJγδ = υαγ
δJβ

γ. In other words υαβγ is a 1-form on M with values in
gl(TM, J), which implies that if ∇ is a complex connection, then so is ∇̂. Moreover
υαβ

γ = υ(αβ)
γ and so c-projectively equivalent connections have the same torsion. In

particular, if ∇ is minimal, then so is ∇̂.
A smooth curve c : (a, b)→M is called a J-planar curve with respect to a complex

connection ∇, if ∇ċċ lies in the span of ċ and Jċ. The notion of J-planar curves
gives rise to the following geometric interpretation of a c-projective equivalence class
of complex connections.

Proposition 2.1 ([55, 84, 90, 98]). Suppose (M,J) is an almost complex manifold and
let ∇ and ∇̂ be complex connections on M with the same torsion. Then ∇ and ∇̂ are
c-projectively equivalent if and only if they have the same J-planar curves.

Proof. Suppose ∇ and ∇̂ are complex connections with the same torsion. If ∇ and ∇̂
are c-projectively equivalent, then they clearly have the same J-planar curves. Con-
versely, assume that ∇ and ∇̂ share the same J-planar curves and consider the differ-
ence tensor AαβγY β = ∇̂αY

γ −∇αY
γ. As both connections are complex and have the
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same torsion, the difference tensor satisfies Aαβγ = A(αβ)
γ and Aαβ

γJγ
δ = Aαγ

δJβ
γ.

The fact that ∇̂ and ∇ have the same J-planar curves and that any tangent vector
can be realised as the derivative of such a curve implies that at any point x ∈M and
for any nonzero vector Y ∈ TxM there exist uniquely defined real numbers γ(Y ) and
µ(Y ) such that

A(Y, Y ) = γ(Y )Y + µ(Y )JY. (12)

Note that γ and µ give rise to well-defined smooth functions on TM \ 0. Extending γ
and µ to functions on all of TM by setting γ(0) = µ(0) = 0, formula (12) becomes valid
for any tangent vector, and by construction γ and µ are then clearly homogeneous of
degree one. From A(Y, Y ) = −A(JY, JY ) we deduce that µ(X) = −γ(JX) whence

A(Y, Y ) = γ(Y )Y − γ(JY )JY.

By polarisation we have for any tangent vectors X and Y

A(X, Y ) = 1
2

(
A(X + Y,X + Y )− A(X,X)− A(Y, Y )

)
(13)

= 1
2

(
(γ(X + Y )− γ(X))X + (γ(X + Y )− γ(Y ))Y

)
− 1

2

(
(γ(JX + JY )− γ(JX))JX − (γ(JX + JY )− γ(JY ))JY

)
.

Suppose that X and Y are linearly independent and expand the identity A(X, tY ) =
tA(X, Y ) for all t ∈ R using (13). Then a comparison of coefficients shows that

γ(X + tY )− tγ(Y ) = γ(X + Y )− γ(Y ).

Taking the limit t → 0, shows that γ(X + Y ) = γ(X) + γ(Y ). Hence, γ defines a
(smooth) 1-form and

A(X, Y ) = 1
2

(
A(X + Y,X + Y )− A(X,X)− A(Y, Y )

)
= 1

2

(
γ(X)Y + γ(Y )X − γ(JX)(JY )− γ(JY )JX

)
,

for any tangent vector X and Y as desired. �

Definition 2.1. Suppose that M is manifold of real dimension 2n ≥ 4.
(1) An almost c-projective structure onM consists of an almost complex structure J

on M and a c-projective equivalence class [∇] of minimal complex connections.
(2) The torsion of an almost c-projective structure (M,J, [∇]) is the torsion T of

one, hence any, of the connections in [∇], i.e. T = −1
4
NJ .

(3) An almost c-projective structure (M,J, [∇]) is called a c-projective structure, if
J is integrable. (This is the case if and only if some and hence all connections
in the c-projective class are torsion-free.)

Remark 2.1. If M is a 2-dimensional manifold, any almost complex structure J is
integrable and any two torsion free complex connections are c-projectively equivalent.
Therefore, in this case one needs to modify the definition of a c-projective structure in
order to have something nontrivial (cf. [23, 24]). We shall not pursue this here.

Remark 2.2. Recall that the geodesics of an affine connection can be also realised as
the geodesics of a torsion-free connection; hence the definition of a projective structure
as an equivalence class of torsion-free connections does not constrain the considered
families of geodesics. The analogous statement for J-planar curves does not hold:
the J-planar curves of a complex connection cannot in general be realised as the J-
planar curves of a minimal connection. We discuss the motivation for the restriction to
minimal connections in the definition of almost c-projective manifolds in Remark 2.9.
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Definition 2.2. Let (M,JM , [∇M ]) and (N, JN , [∇N ]) be almost c-projective manifolds
of dimension 2n ≥ 4. A diffeomorphism Φ: M → N is called c-projective transforma-
tion or automorphism, if Φ is complex (i.e. TΦ◦JM = JN ◦TΦ) and for a (hence any)
connection ∇N ∈ [∇N ] the connection Φ∗∇N is a connection in [∇M ].

From Proposition 2.1 one deduces straightforwardly that also the following charac-
terisation of c-projective transformations holds:

Proposition 2.2. Let (M,JM , [∇M ]) and (N, JN , [∇N ]) be almost c-projective man-
ifolds of dimension 2n ≥ 4. Then a complex diffeomorphism Φ: M → N is a c-
projective transformation if and only if Φ maps JM -planar curves to JN -planar curves.

Suppose that (M,J, [∇]) is an almost c-projective manifold. Let ∇̂ and ∇ be con-
nections of the c-projective class [∇] that differ by Υα as in (11). Then ∇̂ and ∇ give
rise to linear connections on CTM = T 1,0M ⊕ T 0,1M that preserve the decomposition
into types. Hence, they induce connections on the complex vector bundles T 1,0M and
T 0,1M . To deduce the difference between the connections ∇̂ and ∇ on T 1,0M (re-
spectively T 0,1M), we just need to apply the splittings Πa

α and Πα
a (respectively their

conjugates) from the previous section to (11). Using the identities (4), we obtain

Πα
aΠβ

b υαβ
γΠc

γ = 1
2
Πα
aΠβ

b (Υαδβ
γ + δα

γΥβ − JαδΥδJβ
γ − JαγΥδJβ

δ)Πc
γ

= 1
2
Πα
aΠβ

b

(
(Υα − iJαδΥδ)Π

c
β + (Υβ − iJβδΥδ)Π

c
α

)
= 1

2
Πα
a (Υα − iJαδΥδ)δb

c + 1
2
Πβ
b (Υβ − iJβδΥδ)δa

c

= Υaδb
c + Υbδa

c, where Υa ≡ Πα
aΥα .

Similarly, we find that Πα
āΠβ

b υαβ
γΠc

γ = 0. These identities are the key to the following:

Proposition 2.3. Suppose (M,J, [∇]) is an almost c-projective manifold of dimension
2n ≥ 4. Assume two connections ∇̂ and ∇ in [∇] differ by Υα as in (11), and set
Υa := Πα

aΥα and Υā := Πα
āΥα. Then we have the following transformation rules for

the induced connections on T 1,0M and T 0,1M .
(1) ∇̂aX

c = ∇aX
c + ΥaX

c + δa
cΥbX

b and ∇̂āX
c = ∇āX

c,
(2) ∇̂āX

c̄ = ∇āX
c̄ + ΥāX

c̄ + δā
c̄Υb̄X

b̄ and ∇̂aX
c̄ = ∇aX

c̄.

Proof. We compute

∇̂aX
c = Πα

a∇̂α(Πc
γΠ

γ
bX

b) = Πα
aΠc

γ∇̂α(Πγ
bX

b)

= Πα
aΠc

γ∇α(Πγ
bX

b) + Πα
aΠc

γυαβ
γΠβ

bX
b

= Πα
a∇α(Πc

γΠ
γ
bX

b) + (Πα
aΠβ

b υαβ
γΠc

γ)X
b

= ∇aX
c + (Υaδb

c + Υbδa
c)Xb = ∇aX

c + ΥaX
c + δa

cΥbX
b,

as required. The remaining calculations are similar. �

Remark 2.3. The differential operator ∇ā : T 1,0M → ∧0,1M⊗T 1,0M is c-projectively
invariant, as is its conjugate ∇a : T 0,1M → ∧1,0M⊗T 0,1M . (Here and throughout, the
domain and codomain of a differential operator are declared as bundles, although the
operator is a map between corresponding spaces of sections.) This is unsurprising: it
is the usual ∂̄-operator on an almost complex manifold whose kernel (in the integrable
case) comprises the holomorphic vector fields.

In contrast, the transformation rules for ∇a : T 1,0M → ∧1,0M ⊗ T 1,0M and its
conjugate are analogues of projective equivalence (10) in the (1, 0) and (0, 1) direc-
tions respectively. When (M,J) is real-analytic and the c-projective class contains
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a real-analytic connection ∇, this can be made precise by extending J and [∇] to a
complexification MC of M , so that T 1,0M and T 0,1M extend to distributions on MC.
If J is integrable, these distributions integrate to two foliations ofMC, and [∇] induces
projective structures on the leaves of these foliations.

Taking the trace in equation (11) and in the formulae in Proposition 2.3, we deduce:

Corollary 2.4. On an almost c-projective manifold (M,J, [∇]), the transformation
rules for the induced linear connections on ∧2nTM , ∧nT 1,0M , and ∧nT 0,1M are:

(1) ∇̂αΣ = ∇αΣ + (n+ 1)ΥαΣ, for Σ ∈ Γ(∧2nTM)

(2) ∇̂aσ = ∇aσ + (n+ 1)Υaσ and ∇̂āσ = ∇āσ, for σ ∈ Γ(∧nT 1,0M)

(3) ∇̂āσ̄ = ∇āσ̄ + (n+ 1)Υāσ̄ and ∇̂aσ̄ = ∇aσ̄, for σ̄ ∈ Γ(∧nT 0,1M).

For the convenience of the reader, let us also record the transformation rules for the
induced connections on T ∗M , respectively ∧1,0 and ∧0,1. If two complex connections
∇̂ and ∇ are related via Υα as in (11), then the induced connections on T ∗M are
related by

∇̂αφγ = ∇αφγ − 1
2
(Υαφγ + Υγφα − JαβΥβJγ

δφδ − JαβφβJγδΥδ). (14)

Therefore, we obtain:

Proposition 2.5. Suppose (M,J, [∇]) is an almost c-projective manifold of dimension
2n ≥ 4. Assume two connections ∇̂ and ∇ in [∇] differ by Υα as in (11) and set
Υa := Πα

aΥα and Υā := Πα
āΥα. Then we have the following transformation rules for

the induced connections on ∧1,0 and ∧0,1:
(1) ∇̂aφc = ∇aφc −Υaφc − φaΥc and ∇̂āφc = ∇āφc ,
(2) ∇̂āφc̄ = ∇āφc̄ −Υāφc̄ − φāΥc̄ and ∇̂aφc̄ = ∇aφc̄ .

Note that the real line bundle ∧2nTM is oriented and hence admits oriented roots.
We denote (∧2nTM)

1
n+1 by ER(1, 1) and for any k ∈ Z we set ER(k, k) := E(1, 1)⊗k,

where ER(k, k)∗ = ER(−k,−k). It follows from Corollary 2.4 that for a section Σ of
ER(k, k) we have

∇̂αΣ = ∇αΣ + kΥαΣ. (15)
In particular, we immediately deduce the following result.

Proposition 2.6. Suppose (M,J, [∇]) is an almost c-projective manifold of dimension
2n ≥ 4. The map sending an affine connection to its induced connection on ER(1, 1)
induces a bijection from connections in [∇] to linear connections on ER(1, 1).

Since ∧2nTM and ER(1, 1) are oriented, they can be trivialised by choosing a positive
section. Such a positive section τ of ER(1, 1) gives rise to a linear connection on ER(1, 1)
by decreeing that τ is parallel and therefore, by Proposition 2.6, to a connection in
the c-projective class. We call a connection ∇ ∈ [∇] that arises in this way a special
connection. Suppose τ̂ and τ are two nowhere vanishing sections of ER(1, 1) and denote
by ∇̂ and ∇ the corresponding connections. Then τ̂ = e−fτ for some smooth function
f on M and any σ ∈ Γ(ER(1, 1)) can be written as σ = hτ = hef τ̂ for a smooth
function h on M . Since ∇σ = dh⊗ τ , we have

∇̂σ = d(hef )⊗ τ̂ = dh⊗ τ + df ⊗ σ = ∇σ + (∇f)σ.

Therefore, ∇̂ and ∇ differ by an exact 1-form, namely Υα ≡ ∇αf .
In some of the following sections, like for instance in Section 3.1, we shall assume

also that the complex line bundle ∧nT 1,0M admits a (n + 1)st root and that we have
chosen one, which we will denote by E(1, 0) (following a standard notation on CPn). In
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that case we shall denote its conjugate bundle E(1, 0) by E(0, 1) and the dual bundle
E(1, 0)∗ by E(−1, 0). In general, we shall also write E(k, `) := E(1, 0)⊗k ⊗ E(0, 1)⊗` for
(k, `) ∈ Z × Z and refer to its sections as c-projective densities of weight (k, `). By
Corollary 2.4 we see that, for a c-projective density σ of weight (k, `), we have

∇̂aσ = ∇aσ + kΥaσ ∇̂āσ = ∇āσ + `Υāσ. (16)

Our notion of c-projective density means, in particular, that we may identify ∧n,0 with
E(−n− 1, 0) and it is useful to have a notation for this change of viewpoint. Precisely,
we may regard our identification E(−n− 1, 0) '−→ ∧n,0 as a tautological section εab···c
of ∧n,0(n + 1, 0), such that a c-projective density ρ of weight (−n− 1, 0) corresponds
to ρεab···c, a form of type (n, 0). Note that E(k, k) ∼= ER(k, k)⊗ C.

2.2. Parabolic geometries. For the convenience of the reader we recall here some
basics of parabolic geometries; for a comprehensive introduction see [36].

A parabolic geometry on a manifold M is a Cartan geometry of type (G,P ), where
G is a semisimple Lie group and P ⊂ G a so-called parabolic subgroup. Hence, it is
given by the following data:

• a principal P -bundle p : G →M
• a Cartan connection ω ∈ Ω1(G, g)—that is, a P -equivariant 1-form on G with
values in g defining a trivialisation TG ∼= G × g and reproducing the generators
of the fundamental vector fields,

where g denotes the Lie algebra of G. Note that the projection G → G/P , equipped
with the (left) Maurer–Cartan form ωG ∈ Ω1(G, g) of G, defines a parabolic geometry
on G/P , which is called the homogeneous or flat model for parabolic geometries of
type (G,P ).

The curvature of a parabolic geometry (G p→M,ω) is a 2-form K on G with values
in g, defined by

K(χ, ξ) = dω(χ, ξ) + [ω(χ), ω(ξ)] for vector fields χ and ξ on G,

where d denotes the exterior derivative and [ , ] the Lie bracket of g.
The curvature of the homogeneous model (G→ G/P, ωG) vanishes identically. Fur-

thermore, the curvature K of a parabolic geometry of type (G,P ) vanishes identically
if and only if it is locally isomorphic to (G → G/P, ωG). Thus, the curvature K
measures the extent to which the geometry differs from its homogeneous model.

Given a parabolic geometry (G p→ M,ω) of type (G,P ), any representation E of P
gives rise to an associated vector bundle E := G ×P E over M . These are the natural
vector bundles on a parabolic geometry. Notice that the Cartan connection ω induces
an isomorphism

G ×P g/p ∼= TM

[u,X + p] 7→ Tup
(
ω−1(X)

)
,

where p denotes the Lie algebra of P and the action of P on g/p is induced by the
adjoint action of G. Similarly, ω allows us to identify all tensor bundles on M with
associated vector bundles. The vector bundles corresponding to P -modules obtained
by restricting a representation of G to P are called tractor bundles. These bundles play
an important role in the theory of parabolic geometries, since the Cartan connection
induces linear connections, called tractor connections, on these bundles. An important
example of a tractor bundle is the adjoint tractor bundle AM = G ×P g, which has a
canonical projection to TM corresponding to the P -equivariant projection g→ g/p.
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Remark 2.4. The abstract theory of tractor bundles and connections even provides
an alternative description of parabolic geometries (see [30]).

By normalising the curvature of a parabolic geometry, the prolongation procedures
of [35, 85, 95] leads to an equivalence of categories between so-called regular normal
parabolic geometries and certain underlying structures, which may be described in
more conventional geometric terms. Among the most prominent of these are conformal
structures, projective structures, and CR-structures of hypersurface type. In the next
section we shall see that almost c-projective manifolds form another class of examples.

From the defining properties of a Cartan connection it follows immediately that the
curvature K of a parabolic geometry of type (G,P ) is P -equivariant and horizontal.
Hence, K can be identified with a section of the vector bundle ∧2T ∗M ⊗ AM and
therefore corresponds via ω to a section κ of the vector bundle

G ×P ∧2(g/p)∗ ⊗ g ∼= G ×P ∧2p+ ⊗ g,

where p+ is the nilpotent radical of p and the latter isomorphism is induced by the
Killing form of g. Now consider the complex for computing the Lie algebra homology
H∗(p+, g) of p+ with values in g:

0← g
∂∗← p+ ⊗ g

∂∗← ∧2p+ ⊗ g← . . .

Since the linear maps ∂∗ are P -equivariant, they induce vector bundle maps between
the corresponding associated vector bundles. Moreover, the homology spaces Hi(p+, g)
are naturally P -modules and therefore give rise to natural vector bundles. A parabolic
geometry is called normal, if ∂∗κ = 0. In this case, we can project κ to a section
κh of G ×P H2(p+, g), called the harmonic curvature. The spaces Hi(p+, g) are com-
pletely reducible P -modules and hence arise as completely reducible representations of
the reductive Levi factor G0 of P via the projection P → P/ exp(p+) = G0. In par-
ticular, the harmonic curvature is a section of a completely reducible vector bundle,
which makes it a much simpler object than the full curvature. Moreover, using the
Bianchi identities of κ, it can be shown that the harmonic curvature is still a complete
obstruction to local flatness:

Proposition 2.7 (see e.g. [36]). Suppose that (G →M,ω) is a regular normal parabolic
geometry. Then κ ≡ 0 if and only if κh ≡ 0.

Remark 2.5. The machinery of BGG sequences shows that the curvature of a regu-
lar normal parabolic geometry can be reconstructed from the harmonic curvature by
applying a BGG splitting operator (see [25]).

2.3. Almost c-projective manifolds as parabolic geometries. It is convenient
for our purposes to realise the Lie algebra g := sl(n+ 1,C) of complex trace-free linear
endomorphisms of Cn+1 as block matrices of the form

g =

{(
−trA Z
X A

)
: A ∈ gl(n,C), X ∈ Cn, Z ∈ (Cn)∗

}
, (17)

where tr : gl(n,C)→ C denotes the trace. The block form equips g with the structure
of a graded Lie algebra:

g = g−1 ⊕ g0 ⊕ g1,

where g0 is the block diagonal subalgebra isomorphic to gl(n,C) and g−1
∼= Cn, respec-

tively g1
∼= (Cn)∗, as g0-modules. Note that the subspace p := g0 ⊕ g1 is a subalgebra

of g (with p ∼= g0 n g1 as Lie algebra). Furthermore, p is a parabolic subalgebra with
Abelian nilpotent radical p+ := g1 and Levi factor isomorphic to g0. For later purposes
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let us remark here that we may conveniently decompose an element A ∈ g0 into its
trace-free part and into its trace part as follows(

0 0
0 A− trA

n
Idn

)
+

n+ 1

n
trA

(
− n
n+1

0
0 1

n+1
Idn

)
. (18)

Now set G := PSL(n + 1,C) and let P be the stabiliser in G of the complex line
generated by the first standard basis vector of Cn+1. Let G0 be the subgroup of P that
consists of all elements g ∈ P whose adjoint action Ad(g) : g→ g preserve the grading.
Hence, it consists of equivalence classes of matrices of the form(

(detCC)−1 0
0 C

)
where C ∈ GL(n,C),

and the adjoint action of G0 on g induces an isomorphism

G0
∼= GL(g−1,C) ∼= GL(n,C).

Obviously, the subgroups G0 and P of G have corresponding Lie algebras g0 and p,
respectively.

From now on we shall view G0 ⊂ P ⊂ G as real Lie groups in accordance with the
identification of GL(n+ 1,C) with the real subgroup of GL(2n+ 2,R) that is given by

GL(2n+ 2, J2(n+1)) =
{
A ∈ GL(2(n+ 1),R) : AJ2(n+1) = J2(n+1)A

}
,

where J2(n+1) is the following complex structure on R2n+2:

J2(n+1) =

J2

. . .
J2

 with J2 =

(
0 −1
1 0

)
.

Suppose now that (M,J, [∇]) is an almost c-projective manifold of real dimension
2n ≥ 4. Then J reduces the frame bundle FM ofM to a principal bundle p0 : G0 →M
with structure group G0 corresponding to the group homomorphism

G0
∼= GL(n,C) ∼= GL(2n, J2n) ↪→ GL(2n,R).

The general prolongation procedures of [35, 85, 95] further show that G0 → M can
be canonically extended to a principal P -bundle p : G → M , equipped with a normal
Cartan connection ω ∈ Ω1(G, g) of type (G,P ). Moreover, (G p→ M,ω) is uniquely
defined up to isomorphism and these constructions imply:

Theorem 2.8 (see also [55, 103]). There is an equivalence of categories between almost
c-projective manifolds of real dimension 2n ≥ 4 and normal parabolic geometries of
type (G,P ), where G and P are viewed as real Lie groups. The homogeneous model
(G→ G/P, ωG) corresponds to the c-projective manifold

(CPn, Jcan, [∇gFS ]),

where Jcan denotes the canonical complex structure on CPn and ∇gFS the Levi-Civita
connection of the Fubini–Study metric gFS.

Let us explain briefly how the Cartan bundle G and the normal Cartan connection
ω of an almost c-projective manifold (M,J, [∇]) of dimension 2n ≥ 4 are constructed.
The reduction G0 → FM is determined by the pullback of the soldering form on
FM and hence can be encoded by a strictly horizontal G0-equivariant 1-form θ ∈
Ω1(G0, g−1). Recall also that any connection ∇ ∈ [∇] can be equivalently viewed as a
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principal connection γ∇ ∈ Ω1(G0, g0) on G0. Then G is defined to be the disjoint union
tu∈G0Gu, where

Gu := {θ(u) + γ∇(u) : ∇ ∈ [∇]} for any u ∈ G0.

The projection p := p0 ◦ q : G → M , where G q→ G0
p0→ M , naturally acquires the

structure of a P -principal bundle. Any element p ∈ P can be uniquely written as p =
g0 exp(Z), where g0 ∈ G0 and Z ∈ g1. The right action of an element g0 exp(Z) ∈ P
on an element θ(u) + γ∇(u) ∈ Gu is given by

(θ(u) + γ∇(u)) · g0 exp(Z) := θ(u · g0)(·) + γ∇(u · g0)(·) + [Z, θ(u · g0)(·)], (19)

where [ , ] denotes the Lie bracket g1 × g−1 → g0.

Remark 2.6. The soldering form θ ∈ Ω1(G0, g−1) gives rise to isomorphisms TM ∼=
G0 ×G0 g−1 and T ∗M ∼= G0 ×G0 g1. For elements X ∈ g−1 and Z ∈ g1, the Lie bracket
[Z,X] ∈ g0

∼= gl(g−1, J2n) evaluated on an element Y ∈ g−1 is given by

[[Z,X], Y ] = −(ZXY + ZY X − ZJ2nXJ2nY − ZJ2nY J2nX). (20)

This shows that changing a connection form θ + γ∇ by a G0-equivariant function
Z : G0 → g1 according to (19) corresponds precisely to changing it c-projectively
(cf. formula (11)).

The definition of G easily implies that the following holds.

Corollary 2.9. The projection q : G → G0 is a trivial principal bundle with structure
group P+ := exp(p+) and its global G0-equivariant sections, called Weyl structures, are
in bijection with principal connections in the c-projective class. Moreover, any Weyl
structure σ : G0 → G induces an vector bundle isomorphism

G0 ×G0 E ∼= G ×P E
[u,X] 7→ [σ(u), X],

for any P -module E.

Note that there is a tautological 1-form ν ∈ Ω1(G, g−1 ⊕ g0) on G given by

ν(θ(u) + γ∇(u))(ξ) := (θ(u) + γ∇(u))((Tq)ξ). (21)

Extending this form to a normal Cartan connection ω ∈ Ω1(G, g) establishes the equiv-
alence of categories in Theorem 2.8.

Remark 2.7. In Section 2.1 we observed that there are always so-called special connec-
tions in the c-projective class. A Weyl structure corresponding to a special connection
is precisely what in the literature on parabolic geometries is called an exact Weyl struc-
ture (see [36, 37]). The name is due to the fact that they form an affine space over the
space of exact 1-forms on M .

Note also that the almost complex structure J on M induces an almost complex
structure JG0 on the complex frame bundle G0 of M . If J is integrable, so is JG0 and
G0 is a holomorphic vector bundle over M . Moreover, the complex structure on g
induces, by means of the isomorphism ω : TG ∼= G × g, an almost complex structure
JG on G, satisfying Tp ◦ JG = J ◦ Tp and Tq ◦ JG = JG0 ◦ Tq. Note that the definition
of the almost complex structure on JG0 and JG implies that θ and ω are of type (1, 0).

Let us also remark that an immediate consequence of Theorem 2.8 and the Liouville
Theorem for Cartan geometries (see e.g. [36, Proposition 1.5.3]) is the following classical
result.
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Proposition 2.10. For n ≥ 2 the c-projective transformations of (CPn, Jcan, [∇gFS ])
(which by Proposition 2.2 are the complex diffeomorphisms of CPn that map complex
lines to complex lines) are precisely given by the left multiplications of elements in
PSL(n + 1,C). Moreover, any local c-projective transformation of (CPn, Jcan, [∇gFS ])
uniquely extends to a global one.

We finish this section by introducing some notation. The P -module g admits an
invariant filtration g ⊃ p ⊃ g1 and hence the adjoint tractor bundle AM := G ×P g is
naturally filtered

AM = A−1M ⊃ A0M ⊃ A1M,

with A1M ∼= T ∗M and AM/A0M ∼= TM . Hence, the associated graded vector bundle
to AM is given by

gr(AM) = gr−1(AM)⊕ gr0(AM)⊕ gr1(AM) = TM ⊕ gl(TM, J)⊕ T ∗M, (22)

which can be identified with G0 ×G0 g.

2.4. The curvature of the canonical Cartan connection. Suppose σ : G0 → G is a
Weyl structure and let γ∇ be the corresponding principal connection in the c-projective
class. Since the normal Cartan connection ω is P -equivariant and σ is G0-equivariant,
the pullback σ∗ω ∈ Ω1(G0, g) is G0-equivariant and hence decomposes according to the
grading on g into three components. Since ω extends the tautological form ν on G,
defined by (21), we deduce that

σ∗ω = θ + γ∇ − p∇, (23)

where p∇ ∈ Ω1(G0, g1) is horizontal and G0-equivariant and hence can be viewed as
a section P∇ of T ∗M ⊗ T ∗M , called the Rho tensor of ∇. Via σ, the curvature
κ ∈ Ω2(M,AM) of ω can be identified with a section κσ of

∧2T ∗M ⊗ gr(AM)

= (∧2T ∗M ⊗ TM)⊕ (∧2T ∗M ⊗ gl(TM, J))⊕ (∧2T ∗M ⊗ T ∗M),

which decomposes according to this splitting into three components

κσ = T +W∇ − C∇.

One computes straightforwardly that T ∈ Γ(∧2T ∗M⊗TM) is the torsion of the almost
c-projective structure and that C∇ = d∇P∇ ∈ Γ(∧2T ∗M ⊗ T ∗M), where d∇ denotes
the covariant exterior derivative on differential forms with values in T ∗M induced by
∇. The tensor C∇ is called the Cotton–York tensor of ∇. To describe the component
W∇ ∈ Γ(∧2T ∗M ⊗ gl(TM, J)), called the (c-projective) Weyl curvature of ∇, let us
denote by R∇ ∈ Ω2(M, gl(TM, J)) the curvature of ∇. Then one has

W∇ = R∇ − ∂P∇,

where
(∂P∇)αβ

γ
ε := δ[α

γP∇β]ε − J[α
γP∇β]ζJε

ζ − P∇[αβ]δε
γ − J[α

ζP∇β]ζJε
γ. (24)

Remark 2.8. The map ∂ : T ∗M ⊗ T ∗M → ∧2T ∗M ⊗ gl(TM, J) given by (24) is
related to Lie algebra cohomology. It is easy to see that the Lie algebra differentials
in the complex computing the Lie algebra cohomology of the Abelian real Lie algebra
g−1 with values in the representation g are G0-equivariant and that ∂ is induced by
the restriction to g∗−1 ⊗ g1

∼= g1 ⊗ g1 of half of the second differential in this complex.
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The normal Cartan connection ω is characterised as the unique extension of ν to a
Cartan connection such that ∂∗κσ = 0 for all Weyl structures σ : G0 → G. Analysing
ker ∂∗ shows that Tαβγ is in there, since forms of type (0, 2) are, and C∇ is, since
∧2T ∗M ⊗ T ∗M ⊂ ker ∂∗. Hence, P∇ is uniquely determined by requiring that W∇ be
in the kernel of ∂∗.

Remark 2.9. Recall that in Definition 2.1 we restricted our definition of almost c-
projective structures to c-projective equivalence classes of minimal connections. Since
the kernel of

∂∗ : ∧2T ∗M ⊗ TM → T ∗M ⊗ gl(TM, J)

consists precisely of all the 2-forms with values in TM of type (0, 2), the discussion of
the construction of the Cartan connection above shows that the minimality condition
is forced by the normalisation condition of the Cartan connection. The requirement
for the almost c-projective structure to be minimal is however not necessary in or-
der to construct a canonical Cartan connection. In fact, starting with any complex
connection, one can show that there is a complex connection with the same J-planar
curves whose torsion has only two components, namely the (0, 2)-component −1

4
NJ

and a component in the subspace of (1, 1)-tensors in ∧2T ∗M ⊗TM that are trace and
J-trace free. Imposing this normalisation condition on an almost c-projective structure
allows then analogously as above to associate a canonical Cartan connection (see [65]).

Proposition 2.11. Suppose (M,J, [∇]) is an almost c-projective manifold of dimen-
sion 2n ≥ 4. Let ∇ ∈ [∇] be a connection in the c-projective class. Then the Rho
tensor corresponding to ∇ is given by

P∇αβ = 1
n+1

(Ric∇αβ + 1
n−1

(Ric∇(αβ) − J(α
γJβ)

δRic∇γδ)), (25)

where Ric∇αβ := R∇γα
γ
β is the Ricci tensor of ∇. Moreover, if ∇̂ ∈ [∇] is another

connection in the class, related to ∇ according to (11), then

P∇̂αβ = P∇αβ −∇αΥβ + 1
2
(ΥαΥβ − JαγJβδΥγΥδ). (26)

Proof. The map ∂∗ : ∧2T ∗M ⊗ gl(TM, J)→ T ∗M ⊗T ∗M is a multiple of a Ricci-type
contraction. Hence, the normality of ω implies

R∇αβ
α
ε = (∂P∇)αβ

α
ε = (n+ 1

2
)P∇βε − 1

2
P∇εβ + J(β

γJε)
ζP∇γζ . (27)

Therefore, Ric∇[βε] = (n+ 1)P∇[βε] and Ric∇(βε) = nP∇(βε) + J(β
γJε)

ζPγζ , which implies that

Ric∇(βε) − J(β
γJε)

ζRic∇γζ = (n− 1)(P∇(βε) − J(β
γJε)

ζP∇γζ).

Using these identities one verifies immediately that formula (25) holds. The formula
(26) for the change of the Rho tensor can easily be verified directly or follows from the
general theory of Weyl structures for parabolic geometries established in [37] taking
into account that the Rho tensor in [37] is −1

2
times the Rho tensor given by (25) and

our conventions for the definition of Υ as in (11). �

As an immediate consequence (writing out (26) in terms of its components using the
various projectors Πa

α, . . . and the formulae (4)) we have:

Corollary 2.12.

• P∇ab = P∇
āb̄

and P∇āb = P∇
ab̄

• P∇̂ab = P∇ab −∇aΥb + ΥaΥb

• P∇̂āb = P∇āb −∇āΥb
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For any connection ∇ ∈ [∇], its Weyl curvature W∇ is, by construction, a section
of ∧2T ∗M ⊗ gl(TM, J) that satisfies W∇

αβ
α
γ ≡ 0. This implies that also JζαW∇

αβ
ζ
ε =

W∇
αβ

α
ζJε

ζ ≡ 0. In the sequel we will often simply writeW instead ofW∇, and similarly
for other tensors such as the Rho tensor, the dependence of ∇ being understood.
Viewing W as a 2-form with values in the complex bundle vector bundle gl(TM, J) ∼=
gl(T 1,0M,C), it decomposes according to (p, q)-types into three components:

Wab
c
d Wab̄

c
d Wāb̄

c
d.

The vanishing of the trace and J-trace above, then imply that

Wab
a
d = Wab̄

a
d ≡ 0.

In these conclusions and in Corollary 2.12 we begin to see the utility of writing our
expressions in using the barred and unbarred indices introduced in Section 1. In the
following discussion we pursue this systematically, firstly by describing exactly how
the curvature of a complex connection decomposes. We analyse these decompositions
from the perspective of c-projective geometry: some pieces are invariant whilst others
transform simply. For the convenience of the reader, we reiterate some of our previous
conclusions in the following theorem (but prove them more easily using barred and
unbarred indices, as just advocated).

Proposition 2.13. Suppose (M,J, [∇]) is an almost c-projective manifold of dimen-
sion 2n ≥ 4. Let Tāb̄c denote its torsion (already observed to be a constant multiple
of the Nijenhuis tensor of (M,J)). Then the curvature R of a connection ∇ in the
c-projective class decomposes as follows :

Rab
c
d = Wab

c
d + 2δ[a

cPb]d + βabδd
c

Rab̄
c
d = Wab̄

c
d + δa

cPb̄d + δd
cPb̄a

Wab̄
c
d = Hab̄

c
d − 1

2(n+1)

(
δa
cTdf

ēTēb̄
f + δd

cTaf
ēTēb̄

f
)
− 1

2
Tad

ēTēb̄
c

Rāb̄
c
d = Wāb̄

c
d = ∇dTāb̄

c

(28)

where

Wab
c
d = W[ab]

c
d W[ab

c
d] = 0 Wab

a
d = 0 βab = −2P[ab]

Hab̄
c
d = Hdb̄

c
a Hab̄

a
d = 0.

Let ∇̂ be another connection in the c-projective class, related to ∇ by (11), and denote
its curvature components by Ŵ , Ĥ, and P̂. Then we have:

(1) Ŵab
c
d = Wab

c
d and Ŵab̄

c
d = Wab̄

c
d and Ĥab̄

c
d = Hab̄

c
d,

(2) Ŵāb̄
c
d = Wāb̄

c
d + Tāb̄

eυed
c and if J is integrable, then Wāb̄

c
d ≡ 0,

(3) Wab
c
c ≡ 0,

(4) Wab̄
c
c = Tfa

ēTēb̄
f ,

whilst we recall that P̂ab = Pab −∇aΥb + ΥaΥb, P̂b̄d = Pb̄d −∇b̄Υd.
The tensor βab = −2P[ab] satisfies

∇[bβce] = Pf̄ [bTce]
f̄ − 1

n+1
T[bc

f̄Te]a
d̄Td̄f̄

a. (29)

Finally, the Cotton–York tensors Cabc and Cab̄c are defined as

Cabc := ∇aPbc −∇bPac + Tab
d̄Pd̄c and Cab̄c := ∇aPb̄c −∇b̄Pac. (30)
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The first of these satisfies a Bianchi identity

∇aWbc
a
e − (n− 2)Cbce

= 2Ta[b
f̄Hc]f̄

a
e +

2

n+ 1
Tbc

f̄Tea
d̄Td̄f̄

a − n

n+ 1
Te[b

f̄Tc]a
d̄Td̄f̄

a (31)

and transforms as
Ĉbce = Cbce + ΥaWbc

a
e (32)

under c-projective change (11). Another part of the Bianchi identity reads

Cab̄c − Ccb̄a = 1
n+1

(
Tb̄f̄

d∇dTac
f̄ +Rb̄f̄

d
dTac

f̄ − 2Rb̄f̄
d

[aTc]d
f̄
)
. (33)

Proof. In this proof we also take the opportunity to develop various useful formulae
for torsion and curvature and for how these quantities transform under c-projective
change (11). As in the statement of Proposition 2.13, we express all these formulae
in terms of the abstract indices on almost complex manifolds developed in Section 1.
Firstly, recall that since we are working with minimal connections (cf. Definition 2.1),
their torsions are restricted to being of type (0, 2) and this means precisely that

(∇a∇b −∇b∇a)f + Tab
c̄∇c̄f = 0 (∇ā∇b −∇b∇ā)f = 0

(∇ā∇b̄ −∇b̄∇ā)f + Tāb̄
c∇cf = 0 (∇a∇b̄ −∇b̄∇a)f = 0,

(34)

where Tabc̄ ≡ Πα
aΠβ

bΠγ
cTαβ

γ, equivalently its complex conjugate Tāb̄c = Tabc̄, represents
the Nijenhuis tensor as in (8). Notice that the second line of (34) is the complex
conjugate of the first. In this proof, we take advantage of this general feature by listing
only one of such conjugate pairs, its partner being implicitly valid. For example, here
are characterisations of sufficiently many components of the general curvature tensor
Rαβ

γ
δ.

(∇a∇b −∇b∇a)X
c + Tab

d̄∇d̄X
c = Rab

c
dX

d

(∇a∇b̄ −∇b̄∇a)X
c = Rab̄

c
dX

d[
or (∇ā∇b −∇b∇ā)X

c = Rāb
c
dX

d, if preferred
]

(∇a∇b −∇b∇a)X
c̄ + Tab

d̄∇d̄X
c̄ = Rab

c̄
d̄X

d̄.

(35)

For convenience, the dual formulae are sometimes preferred: for example,

(∇a∇b −∇b∇a)φd + Tab
c̄∇c̄φd = −Rab

c
dφc . (36)

The tensor υαβγ employed in a c-projective change of connection (11) was already
broken into irreducible pieces in deriving Proposition 2.3, e.g.

υab
c = Πα

aΠβ
bΠc

γυαβ
γ = Υaδb

c + Υbδa
c ⇒ ∇̂aX

c = ∇aX
c + ΥaX

c + ΥbX
bδa

c (37)

and υābc = Πα
āΠβ

bΠc
γυαβ

γ = 0 ⇒ ∇̂āX
c = ∇āX

c. (38)

It is an elementary matter, perhaps more conveniently executed in the dual formulation

∇̂aφb = ∇aφb −Υaφb −Υbφa ∇̂āφb = ∇āφb , (39)

to compute the effect of these changes on curvature, namely

R̂ab
c
d = Rab

c
d − 2δ[a

d(∇b]Υc) + 2δ[a
dΥb]Υc + 2(∇[aΥb])δd

c

R̂ab̄
c
d = Rab̄

c
d − δac∇b̄Υd − δdc∇b̄Υa

R̂ab
c̄
d̄ = Rab

c̄
d̄ + Tab

c̄Υd̄ + ΥēTab
ēδd̄

c̄ = Rab
c̄
d̄ + Tab

ēυēd̄
c̄.

(40)
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We shall also need the Bianchi symmetries derived from (35) or, more conveniently
in the dual formulation, as follows. Evidently,

∇a(∇b∇c −∇c∇b)f +∇b(∇c∇a −∇a∇c)f +∇c(∇a∇b −∇b∇a)f

= (∇a∇b −∇b∇a)∇cf + (∇b∇c −∇c∇b)∇af + (∇c∇a −∇a∇c)∇bf,

which we may expand using (34) and (35) to obtain

(∇aTbc
d̄ +∇bTca

d̄ +∇cTab
d̄)∇d̄f = (Rab

d
c +Rbc

d
a +Rbc

d
a)∇df

and hence that
∇[aTbc]

d̄ = 0 R[ab
c
d] = 0. (41)

Similarly, by looking at different orderings for the indices of ∇a∇b̄∇cf , we find that

Rab̄
c
d −Rdb̄

c
a + Tad

ēTēb̄
c = 0 Rab

c̄
d̄ = ∇d̄Tab

c̄. (42)

Already, the final statement of (28) is evident and if Tabc̄ = 0 then both Rab
c̄
d̄ and its

complex conjugate Rāb̄
c
d vanish. Notice that ∂P does not contribute to this piece of

curvature. Specifically, from (24)

(∂P)āb̄
c
d = Πα

āΠβ

b̄
Πc
γΠ

ε
d(∂P)αβ

γ
ε = −P[āb̄]δd

c − P[b̄ā]δd
c = 0.

It follows that Wāb̄
c
d = Rāb̄

c
d in general and that Wāb̄

c
d = Rāb̄

c
d = 0 in the integrable

case. The rest of statement (2) also follows, either from the last line of (40) or, more
easily, from the c-projective invariance of Tabc̄ (depending only on the underlying almost
complex structure), the second identity of (42), and the transformation rules (39).

Now let us consider the curvature Rab
c
d. From (24), we compute that

(∂P)ab
c
d = Πα

aΠβ
bΠc

γΠ
ε
d(∂P)αβ

γ
ε = 2δ[a

cPb]d − 2P[ab]δd
c

and from (25) that

Pab = Πα
aΠβ

bPαβ = 1
n+1

(
Ricab + 2

n−1
Ric(ab)

)
= 1

n+1

(
Ricab + 2

n−1
Ric(ab)

)
,

equivalently that Ricab = (n − 1)Pab + 2P[ab]. Bearing in mind the Bianchi symmetry
(41) for Rab

c
d, this means that we may write

Rab
c
d = Wab

c
d + 2δ[a

cPb]d + βabδd
c, (43)

where
Wab

c
d = W[ab]

c
d W[ab

c
d] = 0 Wab

a
d = 0 βab = −2P[ab].

Comparing this decomposition with the first line of (40) implies thatWab
c
d is invariant

and confirms that Pab transforms according to Corollary 2.12. In summary,

Ŵab
c
d = Wab

c
d P̂ab = Pab −∇aΥc + ΥbΥc β̂ab = βab + 2∇[aΥb].

We have shown (3) and the first statement of (1).
The remaining statements concern the curvature Rab̄

c
d. From (24), we compute that

(∂P)ab̄
c
d = Πα

aΠβ

b̄
Πc
γΠ

ε
d(∂P)αβ

γ
ε = δa

cPb̄d + δd
cPb̄a

and from (25) that

Pb̄d = Πβ

b̄
Πε
dPβε = 1

n+1
Ricb̄d = 1

n+1
Rab̄

a
d.

From (42) it now follows that

Rab̄
c
d + 1

2
Tad

ēTēb̄
c = Hab̄

c
d − 1

2(n+1)

(
δa
cTdf

ēTēb̄
f + δd

cTaf
ēTēb̄

f
)

+ (∂P)ab̄
c
d, (44)

where
Hab̄

c
d = Hdb̄

c
a Hab̄

a
d = 0.
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Recall that by definition
Wab̄

c
d = Rab̄

c
d − (∂P)ab̄

c
d.

Therefore

Wab̄
c
d = Hab̄

c
d − 1

2(n+1)

(
δa
cTdf

ēTēb̄
f + δd

cTaf
ēTēb̄

f
)
− 1

2
Tad

ēTēb̄
c.

Comparison with the formula for R̂ab̄
c
d in (40) immediately shows thatWab̄

c
d and Hab̄

c
d

are c-projectively invariant and also that

Wab̄
c
c = −Taf ēTēb̄f ,

as required to complete (1) and (4). Next we demonstrate the behaviour of the Cotton–
York tensor. For this, we need a Bianchi identity with torsion, which may be established
as follows. Evidently,

∇a(∇b∇c −∇c∇b)φe +∇b(∇c∇a −∇a∇c)φe +∇c(∇a∇b −∇b∇a)φe

= (∇a∇b −∇b∇a)∇cφe + (∇b∇c −∇c∇b)∇aφe + (∇c∇a −∇a∇c)∇bφe,

the left hand side of which may be expanded by (36) as

∇a(−Rbc
d
eφd − Tbcd̄∇d̄φe) + · · ·+ · · · ,

where · · · represent similar terms where the indices abc are cycled around. On the
other hand, the right hand side may be expanded as

· · · −Rbc
d
a∇dφe −Rbc

d
e∇aφd − Tbcd̄∇d̄∇aφe − · · · .

Comparison yields

(∇[aRbc]
d
e)φd + (∇[aTbc]

d̄)∇d̄φe − T[bc
d̄Ra]d̄

f
eφf = R[bc

d
a]∇dφe

and, from the Bianchi symmetries (41), we conclude that

∇[aRbc]
d
e = T[ab

f̄Rc]f̄
d
e.

Using (28) and tracing over a and d yields

∇aWbc
a
e − 2(n− 2)∇[bPc]e + 3∇[bβce]

= 2Ta[b
f̄Hc]f̄

a
e+

1

n+ 1
Tbc

f̄Tea
d̄Td̄f̄

a−n+ 2

n+ 1
Te[b

f̄Tc]a
d̄Td̄f̄

a+(n−2)Tbc
f̄Pf̄e+3Pf̄ [bTce]

f̄ .

Skewing this identity over bce gives (29) and substituting back gives

∇aWbc
a
e − 2(n− 2)∇[bPc]e

= 2Ta[b
f̄Hc]f̄

a
e +

2

n+ 1
Tbc

f̄Tea
d̄Td̄f̄

a − n

n+ 1
Te[b

f̄Tc]a
d̄Td̄f̄

a + (n− 2)Tbc
f̄Pf̄e.

The contracted Bianchi identity (31) follows from the definition (30) of the Cotton–
York tensor. Notice that the right hand side of (31) is c-projectively invariant. Also,
by computing that

∇̂aŴbc
d
e = ∇̂aWbc

d
e

= ∇aWbc
d
e − 2ΥaWbc

d
e −ΥbWac

d
e −ΥcWba

d
e + δa

dΥfWbc
f
e −ΥeWbc

d
a

and tracing over a and d, we see that

∇̂aŴbc
a
e = ∇aWbc

a
e + (n− 2)ΥaWbc

a
e

and for n > 2 conclude that (32) is valid. The case n = 2 is somewhat degenerate. Al-
though (32) is still valid, as we shall see below in Proposition 2.14, the Weyl curvature
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Wbc
a
d vanishes by symmetry considerations and (32) reads Ĉbce = Cbce, the straight-

forward verification of which is left to the reader. Similarly, by considering different
orderings for the indices of ∇a∇b̄∇cφe, we are rapidly led to

∇aRcb̄
d
e −∇cRab̄

d
e +∇b̄Rac

d
e = Tac

f̄Rb̄f̄
d
e

as another piece of the Bianchi identity, which may then be further split into irreducible
parts. In particular, tracing over d and e (equivalently, tracing over a and d and then
skewing over c and e) gives (33). �

Proposition 2.14. Suppose that Wab
c
d ∈ ∧1,0⊗∧1,0⊗T 1,0M ⊗∧1,0 has the following

symmetries :
Wab

c
d = W[ab]

c
d W[ab

c
d] = 0 Wab

a
d = 0.

If 2n = 4, then Wab
c
d ≡ 0.

Proof. Fix a nonzero skew tensor Vab. As Wab
c
d is skew in a and b, it follows that

Wab
c
d = VabS

c
d for some unique tensor Scd. Now Wab

a
d = VabS

a
d but Vab is also

nondegenerate so Wab
a
d = 0 implies Scd = 0. �

Remark 2.10. When n = 2, the identity (31) is vacuous. Proposition 2.14 implies
that the left hand side vanishes. For the right hand side, the vanishing of Ta[b

f̄Hc]f̄
a
e

follows by tracing the identity T[ab
f̄Hc]f̄

d
e = 0 over a and d, bearing in mind that Haf̄

d
e

is trace-free in a and d. The remaining terms also evaporate because, when n = 2, the
tensor Tbcf̄Tead̄ is symmetric in f̄ d̄ whereas Td̄f̄ a is skew.

The torsion Tabc̄ (equivalently, its complex conjugate Tāb̄c) is c-projectively invariant.
The same is true, not only of the Weyl curvature Wab̄

c
d, but also of its trace-free

symmetric part Hab̄
c
d (which will be identified as part of the harmonic curvature in

Section 2.7). The Weyl curvature Wab
c
d is c-projectively invariant and forms the final

piece of harmonic curvature except when 2n = 4, in which case Wab
c
d necessarily

vanishes, its role being taken by Cabc, the c-projectively invariant part of the Cotton–
York tensor. In Section 2.7, we place this discussion in the context of general parabolic
geometry but, before that, we collect in the following section some useful formulae for
the various curvature operators on c-projective densities.

2.5. Curvature operators on c-projective densities. Suppose Xcd···e = X [cd···e] is
a section of E(n + 1, 0) = ∧nT 1,0M and Y c̄d̄···ē a section of E(0, n + 1) = ∧nT 0,1M .
Then it follows from (35) that

(∇ā∇b −∇b∇ā)X
cd···e = Rāb

c
fX

fd···e +Rāb
d
fX

cf ···e + · · ·+Rāb
e
fX

cd···f

= Rāb
f
fX

cd···e.

(∇ā∇b −∇b∇ā)Y
c̄d̄···ē = Rāb

c̄
f̄Y

f̄ d̄···ē +Rāb
d̄
f̄Y

c̄f̄ ···ē + · · ·+Rāb
ē
f̄Y

c̄d̄···f̄

= Rāb
f̄
f̄Y

cd···e.

However, from Proposition 2.13 part (4), we find that

Rāb
f
f = −Rbā

f
f = −Wbā

f
f − (∂P)bā

f
f = −TfbēTēāf − (n+ 1)Pāb

Rāb
f̄
f̄ = Wāb

f̄
f̄ + (∂P)āb

f̄
f̄ = Tfb

ēTēā
f + (n+ 1)Pbā.

We conclude immediately that for a section σ of E(k, `) we have

(∇ā∇b −∇b∇ā)σ = `−k
n+1

Tfb
ēTēā

fσ + `Pbāσ − kPābσ. (45)
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Similarly, from (35) it also follows that

∇a∇b −∇b∇a)X
cd···e + Tab

f̄∇f̄X
cd···e = Rab

f
fX

cd···e

(∇a∇b −∇b∇a)Y
c̄d̄···ē + Tab

f̄∇f̄Y
c̄d̄···ē = Rab

f̄
f̄Y

c̄d̄···ē.

From Proposition 2.13 we conclude that

Rab
f
f = 2P[ba] + nβab = (n+ 1)βab

Rab
f̄
f̄ = ∇f̄Tab

f̄ .

Therefore, if σ is c-projective density of weight (k, `), then

(∇a∇b −∇b∇a)σ + Tab
f̄∇f̄σ = kβabσ + `

n+1
(∇f̄Tab

f̄ )σ (46)

and, accordingly,

(∇ā∇b̄ −∇b̄∇ā)σ + Tāb̄
f∇fσ = `βāb̄ + k

n+1
(∇fTāb̄

f )σ. (47)

Recall that for any connection ∇ ∈ [∇] its Rho tensor, by definition, satisfies Pāb =
1

n+1
Ricāb and P[ab] = 1

n+1
Ric[ab]. Hence, the identities (45) and (46) imply that the

Ricci tensor of a special connection ∇ ∈ [∇] satisfies
• Ricāb = Ricbā
• Ric[ab] = 1

2
∇c̄Tab

c̄.
If ∇c̄Tab

c̄ vanishes, the special connection has symmetric Ricci tensor. In particular, if
J is integrable all special connections have symmetric Ricci tensor.

2.6. The curvature of complex projective space. In Section 2.4, and especially in
Proposition 2.13, the curvature of a complex connection on a general almost complex
manifold was decomposed into various irreducible pieces (irreducibility to be further
discussed in Section 3.3). Here, we pause to examine this decomposition on complex
projective space CPn with its standard Fubini–Study metric.

Lemma 2.15. The Riemannian curvature tensor for the Fubini–Study metric gαβ on
CPn is given by

Rαβγδ = gαγgβδ − gβγgαδ + ΩαγΩβδ − ΩβγΩαδ + 2ΩαβΩγδ (48)

where Jαβ is the complex structure and Ωαγ ≡ Jα
βgβγ (the Kähler form).

Proof. A direct calculation from the definition of the Fubini–Study metric (e.g. [27])
or by invariant theory noting that (up to scale) the right hand side of (48) is the only
covariant expression in gαβ and Ωαβ such that

Rαβγδ = R[αβ][γδ] R[αβγ]δ = 0 Rαβγ[δJε]
γ = 0

where the last condition is a consequence of the Kähler condition dΩ = 0 (or, more
precisely, a consequence of ∇αΩβγ = 0 as one can check, by direct computation in case
the almost complex structure Jαβ is orthogonal (i.e. Jαβgβγ is skew), that

2∇αΩβγ = 3∇[αΩβγ] − 3Jα
δJβ

ε∇[αΩδε] − ΩαδNαβ
δ,

where recall that Nαβ
γ is the Nijenhuis tensor (1), which vanishes when the complex

structure is integrable, as it is on CPn). �

To apply the decompositions of Proposition 2.13 to (48) we should raise an index

Rαβ
γ
ε = δα

γgβε − δβγgαε + Jα
γΩβε − JβγΩαε − 2ΩαβJε

γ

and then apply the various projectors such as Πα
aΠβ

bΠc
γΠ

ε
d. However, firstly note that

applying Πα
aΠγ

c to Jαβgβγ + Jγ
βgβα = 0 implies that gac = 0 (consequently Ωac = 0)
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whilst applying Πα
aΠγ

c̄ to Ωαγ = Jα
βgβγ shows that Ωac̄ = igac̄. We conclude that

Rab
c
d = 0 and

Rab̄
c
d ≡ Πα

aΠβ

b̄
Πc
γΠ

ε
dRαβ

γ
ε = δa

cgdb̄ − iδacΩdb̄ − 2iΩab̄δd
c = 2δa

cgdb̄ + 2δd
cgab̄.

Thus, with reference to Proposition 2.13, we see that all irreducible pieces of curvature
vanish save for Pb̄d = 2gdb̄. In particular, all invariant pieces

Tāb̄
c Hab̄

c
d Wab

c
d

of harmonic curvature (as identified the following section) vanish. This is, of course,
consistent with CPn, equipped with its standard complex structure and Fubini–Study
connection, being the flat model of c-projective geometry, as discussed in Section 2.3
and especially Theorem 2.8.

Finally, observe that if we regard CPn as

SL(n+ 1,C)

/

λ ∗ · · · ∗
0 ∗ · · · ∗
...

... . . . ...
0 ∗ · · · ∗


 ,

rather than as a homogeneous PSL(n+1,C)-space as in Section 2.3, then the character
λ 7→ λ−kλ−` induces a homogeneous line bundle E(k, `) on CPn as we were supposing
earlier and as we shall soon suppose in Section 3.1. This observation also explains our
copacetic choice of notation: on CPn it is standard to write O(k) for the holomorphic
bundle that is E(k, 0) just as a complex bundle (and then E(k, 0) = E(0, k)).

2.7. The harmonic curvature. A normal Cartan connection gives rise to a simpler
local invariant than the Cartan curvature κ, called the harmonic curvature κh, which
still provides a full obstruction to local flatness, as discussed in Section 2.2 (cf. espe-
cially Proposition 2.7). The harmonic curvature κh of an almost c-projective manifold
is the projection of κ ∈ ker ∂∗ to its homology class in

G ×P H2(g1, g) ∼= G0 ×G0 H2(g1, g).

By Kostant’s version of the Bott–Borel–Weil Theorem [64] the G0-module H2(g1, g)
can be naturally identified with a G0-submodule in ∧2g1 ⊗R g ∼= ∧2g∗−1 ⊗R g that
decomposes into three irreducible components as follows:

• for n = 2

(∧0,2g∗−1 ⊗C g−1)⊕ (∧1,1g∗−1 }C sl(g−1,C))⊕ (∧2,0g∗−1 ⊗C g1)

• for n > 2

(∧0,2g∗−1 ⊗C g−1)⊕ (∧1,1g∗−1 }C sl(g−1,C))⊕ (∧2,0g∗−1 }C sl(g−1,C)),

where these are complex vector spaces but regarded as real, and where } denotes the
Cartan product. Correspondingly, we decompose the harmonic curvature as

κh = τ + ψ + χ

in case n = 2 and
κh = τ + ψ1 + ψ2

in case n > 3.
Note that ∂∗ preserves homogeneities, i.e. ∂∗(∧ig1 ⊗ gj) ⊂ ∧i−1g1 ⊗ gj+1. In par-

ticular, the induced vector bundle map ∂∗ maps ∧3T ∗M ⊗ AM to ∧2T ∗M ⊗ A0M .
Hence, we conclude that τ must equal the torsion Tαβγ. If n = 2, then ψ is the com-
ponent Hab̄

c
d in (∧1,1 }C sl(T 1,0M)) of the Weyl curvature of any connection in the

c-projective class, and χ is the (2, 0)-part of the Cotton–York tensor. If n > 2, then
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ψ1, respectively ψ2, is the totally trace-free (1, 1)-part, respectively (2, 0)-part, of the
Weyl curvature of any connection in the class.

We now give a geometric interpretation of the three harmonic curvature components.

Theorem 2.16. Suppose (M,J, [∇]) is an almost c-projective manifold of dimension
2n ≥ 4 and denote by κh the harmonic curvature of its normal Cartan connection.
Then the following statements hold.

(1) κh ≡ 0 if and only if the almost c-projective manifold (M,J, [∇]) is locally
isomorphic to (CP n, Jcan, [∇gFS ]).

(2) τ is the torsion of (M,J, [∇]). In particular, τ ≡ 0 if and only if J is integrable,
i.e. (M,J, [∇]) is a c-projective manifold. Moreover, in this case, JG is inte-
grable and the Cartan bundle p : G →M is a holomorphic principal P -bundle.

(3) Suppose τ ≡ 0. Then ψ1 ≡ 0 (resp. ψ ≡ 0) if and only if ω is a holomorphic
Cartan connection on the holomorphic principal bundle p : G → M . This is
the case if and only if [∇] locally admits a holomorphic connection, i.e. for any
connection ∇ ∈ [∇] and any point x ∈M there is an open neighbourhood U 3 x
such that ∇|U is c-projectively equivalent to a holomorphic connection on U .

Proof. We have already observed (1) and the first two assertions of (2). To prove the
last statement of (2) and (3), assume that τ ≡ 0, which says, in particular, that the
Cartan geometry is torsion-free. Since P acts on the complex vector space ∧2g1⊗Rg by
complex linear maps, P preserves the decomposition of this vector space into the three
(p, q)-types. Therefore [28, Corollary 3.2] applies and hence κh has components of type
(p, q) if and only if κ has components of type (p, q). Therefore, τ ≡ 0 implies that κ
has no (0, 2)-part, which by the proof of [28, Theorem 3.4] (cf. [36, Proposition 3.1.17])
implies that JG is integrable and p : G → M a holomorphic principal bundle. This
finishes the proof of (2). We know that the component ψ1 (respectively ψ) vanishes
identically if and only if κ is of type (2, 0), which by [28, Theorem 3.4] is the case
if and only if ω ∈ Ω1,0(G, g) is holomorphic, i.e. dω is of type (2, 0). Hence, it just
remains to prove the last assertion of (3). Assume firstly that ψ1 (respectively ψ)
vanishes identically and hence that (p : G →M,ω) is a holomorphic Cartan geometry.
Then we can find around each point of M an open neighbourhood U ⊂ M such
that G and G0 trivialise as holomorphic principal bundles over U . Having chosen
such trivialisations, the holomorphic inclusion G0 ↪→ P induces a holomorphic G0-
equivariant section σ : p−1

0 (U)→ p−1(U). Since dω is of type (2, 0) and σ is holomorphic

σ∗dω = dσ∗ω = dθ + dγ∇ − dp∇

is also of type (2, 0). In particular, dγ∇ is of type (2, 0) and it follows that γ∇ ∈
Ω1,0(p−1

0 (U), g0) is a holomorphic principal connection in the c-projective class. Con-
versely, assume that U ⊂ M is an open set and that γ∇ ∈ Ω1,0(p−1

0 (U), g0) is a
holomorphic principal connection that belongs to the c-projective class. Since the Lie
bracket on g is complex linear, the holomorphicity of γ∇ implies that its curvature
dγ∇ + [γ∇, γ∇] is of type (2, 0). By definition of the Weyl curvature this implies that
also its Weyl curvature is of type (2, 0) and hence so is κh|U . By assumption there
exists locally around any point a holomorphic connection and hence κh is of type (2, 0)
on all of M . �

3. Tractor bundles and BGG sequences

The normal Cartan connection of an almost c-projective manifold induces a canonical
linear connection on all associated vector bundles corresponding to representations of
PSL(n+ 1,C) (cf. Section 2.2). These, in the theory of parabolic geometries, so-called
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tractor connections, provide an efficient calculus, especially well suited for explicit
constructions of local invariants and invariant differential operators. We develop in this
section the basics of the theory of tractor connections for almost c-projective manifolds,
and explain their relation to geometrically significant overdetermined systems of PDE
and sequences of invariant differential operators.

3.1. Standard complex tractors. Suppose that (M,J, [∇]) is an almost c-projective
manifold of dimension 2n ≥ 4. Further, assume that the complex line bundle ∧nT 1,0M
admits an (n+ 1)st root and choose one, denoted E(1, 0), with conjugate E(0, 1). More
generally, we write E(k, `) = E(1, 0)⊗k⊗E(0, 1)` for any (k, `) ∈ Z×Z (cf. Section 2.1).
Note that such a choice of a root E(1, 0) is at least locally always possible and the
assumption that such roots exists globally is a relatively minor constraint. The choice
of E(1, 0) canonically extends the Cartan bundle of (M,J, [∇]) to a P̃ -principal bundle
p̃ : G̃ →M , where P̃ is the stabiliser in SL(n+1,C) of the complex line generated by the
first basis vector in Cn+1, and the normal Cartan connection of (M,J, [∇]) naturally
extends to a normal Cartan connection on G̃ of type (SL(n+ 1,C), P̃ ), which we also
denote by ω. The groups SL(n+ 1,C) and P̃ are here viewed as real Lie groups as in
Section 2.3, and we obtains in this way, analogously to Theorem 2.8, an equivalence
of categories between almost c-projective manifolds equipped with an (n + 1)st root
E(1, 0) of ∧nT 1,0M and normal Cartan geometries of type (SL(n + 1,C), P̃ ). The
homogeneous model of such structures is again CPn, but now viewed as a homogeneous
space SL(n + 1,C)/P̃ with E(1, 0) being dual to the tautological line bundle O(−1),
cf. Section 2.6.

The extended normal Cartan geometry of type (SL(n + 1,C), P̃ ) allows us to form
the standard complex tractor bundle

T := G̃ ×P̃ V

of (M,J, [∇], E(1, 0)), where V = R2n+2 is the defining representation of the real Lie
group SL(2(n + 1), J2(n+1)) ∼= SL(n + 1,C). Note that the complex structure J2(n+1)

on V induces a complex structure JT on T . Analogously to the discussion of the
tangent bundle of an almost complex manifold in Section 1, (T , JT ) can be identified
with the (1, 0)-part of its complexification TC, on which JT acts by multiplication by
i. We will implement this identification in the sequel without further comment, and
similarly for all the other tractor bundles with complex structures in the following
Sections 3.1, 3.3 and 3.4. Since P̃ stabilises the complex line generated by the first
basis vector in Cn+1, this line defines a complex 1-dimensional submodule of Cn+1.
Correspondingly, the standard complex tractor bundle (identified with the (1, 0)-part
of its complexification TC) is filtered as

T = T 0 ⊃ T 1 (49)

where T 1 ∼= E(−1, 0) and T 0/T 1 ∼= T 1,0M(−1, 0). Since T is induced by a representa-
tion of SL(n+1,C), the Cartan connection induces a linear connection ∇T on T , called
the tractor connection (see Section 2.2). Any choice of a linear connection ∇ ∈ [∇],
splits the filtration of the tractor bundle T and the splitting changes by(̂

Xb

ρ

)
=

(
Xb

ρ−ΥcX
c

)
, where

{
Xb ∈ T 1,0M(−1, 0)
ρ ∈ E(−1, 0),

(50)
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if one changes the connection according to (11). In terms of a connection ∇ ∈ [∇], the
tractor connection is given by

∇Tα
(
Xb

ρ

)
=

(
∇αX

b + ρΠb
α

∇αρ− PαbX
b

)
. (51)

Applying Πα
a and Πα

ā to (51), we can write the tractor connection as

∇Ta
(
Xb

ρ

)
=

(
∇aX

b + ρδa
b

∇aρ− PabX
b

)
(52)

and

∇Tā
(
Xb

ρ

)
=

(
∇āX

b

∇āρ− PābX
b

)
. (53)

By (49) the dual (or “co-standard”) complex tractor bundle T ∗ admits a natural sub-
bundle isomorphic to ∧1,0(1, 0) and the quotient T ∗/∧1,0(1, 0) is isomorphic to E(1, 0).
One immediately deduces from (52) and (53) that in terms of a connection ∇ ∈ [∇],
the tractor connection on T ∗ is given by

∇T ∗a
(
σ
µb

)
=

(
∇aσ − µa
∇aµb + Pabσ

)
∇T ∗ā

(
σ
µb

)
=

(
∇āσ

∇āµb + Pābσ

)
.

For a choice of connection∇ ∈ [∇] consider now the following overdetermined system
of PDE on sections σ of E(1, 0):

(i)∇āσ = 0 (ii)∇(a∇b)σ + P(ab)σ = 0. (54)

Suppose ∇̂ ∈ [∇] is another connection in the c-projective class. Then the formulae
(16) imply that ∇̂āσ = ∇āσ. Moreover, we deduce from Proposition 2.5 and the
formulae (16) that

∇̂a∇̂bσ = ∇a∇bσ + (∇aΥb)σ −ΥaΥbσ,

which together with Corollary 2.12 implies that

∇̂a∇̂bσ + P̂abσ = ∇a∇bσ + Pabσ.

This shows that the overdetermined system (54) is c-projectively invariant. Note also
that by equation (46) we have

∇[a∇b]σ + P[ab]σ = −1
2
Tab

c̄∇c̄σ. (55)

Therefore ∇a∇bσ + Pabσ is symmetric provided that J is integrable or that σ satisfies
equation (i) of (54). The following proposition shows that, if J is integrable, the tractor
connection on T ∗ can be viewed as the prolongation of (54):

Proposition 3.1. Suppose (M,J, [∇], E(1, 0)) is a c-projective manifold of dimension
2n ≥ 4. The projection π : T ∗ → T ∗/∧1,0(1, 0) ∼= E(1, 0) induces a bijection between
sections of T ∗ parallel for ∇T ∗ and sections σ of E(1, 0) that satisfy (54) for some
(and hence any) connection ∇ ∈ [∇]. Moreover, suppose that σ ∈ E(1, 0) is a nowhere
vanishing section, then for any connection ∇ ∈ [∇] the connection

∇̂aσ
′ = ∇aσ

′ − (∇aσ)σ−1σ′ (56)

is induced from a connection in the c-projective class, and σ with ∇āσ = 0 is a solution
of (54) if and only if (56) is Ricci-flat.
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Proof. Suppose s is a parallel section of T ∗ and set σ := π(s) ∈ Γ(E(1, 0)). It follows
from (50) that changing from connection to another in [∇] changes the splitting of T ∗

by (̂σ, µb) = (σ, µb + Υbσ). Hence, for any connection ∇ ∈ [∇] we can identify s with a
section of the form (σ, µb) for some µb ∈ Γ(∧1,0(1, 0)) and by definition of the tractor
connection σ ∈ Γ(E(1, 0)) satisfies (54) for any connection ∇ ∈ [∇]. So π induces a
map from parallel sections of T ∗ to solutions of (54).

Conversely, let us contemplate the differential operator L : E(1, 0)→ T ∗, which, for
a choice of connection in [∇], is given by Lσ = (σ,∇bσ). Suppose now σ is a solution
of (54). Then obviously ∇T ∗a Lσ = 0, since (55) vanishes. By (45) we have

∇ā∇bσ + Pābσ = (∇ā∇b −∇b∇ā)σ + Pābσ (57)

= 1
n+1

Tbf
ēTēā

fσ − Pābσ + Pābσ

= 1
n+1

Tbf
ēTēā

fσ ,

which vanishes, since J is integrable. Hence, we also have ∇T ∗ā Lσ = 0. Therefore L
maps solutions σ ∈ Γ(E(1, 0)) of (54) to parallel sections of T ∗ and defines an inverse
to the restriction of π to parallel section. For the second statement, assume now that
σ is a section of E(1, 0) that is nowhere vanishing and let ∇ ∈ [∇] be a connection
in the c-projective class. If we change ∇ according to (11) by Υa = −(∇aσ)σ−1 to a
connection ∇̂ ∈ [∇], then we deduce from Corollary 2.4 that the induced connection
on E(1, 0) is given by (56). Moreover, ∇̂aσ = 0. Therefore, using that (57) vanishes,
we deduce that σ with ∇̂āσ = 0 satisfies (54) if and only if P̂abσ = 0 and P̂ābσ = 0,
and hence if and only if ∇̂ is Ricci-flat. �

More generally, we immediately conclude from equation (57) that, in the case of
an almost c-projective manifold, i.e. J is not necessarily integrable, the corresponding
proposition reads as follows:

Proposition 3.2. Let (M,J, [∇], E(1, 0)) be an almost c-projective manifold of dimen-
sion 2n ≥ 4. Then sections σ of E(1, 0) that satisfy (54) are in bijection with sections
of T ∗ that are parallel for the connection given by

∇T ∗a and ∇T ∗ā
(
σ
µb

)
− 1

n+ 1

(
0

Tbf
ēTēā

fσ

)
. (58)

Moreover, suppose σ ∈ E(1, 0) is a nowhere vanishing section with ∇āσ = 0. Then
σ is a solution of (54) if and only if ∇̂, defined as in (56), satisfies P̂ab = 0 and
P̂āb = 1

n+1
Tbf

ēTēā
f .

Remark 3.1. Recall that a parallel section of a linear connection of a vector bundle
over a connected manifold, is already determined by its value at one point. The
correspondences established in Propositions 3.1 and 3.2 between solutions of (54) and
parallel sections of a linear connection on T ∗ therefore implies, that on a connected
almost c-projective manifold

U := {x ∈M : σ(x) 6= 0} ⊂M

is a dense open subset for any nontrivial solution σ ∈ Γ(E(1, 0)) of (54). In particular,
the second statement of Proposition 3.1, respectively of Proposition 3.2, holds always
on the dense open subset U .

The equations (54) define an invariant differential operator of order two

DT
∗
: E(1, 0)→ ∧0,1(1, 0)⊕ S2∧1,0(1, 0),
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whose kernel are the solutions of (54). The differential operator DT ∗ is the first oper-
ator in the BGG sequence corresponding to the co-standard complex tractor bundle;
see [25, 38]. The proof of Proposition 3.2 implies that in order for a (nonzero) parallel
section of the tractor connection on T ∗ to exist, it is necessary that Nijenhuis tensor
of J satisfy NJ

bf
ēNJ

ēā
f ≡ 0 and, in this case, parallel sections of the tractor connection

are in bijection with sections in the kernel of DT ∗ .
Similarly, one may consider the first BGG operator in the sequence corresponding

to the standard complex tractor bundle T , which is a first order invariant differential
operator, defined, for a choice of connection ∇ ∈ [∇], by

DT : T 1,0M(−1, 0)→ (∧0,1 ⊗ T 1,0M(−1, 0))⊕ (∧1,0 ⊗◦ T 1,0M(−1, 0)),

Xb 7→ (∇āX
b,∇aX

b − 1
n
∇cX

cδa
b), (59)

where the subscript ◦ denotes the trace-free part.

Proposition 3.3. Suppose (M,J, [∇], E(1, 0)) is an almost c-projective manifold of
dimension 2n ≥ 4. The projection π : T → T /E(−1, 0) ∼= T 1,0M(−1, 0) induces a
bijection between sections of T that are parallel for the connection given by

∇Ta and ∇Tā
(
Xb

ρ

)
− 1

n(n+ 1)

(
0

Tbf
ēTēā

fXb

)
(60)

and sections Xb ∈ Γ(T 1,0M(−1, 0)) that are in the kernel of DT . In particular, ele-
ments Xb ∈ kerDT with NJ

bf
ēNJ

ēā
fXb = 0 are in bijection with parallel sections of the

tractor connection ∇T .

Proof. Suppose firstly that s ∈ Γ(T ) is parallel for the connection (60) and set Xb :=
π(s). For a choice of connection ∇ ∈ [∇] we can identify s with an element of the
form (Xb, ρ), where ρ ∈ Γ(E(−1, 0)). By assumption ∇āX

b = 0 and ∇aX
b = −ρδab.

Taking the trace of the latter equation shows that ρ = − 1
n
∇cX

c. Hence, Xb is in the
kernel of DT .

Conversely, suppose Xb ∈ kerDT and pick a connection ∇ ∈ [∇]. Then we deduce
from Proposition 2.13 and equation (46) that

(∇a∇b −∇b∇a)X
c = (∇a∇b −∇b∇a)X

c + Tab
d̄∇d̄X

c (61)

= Rab
c
dX

d + 2P[ab]X
c = Wab

c
dX

d + 2δ[a
cPb]dX

d.

By assumption ∇aX
b = 1

n
∇cX

cδa
b and therefore (61) implies

1
n
(∇a∇dX

dδb
c −∇b∇dX

dδa
c) = Wab

c
dX

d + 2δ[a
cPb]dX

d. (62)

Taking the trace in (62) over a and c shows that − 1
n
∇b∇dX

d = PbdX
d. Hence,

(Xb,− 1
n
∇cX

c) defines a section s of T that satisfies ∇Ta s = 0. Similarly, since
∇āX

b = 0, Proposition 2.13 and equation (45) imply

∇ā∇bX
c = (∇ā∇b −∇b∇ā)X

c (63)

= Rāb
c
dX

d − 1
n+1

Tbf
ēTēā

fXc + PābX
c

= Wāb
c
dX

d − 2Pā(bδd)
cXd + PābX

c − 1
n+1

Tbf
ēTēā

fXc.

Taking the trace in (63) over b and c implies that

− 1
n
∇ā∇cX

c − PācX
c = 1

n(n+1)
Tcf

ēTēā
fXc.

Hence, s is parallel for the connection (60) and it follows immediately that the dif-
ferential operator Xb 7→ (Xb,− 1

n
∇cX

c) defines an inverse to the restriction of π to
parallel sections of (60). �
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3.2. Cone description of almost c-projective structures. For (real) projective
structures there is an alternative description of the tractor connection as an affine con-
nection on a cone manifold over the projective manifold [36, 46]. This point of view,
which (at least in spirit) goes back to work of Tracy Thomas, is often convenient—it
has for instance been used in [6] to classify holonomy reductions of projective struc-
tures. An analogue holds for almost c-projective manifolds, which we will now sketch,
following the presentation in [36] of the projective case. This canonical cone connection
was used in [6] to realise c-projective structures as holonomy reductions of projective
structures. It also underlies metric cone constructions [78, 83] which we discuss later.

Let (M,J, [∇], E(1, 0)) be an almost c-projective manifold and, as in Section 3.1, let
P̃ ⊂ G̃ = SL(n + 1,C) be the stabiliser of the complex line V1 through the first basis
vector e1 of V = Cn+1. Denote by Q̃ ⊂ P̃ the stabiliser of e1, which is the derived
group of P̃ , hence a normal complex Lie subgroup. Now set

C := G̃/Q̃ = G̃ ×P̃ P̃ /Q̃.

The natural projection pC : G̃ → C defines a (real) principal bundle with structure
group Q̃. Since the canonical Cartan connection ω of (M,J, [∇], E(1, 0)) can also be
viewed as a Cartan connection of type (G̃, Q̃) for pC, it induces an isomorphism

TC ∼= G̃ ×Q̃ g/q̃.

Note that C inherits an almost complex structure JC from the almost complex structure
on G̃ characterised by TpC ◦ JG = JC ◦ TpC. Furthermore, the projection πC : C →
M defines a principal bundle with structure group P̃ /Q̃ ∼= C×. Since P̃ /Q̃ can be
identified with the nonzero elements in the complex P̃ -submodule V1 ⊂ V, we see that
C can be identified with the space of nonzero elements in E(−1, 0) or with the complex
frame bundle of E(−1, 0). Note that, by construction (recall that Tp ◦ JG = J ◦ Tp),
we have TπC ◦ JC = J ◦ TπC. By the compatibility of the almost complex structures
JG, JC and J with the various projections, it follows immediately that vanishing of the
Nijenhuis tensor NJG of JG implies vanishing of the Nijenhuis tensors NJC , which in
turn implies vanishing of NJ . Conversely, Theorem 2.16 shows that NJ ≡ 0 implies
NJG ≡ 0. This shows in particular that

NJ ≡ 0 ⇐⇒ NJC ≡ 0, (64)

in which case πC : C →M is a holomorphic principal bundle with structure group C×.

Lemma 3.4. There are canonical isomorphisms TC ∼= G̃ ×Q̃ V ∼= π∗CT .

Proof. From the block decomposition (17) of g it follows that g/q̃ = (V1)∗ ⊗ V and
hence g/q̃ ∼= V as Q̃-modules, i.e.

TC ∼= G̃ ×Q̃ g/q̃ ∼= G̃ ×Q̃ V ∼= π∗C(G̃ ×P̃ V) = π∗CT . �

Hence the standard tractor connection induces an affine connection ∇C on C which
preserves JC and the complex volume form volC ∈ ∧n,0T ∗C that is induced by the
standard complex volume on V = Cn+1. Alternatively, note that ω can be extended
to a principal connection on the principal G-bundle G̃ ×Q̃ G, and since V = Cn+1 is a
G-module, we obtain an induced connection on TC ∼= G̃ ×Q̃ G×G V.

If we identify a vector field Y ∈ X(C) with a Q̃-equivariant function f : G̃ → V via
Lemma 3.4, then by [36, Theorem 1.5.8], the equivariant function corresponding to
∇CXY for a vector field X ∈ X(C) is given by

X̃ · f + ω(X̃)f (65)
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where X̃ ∈ X(G̃) is an arbitrary lift of X. Moreover [36, Corollary 1.5.7] shows that
the curvature RC ∈ ∧2T ∗C ⊗ AC of ∇C is given by

RC(X, Y )(Z) = κ(X, Y ) • Z, (66)

where AC = G̃×Q̃g ∼= sl(TC, JC) and • : AC×TC → TC denotes the vector bundle map
induced by the action of g on V. Let us write T C ∈ ∧2T ∗C ⊗ TC for the torsion of ∇C.
It follows straightforwardly from (65) that T C is the projection of κ ∈ Γ(∧2T ∗C ⊗AC)
to ∧2T ∗C⊗TC, i.e. it is the torsion of ω viewed as a Cartan connection of type (Q̃, G̃).
In particular, like κ, the 2-forms T C and RC vanish upon insertion of sections of the
vertical bundle of πC, which is canonically trivialised by the fundamental vector fields
E and JCE generated by 1 and i respectively.

Proposition 3.5. Suppose (M,J, [∇], E(1, 0)) is an almost c-projective manifold. Then
there is a unique affine connection ∇C on the total space of the principal bundle
πC : C →M with the following properties :

(1) ∇CJC = 0 and ∇CvolC = 0;
(2) ∇CXE = X for all X ∈ X(C);
(3) LE∇C = 0 and LJCE∇C = 0;
(4) iET C = 0 and iJCET C = 0;
(5) Tπ ◦ T C is of type (0, 2) and the (2, 0)-part of T C vanishes ;
(6) ∇C is Ricci-flat ;
(7) for any (local) section s of πC the connection s∗∇C lies in [∇].

Moreover, if J is integrable, πC : C →M is a holomorphic principal bundle and T C ≡ 0.

Proof. We already observed that (1) and (4) hold and (2) is an immediate consequence
of (65). Since we have in addition iERC = 0 and iJCERC = 0 by (66), statement (3)
follows from (78). The statements (5) and (6) are consequences of ∂∗κ = 0. More
explicitly, note that (5) can be simply read off Proposition 2.13, which also shows
that if J is integrable, T C ≡ 0. In this case NJC , which is up to a constant multiple
the (0, 2)-part of T C, vanishes and πC is a holomorphic principal bundle as calimed.
Statement (6) follows because Tπ ◦ T C, viewed as a section of ∧0,2T ∗M ⊗ TM , has
vanishing trace and ∂∗ : ∧2T ∗M ⊗ gl(TM, J)→ T ∗M ⊗ T ∗M is a multiple of a Ricci-
type contraction. The proof of statement (7) and the uniqueness of ∇C we leave to the
reader, but note that (1)–(6) imply that ∇C descends to the normal Cartan connection
on TC/C× ∼= T . �

3.3. BGG sequences. For a general parabolic geometry, it was shown in [25, 38] that
there are natural sequences of invariant linear differential operators generalising the
corresponding complexes on the flat model. These are the Bernstein–Gelfand–Gelfand
(BGG) sequences, named after the constructors [10] of complexes of Verma modules,
roughly dual to the current circumstances.

Here is not the place to say much about the general theory. Instead, we would like
to like to present something of the theory as it applies in the c-projective case. The
point is that the invariant operators that we have already encountered and are about
to encounter, all can be seen as curved analogues of operators from the BGG complex
on CPn (as the flat model of c-projective geometry).

In fact, the main hurdle in presenting the BGG complex and sequences is in having a
suitable notation for the vector bundles involved. Furthermore, this notation is already
of independent utility since, as foretold in Remark 1.1, it neatly captures the natural
irreducible bundles on an almost complex manifold.
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Recall from Section 1 that the complexified tangent bundle on an almost complex
manifold decomposes

CTM = T 1,0M ⊕ T 0,1M

as does its dual. An alternative viewpoint on these decompositions is that the tangent
bundle TM on any 2n-dimensional manifold is tautologically induced from its frame-
bundle by the defining representation of GL(2n,R), that an almost complex structure
is a reduction of structure group for the frame bundle to GL(n,C) ⊂ GL(2n,R),
that the defining representation of GL(2n,R) on R2n complexifies as GL(2n,R) acting
on C2n (as real matrices acting on complex vectors), and finally that this complex
representation when restricted to GL(n,C) decomposes into two irreducibles inducing
the bundles T 1,0M and T 0,1M , respectively. Of course, the dual decomposition comes
from the dual representation, namely GL(n,C) acting on (C2n)∗. Our notation arises
by systematically using the representation theory of GL(n,C) as a real Lie group but
adapted to its embedding

GL(n,C) ∼= G0 ⊂ P ⊂ G = PSL(n+ 1,C)

as described in Section 2.3.
For relatively simple bundles, there is no need for any more advanced notation. In

several complex variables, for example, it is essential to break up the complex-valued
differential forms into types but that’s about it. Recall already with 2-forms

∧2 = ∧0,2 ⊕∧1,1 ⊕∧2,0

that this complex decomposition is finer that the real decomposition

∧2T ∗M =
[
∧0,2 ⊕∧2,0

]
R ⊕∧

1,1
R (67)

already discussed in Section 1 following (6). Of course, as soon as one speaks of
holomorphic functions on a complex manifold one is obliged to work with complex-
valued differential forms. However, even if one is concerned only with real-valued forms
and tensors, it is convenient firstly to decompose the complex versions and then impose
reality as, for example, in (67). In fact, this is already a feature of representation theory
in general.

For more complicated bundles, we shall use Dynkin diagrams from [36] decorated in
the style of [8]. The formal definitions will not be given here but the upshot is that the
general complex irreducible bundle on an almost complex manifold will be denoted as

× • • • •
l l l l l
× • • • •p a b c d

q e f g h

(in the 10-dimensional case (2n nodes in general)) (68)

where a, b, c, d, e, f, g, h are nonnegative integers whilst, in the first instance, p, q are
real numbers restricted by the requirement that

p+ 2a+ 3b+ 4c+ 5d = q + 2e+ 3f + 4g + 5h mod 6 (69)

(again, in the 10-dimensional case). For example,

T 1,0M = × • • • •
l l l l l
× • • • •1 0 0 0 1

0 0 0 0 0

∧1,0 = × • • • •
l l l l l
× • • • •−2 1 0 0 0

0 0 0 0 0

∧0,2 = × • • • •
l l l l l
× • • • •0 0 0 0 0

−3 0 1 0 0

but the point is that this notation covers all bases and, in particular, the various
awkward bundles that have already arisen and will now arise in this article. In general,
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the integrality condition (69) is needed, as typified by

det∧1,0 = ∧5,0 = × • • • •
l l l l l
× • • • •−6 0 0 0 0

0 0 0 0 0

E(p, p) = × • • • •
l l l l l
× • • • •p 0 0 0 0

p 0 0 0 0

but, as already discussed at the end of Section 2.1, on an almost c-projective manifold
we shall suppose that there is a bundle E(1, 0) and an identification E(n + 1, 0) :=
E(1, 0)n+1 = ∧nT 1,0M , in which case we shall add

E(1, 0) = × • • • •
l l l l l
× • • • •1 0 0 0 0

0 0 0 0 0

to our notation and relax (69) to requiring merely that p − q be integral. In fact, all
of p, q, a, b, c, d, e, f, g, h will be integral for the rest of this article.

Our Dynkin diagram notation is well suited to the barred and unbarred indices that
we have already been using. Specifically, a section of

× • • • •
l l l l l
× • • • •p a b c d

0 0 0 0 0

may be realised as tensors with a + 2b + 3c + 4d unbarred covariant indices, having
symmetries specified by the Young diagram

· · ·· · ·
· · ·· · · · · ·· · ·

· · · · · ·· · · · · ·

d� - c� - b� - a� -

and of c-projective weight (p + 2a + 3b + 4c + 5d, 0). Indeed, for those reluctant to
trace through the conventions in [8], this suffices as a definition and then

× • • • •
l l l l l
× • • • •0 0 0 0 0

q e f g h

is the complex conjugate of × • • • •
l l l l l
× • • • •q e f g h

0 0 0 0 0

corresponding to tensors with barred indices in the obvious fashion and

× • • • •
l l l l l
× • • • •p a b c d

q e f g h

= × • • • •
l l l l l
× • • • •p a b c d

0 0 0 0 0

⊗ × • • • •
l l l l l
× • • • •0 0 0 0 0

q e f g h

.

Already, these bundles provide locations for the tensors we encountered earlier. For
example,

Tab
c̄ ∈ Γ

(
× • • • •
l l l l l
× • • • •−3 0 1 0 0

1 0 0 0 1

)
and Hab̄

c
d ∈ Γ

(
× • • • •
l l l l l
× • • • •−3 2 0 0 1

−2 1 0 0 0

)
.

Although the Dynkin diagram notation may at first seem arcane, it comes into its own
when discussing invariant linear differential operators. The complex-valued de Rham
complex

∧0,0 →
∧1,0

⊕
∧0,1

→

∧2,0

⊕
∧1,1

⊕
∧0,2

→ · · · (70)
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becomes

× • • • •
l l l l l
× • • • •−3 0 1 0 0

0 0 0 0 0

× • • • •
l l l l l
× • • • •−2 1 0 0 0

0 0 0 0 0

× • • • •
l l l l l
× • • • •0 0 0 0 0

0 0 0 0 0

→ → × • • • •
l l l l l
× • • • •−2 1 0 0 0

−2 1 0 0 0

→ · · ·

× • • • •
l l l l l
× • • • •0 0 0 0 0

−2 1 0 0 0

× • • • •
l l l l l
× • • • •0 0 0 0 0

−3 0 1 0 0

and in either of them one sees the torsion Tabc̄ : ∧0,1 → ∧2,0 and its complex conjugate
Tāb̄

c : ∧1,0 → ∧0,2 as the restriction of the exterior derivative d : ∧1 → ∧2 to the
relevant bundles (note that

Hom(∧0,1,∧2,0) = T 0,1 ⊗∧2,0 = × • • • •
l l l l l
× • • • •−3 0 1 0 0

1 0 0 0 1

,

as expected). In the torsion-free case, the de Rham complex takes the form

∧2,0

∧1,0 ↗
↘

∧0,0 ↗
↘ ∧1,1

∧0,1 ↗
↘

∧0,2

(71)

familiar from complex analysis and the remarkable fact about c-projectively invariant
linear differential operators is firstly that this pattern is repeated on the flat model
starting with any bundle (68) with p, q ∈ Z≥0, for example

× • • • •
l l l l l
× • • • •−4 1 1 0 1

0 0 0 0 0

× • • • •
l l l l l
× • • • •−3 2 0 0 1

2 0 0 0 0

↗
↘

× • • • •
l l l l l
× • • • •1 0 0 0 1

0 0 0 0 0

↗
↘ × • • • •

l l l l l
× • • • •−3 2 0 0 1

−2 1 0 0 0

× • • • •
l l l l l
× • • • •1 0 0 0 1

−2 1 0 0 0

↗
↘

× • • • •
l l l l l
× • • • •1 0 0 0 1

−3 0 1 0 0
.

(72)

The algorithm for determining the bundles in these patterns is detailed in [8] (it is
the affine action λ 7→ w(λ + ρ)− ρ of the Weyl group for G along the Hasse diagram
corresponding to the parabolic subgroup P ). OnG/P in general, these are complexes of
differential operators referred to as Bernstein–Gelfand–Gelfand (BGG) complexes. In
our case, i.e. on CPn, they provide resolutions of the finite-dimensional representations

• • • • •l l l l l
• • • • •p a b c d

q e f g h

(in case n = 5 (2n nodes in general))

of the group G = PSL(n + 1,C) as a real Lie group. More precisely, any finite-
dimensional representation E of G gives rise to a constant sheaf G/P × E, which may



38 D.M.J. CALDERBANK, M.G. EASTWOOD, V.S. MATVEEV, AND K. NEUSSER

in turn be identified with the corresponding homogeneous bundle induced on G/P by
means of

G/P ×P E 3 [g, e] 7→ ([g], ge) ∈ G/P × E. (73)
Since the first bundle in the BGG complex is a quotient of this bundle, we obtain a
mapping of E to the sections of this first bundle and to say that the complex is a
resolution of E is to say that these sections are locally precisely the kernel of the first
BGG operator (just as the locally constant functions are precisely the kernel of the
first exterior derivative d : ∧0 → ∧1). In our example (72), this means that

× • • • •
l l l l l
× • • • •−3 2 0 0 1

0 0 0 0 0

0→ • • • • •l l l l l
• • • • •1 0 0 0 1

0 0 0 0 0

−→ × • • • •
l l l l l
× • • • •1 0 0 0 1

0 0 0 0 0

↗
↘

× • • • •
l l l l l
× • • • •1 0 0 0 1

−2 1 0 0 0

is exact, theG-module E in this case being the adjoint representation of PSL(n+1,C) as
a complex Lie algebra. More generally, the BGG resolutions on CPn as a homogeneous
space for PSL(n+ 1,C) begin

× • • • •l l l l l
× • • • •−p−2 p+a+1 b c d

q e f g h

0→ • • • • •l l l l l
• • • • •p a b c d

q e f g h

−→ × • • • •
l l l l l
× • • • •p a b c d

q e f g h

↗
↘

× • • • •l l l l l
× • • • •p a b c d

−q−2 q+e+1 f g h

(74)

for nonnegative integers p, a, b, c, d, q, e, f, g, h constrained by (69). We may drop the
constraint (69) by considering CPn instead as a homogeneous space for SL(n+1,C), as
is perhaps more usual. Having done that, the standard representation of SL(n+ 1,C)
on Cn+1 gives rise to the BGG resolution

× • • • •
l l l l l
× • • • •−2 1 0 0 1

0 0 0 0 0

0→ • • • • •l l l l l
• • • • •0 0 0 0 1

0 0 0 0 0

−→ × • • • •
l l l l l
× • • • •0 0 0 0 1

0 0 0 0 0

∇a

↗
↘
∇ā

× • • • •
l l l l l
× • • • •0 0 0 0 1

−2 1 0 0 0

(75)

where the operators ∇a and ∇ā are, more explicitly and as noted in (59),

Xb 7→ (∇aX
b)◦ and Xb 7→ ∇āX

b (76)

where Xb is a vector field of type (1, 0) and of c-projective weight (−1, 0) and the sub-
script ◦ means to take the trace-free part. Notice that these are exactly the operators
implicitly encoded in the standard tractor connection (52) and (53). More precisely,
the filtration (49) is equivalent to the short exact sequence of vector bundles

0→ × • • • •
l l l l l
× • • • •−1 0 0 0 0

0 0 0 0 0

−→ • • • • •l l l l l
• • • • •0 0 0 0 1

0 0 0 0 0

−→ × • • • •
l l l l l
× • • • •0 0 0 0 1

0 0 0 0 0

→ 0

‖ ‖ ‖
E(−1, 0) T T 1,0M(−1, 0)
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and on the flat model, namely CPn as a homogeneous space for SL(n+1,C), the tractor
connection is the exactly the flat connection induced by (73). In the c-projectively flat
case, the remaining entries in (52) and (53), namely

∇aρ− PabX
b and ∇āρ− PābX

b

may be regarded as quantities whose vanishing are differential consequences of setting

∇aX
b + ρδa

b = 0 and ∇āX
b = 0.

Hence, they add no further conditions to being in the kernel of the first BGG operator
(76) and the exactness of (75) follows. The same reasoning pertains in the curved
but torsion-free setting and leads to the standard tractor connection being obtained
by prolongation of the first BGG operator. This is detailed in Proposition 3.3. For
more complicated representations, the tractor connection may not be obtained by
prolongation in the curved setting, even if torsion-free. This phenomenon will soon
be seen in two key examples, specifically in the connection (85) and Proposition 3.9
concerned with infinitesimal automorphisms and in Proposition 4.5, Theorem 4.6, and
Corollary 4.7 dealing with the metrisability of c-projective structures. With reference
to the general first BGG operators (74), the following cases occur prominently in this
article.

• • • • •l l l l l
• • • • •0 0 0 0 1

0 0 0 0 0

π−→ × • • • •
l l l l l
× • • • •0 0 0 0 1

0 0 0 0 0 This is the standard complex tractor bundle T
and its canonical projection to T 1,0M(−1, 0).

• • • • •l l l l l
• • • • •1 0 0 0 1

0 0 0 0 0

π−→ × • • • •
l l l l l
× • • • •1 0 0 0 1

0 0 0 0 0 This is the adjoint tractor bundle AM to be con-
sidered in Section 3.4 and its canonical projection to T 1,0M . A first BGG operator
acting on T 1,0M is given in Remark 3.3.

• • • • •l l l l l
• • • • •0 0 0 0 1

0 0 0 0 1

π−→ × • • • •
l l l l l
× • • • •0 0 0 0 1

0 0 0 0 1 This is the tractor bundle arising in the metris-
ability of c-projective structures to be discussed in Section 4 and a first BGG operator
is given in (121).

• • • • •l l l l l
• • • • •1 0 0 0 0

1 0 0 0 0

π−→ × • • • •
l l l l l
× • • • •1 0 0 0 0

1 0 0 0 0 This is the dual of the previous case and arises in
Section 4.6, which is concerned with the first BGG operator DW defined in (167) and
acting on c-projective densities of weight (1, 1). It is a second order and c-projectively
invariant operator.

In fact, there is quite a bit of flexibility in what one might allow as BGG operators,
already for the first ones (74). For example, the operator DA in Remark 3.3 is rather
different from the c-projectively invariant operators occurring as the left hand sides of
(1) and (2) in Proposition 3.7. Even for the bundle T 1,0M(−1, 0) in (75) corresponding
to standard complex tractors, there is the option of replacing the second operator in
(76) by

Xc 7→ ∇āX
c + Tāb̄

cX ā

in line with equation (1) in Proposition 3.7. Only in the torsion-free case do these
operators agree (with each other and the usual ∂̄-operator).
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On the flat model, however, there is no choice. The operators occurring in the BGG
complexes are unique up to scale. Moreover, there are no other c-projectively invari-
ant linear differential operators: every such operator is determined by its symbol and
the BGG operators comprise a classification. In the curved setting it is necessary to
add curvature correction terms and there is almost always some choice. Regarding
existence, it is shown in [25] and [38] that such curved analogues always exist. How-
ever, even for the BGG sequence associated to the trivial representation, the resulting
operators are different if there is torsion. Specifically, the construction in [38] follows
the Hasse diagram beginning as in (71). In particular, there is no place for the torsion
as an operator ∧0,1 → ∧2,0 whereas, in [25], the first BGG sequence associated to the
trivial representation for the case of |1|-graded geometry such as c-projective geometry,
is just the de Rham complex (70).

In summary, the BGG operators on CPn provide models for what one should expect
in the curved setting. In the flat case, there is no choice. In the curved case, there
is a certain degree of flexibility, more so when there is torsion. Finally, the general
theory of parabolic geometry [36] provides a location for harmonic curvature, as already
discussed in Sections 2.2 and 2.7 and Kostant’s Theorem [64] on Lie algebra cohomology
provides the location for this curvature, namely the three bundles appearing in the
second step of the BGG sequence (72) for the adjoint representation whilst the two
bundles at the first step locate the infinitesimal deformations of an almost c-projective
structure, in line with the general theory [29].

3.4. Adjoint tractors and infinitesimal automorphisms. For a vector field X on
a manifoldM we write LX for the Lie derivative along X of tensor fields onM . Recall
that there is also a notion of a Lie derivative of an affine connection ∇ along a vector
field X ∈ Γ(TM). It is given by the tensor field

LX∇ : TM → T ∗M ⊗ TM

characterised by
(LX∇)(Y ) ≡ LX(∇Y )−∇LXY

for any vector field Y ∈ Γ(TM). In abstract index notation we adopt the convention
that (LX∇)αβ

γY β = LX(∇αY
γ).

Definition 3.1. A c-projective vector field or infinitesimal automorphism of an almost
c-projective manifold (M,J, [∇]) of dimension 2n ≥ 4 is a vector field X on M that
satisfies

• LXJ ≡ 0 (i.e. [X, JY ] = J [X, Y ] for all vector fields Y ∈ Γ(TM))
• (LX∇)αβ

γ = υαβ
γ, where υαβγ ∈ Γ(S2T ∗M ⊗TM) is a tensor of the form (11).

Note that X ∈ Γ(TM) is an infinitesimal automorphism of an almost c-projective
manifold precisely if its flow acts by local automorphisms thereof.

Let us rewrite the two conditions defining a c-projective vector field as a system of
differential equations on a vector field X of M . Expressing the Lie bracket in terms of
a connection ∇ ∈ [∇] and its torsion shows that LXJ = 0 is equivalent to

Tαβ
γXα = −1

2
(∇βX

γ + Jε
γJβ

ζ∇ζX
ε). (77)

for one (and hence any) connection ∇ ∈ [∇]. Moreover, one deduces straightforwardly
from the definition of the Lie derivative of a connection that for any connection∇ ∈ [∇]
we have

(LX∇)βδ
γ = Rαβ

γ
δX

α +∇β∇δX
γ +∇β(Tαδ

γXα). (78)
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Via the isomorphism TM ∼= T 1,0M we may write the result as a differential equation
on Xa: equation (77) then becomes

∇b̄X
c + Tāb̄

cX ā = 0. (79)

Since a tensor υβδγ of the form (11) satisfies υb̄dc = 0 = υb̄d̄
c, the equation (LX∇)β

γ
δ =

υβδ
γ can be equivalently encoded by the three equations

(LX∇)bd
c = υbd

c (LX∇)b̄d
c ≡ 0 (LX∇)b̄d̄

c ≡ 0, (80)

or, alternatively, their complex conjugates.

Lemma 3.6. If Xa ∈ Γ(T 1,0M) satisfies the invariant differential equation (79), then

(LX∇)b̄d
c ≡ 0 (LX∇)b̄d̄

c ≡ 0,

for any connection ∇ ∈ [∇].

Proof. Equation (78) and the formulae of Proposition 2.13 imply

(LX∇)b̄d
c = Rab̄

c
dX

a +Rāb̄
c
dX

ā +∇b̄∇dX
c

= −Rb̄a
c
dX

a +Rb̄d
c
aX

a +∇d∇b̄X
c +Rāb̄

c
dX

ā

= 2Rb̄[d
c
a]X

a +∇d∇b̄X
c − (∇dTb̄ā

c)X ā.

Hence, the Bianchi symmetry (42) shows that

(LX∇)b̄d
c = Tda

ēTēb̄
cXa +∇d∇b̄X

c − (∇dTb̄ā
c)X ā,

which evidently vanishes if ∇b̄X
c = Tb̄ā

cX ā, and consequently also ∇dX
ē = Tda

ēXa.
As (LX∇)b̄d̄

c = ∇b̄∇d̄X
c +∇b̄(Tād̄

cX ā), the second assertion is obvious. �

According to Lemma 3.6, it remains to rewrite (LX∇)b
c
d = υbd

c as a differential
equation on Xa. Note that we have

(LX∇)b
c
d = ∇b∇dX

c +Rab
c
dX

a +Rāb
c
dX

ā. (81)

The Bianchi symmetry (41) R[bd
c
a] ≡ 0 implies Rbd

c
a = −2Ra[b

c
d]. Moreover,

∇b∇dX
c = ∇(b∇d)X

c +∇[b∇d]X
c = ∇(b∇d)X

c + 1
2
(Rbd

c
aX

a − Tbdē∇ēX
c).

Therefore, we may rewrite (81) as

(LX∇)b
c
d = ∇(b∇d)X

c +Ra(b
c
d)X

a +Rā(b
c
d)X

ā

− 1
2
Tbd

ē∇ēX
c + 1

2
Tbd

ēTēā
cX ā, (82)

where we used the Bianchi symmetry (42) given by Rā[b
c
d] = 1

2
Tbd

ēTēā
cX ā. The torsion

terms of (82) evidently cancel if Xa satisfies (79).
Suppose now that 2n ≥ 6. Then we deduce from Proposition 2.13 that

Ra(b
c
d)X

a = Wa(b
c
d)X

a + P(bd)X
c + δ(b

cPd)aX
a − δbcPadXa − δdcPabXa, (83)

where the third term and the two last terms already define two tensors of the form (11).
Moreover, we obtain by Proposition 2.13 that

Rā(b
c
d)X

ā = Hāb
c
dX

ā + 1
n+1

δ(b
cTd)f

ēTēā
fX ā − 2Pā(bδd)

cX ā, (84)

where the last two terms are again already of the form (11). Therefore, we conclude:

Proposition 3.7. Suppose (M,J, [∇]) is an almost c-projective manifold of dimension
2n ≥ 6. A vector field Xa ∈ Γ(T 1,0M) is c-projective if and only if it satisfies the
following equations

(1) ∇b̄X
c + Tāb̄

cX ā = 0
(2) (∇(b∇d)X

c + P(bd)X
c +Wa(b

c
d)X

a +Hāb
c
dX

ā)◦ = 0,
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where the subscript ◦ denotes the trace-free part.

Due to Proposition 2.14 for 2n = 4 the equations take a simpler form:

Proposition 3.8. Suppose (M,J, [∇]) is an almost c-projective manifold of dimension
2n = 4. A vector field Xa ∈ Γ(T 1,0M) is c-projective if and only if it satisfies the
following equations

(1) ∇b̄X
c + Tāb̄

cX ā = 0
(2) (∇(b∇d)X

c + P(bd)X
c +Hāb

c
dX

ā)◦ = 0,

where the subscript ◦ denotes the trace-free part.

The equations in Propositions 3.7 and 3.8 define an invariant differential operator

Daut : T 1,0M → (∧1,0 ⊗ T 0,1M)⊕ (S2∧1,0 ⊗ T 1,0M)◦,

whose kernel comprises the infinitesimal automorphisms of (M,J, [∇]).
Let us recall some facts about infinitesimal automorphisms of Cartan geometries.

Definition 3.2. Suppose (p : G → M,ω) is a Cartan geometry. A vector field X̃ ∈
Γ(TG) is called an infinitesimal automorphism of (p : G →M,ω), if X̃ is right-invariant
for the principal right action on G and LX̃ω = 0.

A Cartan connection ω on p : G →M induces a bijection between right-invariant vec-
tor fields X̃ ∈ Γ(TG) and equivariant functions ω(X̃) : G → g. Hence, right-invariant
vector fields on G are in bijection with sections of the adjoint tractor bundle AM . A
section s of AM corresponds to an infinitesimal automorphism of the Cartan geometry
if and only if s is parallel for the linear connection

∇As+ κ(Π(s), ·), (85)

where ∇A is the adjoint tractor connection, Π: AM → TM the natural projection,
and κ ∈ Ω2(M,AM) the curvature of the Cartan geometry; see [29, 36].

The equivalence of categories established in Theorem 2.8 implies that any infini-
tesimal automorphism X ∈ Γ(TM) of an almost c-projective manifold can be lifted
uniquely to an infinitesimal automorphism of its normal Cartan geometry and con-
versely, any infinitesimal automorphism of the Cartan geometry projects to an infin-
itesimal automorphism of the underlying almost c-projective manifold. This implies,
in particular, that Π induces a bijection between sections of the adjoint tractor bun-
dle of the almost c-projective manifold that are parallel for the connection (85) and
infinitesimal automorphisms of the almost c-projective manifold.

For the convenience of the reader let us explicitly compute the modified adjoint
tractor connection (85). For these purposes let us identify the adjoint tractor bundle
with the (1, 0)-part of its complexification. As such it is filtered as

AM = A−1M ⊃ A0M ⊃ A1M,

where A−1M/A0M ∼= T 1,0M , A0M/A1M ∼= gl(T 1,0M,C) and A1M ∼= ∧1,0. Hence,
for any choice of connection ∇ ∈ [∇], we can identify an element of AM with a tripleXb

φb
c

µb

 , where

 Xb ∈ T 1,0M
φb
c ∈ gl(T 1,0M,C)

µb ∈ ∧1,0.

Note that φbc may be decomposed further into its trace-free and trace parts according
to the decomposition (18) gl(T 1,0M,C) ∼= sl(T 1,0M,C) ⊕ E(0, 0). However, we shall
not make use of this decomposition. From the formulae (52) and (53) defining the
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tractor connection on the standard complex tractor bundle T one easily deduces that
tractor connection on AM = sl(T ) is given by

∇Aa

Xb

φb
c

µb

 =

 ∇aX
b − φab

∇aφb
c + δa

cµb + PabX
c + (µa + PadX

d)δb
c

∇aµb − Pacφb
c

 (86)

∇Aā

Xb

φb
c

µb

 =

 ∇āX
b

∇āφb
c + PābX

c + PādX
dδb

c

∇āµb − Pācφb
c

 . (87)

From (85) we deduce that:

Proposition 3.9. Suppose (M,J, [∇]) is an almost c-projective manifold of dimension
2n ≥ 6. Then the projection Π: AM → AM/A0M ∼= T 1,0M induces a bijection
between sections of AM that are parallel for

∇Aa

Xb

φb
c

µb

+

 0

Wda
c
bX

d +Wd̄a
c
bX

d̄ + Taf
ēTēd̄

fX d̄δb
c

CcabX
c + Cc̄abX

c̄


∇Aā

Xb

φb
c

µb

+

 Tc̄ā
bX c̄

Wdā
c
bX

d +Wd̄ā
c
bX

d̄ + (∇eTd̄ā
eX d̄ − Tdf ēTēāfXd)δb

c

CcābX
c + Cc̄ābX

c̄


and infinitesimal automorphisms of the almost c-projective manifold.

Proposition 3.9 can, of course, also be obtained directly by prolonging cleverly the
equations of Proposition 3.7. Note that the form of the equations in Proposition 3.7
immediately shows that Π maps parallel sections for the connection in Proposition
3.9 to c-projective vector fields. To see the converse, one may verify that that for a
c-projective vector field Xb and for any choice of ∇ ∈ [∇] the sectionXb

φb
c

µb

 =

 Xb

∇bX
c

− 1
n+1

(∇a∇bX
a + 2P(ab)X

b)


is parallel for the connection given in Proposition 3.9 and observe that this differential
operator indeed defines the inverse to the claimed bijection.

Remark 3.2. If the dimension of the almost c-projective manifold is 2n = 4, then
Proposition 3.9 still holds taking into account that Wab

c
d ≡ 0.

Remark 3.3. Note that the differential operator

DA : T 1,0M → (∧1,0 ⊗ T 0,1M)⊕ (S2∧1,0 ⊗ T 1,0M)◦

Xc 7→ (∇b̄X
c, (∇(b∇d)X

c +XcP(bd))◦)

is also invariant. It is the first operator in the BGG sequence of the adjoint tractor
bundle. As for projective structures, this operator differs from Daut, the operator that
controls the infinitesimal automorphisms of the almost c-projective manifold. For a
discussion of this phenomena in the context of general parabolic geometries see [29].

4. Metrisability of almost c-projective structures

On any (pseudo-)Kähler manifold (M,J, g) one may consider the c-projective struc-
ture that is induced by the Levi-Civita connection of g. The c-projective manifolds
that arise in this way from a (pseudo-)Kähler metric are the most extensively studied c-
projective manifolds; see [41, 56, 81, 90] and, more recently, [44, 77, 80]. A natural but
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difficult problem in this context is to characterise the c-projective structures that arise
from (pseudo-)Kähler metrics or, more generally, the almost c-projective structures
that arise from (2, 1)-symplectic (also called quasi-Kähler) metrics. In the following
sections we shall show that, suitably interpreted, this problem is controlled by an invari-
ant linear overdetermined system of PDE and we shall explicitly prolong this system.
Under the assumptions that J is integrable and the c-projective manifold (M,J, [∇g])
arose via the Levi-Civita connection ∇g of a Kähler metric g, a prolongation of the
system of PDE governing the Kähler metrics that are c-projectively equivalent to g
was first given in [41, 81] and rediscovered in the setting of Hamiltonian 2-forms on
Kähler manifolds in [2].

4.1. Almost Hermitian manifolds. We begin by recalling some basic facts.

Definition 4.1. Suppose (M,J) is an almost complex manifold of dimension 2n ≥ 4.
A Hermitian metric on (M,J) is a (pseudo-)Riemannian metric gαβ ∈ Γ(S2T ∗M) that
is J-invariant:

Jα
γJβ

δgγδ = gαβ.

We call such a triple (M,J, g) an almost Hermitian manifold, or, if J is integrable, a
Hermitian manifold. Note that we drop the awkward (pseudo-) prefix.

To an almost Hermitian manifold (M,J, g) one can associate a nondegenerate J-
invariant 2-form Ω ∈ Γ(∧2T ∗M) given by

Ωαβ := Jα
γgγβ. (88)

It is called the fundamental 2-form or Kähler form of (M,J, g). If Ω is closed (dΩ =
0), we say (M,J, g) is almost Kähler or almost pseudo-Kähler accordingly as g is
Riemannian or pseudo-Riemannian; the “almost” prefix is dropped if J is integrable.

We write gαβ for the inverse of the metric gαβ:

gαγg
γβ = δα

β.

We raise and lower indices of tensors on an almost Hermitian manifold (M,J, g) with
the metric and its inverse. The Poisson tensor on M is Ωαβ = Jγ

βgαγ, with

ΩαβΩβγ = −δαγ. (89)

Viewing ∧1,0⊗∧0,1 as a complex vector bundle equipped with the real structure given
by swapping its factors, a Hermitian metric can, by definition, also be seen as a real
nondegenerate section gab̄ of ∧1,0 ⊗ ∧0,1. We denote by gāb ∈ Γ(T 0,1M ⊗ T 1,0M) its
inverse, characterised by

gab̄g
b̄c = δa

c and gab̄g
c̄a = δb̄

c̄.

Let us denote by ∇g the Levi-Civita connection of a Hermitian metric g. Differen-
tiating the identity JαγJγβ = −δαβ shows that

(∇g
αJβ

ε)Jε
γ + Jβ

ε∇g
αJε

γ = 0. (90)

Since ∇g
αΩβγ = gγε∇g

αJβ
ε, it follows immediately from (90) that

∇g
αΩβγ + Jβ

εJγ
ζ∇g

αΩεζ = 0. (91)

Viewing ∇g
αΩβγ as 2-form with values in T ∗M , equation (91) says that the part of type

(1, 1) vanishes identically. On the other hand, the vector bundle map

∧2T ∗M ⊗ T ∗M → ∧3T ∗M

Ψαβγ 7→ Ψ[αβγ]
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induces an isomorphism between 2-forms with values in T ∗M of type (0, 2) and 3-forms
on M of type (2, 1) + (1, 2), i.e. real sections of ∧2,1 ⊕∧1,2. Since

∇g
[αΩβγ] = 1

3
(dΩ)αβγ, (92)

the identity
2∇g

αΩβγ = (dΩ)αβγ − JβεJγζ(dΩ)αεζ −NJ
βγ
εΩεα (93)

shows that type (0, 2) component of ∇g
αΩβγ is identified with the (2, 1) + (1, 2) com-

ponent of dΩ [48]. The type (3, 0) + (0, 3) component of dΩ is determined by the
Nijenhuis tensor NJ , hence so is the type (2, 0) part of ∇g

αΩβγ (which has type (0, 2)
when viewed as a 2-form with values in TM using g).

If M has dimension 2n ≥ 6, ∇g
αΩβγ can be decomposed into 4 components, which

correspond to 4 real irreducible U(p, q)-submodules in∧2Cn⊗Cn, where U(p, q) denotes
the (pseudo-)unitary group of signature (p, q) with p + q = n, the signature of gαβ.
If 2n = 4, then ∇g

αΩβγ has only two components. The different possibilities of a
subset of these invariants vanishing leads to the Gray–Hervella classification of almost
Hermitian manifolds into 16, respectively 4, classes in dimension 2n ≥ 6, respectively
2n = 4, see [51]. In the following we shall be interested in the class of almost Hermitian
manifolds which in the literature (at least in the case of metrics of definite signature) are
referred to as quasi-Kähler or (2, 1)-symplectic, see [48, 51]. We extend this terminology
to indefinite signature, as we have done for Hermitian metrics in general.

Definition 4.2. Suppose (M,J, g) is an almost Hermitian manifold of dimension
2n ≥ 4. Then (M,J, g) is called a quasi-Kähler or (2, 1)-symplectic manifold, if

∇g
αΩβγ + Jα

εJβ
ζ∇g

εΩζγ = 0, (94)

which is the case if and only if

∇g
αJβ

γ = −JαεJβζ∇g
εJζ

γ. (95)

Since ∇αΩβγ, as a 2-form with values in T ∗M , has no component of type (1, 1), (94)
means, equivalently, that ∇αΩβγ has type (2, 0), i.e. has no (0, 2) part; equivalently
dΩ has no component of type (2, 1) + (1, 2), i.e. it has type (3, 0) + (0, 3), which
explains the “(2, 1)-symplectic” terminology. The class of (2, 1)-symplectic manifolds of
dimension 2n ≥ 6 contains as a subclass the almost (pseudo-)Kähler manifolds, which
are symplectic, and the subclass of nearly Kähler manifolds, i.e. those almost Hermitian
manifolds that satisfy ∇g

αΩβγ = −∇g
βΩαγ, which is manifestly equivalent to 3∇g

αΩβγ =
(dΩ)αβγ. Since in dimension 2n = 4 any 3-form has type (2, 1)+(1, 2), the condition for
an almost Hermitian manifold of dimension 4 to be (2, 1)-symplectic is equivalent to the
condition to be almost (pseudo-)Kähler. If J is integrable, i.e. (M,J, g) a Hermitian
manifold, then (M,J, g) is (2, 1)-symplectic if and only if dΩ = 0, i.e. (M,J, g) is
(pseudo-)Kähler.

Definition 4.3. Let (M,J, g) be an almost Hermitian manifold of dimension 2n ≥ 4.
Then a Hermitian connection onM is an affine connection∇ with∇J = 0 and∇g = 0.

Such Hermitian connections exist and are uniquely determined by their torsion. A
discussion of Hermitian connections and of the freedom in prescribing their torsion
can for instance be found in [48] (see also [69]). The following proposition shows that
(2, 1)-symplectic manifolds can be characterised as those almost Hermitian manifolds
which admit a minimal Hermitian connection; for a proof see [48].

Proposition 4.1. Suppose (M,J, g) is an almost Hermitian manifold of dimension
2n ≥ 4. Then (M,J, g) admits a (unique) Hermitian connection whose torsion T is of
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type (0, 2) as 2-form with values in TM , equivalently T = −1
4
NJ , if and only if it is

(2, 1)-symplectic.

For a a (2, 1)-symplectic manifold (M,J, g) we refer to the unique Hermitian con-
nection ∇ of Proposition 4.1 as the canonical connection of (M,J, g). In terms of the
Levi-Civita connection ∇g of g it is given by

∇αX
β = ∇g

αX
β + 1

2
(∇g

αJγ
β)Jε

γXε. (96)
For the convenience of the reader let us check that this connection has the desired
properties. For an arbitrary almost Hermitian manifold (M,J, g) the formula (96) is
obviously a complex connection, since

∇α(Jγ
βXγ) = 1

2
(∇g

α(Jγ
βXγ) + Jγ

β∇g
αX

γ)

Jγ
β∇αX

γ = 1
2
(∇g

α(Jγ
βXγ) + Jγ

β∇g
αX

γ),

which implies (∇αJβ
γ)Xβ = ∇α(Jγ

βXγ)−Jγβ∇αX
γ = 0 for all vector fields Xα. Since

∇g is a metric connection, the connection given by (96) is a metric connection if and
only if (∇g

αJζ
ε)Jβ

ζgγε = (∇g
αΩζγ)Jβ

ζ is skew in γ and β, which follows immediately
from (93). Hence, on any almost Hermitian manifold formula (96) defines a Hermitian
connection. Moreover, since ∇g is torsion free, the torsion T of (96) satisfies

Tαβ
γ = 1

2
((∇g

αJε
γ)Jβ

ε − (∇g
βJε

γ)Jα
ε). (97)

Recall that the Nijenhuis tensor can be expressed in terms of ∇g (actually in terms of
any torsion free connection) as

NJ
αβ

γ = −(∇g
αJε

γ)Jβ
ε + (∇g

βJε
γ)Jα

ε − Jαε∇εJβ
γ + Jβ

ε∇εJα
γ, (98)

which by (95) reduces in the case of a (2, 1)-symplectic manifold to the equation

NJ
αβ

γ = −2((∇g
αJε

γ)Jβ
ε − (∇g

βJε
γ)Jα

ε). (99)

Comparing (97) with (99) shows that on a (2, 1)-symplectic manifold the torsion T of
(96) satisfies T = −1

4
NJ as required. Note that, if the Levi-Civita connection ∇g of

(M,J, g) is a complex connection, then also∇g
αΩβγ = 0, which by (92) implies that Ωαβ

is closed. Moreover, the identity (93) shows that J is necessarily integrable in this case.
Conversely, the same identity shows that, if J is integrable and the fundamental 2-
form closed, then the Levi-Civita connection is a complex connection, cf. Corollary 1.3.
Hence, the connection in (96) coincides with the Levi-Civita connection of on an almost
Hermitian manifold if and only if (M,J, g) is (pseudo-)Kähler.

Remark 4.1. We have already observed that formula (96) defines a Hermitian con-
nection on any almost Hermitian manifold, which is usually referred to as the first
canonical connection following [69]. In the case of a (2, 1)-symplectic manifold the first
canonical connection coincides also with the second canonical connection of [69], which
is also called Chern connection; see [48].

Let (M,J, g) be a (2, 1)-symplectic manifold and denote by R the curvature of its
canonical connection ∇. Since ∇ is Hermitian, we have R ∈ Ω2(M, u(TM)), where
u(TM) ⊂ T ∗M ⊗ TM denotes the subbundle of unitary bundle endomorphisms of
(TM, J, g). Setting Rαβγδ ≡ Rab

ε
δgεγ, the property R ∈ Ω2(M, u(TM)) of the curvature

of a (2, 1)-symplectic manifold can be expressed as
Rαβγδ = R[αβ][γδ] and Rαβγ[δJε]

γ = 0. (100)
Moreover, recall that for any linear connection the Bianchi symmetry holds. Hence, R
satisfies

R[αβ
γ
δ] = ∇[αTβδ]

γ + Tε[α
γTβδ]

ε, (101)
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where Tαβγ = −1
4
NJ
αβ

γ is the torsion of ∇. Note that (101) for a minimal connection is
of course precisely equivalent to the already established identities (41) and (42). Since
∇ is a complex connection, R decomposes as a 2-form with values in the complex endo-
morphism of TM into three components according to type as explained in Section 2.4.
In barred and unbarred indices R can therefore be encoded by the three tensors

Rab
c
d Rab̄

c
d Rāb̄

c
d,

or equivalently by their complex conjugates, where Rab
c
d ≡ Πα

aΠβ
bΠc

γΠ
δ
dRαβ

γ
δ and so on.

Since ∇ preserves in addition a (pseudo-)Riemannian metric, the additional symmetry
Rαβγδ = −Rαβδγ implies

Rabc̄d ≡ Rab
e
dgec̄ = −Rab

ē
c̄gēd ≡ −Rabdc̄ Rāb̄c̄d ≡ Rāb̄

e
dgec̄ = −Rāb̄

ē
c̄gēd ≡ −Rāb̄dc̄

Rab̄c̄d ≡ Rab̄
e
dgec̄ = −Rab̄

ē
c̄gēd ≡ −Rab̄dc̄ Rābc̄d ≡ Rāb

e
dgec̄ = −Rāb

ē
c̄gēd ≡ −Rābdc̄.

Note that the first two identities (which are conjugates of each other) show that for
the canonical connection of a (2, 1)-symplectic manifold (in contrast to a general min-
imal complex connection) the curvature components Rab

c
d and Rab

c̄
d̄ = Rāb̄

c
d are not

independent of each other, since they are related by g. Hence, the curvature R of the
canonical connection of a (2, 1)-symplectic manifold can be encoded by the two tensors

Rabc̄d = R[ab]c̄d and Rab̄c̄d

(or their complex conjugates). By (101), (100) and the fact that the torsion of ∇
has type (0, 2) one deduces straightforwardly that the curvature and the torsion of a
(2, 1)-symplectic manifold satisfy the symmetries

Rabc̄d = −∇c̄Tabd Rabc̄d +Rbdc̄a +Rdac̄b = 0 (102)
∇[aTbc]d = 0 (103)
Rab̄c̄d −Rdb̄c̄a = −TadēTēb̄c̄ Rab̄c̄d −Rac̄b̄d = −Tb̄c̄eTead (104)

Rab̄c̄d −Rc̄d̄ab̄ = Tāb̄c̄Tda
ē + TfdaTc̄b̄

f , (105)

where Tabc = Tab
d̄gcd̄ and Tāb̄c̄ = Tāb̄

dgdc̄ (cf. also (41) and (42)). Now let us consider
the Ricci tensor Ric of the canonical connection of a (2, 1)-symplectic manifold. By
definition we have

Ricab = Rca
c
b Ricāb̄ = Rc̄ā

c̄
b̄ Ricab̄ = Rc̄a

c̄
b̄ Ricāb = Rcā

c
b.

From the identities (102) we we conclude that

Ricab = −∇c̄T
c̄
ab Ric[ab] = 1

2
∇c̄Tab

c̄

Ricāb̄ = −∇cT
c
āb̄ Ric[āb̄] = 1

2
∇cTāb̄

c.
(106)

Moreover, taking a Ricci type contraction in (105) shows immediately that the J-
invariant part of the Ricci tensor of the canonical connection of a (2, 1)-symplectic
manifold is symmetric:

Ricab̄ = Ricb̄a. (107)
The canonical connection of a (2, 1)-symplectic manifold is special in the sense of
Section 2.5, since it preserves the volume form of g; hence (106) and (107) confirm in
particular what we deduced there for the Ricci curvature of special connections.

We already observed that (2, 1)-symplectic is equivalent to (pseudo-)Kähler when J
is integrable. Hence, in this case, the canonical connection simply coincides with the
Levi-Civita connection. Suppose (M,J, g) is now a (pseudo-)Kähler manifold. Then
the identities (102)–(105) imply that R is determined by any of the following tensors

Rab̄cd̄ Rābcd̄ Rab̄c̄d Rābc̄d
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which are now subject to the following symmetries
Rab̄cd̄ = −Rb̄acd̄ Rab̄cd̄ = −Rab̄d̄c Rab̄cd̄ = Rcb̄ad̄ Rab̄cd̄ = Rad̄cb̄ (108)

as well as
Rābcd ≡ Rab̄cd̄ = Rbādc̄.

Remark 4.2. Let us remark that for the curvature R of a (pseudo-)Kähler manifold,
we have R[αβ

γ
δ] = 0 which, together with the symmetries (100), implies

Rαβγδ = Rγδαβ and Jα
εJβ

ζRεζ
γ
δ = Rαβ

γ
δ. (109)

The symmetries of (100) and (109) are precisely the ones in (108) expressed in real
indices. Note also that (109) shows immediately that the Ricci tensor Ricαβ = Rεα

ε
β

is symmetric and J-invariant, which is consistent with (107).

Moreover, note that it is immediate that the rank of the bundle of (pseudo-)Kähler
curvatures is (n(n+ 1)/2)2 and that this bundle further decomposes under U(n) as

S2∧1,0 ⊗ S2∧0,1 = (S2∧1,0 ⊗◦ S2∧0,1) ⊕ (∧1,0 ⊗◦ ∧0,1) ⊕ R,
where the subscript ◦ means trace-free part and R stands for the trivial bundle. Under
this decomposition, the (pseudo-)Kähler curvature splits as

Rab̄cd̄ = Uab̄cd̄ − 2(Ξab̄gcd̄ + Ξcd̄gab̄ + Ξad̄gcb̄ + Ξcb̄gad̄)− 2Λ(gab̄gcd̄ + gad̄gcb̄), (110)
where

Uab̄cd̄ = Ucb̄ad̄ = Uad̄cb̄ gb̄cUab̄cd̄ = 0 gb̄aΞab̄ = 0.

This is a Kähler analogue of the usual decomposition of Riemannian curvature into the
conformal Weyl tensor, the trace-free Ricci tensor, and the scalar curvature. The tensor
Uab̄cd̄ is called the Bochner curvature (or tensor) and is the orthogonal projection of
the conformal Weyl curvature onto the intersection of the space of Kähler curvatures
with the space of conformal Weyl tensors [2]. The analogue of constant curvature in
(pseudo-)Kähler geometry is to insist that Rab̄d̄c = Λ(gab̄gcd̄ + gcb̄gad̄), where the (a
priori) smooth function Λ is constant by the Bianchi identity. This is called constant
holomorphic sectional curvature and (for Λ > 0) locally characterises CPn and its
Fubini–Study metric as in Section 2.6 (where the normalisation is such that Λ = 1).

4.2. Other curvature decompositions. It will be useful, both in this article and
elsewhere, to decompose the (pseudo-)Kähler curvature tensor from various different
viewpoints, some of which ignore the complex structure. Without a complex structure,
barred and unbarred indices are unavailable so firstly we should rewrite the irreducible
decomposition (110) using only real indices. We recall that

Rαβγδ = R[αβ][γδ] R[αβγ]δ = 0 Rαβγ[δJε]
γ = 0 (111)

and the real version of (110) will apply to any tensor satisfying these identities. Re-
calling that Ωαβ = Jαβ = Jα

γgβγ, we obtain
Rαβγδ = Uαβγδ

+ gαγΞβδ − gβγΞαδ − gαδΞβγ + gβδΞαγ

+ ΩαγΣβδ − ΩβγΣαδ − ΩαδΣβγ + ΩβδΣαγ + 2ΩαβΣγδ + 2ΩγδΣαβ

+ Λ(gαγgβδ − gβγgαδ + ΩαγΩβδ − ΩβγΩαδ + 2ΩαβΩγδ),

(112)

where
• Uαβγδ is totally trace-free with respect to gαβ and Ωαβ

• Σαβ ≡ Jα
γΞβγ whilst Ξαβ is symmetric, trace-free, and of type (1, 1):

Ξαβ = Ξ(αβ) Ξα
α = 0 Σαβ = Σ[αβ].
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A simple way to see this is to check that all parts of this decomposition satisfy (111) as
they should and then apply Πα

aΠβ

b̄
Πγ
cΠ

δ
d̄
, using the various identities from Section 1.1

including (4), to recover (110). One can also read off from (112) the corresponding
decomposition of the Ricci tensor in (pseudo-)Kähler geometry. Specifically,

Ricβδ = 2(n+ 2)Ξβδ + 2(n+ 1)Λgβδ Scal = 4n(n+ 1)Λ

and, conversely,

Λ = 1
4n(n+1)

Scal Ξαβ = 1
2(n+2)

(
Ricαβ − 1

2n
Scal gαβ

)
.

Other natural realms in which one may view (pseudo-)Kähler geometry are
• projective
• conformal
• c-projective
• symplectic

and in each case decompose the curvature accordingly. The projective Weyl curvature
tensor [42] on a Riemannian manifold of dimension m is given by

Rαβγδ − 1
m−1

gαγRicβδ + 1
m−1

gβγRicαδ.

If this vanishes, then, in conjunction with the interchange symmetry Rαβγδ = Rγδαβ,
we deduce that Rαβγδ = λ(gαγgβδ − gβγgαδ) where, if m ≥ 3, the (a priori) smooth
function λ is constant by the Bianchi identity. This is Beltrami’s Theorem that the
only projectively flat (pseudo-)Riemannian geometries are constant curvature (when
m = 2 one instead uses that the projective Cotton–York tensor vanishes). In any case,
comparison with (112) shows that for n ≥ 2 the only projectively flat (pseudo-)Kähler
manifolds are flat. The conformal Weyl curvature is given by

Rαβγδ − gαγQβδ + gβγQαδ − gβδQαγ + gαδQβγ,

where Qαβ is the Riemannian Schouten tensor

Qαβ =
1

m− 2

(
Ricαβ −

1

2(m− 1)
Scal gαβ

)
.

Thus, if the conformal Weyl curvature vanishes on a (pseudo-)Kähler manifold, then

2Rα
δ
γ[δJε]

γ = JεαQβ
β + 2(n− 2)Jε

γQαγ.

From (111), we see that for n ≥ 3 the only conformally flat (pseudo-)Kähler manifolds
are flat. For n = 2 it follows only that the geometry is scalar flat and, in fact, Tanno [96]
showed that 4-dimensional conformally flat Kähler manifolds are locally of the form
CP1×Σ where CP1 has the Fubini–Study metric up to constant scale and the complex
surface Σ has a constant negative scalar curvature of equal magnitude but opposite
sign to that on CP1.

From the c-projective viewpoint, if we compare the decomposition (112) with (24),
then we conclude, firstly that Wαβ

γ
δ = Hαβ

γ
δ (see the proof of Proposition 4.4 for a

barred/unbarred index proof of this), and then that

Hαβγδ = Uαβγδ − gαδΞβγ + gβδΞαγ + 1
n+1

(gβγΞαδ − gαγΞβδ)

+ 2ΩαβΣγδ − ΩαδΣβγ + ΩβδΣαγ − 1
n+1

(2ΩγδΣαβ − ΩβγΣαδ + ΩαγΣβδ).
(113)

Notice, in particular, that
Hαβγ

β = 2n(n+1)
n+1

Ξαγ (114)
from which we can deduce the following c-projective counterpart to Beltrami’s Theo-
rem.
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Theorem 4.2. Suppose a (pseudo-)Kähler metric is c-projectively flat. Then it has
constant holomorphic sectional curvature.

Proof. To be c-projectively flat, the harmonic curvature tensor Hαβ
γ
δ must vanish.

Then from (114) we find that Ξαβ = 0 and from (113) that also Uαβγδ = 0. According
to (112) we find that Rαβγδ is of the required form. �

Finally, we may view (pseudo-)Kähler geometry from the purely symplectic view-
point as follows. For any torsion-free connection preserving Ωαβ, the tensor Rαβ

ε
δΩεγ

is symmetric in γδ and may be decomposed into irreducible pieces under Sp(2n,R):

Rαβ
ε
δΩεγ = Vαβγδ + ΩαγΦβδ − ΩβγΦαδ + ΩαδΦβγ − ΩβδΦαγ + 2ΩαβΦγδ, (115)

where

Vαβγδ = V[αβ](γδ) V[αβγ]δ = 0 ΩαβVαβγδ = 0 Φαβ = Φ(αβ).

Proposition 4.3. On a (pseudo-)Kähler manifold, if the tensor Vαβγδ vanishes, then
the metric has constant holomorphic sectional curvature.

Proof. From (115), we find that

ΩαβRαβ
ε
δΩεγ = Ωαβ [ΩαγΦβδ − ΩβγΦαδ + ΩαδΦβγ − ΩβδΦαγ + 2ΩαβΦγδ] = 4(n+ 1)Φγδ

whereas computing according to (112) leads to ΩαβRαβ
ε
δΩεγ = 4Ξγδ. We conclude that

Ξαβ = (n + 1)Φαβ at which point we may compare (115) with (112) when Vαβγδ = 0
to conclude that Uαβγδ = 0 and Ξαβ = 0, as required. �

4.3. Metrisability of almost c-projective manifolds. Suppose (M,J, [∇]) is an
almost c-projective manifold. It is natural to ask whether [∇] contains the canonical
connection of a (2, 1)-symplectic metric on (M,J).

Definition 4.4. On an almost c-projective manifold (M,J, [∇]) a (2, 1)-symplectic
metric g ∈ Γ(S2T ∗M) on (M,J) is compatible with the c-projective class [∇] if and only
if its canonical connection is contained in [∇]. The almost c-projective structure on M
is said to bemetrisable or (2, 1)-symplectic or quasi-Kähler (orKähler or pseudo-Kähler
when J is integrable) if it admits a compatible (2, 1)-symplectic metric g (respectively
a Kähler or pseudo-Kähler metric g, if J is integrable).

The volume form vol(g) of g is a positive section of ∧2nT ∗M , which we view as a
c-projective density of weight (−(n+ 1),−(n+ 1)) under the identification of oriented
real line bundles ∧2nT ∗M = ER(−(n+ 1),−(n+ 1)) determined by

εab···c ε̄d̄ē···f̄ ∈ Γ(∧2nT ∗(n+ 1, n+ 1)),

where εab···c ∈ Γ(∧n,0(n+1, 0)) is the tautological form from Section 2.1. We now write
vol(g) = τ

−(n+1)
g uniquely to determine a positive section τg of ER(1, 1). The canonical

connection ∇ of g is a special connection in the c-projective class, and for all ` ∈ Z,
τ `g = vol(g)−`/(n+1) ∈ Γ(ER(`, `)) is a ∇-parallel trivialisation of ER(`, `).

In the integrable case, the metrisability of a c-projective structure gives easily the
following constraints on the harmonic curvature.

Proposition 4.4. Let (M,J, [∇]) be a c-projective manifold of dimension 2n ≥ 4.
If [∇] is induced by the Levi-Civita of a (pseudo-)Kähler metric on (M,J), then the
harmonic curvature only consists of the (1, 1)-part

Wab̄
c
d = Hab̄

c
d

of the (c-projective) Weyl curvature.
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Proof. Suppose first that 2n ≥ 6. Then we have to show that Wab
c
d vanishes. Recall

that, by construction,Wab
c
d is the connection-independent part of the (2, 0)-component

of the curvature of any connection in the c-projective class. Hence, if [∇] is induced
from the Levi-Civita connection of a (pseudo-)Kähler metric on (M,J), then Wab

c
d

vanishes identically, since the curvature of a (pseudo-)Kähler metric is J-invariant. If
2n = 4, then Wab

c
d is always identically zero and the (2, 0)-part Cabc of the Cotton–

York tensor is independent of the choice of connection in the c-projective class. Since
the Ricci tensor Ricαβ of a (pseudo-)Kähler metric g is J-invariant (109), we have
Pab̄ = 1

n+1
Ricab̄ and Ricab = Pab = 0. Hence, if 2n = 4 and the c-projective structure is

metrisable, then Cabc = ∇aPbc−∇bPac vanishes identically, which proves the claim. �

We now link compatible metrics to solutions of the first BGG operator associated to
a real analogue V of the standard complex tractor bundle T . Any almost c-projective
manifold (M,J, [∇]) admits a complex vector bundle

VC = T ⊗ T .
Although the construction of T and T requires the existence and choice of an (n+ 1)st

root E(1, 0) of ∧nT 1,0M , the vector bundle T ⊗ T is defined independently of such
a choice. Moreover, swapping the two factors defines a real structure on T ⊗ T and
hence VC is the complexification of a real vector bundle V over M corresponding to
that real structure. The filtration (49) of T induces filtrations on V and VC given by

VC = V−1
C ⊃ V

0
C ⊃ V1

C ,

where

V−1
C /V0

C
∼= T 0,1M ⊗ T 1,0M(−1,−1)

V0
C/V1

C
∼= (T 1,0M ⊕ T 0,1M)(−1,−1)

V1
C
∼= E(−1,−1).

For any choice of connection ∇ ∈ [∇] we can therefore identify an element of VC with
a quadruple ηb̄c

Xb | Y b̄

ρ

 , where

 ηb̄c ∈ T 0,1M ⊗ T 1,0M(−1,−1),

Xb ∈ T 1,0M(−1,−1), Y b̄ ∈ T 0,1M(−1,−1),
ρ ∈ E(−1,−1),

and elements of V can be identified with the real elements of VC:
ηc̄b = ηb̄c, Xb = Y b̄ and ρ̄ = ρ. (116)

The formulae (52) and (53) for the tractor connection on T immediately imply that
the tractor connection on VC = T ⊗ T is given by

∇VCa

 ηb̄c

Xb | Y b̄

ρ

 =

 ∇aη
b̄c + δa

cY b̄

∇aX
b + ρδa

b − Pac̄η
c̄b | ∇aY

b̄ − Pacη
b̄c

∇aρ− Pab̄Y
b̄ − PabX

b

 (117)

∇VCā

 ηb̄c

Xb | Y b̄

ρ

 =

 ∇āη
b̄c + δā

b̄Xc

∇āX
b − Pāc̄η

c̄b | ∇āY
b̄ + ρδā

b̄ − Pācη
b̄c

∇āρ− Pāb̄Y
b̄ − PābX

b

 . (118)

Note that the real structure on VC is parallel for this connection and that, consequently,
the tractor connection on V is the restriction of (117) and (118) to real sections (116).

Now consider, for a section ηb̄c of T 0,1M ⊗ T 1,0M(−1,−1), the system of equations

∇aη
b̄c + δa

cY b̄ = 0, ∇āη
b̄c + δā

b̄Xc = 0 (119)
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for some sections Xc of T 1,0M(−1,−1) and Y b̄ of T 0,1M(−1,−1). It follows immedi-
ately from the invariance of (59) that the system (119) is c-projectively invariant. In
fact, if ηb̄c ∈ Γ(T 0,1M ⊗ T 1,0M(−1,−1)) satisfies (119) for some connection ∇ ∈ [∇],
for some Xc ∈ Γ(T 1,0M(−1,−1)), and for some Y b̄ ∈ Γ(T 1,0M(−1,−1)), then ηb̄c

satisfies (119) for ∇̂ ∈ [∇] with

X̂c = Xc −Υb̄η
b̄c and Ŷ b̄ = Y b̄ −Υcη

b̄c. (120)

Moreover, if (119) is satisfied, one must have Y b̄ = − 1
n
∇aη

b̄a and Xc = − 1
n
∇āη

āc. If
ηb̄c is a real section, then the first equation in (119) is satisfied if and only if the second
equation of (119) holds, in which case Xb = Y b̄. We can reformulate these observations
as follows. There is an invariant differential operator

DVC : T 0,1M ⊗ T 1,0M(−1,−1)→
(∧1,0 ⊗ T 0,1M ⊗ T 1,0M(−1,−1))◦

⊕
(∧0,1 ⊗ T 0,1M ⊗ T 1,0M(−1,−1))◦

(121)

given by ηb̄c 7→ (∇aη
b̄c− 1

n
δa
c∇dη

b̄d,∇āη
b̄c− 1

n
δā
b̄∇d̄η

d̄c). RestrictingDVC to real sections
ηb̄c = ηc̄b gives an invariant differential operator DV . It is the first operator in the BGG
sequence corresponding to the tractor bundle V and DVC is its complexification.

Proposition 4.5. Let (M,J, [∇]) be an almost c-projective manifold of dimension
2n ≥ 4. Then, when n is even, the map sending a Hermitian metric gbc̄ to the real
section ηāb = gābτ −1

g of T 0,1M ⊗ T 1,0M(−1,−1) restricts to a bijection between com-
patible (2, 1)-symplectic Hermitian metrics on (M,J, [∇]) and nondegenerate sections
in the kernel of DV . The inverse map sends ηāb to the Hermitian metric gbc̄ with
gāb = (det η)ηāb, where

det η := 1
n!
ε̄āc̄···ē εbd···f η

ābηc̄d · · · ηēf ∈ Γ(ER(1, 1)) (122)

and εab···c denotes the tautological section of ∧n,0(n+1, 0). When n is odd, the mapping
ηāb 7→ gāb := (det η)ηāb is 2–1 and, conversely, the mapping gāb 7→ ηāb := τ −1

g gāb picks
a preferred sign for ηāb but, otherwise, the same conclusions hold.

Proof. Assume first that gbc̄ is a compatible (2, 1)-symplectic Hermitian metric, i.e. its
canonical connection ∇ is contained in [∇]. Then ηāb = gābτ −1

g is a real section of
T 0,1M ⊗ T 1,0M(−1,−1), which satisfies (119) for ∇ with Xc = 0 and Y c̄ = Xc = 0.
Hence, ηb̄c is in the kernel of DV , and det η = τ n+1

g τ −ng = τg.
Conversely, suppose that ηb̄c ∈ Γ(T 0,1M ⊗ T 1,0M(−1,−1)) is a real nondegenerate

section satisfying (119) for some connection ∇ ∈ [∇] with Xb ∈ Γ(T 1,0M(−1,−1)) and
Y b̄ = X b̄ ∈ Γ(T 0,1M(−1,−1)). Since ηāb is nondegenerate, there is a unique 1-form
Υb such that ηābΥb = X ā. Let us denote by ∇̂ ∈ [∇] the connection obtained by c-
projectively changing ∇ via Υb. Then we deduce form (120) that ∇̂aη

b̄c = ∇̂āη
b̄c = 0.

Since εab···c is parallel for any connection in the c-projective class, det η is parallel for
∇̂. Hence, gb̄c = ηb̄c det η is a real nondegenerate section of T 0,1M ⊗ T 1,0M that is
parallel for ∇̂, i.e. its inverse gbc̄ is a (2, 1)-symplectic Hermitian metric whose canonical
connection is ∇̂ ∈ [∇]. �

The real vector bundle V can be realised naturally in two alternative ways as follows.
First, let us view T as a real vector bundle TR equipped with a complex structure JT
(thus, equivalently, TR ⊗ C ∼= T ⊕ T ). Then we can identify V as the JT -invariant
elements in S2TR. However, since JT induces an isomorphism between JT -invariant
elements in S2TR and such elements in ∧2TR, cf. (88), we may, secondly, realise V as



C-PROJECTIVE GEOMETRY 53

the latter. Realised as the bundle of JT -invariant elements in S2TR we can, for any
choice of connection in the c-projective class, identify an element of V with a tripleηβγXβ

ρ

 , where

 ηβγ ∈ S2TM ⊗ ER(−1,−1) with JδβJεγηδε = ηβγ

Xβ ∈ TM ⊗ ER(−1,−1)
ρ ∈ ER(−1,−1).

In this picture the tractor connection becomes

∇Vα

ηβγXβ

ρ

 =

∇αη
βγ + δα

(βXγ) + Jα
(βJε

γ)Xε

∇αX
β + ρδα

β − Pαγη
βγ

∇αρ− PαβX
β

 . (123)

The formulae (117) and (118) may be recovered from (123) by natural projection:

∇VCa = Πα
a∇Vα, ∇VCā = Πα

ā∇Vα, ηb̄c = Πb̄
βΠc

γη
βγ, Xb = Πb

βX
β, Y b̄ = Πb̄

βX
β,

so that, for example,

Πα
aΠβ

b (∇αX
β + ρδα

β − Pαγη
βγ) = ∇aX

b + ρδa
b − Paγη

γb

= ∇aX
b + ρδa

b − Pac̄η
c̄b,

as in (117). To pass explicitly to the second (skew) viewpoint on V described above,
one can write Φβγ = Jα

γηαβ and Y β = Jα
βXα. Then, for any choice of connection in

the c-projective class, an element of V may alternatively be identified with a tripleΦβγ

Y β

ρ

 , where

 Φβγ ∈ ∧2TM ⊗ ER(−1,−1) with JδβJεγΦδε = Φβγ

Y β ∈ TM ⊗ ER(−1,−1)
ρ ∈ ER(−1,−1).

The tractor connection becomes

∇Vα

Φβγ

Y β

ρ

 =

∇αΦβγ + δα
[βY γ] + Jα

[βJε
γ]Y ε

∇αY
β + ρJα

β + PαγΦ
βγ

∇αρ+ PαβJγ
βY γ

 . (124)

The formulae (117) and (118) are again projections of (124):

ηb̄c = iΠb̄
βΠc

γΦ
βγ Xb = −iΠb

βY
β Y b̄ = iΠb̄

βY
β.

4.4. The metrisability equation and mobility. Let (M,J, [∇]) be an almost c-
projective manifold. By Proposition 4.5, solutions to the metrisability problem on
M , i.e. compatible (2, 1)-symplectic metrics up to sign, correspond bijectively to non-
degenerate solutions η of the equation DVη = 0. We refer to this equation as the
metrisability equation on (M,J, [∇]). It may be written explicitly in several ways.

First, viewing V as the real part of VC, ηb̄c satisfies, by (119), the conjugate equations:

∇aη
b̄c + δa

cX b̄ = 0 and ∇āη
b̄c + δā

b̄Xc = 0 (125)

for some (and hence any) connection ∇ ∈ [∇] and some section Xa of T 1,0M ⊗
ER(−1,−1) with conjugate X ā. In the alternative realisation (123) of V , the metris-
ability equation for J-invariant sections ηαβ of S2TM ⊗ ER(−1,−1) is

∇αη
βγ + δα

(βXγ) + Jα
(βJε

γ)Xε = 0 (126)

for some section Xα of TM ⊗ ER(−1,−1). Similarly, using the realisation (124) of V ,
the metrisability equation for J-invariant sections Φαβ of ∧2TM ⊗ ER(−1,−1) is

∇αΦβγ + δα
[βY γ] + Jα

[βJε
γ]Y ε = 0 (127)

for some section Y α of TM ⊗ ER(−1,−1).
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Definition 4.5. The (degree of ) mobility of an almost c-projective manifold, is the
dimension of the space

mc[∇] := kerDV =

{
ηαβ

∣∣∣∣ JγαJεβηγε = ηαβ

∇αη
βγ + δα

(βXγ) + Jα
(βJε

γ)Xε = 0 for some Xα

}
of solutions to the metrisability equation.

In the sequel, the notion of mobility will only be of interest to us when the metris-
ability equation has a nondegenerate solution. Then (M,J, [∇]) has mobility ≥ 1, and
the mobility is the dimension of the space of compatible (2, 1)-symplectic metrics. For
any (2, 1)-symplectic Hermitian metric g on a complex manifold (M,J), the mobility
of the c-projective class [∇] of its canonical connection ∇ is ≥ 1, and will be called the
mobility of g. If such a metric g has mobility one, i.e. the constant multiples of g are
the only metrics compatible with c-projective class [∇], then most natural questions
about the geometry of the c-projective manifold (M,J, [∇]) can be reformulated as
questions about the Hermitian manifold (M,J, g). For example the c-projective vector
fields of (M,J, [∇]) are Killing or homothetic vector fields for g. Hence, roughly speak-
ing, there is essentially no difference between the geometry of the Hermitian manifold
(M,J, g) and the geometry of the c-projective manifold (M,J, [∇]).

We will therefore typically assume in the sequel that (M,J, g), or rather, its c-
projective class (M,J, [∇]), has mobility ≥ 2, and hence admits compatible metrics
g̃ that are not proportional to g; we then say g and g̃ are c-projectively equivalent.
Although all metrics in a given c-projective class are on the same footing, it will often
be convenient to fix a background metric g, corresponding to a nondegenerate solution
η of (125). Then any section η̃ of T 0,1M ⊗ T 1,0M(−1,−1) may be written

η̃āc = ηābAb
c

for uniquely determined Abc—explicitly, we have:

Aāb = (det η)η̃āb and Aa
b = gac̄A

c̄b.

Since η and η̃ are real, Abc is g-Hermitian (i.e. the isomorphism T 0,1M → Ω1,0 induced
by g intertwines the transpose of Aab with its conjugate):

Aab = Ab̄ā := gb̄dAd
cgcā.

Using the canonical connection ∇ of g, the metrisability equation (125) for η̃ may be
rewritten as an equation for Aab, which we call the mobility equation:

∇aAb
c = −δacΛb, or (equivalently) ∇c̄Aa

b = −gac̄Λb, (128)

where Λb = Πb
βΛ

β with Λβ real, and Λb = Πβ
bΛβ = Πβ

b gβαΛ
α = gbāΛ

ā with Λā = Πā
αΛ

α.
Taking a trace gives Λc = ∇cλ and Λc̄ = ∇c̄λ, with λ = −Aaa = −Aāā real. The
metric g itself corresponds to the solution Aab = δa

b of (128), with Λc = 0.
Since the background metric g trivialises the bundles E(`, `) by ∇-parallel sections

τ `g = (det η)`, we shall often assume these bundles are trivial. We may also raise and
lower indices using g to obtain further equivalent forms of the mobility equations:

∇aA
b̄c = −δacΛb̄ or ∇āA

b̄c = −δāb̄Λc, (129)
∇aAbc̄ = −gac̄Λb or ∇āAbc̄ = −gbāΛc̄. (130)

Like the metrisability equation, the mobility equation can be rewritten in explicitly
real terms. If we let η̃αγ = ηαβAβ

γ and raise indices using g, then the metrisability
equation (126) maybe rewritten as a mobility equation for the unweighted tensor Aαβ ∈
Γ(S2

J(TM)):
∇αA

βγ = −δα(βΛγ) − Jα(βJδ
γ)Λδ. (131)
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We thus have that
Λα = ∇αλ where λ = −1

2
Aβ

β. (132)

Tracing back through the identifications, note that

Aαβ =
(vol(g̃)

vol(g)

)1/(n+1)

g̃αβ, (133)

where g̃αβ = (det η̃)η̃αβ is the inverse metric induced by η̃αβ.
We may, of course, also lower indices to obtain:

∇αAβγ = −gα(βΛγ) + Ωα(βJγ)
δΛδ. (134)

This is the form of the mobility equation used in [41, 94] and [44, Equation (3)] to study
c-projectively equivalent Kähler metrics. This is a special case of Proposition 4.5, in
which we suppose that there is a (pseudo-)Kähler metric in our c-projective class and
we ask about other (pseudo-)Kähler metrics in the same c-projective class.

Finally, we may rewrite (127) as a mobility equation with respect to a background
(2, 1)-symplectic metric g with fundamental 2-form Ω and canonical connection ∇.
Trivialising E(1, 1) and lowering indices using g, we obtain

∇αΦβγ + gα[βYγ] − Ωα[βJγ]
δYδ = 0

for a 2-form Φαβ. In the integrable case (i.e. when g is (pseudo-)Kähler) this is the
equation for Hamiltonian 2-forms in the terminology of [2]. We extend this terminology
to the (2, 1)-symplectic setting and refer to its c-projectively invariant version (127) as
the equation for Hamiltonian 2-vectors Φαβ on an almost c-projective manifold.

Remark 4.3. If g is a Kähler metric, then applying the contracted differential Bianchi
identity geb̄∇[eRa]b̄cd̄ = 0 to the Bochner curvature decomposition (110), we deduce that
if the Bochner curvature is coclosed, i.e. geb̄∇eUab̄cd̄ = 0, then Acd̄ := (n+ 2)Ξcd̄ + Λgcd̄
satisfies the mobility equation in the form (130). Equivalently, the corresponding J-
invariant 2-form, which is a modification of the Ricci form, is a Hamiltonian 2-form.
This was one of the motivations for the introduction of Hamiltonian 2-forms in [2], and
is explored further in [5].

Remark 4.4. Many concepts and results in c-projective geometry have analogues
in real projective differential geometry. We recall that on a smooth manifold M of
dimension m ≥ 2, a (real) projective structure is a class [∇] of projectively equivalent
affine connections, cf. (10). It is shown in [43] that the operator

Γ(M,S2TM(−2)) 3 ηβγ 7→ (∇αη
βγ)◦, (135)

where S2TM(−2) denotes the bundle of contravariant symmetric tensors of projective
weight −2 and ◦ denotes the trace-free part, is projectively invariant (it is a first BGG
operator) and that, when n is even and otherwise up to sign, nondegenerate solutions
are in bijection with compatible (pseudo-)Riemannian metrics, i.e. metrics whose Levi-
Civita connection is in the projective class [∇]. We define the mobility of [∇], or of
any compatible (pseudo-)Riemannian metric, to be the dimension of this space

m[∇] := {ηβγ ∈ Γ(M,S2TM) | ∇αη
βγ = δα

βµγ + δa
γµβ for some µα}

of solutions to this projective metrisability or mobility equation, where we reserve the
latter term for the case that the projective structure admits a compatible metric.
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4.5. Prolongation of the metrisability equation. Suppose (M,J, [∇]) is an almost
c-projective manifold and let us prolong the invariant system of differential equations
on sections ηb̄c of T 0,1M ⊗ T 1,0M(−1,−1) given by (119). We have already observed
that (119) implies that

Xb = − 1
n
∇āη

āb and Y b̄ = − 1
n
∇aη

b̄a. (136)

Moreover, we immediately deduce from (119) that

(∇a∇b −∇b∇a)η
c̄d + Tab

ē∇ēη
c̄d = 2δ[a

d∇b]Y
c̄ − Tabc̄Xd (137)

(∇ā∇b̄ −∇b̄∇ā)η
c̄d + Tāb̄

e∇eη
c̄d = 2δ[ā

c̄∇b̄]X
d − Tāb̄dY c̄. (138)

The left hand sides of equations (137) and (138) equal

Rab
d
eη
c̄e +Rab

c̄
ēη
ēd + 2P[ab]η

c̄d − 1
n+1

(∇ēTab
ē)ηc̄d

= Wab
d
eη
c̄e + 2δ[a

dPb]eη
c̄e + (∇ēTab

c̄)ηēd − 1
n+1

(∇ēTab
ē)ηc̄d (139)

Rāb̄
c̄
ēη
ēd +Rāb̄

d
eη
c̄e + 2P[āb̄]η

c̄d − 1
n+1

(∇eTāb̄
e)ηc̄d

= Wāb̄
c̄
ēη
ēd + 2δ[ā

c̄Pb̄]ēη
ēd + (∇eTāb̄

d)ηc̄e − 1
n+1

(∇eTāb̄
e)ηc̄d, (140)

where we have used Theorem 2.13 to rewrite the curvature tensors Rab
c
d, Rāb̄

c̄
d̄, Rāb̄

c
d,

and Rab
c̄
d̄. We conclude from (137) and (139), taking a trace with respect to a and d,

and from (138) and (140), taking a trace with respect to ā and c̄, that

∇bY
c̄ = Pbeη

c̄e + 1
n
Ub

c̄ ∇b̄X
d = Pb̄ēη

ēd + 1
n
Vb̄
d, (141)

where

Ub
c̄ := n

n−1
Tab

c̄Xa + n
n−1

(∇ēTab
c̄)ηēa − n

(n+1)(n−1)
(∇ēTab

ē)ηc̄a (142)

Vb̄
d := n

n−1
Tāb̄

dY ā + n
n−1

(∇eTāb̄
d)ηāe − n

(n+1)(n−1)
(∇eTāb̄

e)ηād, (143)

depend linearly on ηb̄c and on Xa respectively Y ā.

Remark 4.5. Suppose J is integrable. Then the equations (141) imply ∇bY
c̄ = Pbeη

c̄e

and ∇b̄X
d = Pb̄ēη

ēd. Hence, in this case, the equalities between (137) and (139) and
between (138) and (140) show that

Wab
d
eη
c̄e ≡ 0 Wāb̄

c̄
ēη
ēd ≡ 0. (144)

If ηāb is a nondegenerate solution of (119), then (144) implies that Wab
c
d and its

conjugate are identically zero, which confirms again Proposition 4.4 for 2n ≥ 6.

Now consider

(∇a∇b̄ −∇b̄∇a)η
c̄d = Rab̄

d
eη
c̄e +Rab̄

c̄
ēη
ēd + Pab̄η

c̄d − Pb̄aη
c̄d. (145)

By Equation (119) and Theorem 2.13 we may rewrite (145) as

−δb̄c̄∇aX
d + δa

d∇b̄Y
c̄ = Wab̄

d
eη
c̄e +Wab̄

c̄
ēη
ēd + δa

dPb̄eη
c̄e − δb̄c̄Paēηēd. (146)

Taking the trace in (146) with respect to b̄ and c̄ shows that

∇aX
d = Paēη

ēd − 1
n
δa
d(Pb̄eη

b̄e −∇b̄Y
b̄)− 1

n
Wab̄

d
eη
b̄e (147)

and with respect a and d that

∇b̄Y
c̄ = Pb̄eη

c̄e − 1
n
δb̄
c̄(Paēη

ēa −∇aX
d) + 1

n
Wab̄

c̄
ēη
ēa. (148)

As the contraction of (147) with respect to a and d and the contraction of (148) with
respect b̄ and c̄ must lead to the same result, we see that

1
n
(Pb̄eη

b̄e −∇b̄Y
b̄) = 1

n
(Paēη

ēa −∇aX
a), (149)
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which we denote by ρ ∈ Γ(E(−1,−1)). Inserting (136) into (149) therefore implies
that

ρ = 1
n2 (∇ā∇bη

āb + nPābη
āb) = 1

n2 (∇b∇āη
āb + nPab̄η

b̄a). (150)
By Theorem 2.13 we have

(∇a∇b̄ −∇b̄∇a)X
c = Rab̄

c
dX

d + Pab̄X
c − Pb̄aX

c (151)

= Wab̄
c
dX

d + δa
cPb̄dX

d + Pab̄X
c.

Inserting the second equation of (141) and (147) into the left hand side of (151) one
computes that

(∇a∇b̄ −∇b̄∇a)X
a = n∇b̄ρ+ Pab̄X

a − nPb̄ēY ē + Cab̄ēη
ēa + Zb̄, (152)

with

Zb̄ := n
(n+1)(n−1)

(∇aTēb̄
a)Y ē + 1

n−1
Tēb̄

aPadη
ēd + 1

n(n−1)
Tēb̄

aUa
ē

− 1
(n+1)(n−1)

(∇a∇dTēb̄
d)ηēa + 1

(n−1)
(∇a∇dTēb̄

a)ηēd, (153)

where we have used (119), (142) and that Wab̄
a
d is zero. Note again that Zb̄ depends

linearly on ηāb, Xa and Y ā. From (151), the expression (152) must be equal to nPb̄dXd+
Pab̄X

a, which implies that

∇b̄ρ = Pb̄aX
a + Pb̄ēY

ē − 1
n
Cab̄ēη

ēa − 1
n
Zb̄. (154)

Rewriting (∇a∇b̄ −∇b̄∇a)Y
c̄ analogously shows immediately that

∇aρ = PadX
d + PaēY

ē + 1
n
Cab̄dη

b̄d + 1
n
Qa, (155)

where

Qa := n
(n+1)(n−1)

(∇ēTda
ē)Xd + 1

n−1
Tda

b̄Pb̄ēη
ēd + 1

n(n−1)
Tda

b̄Vb̄
d

− 1
(n+1)(n−1)

(∇b̄∇ēTda
ē)ηb̄d + 1

(n−1)
(∇b̄∇ēTda

b̄)ηēd, (156)

depends linearly on ηāb, Xa and Y ā. In summary, we have proved the following.

Theorem 4.6. Suppose (M,J, [∇]) is an almost c-projective manifold. The canonical
projection π : VC := T ⊗ T → T 0,1M ⊗ T 1,0M(−1,−1) induces a bijection between
sections of VC that are parallel for the linear connection

∇VCa

 ηb̄c

Xb | Y b̄

ρ

+
1

n

 0

Wad̄
b
cη
d̄c | − Uab̄

−Cab̄cηb̄c −Qa

 (157)

and

∇VCā

 ηb̄c

Xb | Y b̄

ρ

+
1

n

 0

−Vāb | Wāc
b̄
d̄η
d̄c

−Cācb̄ηb̄c − Za

 (158)

and elements in the kernel of DVC, where Uab̄, Vāb, Qa and Za are defined as in (142),
(143), (153) and (156). The inverse of this bijection is induced by a differential operator
L : T 0,1M ⊗ T 1,0M(−1,−1) → VC, which for a choice of connection ∇ ∈ [∇] can be
written as

L : ηb̄c 7→

 ηb̄c

− 1
n
∇āη

āb | − 1
n
∇aη

b̄a

1
n2 (∇ā∇bη

āb + nPābη
āb)

 .

If J is integrable, Wab̄
c
d = Hab̄

c
d and Wāb

c̄
d̄ = Hāb

c̄
d̄ (by Theorem 2.13) and Uab̄, Vāb,

Qa and Zā are identically zero.
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Let now V be the real form of the vector bundle VC, as defined in the previous section.
Obviously, the connection in Theorem 4.6 preserves V and therefore Proposition 4.5
and Theorem 4.6 imply that:

Corollary 4.7. Suppose (M,J, [∇]) is an almost c-projective manifold of dimension
2n ≥ 4. Then, up to sign, there exists a bijection between compatible (2, 1)-symplectic
Hermitian metrics and sections s of V that satisfy

• π(s) ≡ ηb̄c is nondegenerate
• s is parallel for the connection given by (157) and (158).

Note, that since s is a real section, it is covariant constant for (157) if and only if it
is covariant constant for (158).

Suppose s is a section of V that is parallel for the tractor connection. Then π(s) ≡ ηb̄c

is still in the kernel of DV and hence Theorem 4.6 implies that s is also parallel for
the connection given by (157) and (158), i.e. π(s) ≡ ηāb must satisfy Wad̄

b
cη
d̄c = 0,

Wāc
b̄
d̄η
d̄c = 0, Uab̄ = 0, Vāb = 0, Cab̄cηb̄c + Qa = 0 and Cābc̄η

c̄b + Zā = 0. The
following proposition gives a geometric interpretation of parallel sections of the tractor
connection and hence of so-called normal solutions of the first BGG operator DV in
the terminology of [33].

Proposition 4.8. Suppose (M,J, [∇]) is an almost c-projective manifold of dimension
2n ≥ 4. Then, if n is even, there is a bijection between sections s of V such that

• π(s) ≡ ηb̄c is nondegenerate
• s is parallel for the tractor connection ∇V on V

and compatible (2, 1)-symplectic metrics g satisfying the generalised Einstein condition:

Ricab = 0 and Ricab̄ = kgab̄ for some constant k ∈ R, (159)

where Ric is the Ricci tensor of the canonical connection of g. If J is integrable, then
(159) simply characterises (pseudo-)Kähler–Einstein metrics. If n is odd, the same
conclusions are valid up to sign.

Proof. Suppose s ∈ Γ(V) is parallel for the tractor connection ∇V and that π(s) ≡
ηb̄c ∈ kerDV is nondegenerate. Then Proposition 4.5 implies that the inverse of gāb ≡
ηāb det η is a compatible (2, 1)-symplectic Hermitian metric. Now let ∇ ∈ [∇] be the
canonical connection of gab̄. With respect to the splitting of V determined by ∇ the
section s corresponds to the section ηb̄c

Xb | X b̄

ρ

 =

 ηb̄c

0 | 0
1
n
Pab̄η

b̄a

 . (160)

From ∇Vs = 0 it therefore follows on the one hand that Pacη
b̄c = 0, which implies

Pac = 0 by the nondegeneracy of ηb̄c. Since Ricab = (n− 1)Pab + 2P[ab], we see that the
first condition of (159) holds for g. On the other hand, we deduce from ∇Vs = 0 that
Pac̄η

c̄b = ρδa
b and ∇aρ = ∇āρ = 0. Since Pac̄ = 1

n+1
Ricab̄, we conclude that

Ricac̄g
c̄b = (n+ 1)ρ(det η)δa

b.

Hence gab̄ satisfies also the second condition of (159).
Conversely, suppose gab̄ is a compatible (2, 1)-symplectic Hermitian metric satisfying

(159). Let us write s ∈ Γ(V) for the corresponding parallel section of the prolongation
connection given by (157) and (158). With respect to the splitting of V determined
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by the canonical connection ∇ of gab̄, the section s is again given by (160), where
ηāb det(η) = gāb. By assumption we have

Ricab = 0, (161)

which is equivalent to Pab = 0, and also that

Pab̄ = 1
n+1

Ricab̄ = k
n+1

gab̄ (162)

for some constant k. Moreover, (161) yields

0 = Ricab = −gc̄d∇c̄Tda
f̄gbf̄ 0 = Ric[ab] = 1

2
∇c̄Tab

c̄ (163)

which shows immediately that (with respect to ∇) in (157) and (158) we have

Ua
b̄ = 0 Vā

b = Uab̄ = 0 Qa = 0 Zā = Qā = 0.

Hence, to prove that s is parallel for ∇V it remains to show that Wad̄
b
cg
d̄c and Cab̄cgb̄c

(or equivalently their conjugates) are identically zero. From Theorem 2.13 and (162)
we obtain

Wad̄
b
cg
d̄c = Rad̄

b
cg
d̄c − δabPd̄cgd̄c − Pd̄ag

d̄b = Rad̄
b
cg
d̄c − kδab. (164)

Therefore, if we lower the b index in (164) with the metric, we obtain

Wad̄b̄cg
d̄c = Rad̄b̄cg

d̄c − kgab̄.

Since∇ preserves g, the tensors Rad̄b̄c = −Rd̄ab̄c and−Rad̄cb̄ coincide. Hence, Rad̄b̄cg
d̄c =

Rd̄acb̄g
d̄c = Ricab̄ = kgab̄, which shows that (164) vanishes identically. From (161) and

(162) it follows immediately that Cab̄c = ∇aPb̄c − ∇b̄Pac vanishes identically, which
completes the proof. �

Remark 4.6. As observed in Section 4.3, VC = T ⊗T̄ , and sections of V may be viewed
as Hermitian forms on T ∗. This has an interpretation in terms of the construction of the
complex affine cone πC : C →M described in Section 3.2: by Lemma 3.4, a Hermitian
form on T ∗ pulls back to a Hermitian form on T ∗C. If this form is nondegenerate, its
inverse defines a Hermitian metric on C. Further, if the section of V is parallel with
respect to a connection on V induced by a connection on T , then the latter connection
induces a metric connection on C.

In particular, if we have a compatible metric satisfying the generalised Einstein
condition of Proposition 4.8, then it generically induces a metric on C which is parallel
for the connection ∇C induced by the tractor connection on T .

4.6. The c-projective Hessian. Let us consider the dual W of the tractor bundle
V of an almost c-projective manifold. Its complexification is given by WC = T ∗ ⊗ T ∗,
which admits a filtration

WC =W−1
C ⊃ W

0
C ⊃ W1

C,

such that for any connection ∇ ∈ [∇] we can write an element of WC as σ
µb | λb̄
ζbc̄

 , where

 σ ∈ E(1, 1),
µb ∈ ∧1,0M(1, 1), λb̄ ∈ ∧0,1M(1, 1),
ζbc̄ ∈ ∧1,1M(1, 1),

and the tractor connection as

∇WC
a

 σ
µb | λb̄
ζbc̄

 =

 ∇aσ − µa
∇aµb + Pabσ | ∇aλb̄ + Pab̄σ − ζab̄

∇aζbc̄ + Pac̄µb + Pabλc̄

 (165)
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and

∇WC
ā

 σ
µb | λb̄
ζbc̄

 =

 ∇āσ − λā
∇āµb + Pābσ − ζbā | ∇āλb̄ + Pāb̄σ

∇āζbc̄ + Pāc̄µb + Pābλc̄

 . (166)

The first BGG operator associated to WC or W is a c-projectively invariant operator
of order two, which we call the c-projective Hessian. It can be written as

DW : E(1, 1)→S2∧1,0M(1, 1)⊕ S2∧0,1M(1, 1) (167)

DWσ = (∇(a∇b)σ + P(ab)σ , ∇(ā∇b̄)σ + P(āb̄)σ),

or alternatively as

DWσ = ∇(α∇β)σ + P(αβ)σ − J(α
γJβ)

δ(∇γ∇δσ + Pγδσ), (168)

for any connection ∇ ∈ [∇]. The reader might easily verify the c-projective invariance
of DW directly using Proposition 2.5, the identities (16), and the formulae for the
change of Rho tensor in Corollary 2.12. The following Proposition gives a geomet-
ric interpretation of nonvanishing real solutions σ = σ̄ ∈ Γ(E(1, 1)) of the invariant
overdetermined system DWσ = 0.

Proposition 4.9. Let (M,J, [∇]) be an almost c-projective manifold and σ ∈ Γ(E(1, 1))
a real nowhere vanishing section. Then DWσ = 0 if and only if the Ricci tensor of the
special connection ∇σ ∈ [∇] associated to σ satisfies Ric(ab) = 0. In particular, if J
is integrable, then DWσ = 0 if and only if the Ricci tensor of ∇σ satisfies Ricab = 0,
i.e. the Ricci tensor is symmetric and J-invariant.

Proof. Let σ = σ̄ ∈ Γ(E(1, 1)) be nowhere vanishing. Recall that the Ricci tensor of
the special connection ∇σ associated to σ satisfies

Ricāb = Ricbā Ric[ab] = 1
2
∇σ
c̄Tab

c̄.

With respect to ∇σ the equation DWCσ = 0 reduces to

P(ab)σ = 0 P(āb̄)σ = 0,

i.e. to Ric(ab) = 1
n−1

P(ab) = 0 and Ric(āb̄) = 1
n−1

P(āb̄) = 0, since σ is nonvanishing. �

It follows immediately that if a c-projective manifold (M,J, [∇]) admits a compati-
ble (pseudo-)Kähler metric g, then τg = vol(g)−1/(n+1) ∈ Γ(E(1, 1)) satisfies DWτg = 0.
By Proposition 4.5, τg = det η, where η is the nondegenerate solution of the metris-
ability equation corresponding to g. This observation continues to hold without the
nondegeneracy assumption.

Proposition 4.10. Let (M,J, [∇]) be a c-projective manifold and suppose that ηb̄c ∈
Γ(T 0,1M ⊗ T 1,0M(−1,−1)) is a real section satisfying (125). Then σ ≡ det η ∈
Γ(E(1, 1)) is a real section in the kernel of the c-projective Hessian (which might be
identically zero).

Proof. Let U ⊂M be the open subset (possibly empty), where σ is nowhere vanishing
or equivalently where ηb̄c is invertible. By Proposition 4.5 the section ηb̄c(det η) ∈
Γ(T 0,1M ⊗ T 1,0M) defines the inverse of a compatible (pseudo-)Kähler metric on U
and its Levi-Civita connection on U is ∇σ. Since the Ricci tensor of a (pseudo-)Kähler
metric is J-invariant (109), i.e. Ricab = Ricāb̄ = 0, we deduce from Proposition 4.9 that
σ satisfies DWσ = 0 on U whence, by continuity, on U . Since σ vanishes identically
on the open set M \ U , we obtain that DWσ is identically zero on all of M . �
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Remark 4.7. For an almost c-projective manifold admitting a compatible (2, 1)-
symplectic metric g, the section τg ∈ Γ(E(1, 1)) is in the kernel of the c-projective
Hessian, if the Ricci tensor of the canonical connection ∇ of g satisfies

Ric(ab) = −∇c̄T
c̄
(ab) = 1

4
∇c̄N

c̄
(ab) = 0,

where we use g to raise and lower indices. It is well known that nearly Kähler manifolds
can be characterised as (2, 1)-symplectic manifolds such that Tabc is totally skew (see
e.g. [63]). It then follows straightforwardly from the identities (102)–(103) that the
canonical connection of a nearly Kähler manifold preserves its torsion, i.e. ∇T =
−1

4
∇N = 0 (see [58, 87]), and Rabc̄d vanishes identically. Hence, Proposition 4.10

extends to the nearly Kähler setting.

4.7. Prolongation of the c-projective Hessian. The c-projective Hessian will play
a crucial role in the sequel. We therefore prolong the associated equation. Suppose
σ ∈ Γ(E(1, 1)) is in the kernel of the c-projective Hessian:

∇(a∇b)σ + P(ab)σ = 0 ∇(ā∇b̄)σ + P(āb̄)σ = 0, (169)

Then we deduce from (46) that (169) is equivalent to

∇a∇bσ + Pabσ = ∇[a∇b]σ + P[ab]σ = 1
2(n+1)

(∇c̄Tab
c̄)σ − 1

2
Tab

c̄∇c̄σ (170)

∇ā∇b̄σ + Pāb̄σ = ∇[ā∇b̄]σ + P[āb̄]σ = 1
2(n+1)

(∇cTāb̄
c)σ − 1

2
Tāb̄

c∇cσ, (171)

where we abbreviate the left-hand sides by Φab respectively Ψāb̄, which depend linearly
on σ and on λā := ∇āσ respectively µa := ∇aσ. From (45) we moreover deduce that

∇aλb̄ + Pab̄σ = ∇a∇b̄σ + Pab̄σ = ∇b̄∇aσ + Pb̄aσ = ∇b̄µa + Pb̄aσ,

which we shall denote by ζab̄ ∈ ∧1,1M(1, 1). Consequently, we have

∇a∇c̄µb −∇c̄∇aµb = (172)
∇aζbc̄ − (∇aPc̄b)σ − Pc̄bµa + (∇c̄Pab)σ + Pabλc̄ + Σabc̄,

where

Σabc̄ :=− 1
2(n+1)

((∇c̄∇d̄Tab
d̄)σ + (∇d̄Tab

d̄)λc̄) (173)

+ 1
2
((∇c̄Tab

d̄)λd̄ − Tabd̄Pc̄d̄ + Tab
d̄Ψc̄d̄)

depends linearly on σ, µa and λā. From Proposition 2.13 and the identity (45) we
obtain that the expression (172) must be also equal to

∇a∇c̄µb −∇c̄∇aµb = −Wac̄
d
bµd − Pc̄bµa − Pac̄µb, (174)

which shows that

∇aζbc̄ = −Pabλc̄ − Pac̄µb −Wac̄
d
bµd + Cac̄bσ − Σabc̄. (175)

Similarly, one shows that

∇āζbc̄ = −Pābλc̄ − Pāc̄µb −Wāb
d̄
c̄λd̄ + Cābc̄σ − Ξābc̄, (176)

where

Ξābc̄ :=− 1
2(n+1)

((∇b∇dTāc̄
d)σ + (∇dTāc̄

d)µb) (177)

+ 1
2
((∇bTāc̄

d)µd − Tāc̄dPbdσ + Tāc̄
dΦbd)

depends linearly on σ, µa and λā. In summary, we have shown the following theorem:



62 D.M.J. CALDERBANK, M.G. EASTWOOD, V.S. MATVEEV, AND K. NEUSSER

Theorem 4.11. Suppose (M,J, [∇]) is a c-projective manifold. Then the canonical
projection π : WC → E(1, 1) induces a bijection between sections ofWC that are parallel
for the linear connection

∇WC
a

 σ
µb | λb̄
ζbc̄

+

 0
−Φab | 0

Wac̄
d
bµd − Cac̄bσ + Σabc̄

 (178)

∇WC
ā

 σ
µb | λb̄
ζbc̄

+

 0
0 | −Ψāb̄

Wāb
d̄
c̄λd̄ − Cābc̄σ + Ξābc̄

 . (179)

and sections σ ∈ Γ(E(1, 1)) in the kernel of the c-projective Hessian, where Φab, Ψāb̄,
Σabc̄ and Ξābc̄ are defined as in (170), (171), (173) and (177). The inverse of this
bijection is induced by a linear differential operator L, which, for a choice of connection
∇ ∈ [∇], can be written as

L : E(1, 1)→WC

L(σ) =

 σ
∇aσ | ∇āσ
∇a∇b̄σ + Pab̄σ

 .

The following Proposition characterises normal solutions of DW(σ) = 0, i.e. real
sections σ = σ̄ ∈ Γ(E(1, 1)) in the kernel of the c-projective Hessian that in addition
satisfy:

Φab = 0 Ψāb̄ = 0 (180)

Wac̄
d
b∇dσ − Cac̄bσ + Σabc̄ = 0 Wāb

d̄
c̄∇d̄σ − Cābc̄σ + Ξābc̄ = 0, (181)

where Φ, Ψ, Σ and Ξ depend linearly on σ and ∇σ.

Proposition 4.12. Let (M,J, [∇]) be an almost c-projective manifold and suppose
that σ ∈ Γ(E(1, 1)) is a real nowhere vanishing section in the kernel of the c-projective
Hessian. Then σ satisfies (180) if and only if the Ricci tensor Ricαβ of the special
connection ∇σ ∈ [∇] corresponding to σ satisfies

Ricab = 0 and ∇σ
aRicbc̄ = 0 = ∇σ

āRicbc̄.

If the Ricci tensor Ricbc̄ = Ricc̄b is, in addition, nondegenerate, then it defines a (2, 1)-
symplectic Hermitian metric satisfying the generalised Einstein condition (159) with
canonical connection ∇σ.

Proof. Let σ = σ̄ ∈ Γ(E(1, 1)) be a real nowhere vanishing section in the kernel of (167).
With respect to the special connection ∇σ ∈ [∇] corresponding to σ, the equations
(180) reduce to

0 = 1
2(n+1)

∇σ
c̄Tab

c̄ = 1
n+1

Ric[ab] = P[ab]

0 = 1
2(n+1)

∇σ
cTāb̄

c = 1
n+1

Ric[āb̄] = P[āb̄],

which, since σ is in the kernel of the c-projective Hessian, is equivalent to Ricab = 0 =
Ricāb̄. If these equations are satisfied, is follows immediately that also Σabc̄ and Ξābc̄

are identically zero (with respect to ∇σ) and that the equations (181) reduces to

Cac̄bσ = (∇σ
aPc̄b)σ = (∇σ

aPbc̄)σ = 1
n+1

(∇σ
aRicbc̄)σ = 0

Cābc̄σ = (∇σ
āPbc̄)σ = 1

n+1
(∇σ

āRicbc̄)σ = 0

which proves the claim, since σ is nowhere vanishing. �
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5. Metrisability, conserved quantities and integrability

In this section we investigate the implications of mobility ≥ 2 for the geodesic flow of
a (pseudo-)Kähler manifold (M,J, g): we show that any metric g̃ c-projectively equiv-
alent, but not homothetic, to g gives rise to families of commuting linear and quadratic
integrals for the geodesic flow of g, and characterise when this implies integrability of
the flow.

5.1. Conserved quantities for the geodesic flow. For any smooth manifold M ,
the total space of its cotangent bundle p : T ∗M →M has a canonical exact symplectic
structure dΘ, where Θ: TT ∗M → R is the tautological 1-form defined by Θα(X) =
α(Tp(X)). The Poisson bracket of smooth functions on T ∗M preserves the subalgebra

C∞pol(T
∗M,R) ∼=

⊕
k≥0

C∞(M,SkTM)

of functions which are polynomial on the fibres of p, where a symmetric tensor Q of
valence (k, 0), i.e. a section of SkTM , is identified with the function α 7→ Q(α, . . . , α)
on T ∗M (which is homogeneous of degree k on each fibre of p). The induced bracket

{·, ·} : C∞(M,SjTM)× C∞(M,SkTM)→ C∞(Sj+k−1TM)

on symmetric multivectors is sometimes called the (symmetric) Schouten–Nijenhuis
bracket. It may be computed using any torsion-free connection ∇ on TM as

{Q,R}α···ε = j Qζ(α···β∇ζR
γδ···ε) − k Rζ(δ···ε∇ζQ

α···βγ). (182)

When j = 1 and Q is a vector field, {Q,R} is just the Lie derivative LQR.
Now suppose g is a (pseudo-)Riemannian metric on M . Then the inverse metric

gαβ induces a function on T ∗M which is quadratic on each fibre. The flow of the
corresponding Hamiltonian vector field on T ∗M is the image of the geodesic flow on
TM under the vector bundle isomorphism TM → T ∗M defined by g.

Definition 5.1. A smooth function I : TM → R on a (pseudo-)Riemannian manifold
(M, g) is called an integral of the geodesic flow (or an integral) of g, if for any affinely
parametrised geodesic γ, the function s 7→ I(γ̇(s)) is constant.

The interpretation of the geodesic flow as a Hamiltonian flow on T ∗M allows us to
describe integrals as functions on T ∗M .

Proposition 5.1. Q : T ∗M → R defines an integral I of the geodesic flow of g if and
only if it is a conserved quantity for gαβ i.e. has vanishing Poisson bracket with gαβ.

We shall only consider integrals defined by Q ∈ C∞pol(T
∗M,R). Without loss of

generality, we may assume such an integral is homogeneous, hence given by a symmetric
tensor Qα···γ ∈ C∞(M,SkTM). Using the Levi-Civita connection of g to compute the
Schouten–Nijenhuis bracket, we obtain

{g,Q}βγ···ε = 2 gα(β∇αQ
γ···ε),

which is obtained from ∇(αQγ···ε) by raising all indices (using g) and multiplying by 2.
When k = 1, {g,Q} = 0 if and only if Qα is a Killing vector field. Thus we recover
Clairaut’s Theorem, that Killing vector fields define integrals of the geodesic flow.
More generally, a symmetric Killing tensor of valence (0, `) on a (pseudo-)Riemannian
manifold (M, g) is a tensor Hαβ···δ ∈ S`T ∗M that satisfies

∇(αHβγ···ε) = 0, (183)

where ` ≥ 1 can be any integer and ∇ is the Levi-Civita connection of g.
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Corollary 5.2. Qα···γ ∈ C∞(M,SkTM) defines an integral of the geodesic flow of g if
and only if Qα···γ is a symmetric Killing tensor of g.

5.2. Holomorphic Killing fields. Let (M,J, g) be a (pseudo-)Kähler manifold with
Levi-Civita connection ∇ and Kähler form Ωαβ = Jα

γgγβ.

Definition 5.2. A vector field X on (M,J, g) is called a holomorphic Killing field if
it preserves the complex structure J and the metric g, i.e. LXJ = 0 and LXg = 0.

In terms of the Levi-Civita connection ∇ the defining properties of a holomorphic
Killing field can be rewritten as:

∇αX
β = −JαγJδβ∇γX

δ and ∇αXβ +∇βXα = 0. (184)

It follows immediately from the definition of a holomorphic Killing field X that X also
preserves the Kähler form, which means that LXΩ = d(iXΩ) = 0 or equivalently

∇α(ΩγβX
γ)−∇β(ΩγαX

γ) = 0. (185)

In particular, this equation is satisfied if there exists a smooth function f : M → R
such that −iXΩ = df , i.e. ΩαγX

γ = ∇αf , or, using the Poisson structure Ωαβ,

Xβ = Ωαβ∇αf = Jα
β∇αf, (186)

in which case X is said to be the symplectic gradient of f .

Proposition 5.3. If X and Y are symplectic gradients of functions f and h, then
LXh = 0 if and only if LY f = 0 if and only if Ωαβ(∇αf)(∇βh) = 0 if and only if
ΩαβX

αY β = 0. These equivalent conditions imply that X and Y commute: [X, Y ] = 0.

Proof. iXdh = −iX(iY Ω) = iY (iXΩ) = −iY df and so the equivalences are trivial.
Now LXh = 0 implies 0 = LXdh = −LX(iY Ω) = −i[X,Y ]Ω, since LXΩ = 0. Hence
[X, Y ] = 0, since Ω is nondegenerate. �

In this situation, X and Y have isotropic span with respect to Ω, and they are said
to Poisson commute, since f and h have vanishing Poisson bracket.

We now return to holomorphic Killing fields.

Proposition 5.4. Let f : M → R be a smooth function. Then the symplectic gradient
Xβ = Ωαβ∇αf is a holomorphic Killing field if and only if the Hessian ∇2f is J-
invariant, i.e.

∇a∇bf = 0 = ∇ā∇b̄f. (187)

Proof. Since any two equations of (184) and (185) imply the third, we deduce that a
vector field of the form Xβ = Ωαβ∇αf is a holomorphic Killing field if and only if

∇αJβ
γ∇γf +∇βJα

γ∇γf = 0 (188)

or equivalently
∇α∇βf = Jα

γJβ
δ∇γ∇δf, (189)

which is equivalent to (187). �

We call f in this case a Killing potential or a Hamiltonian for the holomorphic
Killing field X. Note that a holomorphic Killing field always admits such a potential
locally (and on any open subset U with H1(U,R) = 0).

Suppose now that g is a compatible (pseudo-)Kähler metric on a c-projective man-
ifold (M,J, [∇]). Then we may write any real section σ ∈ Γ(E(1, 1)) as σ = hτg for
some function h : M → R, where τg is the trivialisation of E(1, 1) determined by g.

Proposition 5.5. Let (M,J, [∇]) be a c-projective manifold and h ∈ C∞(M,R).
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(1) If τg is the (real) trivialisation of E(1, 1) corresponding to a compatible metric g,
then σ = hτg is in the kernel of the c-projective Hessian DWσ = 0 if and only
if h is a Killing potential with respect to (g, J).

(2) If g and g̃ are compatible metrics whose corresponding trivialisations of E(1, 1)
are related by τg̃ = e−fτg, then h is a Killing potential with respect to (g, J) if
and only if efh is a Killing potential with respect to (g̃, J).

Proof. For the first part, compute DWσ using the Levi-Civita connection ∇g. Since
τg is parallel, and the Ricci tensor of g is J-invariant, DWσ = 0 if and only if the
J-invariant part of the Hessian of h is zero, and Proposition 5.4 applies. The second
part follows from the first. �

These observations may be generalised to (possible degenerate) solutions η of the
metrisability equation. Given any J-invariant section ηαβ of S2TM ⊗ ER(−1,−1) and
any section σ of ER(1, 1), we define vector fields Λ(η, σ) and K(η, σ) by

Λγ(η, σ) = ηαγ∇ασ − 1
n
σ∇αη

αγ (190)

Kβ(η, σ) = Jγ
βΛγ(η, σ) = Φαβ∇ασ − 1

n
σ∇αΦαβ, (191)

where Φαβ = Jγ
βηαγ.

Proposition 5.6. Λ(η, σ) and K(η, σ) are c-projectively invariant, and if η is a
nondegenerate solution of the metrisability equation corresponding to a metric g and
σ = h det η is in the kernel of the c-projective Hessian, then Λ(η, σ) is holomorphic,
and K(η, σ) is the holomorphic Killing field of g with Killing potential h.

Proof. For a c-projectively equivalent connection ∇̂ ∈ [∇], we have

ηαγ∇̂ασ − 1
n
σ∇̂αη

αγ = ηαγ∇ασ + ηαγΥασ − 1
n
σ∇αη

αγ − ηαγΥασ

and the Υ terms cancel, showing that Λ(η, σ)—and hence also K(η, σ)—is independent
of the choice of ∇ ∈ [∇].

Now if η is nondegenerate, corresponding to a compatible metric g with τg = det η,
we use ∇g to compute

Kβ(η, σ) = Φαβ∇g
α(hτg) = Ωαβ∇αh,

which is the holomorphic Killing field associated to h. �

Remark 5.1. Suppose that (M,J, [∇]) is an almost c-projective manifold and consider
the tensor product

VC ⊗WC = T ∗ ⊗ T ∗ ⊗ T ⊗ T .
Since T ∗ ⊗ T = AM ⊕ E(0, 0), there is a natural projection

Π: VC ⊗WC →
AM ⊕ E(0, 0)⊕
AM ⊕ E(0, 0)

(192)

or equivalently a natural projection

Π: V ⊗W → AM ⊕ E(0, 0). (193)

Hence, the results in [25] imply that there are two invariant bilinear differential oper-
ators

Λ : T 0,1M ⊗ T 1,0M(−1,−1)× E(1, 1)→ T 1,0M ⊕ T 0,1M (194)

c : T 0,1M ⊗ T 1,0M(−1,−1)× E(1, 1)→ E(0, 0)⊕ E(0, 0), (195)
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which are constructed as follows. Consider the two differential operators L : T 0,1M ⊗
T 1,0M(−1,−1)) → VC and L : E(1, 1)) → WC from Theorem 4.6 respectively 4.11.
Recall that in terms of a connection ∇ ∈ [∇] they can be written as

L(ηb̄c) =

 ηb̄c

− 1
n
∇āη

āb | − 1
n
∇aη

b̄a

1
n
(∇ā∇bη

āb + Pābη
āb)

 L(σ) =

 σ
∇aσ | ∇āσ
∇a∇b̄σ + Pab̄σ

 .

Then Λ and c are defined as the projections to TCM = ACM/A0
CM respectively to

E(0, 0)⊕ E(0, 0) of Π(L(ηb̄c)⊗ L(σ)).
In particular, for a choice of connection ∇ ∈ [∇], the invariant differential operator

Λ is given by

Λ(η, σ) =
(
ηb̄c∇b̄σ − 1

n
σ∇b̄η

b̄c | ηb̄c∇cσ − 1
n
σ∇cη

b̄c
)
. (196)

Note that if ηb̄c and σ are real sections, the two components of (196) are conjugate to
each other. In this case we may identify ηb̄c with a J-invariant section ηβγ of S2TM .

5.3. Hermitian symmetric Killing tensors. Suppose (M,J) is an almost complex
manifold and k ≥ 1. Then we call a symmetric tensor Hαβ···ε ∈ Γ(S2kT ∗M) Hermitian,
if it satisfies

J(α
βHβγ···ε) = 0. (197)

Since, by definition, Hβγ···ε = H(βγ···ε), equation (197) is equivalent to

Jα
βHβγ···ε + JβγHαβ···ε + · · ·+ Jβε Hαγ···β = 0. (198)

Viewing a symmetric tensor H of valence (0, 2k) as an element in S2kT ∗M⊗C = S2k∧1

via complexification, we can use the projectors from Section 1 to decompose H into
components according to the decomposition of S2k∧1 into irreducible vector bundles:

S2k∧1 =
2k⊕
j=0

S2k−j∧1,0 ⊗ Sj∧0,1. (199)

Since this decomposition is in particular invariant under the action of J , all the compo-
nents of a tensor Hαβ···γδ ∈ S2k∧1 that satisfies (198) must independently satisfy (198).
If Hab···d ēf̄ ···h̄ is a section of S2k−j∧1,0 ⊗ Sj∧0,1 that satisfies (198), then this equation
says that 2(k − j)iH = 0, which implies that H ≡ 0 unless j = k. We conclude that
Hermitian symmetric tensors of valence (0, 2k) can be viewed as real sections of the
vector bundle

Sk∧1,0 ⊗ Sk∧0,1,

which is the complexification of the vector bundle that consists of those elements in
S2kT ∗M that satisfy (197).

Remark 5.2. Note that, if H is a symmetric tensor of valence (0, 2k + 1) satisfying
(197), then the above reasoning immediately implies that H ≡ 0. The same argu-
ments apply, mutatis mutandis, to symmetric tensors Qαβ···ε of valence (2k, 0), and to
weighted tensors of valence (0, 2k) and (2k, 0).

Suppose now (M,J, g) is a (pseudo-)Kähler manifold and ` = 2k is even, then we can
restrict equation (183) for symmetric Killing tensors of valence (0, 2k) to Hermitian
tensors. If we complexify (183), we obtain the following system of differential equations
on tensors H ∈ Γ(Sk∧1,0 ⊗ Sk∧0,1):

∇(aHbc···d)ēf̄ ···h̄ = 0 and ∇(āH|bc···d|ēf̄ ···ḡ) = 0, (200)
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where | · · · | means that one does not symmetrise over these indices. Real solutions of
(200) thereby correspond to Hermitian symmetric Killing tensors of valence (0, 2k) and
obviously for real solutions the two equations of (200) are conjugates of each other.
The following proposition shows that (suitably interpreted) the Killing equation for
Hermitian symmetric tensors of valence (0, 2k) is c-projectively invariant.

Proposition 5.7. Suppose (M,J, [∇]) is an almost c-projective manifold of dimension
2n ≥ 4. If Hab···d ēf̄ ···h̄ ∈ Γ(Sk∧1,0 ⊗ Sk∧0,1(2k, 2k)) satisfies

∇(aHbc···d)ēf̄ ···h̄ = 0 ∇(āH|bc···d|ēf̄ ···h̄) = 0, (201)

for some connection in ∇ ∈ [∇], then it does so for any other connection in the c-
projective class.

Proof. Suppose H ∈ Γ(Sk∧1,0 ⊗ Sk∧0,1(2k, 2k)) satisfies (201) for some connection
∇ ∈ [∇] and let ∇̂ ∈ [∇] be another connection in the c-projective class. Then it
follows from Proposition 2.5 and Corollary 2.4 that

∇̂aHb···dē···h̄ = ∇aHb···dē···h̄ − kΥaHb···dē···h̄ −ΥbHa···dē···h̄ − · · · −ΥdHb···aē···h̄

+ 2kΥaHb···dē···h̄

= ∇aHb···dē···h̄ + kΥaHb···dē···h̄ −ΥbHa···dē···h̄ − · · · −ΥdHb···aē···h̄.

Since ∇(aHb···d)ē···h̄ = 0 by assumption and

Υ(aHb···d)ē···h̄ = 1
k+1

(ΥaHb···dē···h̄ + ΥbHa···dē···h̄ + · · ·+ ΥdHb···aē···h̄),

we conclude that the symmetrisation over the unbarred indices on the right hand side
is zero, which proves that the first equation of (201) is independent of the connection.
Analogous reasoning shows that this is also true for the second equation of (201). �

We refer to solutions of the c-projectively invariant equation (201) as c-projective
Hermitian symmetric Killing tensors of valence (0, 2k).

Corollary 5.8. Suppose (M,J, [∇]) is a metrisable c-projective manifold with com-
patible (pseudo-)Kähler metric g. Then a real section H ∈ Γ(Sk∧1,0 ⊗ Sk∧0,1) is a
Hermitian symmetric Killing tensor of g (i.e. a solution of (200) with respect to ∇g)
if and only if τ 2k

g H is a c-projective Hermitian symmetric Killing tensor. In partic-
ular, in this case, if g̃ is another compatible (pseudo-)Kähler metric, then e2kfH is a
Hermitian symmetric Killing tensor of g̃, where f is given by τg̃ = e−fτg.

The differential equation (201) gives rise to a c-projectively invariant operator, which
is the first BGG operator

× • • • •
l l l l l
× • • • •−2 k+1 0 0 0

0 k 0 0 0

× • • • •
l l l l l
× • • • •0 k 0 0 0

0 k 0 0 0

↗
↘

× • • • •
l l l l l
× • • • •0 k 0 0 0

−2 k+1 0 0 0

(202)

corresponding to the tractor bundle W , where W is the Cartan product of k copies of
∧2T ∗ and k copies of ∧2T ∗. As for the BGG operators discussed in previous sections,
this implies (see [20, 52, 88]), that there is a linear connection on W whose parallel
sections are in bijection to solution of (201). Hence, the dimension of the solution
space is bounded by the rank of W .
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Proposition 5.9. Suppose (M,J, g) is a (pseudo-)Kähler manifold of dimension 2n ≥
4 and let k ≥ 1 be an integer. Then the space of Hermitian symmetric Killing tensors
of valence (0, 2k) of (M,J, g) has dimension at most(

(k + 1)(k + 2)2 · · · (k + (n− 1))2(k + n)

(n− 1)!n!

)2

. (203)

In the sequel, we shall be interested in the case k = 1, where any compatible metric g
defines a c-projective Hermitian symmetric Killing tensorHbā = τ 2

g gbā by Corollary 5.8.
This has the following c-projectively invariant formulation.

Proposition 5.10. Let (M,J, [∇]) be an almost c-projective manifold and let ηāb be a
real section of T 0,1M ⊗ T 1,0M(−1,−1). Then

Hbā := 1
(n−1)!

ε̄āc̄···ē εbd···f η
c̄d · · · ηēf (204)

is a real section of ∧1,0 ⊗ ∧0,1(2, 2) with Hbāη
āc = σδb

c, where σ = det η. If ηāb
satisfies (119) for some Xd, Y c̄ (depending on ∇) then Hbā is a c-projective Hermitian
symmetric Killing tensor and

ηc̄d∇dHbā = Y ēHbēδā
c̄ − Y c̄Hbā, ηc̄d∇c̄Hbā = XeHeāδb

d −XdHbā. (205)

Proof. The first statement is straightforward. For the rest, suppose first that ηāb is
nondegenerate, hence parallel with respect to some connection ∇̂ in [∇], related to ∇
by Υ with Υb = HbāY

ā and Υā = HbāX
b. Then Hbā is parallel with respect to ∇̂,

hence a Hermitian symmetric Killing tensor, and equation (205) follows by rewriting
this condition in terms of ∇. At each point, these are statements about the 1-jet of
H, which depends polynomially on the 1-jet of η. They hold when the 0-jet of η is
invertible (at a given point, hence in a neighbourhood of that point), hence in general
by continuity. �

5.4. Metrisability pencils, Killing fields and Killing tensors. Suppose we have
two (real) linearly independent solutions ηāb and η̃āb of the metrisability equation (125).
Since the metrisability equation is linear, the one parameter family

η̃āb(t) := η̃āb − tηāb (206)

also satisfies (125), and we refer to such a family as a pencil of solutions of the metris-
ability equation, or metrisability pencil for short.

By Proposition 4.10, the determinant

σ̃(t) := det η̃(t) (207)

of the pencil (206) lies in the kernel of the c-projective Hessian for all t ∈ R (as does
σ := det η). If η̃(t) is degenerate for all t, then σ̃(t) is identically zero. Otherwise, we
may assume, at least locally:

Condition 5.1. η is nondegenerate, i.e. σ = det η is nonvanishing, and hence gαβ =
(det η)ηαβ is inverse to a compatible metric g.

Assuming Condition 5.1, we may write η̃āc = ηābAb
c as in Section 4.4, where the

(g, J)-Hermitian metric A satisfies (128). Setting Aab(t) := Aa
b − tδab, we have

η̃āc(t) = ηābAb
c(t) and σ̃(t) = (det η)(detA(t)).

Thus σ̃(t) is essentially the characteristic polynomial detA(t) of Aab, regarded as a
complex linear endomorphism of the complex bundle T 1,0M .
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Remark 5.3. A pencil is another name for a projective line: if we make a projective
change s = (at + b)/(ct + d) of parameter (with ad − bc 6= 0) then the pencil may be
rewritten, up to overall scale, as aη̃ + bη − s(cη̃ + dη) = (η̃ − tη)(ad − bc)/(ct + d).
Assuming that cη̃ + dη is nondegenerate, the rescaled and reparameterized pencil is
thus (cη̃ + dη)(Ã− s Id), where Ã = (cA+ d Id)−1(aA+ b Id).

We next set Hbā := 1
(n−1)!

ε̄āc̄···ē εbd···f η
c̄d · · · ηēf as in (204) and introduce

H̃bā(t) := 1
(n−1)!

ε̄āc̄···ē εbd···f η̃
c̄d(t) · · · η̃ēf (t) = (adjA(t))b

cHcā, (208)

where adjB denotes the endomorphism adjugate to B, with B adjB = (detB)I.
Proposition 5.10 implies that for all t ∈ R, H̃bā(t) is a c-projective Hermitian sym-

metric Killing tensor of (M,J, [∇]). Hence for any s ∈ R with η̃(s) nondegenerate,
σ̃(s)−2H̃bā(t) defines a family of Hermitian symmetric Killing tensors for the corre-
sponding metric.

Similarly, Proposition 5.6 implies that if η̃(s) is nondegenerate (for s ∈ R), then for
all t ∈ R, K(η̃(s), σ̃(t)) is a holomorphic Killing field with respect to the corresponding
metric (hence an inessential c-projective vector field). Now observe that

K(η̃(s), σ̃(t)) = K(η̃(t) + (t− s)η, σ̃(t)) = (t− s)K(η, σ̃(t)),

since K is bilinear and K(η̃(t), σ̃(t)) = 0. By continuity, the vector fields

K̃(t) := K(η, σ̃(t)), i.e. K̃β(t) = Ωαβ∇α detA(t), (209)
which are holomorphic Killing fields with respect to g, preserve η̃(s) for all s, t ∈ R,
i.e. LK̃(t)η̃(s) = 0, and hence also LK̃(t)H̃(s) = 0 = LK̃(t)σ̃(s). Thus K̃(t) preserves the
Killing potential detA(s) of K̃(s) with respect to g, so Proposition 5.3 implies that
K̃(s) and K̃(t) Poisson-commute. We summarise what we have proven as follows.

Theorem 5.11. Let (M,J, [∇]) be a c-projective manifold with metrisability solutions
η and η̃ corresponding to compatible (pseudo-)Kähler metric metrics g and g̃ that are
not homothetic. Let η̃(t) be the corresponding metrisability pencil (206).

(1) The vector fields K̃(t) : t ∈ R defined by (207)–(209) are Poisson-commuting
holomorphic Killing fields with respect to g and g̃.

(2) The tensors H̃(t) : t ∈ R defined by (207)–(208) are c-projective Hermitian
symmetric Killing tensors, invariant with respect to K̃(s) for any s ∈ R. In
particular, by Corollary 5.8, they induce Hermitian symmetric Killing tensors
of g respectively g̃ (by tensoring with τ−2

g respectively τ−2
g̃ ).

We call the vector fields K̃(t) and tensor densities H̃(t) the canonical Killing fields
and canonical Killing tensors (respectively) for the pair (g, g̃); the former are Killing
vector fields with respect to any nondegenerate metric in the family (206), and the
latter give rise to symmetric Killing tensor fields for any such metric by tensoring with
the corresponding trivialisation of E(−2,−2).

Since the canonical Killing fields K̃(t) are holomorphic with [K̃(t), K̃(s)] = 0 for
all s, t ∈ R, we also have [K̃(t), JK̃(s)] = 0. Since J is integrable, JK̃(t) are also
holomorphic vector fields, and [JK̃(t), JK̃(s)] = 0 for all s, t ∈ R.

The fact that for all t ∈ R, K̃(t) is a holomorphic Killing field means equivalently
(by linearity) that the coefficients of K̃(t) are holomorphic Killing fields, whose Killing
potentials with respect g are the coefficients of the characteristic polynomial detA(t).
Up to scale, the nontrivial coefficients of detA(t) can be written

σ̃1 := Ab
b, σ̃2 := Ab

[bAc
c], . . . σ̃n := Ab

[bAc
c · · ·Add], (210)
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which are real-valued because A is Hermitian with respect to g. Raising an index
in (128), we have

∇c̄Aa
b = −gc̄bΛa, or equivalently, ∇cAa

b = −δacΛb. (211)

Hence, applying the (1, 0)-gradient operator∇a = Πa
αg

αβ∇β to the canonical potentials
in (210), we obtain (up to sign) holomorphic vector fields

Λ a
(1) := Λa, Λ a

(2) := 2Λ[aAb
b], . . . Λ a

(n) := nΛ[aAb
bAc

c · · ·Add] (212)

whose imaginary parts are (up to scale) the coefficients of K̃(t). In particular, Πα
aΛ

a =
1
2
(Λα−iKα), where the holomorphic Killing field Kα = Jβ

αΛβ is the leading coefficient
of K̃(t). In general, the coefficients satisfy the recursive relation

Λ a
(k+1) = Ab

aΛ b
(k) + σ̃1Λ

a. (213)

Proposition 5.12. Let g and g̃ be compatible metrics on (M,J, [∇]) related by a (real)
solution A of (128). Then there is an integer `, with 0 ≤ ` ≤ n, such that Λ a

(1), . . . ,Λ
a
(`)

are linearly independent on a dense open subset of M , and dim span K̃(t) ≤ ` on M .

Proof. Suppose for some p ∈ M and 1 ≤ k ≤ n, Λ a
(k) is a linear combination of

Λ a
(1), . . . ,Λ

a
(k−1) at p. Then Ab

aΛ b
(k) is a linear combination of AbaΛ b

(1), . . . , Ab
aΛ a

(k−1),
hence of Λ a

(1), . . . ,Λ
a
(k) by (213). Applying (213) once more, we see that Λ a

(k+1) is a
linear combination of Λ a

(1), . . . ,Λ
a
(k). Hence at each p ∈ M , dim span{Λ a

(1), . . . ,Λ
a
(n)} =

dim span K̃(t) is the largest integer ` such that Λ a
(1), . . . ,Λ

a
(`) are linearly independent

at p. However, for any integer k, Λ a
(1), . . . ,Λ

a
(k) are linearly dependent if and only if the

holomorphic k-vector Λ
[a
(1)Λ

b
(2) · · ·Λ

e]
(k) is zero. Hence the set where Λ a

(1), . . . ,Λ
a
(k) are

linearly independent is empty (for k > `) or dense (for k ≤ `). The result follows. �

Following [2], the integer ` of this Proposition will be called the order of the pencil.

Proposition 5.13. Let g and g̃ be compatible metrics on (M,J, [∇]) related by a (real)
solution A of (128). Then the endomorphisms ∇Λ and A commute, i.e.

Aa
c∇cΛ

b − Acb∇aΛ
c = 0. (214)

Proof. We first give a proof using Theorem 5.11, which implies that Kα is a holomor-
phic Killing field with respect to both g and g̃. It follows that LKA = 0. However,
∇KA = 0 (since Λc̄∇c̄Aa

b = −ΛaΛb = Λc∇cAa
b) and so [∇K,A] = 0. Equation (214)

is obtained by taking (1, 0)-parts.
We now give a more direct proof of (214), starting from the observation that

∇aΛb̄ = −∇a∇b̄Ac
c = −∇b̄∇aĀ

c̄
c̄ = ∇b̄Λ̄a,

(i.e.∇aΛb̄ is real). Now expand (∇a∇b̄−∇b̄∇a)A
c̄d by curvature and also by using (129)

to obtain
Rab̄

c̄
ēA

ēd +Rab̄
d
eA

c̄e = δa
d∇b̄Λ̄

c̄ − δb̄c̄∇aΛ
d. (215)

Transvect with Ab̄c̄ to conclude that

Ab̄cRab̄cēA
ē
d̄ + Ab̄c̄A

c̄eRab̄d̄e = gad̄A
b̄
c̄∇b̄Λ̄

c̄ − Ab̄b̄∇aΛd̄

and hence that
Ab̄cRab̄cēA

ē
d̄ − Ac̄bRbd̄ec̄Aa

e = 0 (216)
(i.e. Ab̄cRab̄cēA

ē
d̄ is real). Now transvect (215) with Af aδc̄b̄ to conclude that

−Af aRicaēA
ē
d̄ + Af

aRac̄d̄eA
c̄e = Afd̄∇c̄Λ̄

c̄ − nAf a∇aΛd̄



C-PROJECTIVE GEOMETRY 71

and hence that

Aa
bRbc̄d̄eA

c̄e − Ab̄d̄Rb̄caēA
ēc = n(Ab̄d̄∇b̄Λ̄a − Aab∇bΛd̄).

But from (216) the left hand side vanishes whence

Aa
b∇bΛ

d = Ab̄d∇b̄Λ̄a = Ab̄d∇aΛb̄ = Ab
d∇aΛ

b,

as required. �

Note that (214) can be used to provide an alternative proof that the holomorphic
vector fields (212) commute. If V a and W b are two such fields, we must show that

0 = [V,W ]b = V a∇aW
b −W a∇aV

b. (217)

Let us take V a = Λa and W b = 2Λ[bAc
c]. Then (128) yields

∇aW
b = (∇aΛ

b)Ac
c + Λb∇aAc

c − (∇aΛ
c)Ac

b − Λc∇aAc
b

= (∇aΛ
b)Ac

c − ΛbΛ̄a − (∇aΛ
c)Ac

b + δa
bΛcΛ̄c

whence V a∇aW
b = Λa(∇aΛ

b)Ac
c − Λa(∇aΛ

c)Ac
b and

V a∇aW
b −W a∇aV

b = Λa(Aa
c∇cΛ

b − Acb∇aΛ
c).

Similar computations show that all the fields in (212) commute.

Remark 5.4. It is interesting to compare Proposition 5.13 with what happens in the
real projective setting. The mobility equations (128) are replaced by

∇αAβ
γ = −δβαΛγ − gαγΛβ

and the development runs in parallel. These equations control the existence of another
metric in the projective class other than the assumed background metric and, from the
coefficients of the characteristic polynomial of Aαβ, a solution gives rise to n canonically
defined potentials for n canonically defined vector fields. These are counterparts to the
fields (212) and, as such, need not be Killing. Nevertheless, they commute and to see
this it is necessary to employ the alternative reasoning that we encountered near the
end of the proof just given. The key observation, like (214), is that the endomorphisms
Aα

β and ∇αΛ
β commute and its proof follows exactly the course just given.

5.5. Conserved quantities on c-projective manifolds. On a c-projective mani-
fold (M,J, [∇]), the construction of an integral from a compatible metric and Killing
tensor has a c-projectively invariant formulation: in particular, given a nondegenerate
solution ηαβ of the metrisability equation, and a c-projective Hermitian symmetric
Killing tensor Hγδ of valence (0, 2), the Hermitian (2, 0)-tensor ηαγηβδHγδ defines an
integral of the geodesic flow of the metric corresponding to η; if Hγδ is associated to
ηαβ by Proposition 5.10, then this integral is the Hamiltonian associated to the inverse
metric gαβ = (det η) ηαβ.

Definition 5.3. Let (M,J, [∇]) be a c-projective manifold, and let η̃αβ(t) := η̃αβ−tηαβ
be a metrisability pencil satisfying Condition 5.1, so that gαβ = (det η)ηαβ is inverse to
a (nondegenerate) compatible metric g, and we may write η̃āc(t) = ηābAb

c(t). Then the
linear and quadratic integrals Lt, It : TM → R of (the geodesic flow of) g are defined by
Lt(X) := g(K̃(t), X) = gαβK̃

α(t)Xβ and It(X) := τ−2
g H̃(t)(X,X) = τ−2

g H̃αβ(t)XαXβ,
where K̃(t) and H̃(t) are the holomorphic Killing fields and c-projective Hermitian
symmetric Killing tensors associated to g by Theorem 5.11.

Proposition 5.14. The integrals It, Lt of g (for all t ∈ R) mutually commute under
the Poisson bracket on TM induced by g.
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Proof. Since, by Theorem 5.11, the canonical Killing fields commute and Lie preserve
the canonical Killing tensors, it remains only to show that for any s, t ∈ R the qua-
dratic integrals Is and It commute. The Hermitian symmetric tensors of valence (2, 0)

corresponding to It are Qāb
(t) := ηādηc̄bH

(t)
dc̄ , where we writeH

(t)
dc̄ instead of H̃dc̄(t). It thus

suffices to show that for all s 6= t ∈ R, Qāb
(s) and Q

āb
(t) have vanishing Schouten–Nijenhuis

bracket, which (in barred and unbarred indices) means(
∇bQ

d(ā
(t)

)
Q
c̄)b
(s) −

(
∇bQ

d(ā
(s)

)
Q
c̄)b
(t) = 0,

(
∇āQ

c̄(b
(t)

)
Q
d)ā
(s) −

(
∇āQ

c̄(b
(s)

)
Q
d)ā
(t) = 0.

We prove the first equation (the second is analogous); taking for ∇ the Levi-Civita
connection of g (so ∇η = 0), this reduces to:

ηc̄f
(
∇fH

(t)
ā(b

)
H

(s)
d)c̄ − η

c̄f
(
∇fH

(s)
ā(b

)
H

(t)
d)c̄ = 0.

The key trick is to multiply the left hand side by s− t and observe that (s− t)ηc̄f =

η̃c̄f (t)− η̃c̄f (s). Now using equation (205) for η̃āb(t) and H(t)
dc̄ , we obtain

η̃c̄f (t)
(
∇fH

(t)
ā(b

)
H

(s)
d)c̄ = Y ēδā

c̄H
(t)
ē(bH

(s)
d)c̄ − Y

c̄H
(t)
ā(bH

(s)
d)c̄ = Y c̄H

(t)
c̄(bH

(s)
d)ā − Y

c̄H
(t)
ā(bH

(s)
d)c̄

for some Y ā. The same reasoning applies to η̃āb(s) and H(s)
dc̄ with the same vector field

Y ā to obtain the same expression with s and t interchanged. These two expressions
sum to zero and hence(
η̃c̄f (t)− η̃c̄f (s)

) ((
∇fH

(t)
ā(b

)
H

(s)
d)c̄ −

(
∇fH

(s)
ā(b

)
H

(t)
d)c̄

)
= −σ̃(s)∇(dH

(s)
b)ā − σ̃(t)∇(dH

(t)
b)ā

which vanishes because H̃(s) and H̃(t) are c-projective Hermitian symmetric Killing
tensors. �

We now discuss the question how many of the functions Lt and It (t ∈ R) are
functionally independent on TM , i.e. have linearly independent differentials. Since
TM has dimension 4n, and the functions Lt and It mutually commute (i.e. they span
an Abelian subalgebra under the Poisson bracket induced by g), at most 2n of these
functions can be functionally dependent at each point of TM . If equality holds on
the fibres of TM over a dense open subset of M , the geodesic flow of g is said to be
integrable.

Since Aab(t) = Aa
b− tδab, integrability turns out to be related to the spectral theory

of the field Aab of endomorphisms of T 1,0M . In particular, using the trivialisation of
E(1, 1) determined by g, the determinant σ̃(t) := det η̃(t) becomes the characteristic
polynomial χA(t) := detA(t) of Aab. Since A is Hermitian, the coefficients of χA(t)
are smooth real-valued functions on M . Any complex-valued function µ on an open
subset U ⊆ M has an associated algebraic multiplicity mµ : U → N, where mµ(p) is
the multiplicity of µ(p) as a root of χA(t) at p ∈ U , or equivalently the rank of the
generalised µ(p)-eigenspace of Aab in T 1,0

p M ; additionally, its geometric multiplicity
dµ(p) is the dimension of the µ(p)-eigenspace of Aab in T 1,0

p M , and its index hµ(p) is
the multiplicity of µ(p) in the minimal polynomial of Aab at p.

Remark 5.5. If µ : U → C is smooth with mµ constant on U , then the restriction
of Aab − µδab to the generalised µ-eigendistribution, defines, using an arbitrary local
frame of this distribution, a family of nilpotent mµ ×mµ matrices N . There are only
finitely many conjugacy classes of such matrices, parametrised by partitions of mµ:
we can either use the Segre characteristics, which are the sizes of the Jordan blocks
of N , or the dual partition by the Weyr characteristics dim kerNk − dim kerNk−1,
k ∈ Z+. The index hµ is the first Segre characteristic (i.e. the size of the largest Jordan
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block), while the geometric multiplicity is the first Weyr characteristic dim kerN (so
max{dµ, hµ} ≤ mµ with equality if and only if dµ = 1 or hµ = 1). The unique (hence
dense) open orbit consists of nilpotent matrices of degree mµ, whose Jordan normal
forms have a single Jordan block, and in general, the orbit closures stratify the nilpotent
matrices (with the partial ordering of strata corresponding to the dominance ordering
of partitions). Thus N maps a sufficiently small neighbourhood of a point p ∈ U into
a unique minimal stratum, and for generic p ∈ U , this stratum is the orbit closure of
N(p). In other words, the type of N may be assumed constant in neighbourhood of
any point in a dense open subset of U .

The general theory of families of matrices is considerably simplified here by Propo-
sition 5.12 and the following two lemmas.

Lemma 5.15. Suppose U is an open subset of M and T 1,0U = E ⊕ F where E and
F are smooth A-invariant subbundles over U such that the restriction of A to E has
a single Jordan block with smooth eigenvalue µ : U → C. Then the gradient of µ is a
section over U of E ⊕F⊥ ⊆ T 1,0U ⊕ T 0,1U = TU ⊗C, where F⊥ denotes the subspace
of T 0,1U orthogonal to F with respect to g.

Proof. In a neighbourhood of any point in U , we may choose a frame Za(1), . . . , Za(m)
of E such that A is in Jordan normal form on E. We identify E∗ with the annihilator
of F in Ω1,0 and let Za(1), . . . , Za(m) be the dual frame (with Za(i)Za(j) = δij). Then
the transpose of A is in Jordan normal form with respect to this dual frame in reverse
order: for k = 1, . . .m we thus have

(Aa
b − µ δab)Za(k) = Zb(k − 1), (218)

(Aa
b − µ δab)Zb(k) = Zb(k + 1), (219)

where Zb(−1) = 0 = Zb(m+ 1). By (128), the (0, 1)-derivative of (218) yields

(gac̄Λ
b + δa

b∇c̄µ)Za(k) = (Aa
b − µ δab)∇c̄Z

a(k)−∇c̄Z
b(k − 1), (220)

which we may contract with Zb(k), using (219), to obtain

−ΛbZb(k)gac̄Z
a(k) +∇c̄µ = Zb(k + 1)∇c̄Z

b(k)− Zb(k)∇c̄Z
b(k − 1).

Summing from k = 1 to m, the right hand side sums to zero, and hence

m∇aµ =
m∑
k=1

ΛbZb(k)Za(k)

so the (1, 0)-gradient of µ is a linear combination of Za(1), . . . , Za(m), hence a section
of E. Since A is Hermitian, its restriction to F⊥ also has a single Jordan block, with
eigenvalue µ̄, and so ∇āµ = ∇aµ̄ belongs to F⊥ by the same argument. �

It follows that if there is more than one Jordan block with eigenvalue µ, then µ is
constant—equivalently, all nonconstant eigenvalues of A have geometric multiplicity
one. In fact, a stronger result holds.

Lemma 5.16. Let µ be a smooth function on M and let U ⊂M be a nonempty open
subset on which µ has constant algebraic multiplicity m. If µ is constant and M is
connected, then µ has algebraic multiplicity mµ ≥ m on M . Conversely, if m ≥ 2 then
µ is locally constant on U .

Proof. Since A is Hermitian, χA(t) has real coefficients, µ̄ is an eigenvalue of A with the
same algebraic multiplicity as µ, and ∇āµ = ∇aµ̄. By assumption χA(t) = (t−µ)mq(t)
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on U , where q is smooth with q(µ) nonvanishing. Since χA(t) is a Killing potential for
g, its gradient ∇aχA(t) is a holomorphic vector field on M for all t.

Suppose first that µ is constant: we shall show by induction on k that if m ≥ k then
mµ ≥ k onM , which is trivially true for k = 0. So suppose thatm ≥ k+1 andmµ ≥ k,
so that p(t) = χA(t)/(t− µ)k is a polynomial in t. Since ∇ap(µ) is holomorphic on M
and vanishing on U , it vanishes on M , since M is connected. Similarly for p(µ), so
that p(µ) is locally constant onM , hence zero, sinceM is connected and p(µ) vanishes
on U . Thus mµ ≥ k + 1 as required.

For the second part, the (m−2)nd derivative in t of χa(t) is also a Killing potential,
which may be written

∇aχ
(m−2)
A (t) = m!(t− µ)q(t)∇aµ+ (t− µ)2Xa(t)

for some polynomial of vector fields Xa(t). Applying ∇b = gbc̄∇c̄ and evaluating at
t = µ yields ∇aµ∇bµ = 0, i.e. ∇aµ = 0. Replacing µ by µ̄, we deduce that µ is locally
constant on U . �

In contrast, in the analogous real projective theory of geodesically equivalent pseudo-
Riemannian metrics, Jordan blocks with nonconstant eigenvalues can occur: see [15].

In order to apply the above lemmas at a point p ∈M , we need p to be stable for A in
the following sense. First, we need to suppose that the number of distinct eigenvalues
of Aab is constant on some neighbourhood of p. This condition on p is clearly open,
and it is also dense: if the number of distinct eigenvalues is not constant near p,
then there are points arbitrarily close to p where the number of distinct eigenvalues
is larger; repeating this argument, there are points arbitrarily close to p where the
number of distinct eigenvalues is locally maximal, hence locally constant. Now, on the
dense open set where this condition holds, the eigenvalues of Aab are smoothly defined,
and their algebraic multiplicities are locally constant (since they are all upper semi-
continuous). Now a point p in this dense open set is stable if in addition the Jordan
type (Segre or Weyr characteristics) of each generalised eigenspace of Aab is constant
on a neighbourhood of p. The stable points are open and dense by Remark 5.5.

Definition 5.4. We say p ∈M is a regular point for the pencil η̃(t) = ηāb(Aa
b − tδab)

if it is stable for Aab, and for each smooth eigenvalue µ on an open neighbourhood of
p, either dµp 6= 0 or µ is constant on an open neighbourhood of p.

Equivalently, the regular points are the open subset of the stable points where the
rank of the span of the canonical Killing fields associated to the pencil is maximal,
i.e. equal to the order `. Consequently, by Proposition 5.12, the regular points form a
dense open subset of M .

Corollary 5.17. Let µ be a smooth eigenvalue of A over the set of stable points. Then

Aa
b∇bµ = µ∇aµ and Aā

b̄∇b̄µ = µ∇āµ. (221)
If µ is constant, its algebraic multiplicity is constant on the set of regular points.

Indeed, where µ has algebraic multiplicity mµ = 1, Lemma 5.15 implies that ∇aµ
generates the eigenspace of µ, whereas where mµ ≥ 2, Lemma 5.16 implies that µ
is locally constant, and hence equations (221) are trivially satisfied. Furthermore, it
implies that the algebraic multiplicities of the constant eigenvalues are upper semi-
continuous on M , hence constant on the connected set of regular points.

Theorem 5.18. Let (M,J, [∇]) be a c-projective manifold that admits (pseudo-)Kähler
metrics gab̄ and g̃ab̄ associated to linearly independent solutions ηāc and η̃āc = ηābAb

c

of the metrisability equation (125).
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(1) The number of functionally independent linear integrals Ls is equal to the num-
ber of nonconstant eigenvalues of A at any regular point of M .

(2) The number of functionally independent quadratic integrals It is equal to the
degree of the minimal polynomial of A at any stable point of M .

(3) The integrals It are functionally independent from the integrals Ls.

Proof. Integrals of the form Ls or It are functionally independent near X ∈ TpM if
their derivatives are linearly independent at X. Since Ls is linear along the fibres of
TM →M , the restriction of dLs to TX(TpM) ∼= TpM is g(K̃(s), ·) (at p). Similarly, It
is quadratic along fibres, and the restriction of dIt to TX(TpM) ∼= TpM is τg−2H̃(t)(X, ·)
with τg = det η. Hence, for genericX ∈ TpM , the quadratic integrals It are functionally
independent from the linear integrals Ls, and the number of functionally independent
linear, respectively quadratic, integrals is at least the dimension of the span of K̃(s)

at p, respectively the dimension of the span of H̃(t) at p.
The geodesic flow preserves the integrals and therefore the property of the integrals

to be functionally independent. Since any two points of M can be connected by a
piecewise geodesic curve, it suffices to compute the dimensions of these spaces at a
regular point of p, where the dimensions of the spans of K̃(s) and H̃(t) are maximal.

At such a point, the number of linearly independent Killing vector fields K̃(s) is the
number of nonconstant eigenvalues of A, so it remains to compute the number of lin-
early independent Killing tensors H̃(t). For this, recall that H̃bā(t) = (adjA(t))b

cHcā,
with adjA(t) = A(t)−1 detA(t). Now write A(t) in Jordan canonical form: on an
h× h Jordan block with eigenvalue µ, (t− µ)hA(t)−1 is a polynomial of degree h− 1
in t with h linearly independent coefficients. Hence on the generalised µ-eigenspace,
(t − µ)mµA(t)−1 is a polynomial in t with hµ linearly independent coefficients, where
mµ is the geometric multiplicity of µ, and hµ the index (the multiplicity of µ in the
minimal polynomial, i.e. the size of the largest Jordan block). It follows readily that
the dimension of the span of adjA(t) is the degree of the minimal polynomial of A. �

5.6. The local complex torus action. For a c-projective manifoldM2n admitting a
metrisability pencil with no constant eigenvalues, Theorem 5.18 shows that any metric
in the pencil is integrable, i.e. its geodesic flow admits 2n functionally independent
integrals. Furthermore n of the independent integrals are linear, inducing Hamiltonian
Killing vector fields. Hence if M is compact, it is toric (i.e. has an isometric Hamil-
tonian n-torus action).

When the pencil has constant eigenvalues, there are only ` independent linear in-
tegrals, where ` is the order of the pencil (the number of nonconstant eigenvalues),
and at most n independent quadratic integrals. In this case the flows of the Hamil-
tonian Killing vector fields K̃(t) generate a foliation of M whose generic leaves are
`-dimensional. If M is compact, one can prove (see [2]) that these leaves are the orbits
of an isometric Hamiltonian action of an `-torus U(1)`, and it is convenient to assume
this locally. The complexified action, generated by the commuting holomorphic vector
fields K̃(t) and JK̃(t), is then a local holomorphic action of (C×)`, and the leaves of
the foliation, which are locally J-invariant submanifolds with generic dimension 2`,
will be called complex orbits.

Lemma 5.19. The complex orbits through regular points are totally geodesic and their
tangent spaces are A-invariant. The c-projectively equivalent metrics g and g̃ restrict
to nondegenerate c-projectively equivalent metrics (with respect to the induced complex
structure) on any regular complex orbit Oc. The metrisability pencil η̃(t) restricts to a
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metrisability pencil of order ` on Oc, using g and its restriction to trivialise ER(1, 1),
and then g̃ is a constant multiple of the metric induced by η̃.

Proof. Since the complex orbit of any regular point contains only regular points and
the tangent space to the orbit is spanned by holomorphic vector fields, it suffices to
prove that the (1, 0)-tangent spaces to regular points are closed under the Levi-Civita
connection ∇ of g. These tangent spaces are spanned by eigenvectors Za of Aab with
nonconstant eigenvalues µ, and by differentiating the eigenvector equation using (128),
as in the proof of Lemma 5.15, we obtain

(Aa
b − µ δab)∇cZ

a = (−Λaδcb+, δab∇cµ)Za = −(ΛaZ
a)δc

b + (∇cµ)Zb.

Clearly if we contract the right hand side with a (1, 0)-vector Xc tangent to a complex
orbit, we obtain another such vector. Hence ∇XZ is a (1, 0)-vector tangent to the
complex orbit as required: the complex orbits are thus totally geodesic.

The tangent spaces to a regular complex orbit Oc are clearly J-invariant and A-
invariant, so that g induces a Kähler metric Oc, with a metrisability pencil spanned
by the restrictions of η and η̃, where we use g and its restriction to trivialise ER(1, 1).
Since η̃ = η ◦A, and the generalised eigenspaces of A which are not tangent to Oc have
constant eigenvalues, the metric induced by the restriction of η̃ is a constant multiple
of the restriction of g̃. �

Also of interest is the local (R+)` action whose local orbits are the leaves of the
foliation generated by the vector fields JK̃(t), which will be called real orbits.

Lemma 5.20. The real orbits through regular points are totally geodesic, and their
tangent spaces are A-invariant and generated by the gradients of the nonconstant eigen-
values of A. The c-projectively equivalent metrics g and g̃ restrict to nondegenerate
projectively equivalent metrics on any regular real orbit O, and the restriction of A is
a constant multiple of the (1, 1)-tensor

(vol(g̃|O)
vol(g̃|O)

)1/(`+1)
(g̃|O)−1g|O.

Proof. At a regular point p, X ∈ TpM is tangent to the real orbit through p if and only
if it is tangent to the complex orbit through p and orthogonal to the Killing vector
fields K̃(t) at p. Since both properties are preserved along geodesics, the real orbits
are totally geodesic with respect to g (hence also g̃).

Let Oc be the complex orbit through the regular real orbit O, so that g and g̃ restrict
to c-projectively equivalent Kähler metrics onOc. Furthermore (vol(g̃|Oc))1/2(`+1)g̃−1|Oc
is a constant multiple of (vol(g|Oc))1/2(`+1)g−1 ◦A|Oc . The tangent spaces to O are gen-
erated by the vector fields ∇aµ, for nonconstant eigenvalues µ, which are mutually
orthogonal and non-null. Hence TpOc is the orthogonal direct sum of TpO and JTpO
(with respect to both g and g̃). Hence g and g̃ restrict to nondegenerate metrics on
O and A restricts to a constant multiple of

(vol(g̃|O)
vol(g̃|O)

)1/(`+1)
(g̃|O)−1g|O. The Levi-Civita

connections of g and g̃ on Oc are related by (11) for some 1-form Υα. If we now
restrict to O (which is totally geodesic in Oc), it follows that the induced Levi-Civita
connections ∇ and ∇̃ are related by

∇̃αX
γ −∇αX

γ = 1
2
(Υαδβ

γ + δα
γΥβ),

i.e. the metrics on O are projectively equivalent. �

5.7. Local classification. Let (M,J, [∇]) be a c-projective 2n-manifold admitting
two compatible non-homothetic (pseudo-)Kähler metrics, and hence a pencil of so-
lutions of the metrisability equation of order 0 ≤ ` ≤ n. Lemma 5.20 shows that
the real orbits yield a foliation of the set M0 of regular points which is transverse
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and orthogonal to the common level sets of the nonconstant eigenvalues ξ1, . . . ξ`
of A; these are also the levels of the elementary symmetric functions σ1, . . . σ` of
ξ1, . . . ξ`, which are Hamiltonians for Killing vector fields generating the local isomet-
ric Hamiltonian `-torus action on M0. Indeed, on M0, χA(t) = χc(t)χnc(t), where
χnc(t) =

∏`
i=1(t− ξi) =

∑`
r=0(−1)rσrt

`−r, χc(t) has constant coefficients, and σ0 = 1.
The leaf space S of the foliation of M0 by the complex orbits may then be identified
with the Kähler quotient of M0 by this local `-torus action.

It is convenient to write χc(t) =
∏

u ρu(t)
mu , where ρu(t) are the distinct irreducible

real factors (with deg ρu = 1 or 2) and mu their multiplicities. Then if S is a manifold,
its universal cover is a product of complex manifolds Su of (real) dimension 2mu deg ρu.

These observations lead to a local classification of (pseudo-)Kähler metrics which
belong to a metrisability pencil (i.e. admit a c-projectively equivalent metric, or equiv-
alently, a Hamiltonian 2-form), which was obtained in [2] in the Kähler case, and in [16]
for general (pseudo-)Kähler metrics. We state the result as follows.

Theorem 5.21. Let (M,J, [∇]) be a c-projective 2n-manifold, and suppose that g is
a (pseudo-)Kähler metric in a metrisability pencil of order `, which we may write as
η̃āb(t) = ηāb(Aa

b − tδab), where ηāb corresponds to g. Then on any open subset of M0

for which the leaf space of the complex orbits is a manifold S, we may write:

g =
∑
u

gu(χnc(AS)·, ·) +
∑̀
i=1

∆j

Θj(ξj)
dξ2

j +
∑̀
j=1

Θj(ξj)

∆j

(∑̀
r=1

σr−1(ξ̂j)θr

)2

, (222)

ω =
∑
u

ωu(χnc(AS)·, ·) +
∑̀
r=1

dσr ∧ θr, with dθr =
∑
u

(−1)rωu(A
`−r
S ·, ·), (223)

Jdξj =
Θj(ξj)

∆j

∑̀
r=1

σr−1(ξ̂j) θr, Jθr = (−1)r
∑̀
j=1

ξ`−rj

Θj(ξj)
dξj. (224)

The ingredients appearing here are as follows, where we lift objects on S to M by
identifying the horizontal distribution ker(dξ1, . . . dξ`, θ1, . . . θ`) with the pullback of TS.

• ξ1, . . . ξ` are the nonconstant roots of A, which are smooth complex-valued func-
tions on M0, functionally independent over R, such that for any j ∈ {1, . . . `},
ξj = ξk for some (necessarily unique) k.
• χnc(t) =

∏`
i=1(t− ξi) =

∑`
r=0(−1)rσrt

`−r, σr−1(ξ̂j) is the (r − 1)st elementary
symmetric function of {ξk : k 6= j}, and ∆j =

∏
k 6=j(ξj − ξk).

• For j ∈ {1, . . . `}, Θj is a smooth nonvanishing complex function on the image
of ξj such that if ξj = ξk then Θj = Θk.
• For each distinct irreducible real factor ρu of χc, the metric gu is induced by a
(pseudo-)Kähler metric on the factor Su of the universal cover of S.
• AS is a parallel Hermitian endomorphism with respect to the local product met-
ric
∑

u gu on S, preserving the distributions induced by TSu, on which it has
characteristic polynomial ρu(t)mu.

Any such (pseudo-)Kähler metric admits a metrisability pencil of order `, with

A = AS +
∑̀
i=1

ξi

(
dξi ⊗

∂

∂ξi
+ Jdξi ⊗ J

∂

∂ξi

)
.

In other words (M, g, J, ω) is locally a bundle over a product S of (pseudo-)Kähler
whose fibres (the complex orbits) are totally geodesic toric (pseudo-)Kähler manifolds
of a special kind, called “orthotoric”. The proof in [2] proceeds by establishing the
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orthotoric property of the fibres and the special structure of the base S. In contrast,
the proof in [16] relies upon the observation (generalising Lemma 5.20) that the local
quotient of (M, g) by the real isometric `-torus action admits a projectively equivalent
metric: the first two sums in (222) are the general form of such a metric when the
nonconstant eigenvalues of the projective pencil have algebraic multiplicity one.

In the Riemannian case, the expression (222) provides a complete local descrip-
tion of the metric: locally, we may assume S =

∏
u Su is product of open subsets

Su ⊆ R2mu , and then AS is a constant multiple of the identity on each factor. In
the pseudo-Riemannian, it remains only to describe explicitly the parallel Hermitian
endomorphism AS on S =

∏
u Su, for which we refer to [18].

Remark 5.6. In order to understand the compatible metrics corresponding to the
general element η̃− tη of the metrisability pencil, it is convenient to make a projective
change s = (at+ b)/(ct+d) of parameter, as in Remark 5.3. The metric corresponding
to cη̃ + dη (assuming this is nondegenerate) must have the same form (222) as g,
with respect to the coordinates ξ̃j = (aξj + b)/(cξj + d), and with A replaced by
Ã = (cA + d)−1(aA + b). We find in particular that the new functions Θ̃j are related
to the old functions by Θ̃j(s)(ct + d)`+1 = (ad − bc)`+1Θj(t)—in other words they
transform like polynomials of degree ` + 1 (sections of O(` + 1) over the projective
parameter line).

Remark 5.7. It is straightforward to show that the restriction of the metric (222) to
any complex orbit (a totally geodesic integral submanifold of ∂ξj , J∂ξj : j ∈ {1, . . . `})
has constant holomorphic sectional curvature if and only if each Θj(t) is a polynomial
independent of j, of degree at most ` + 1: the curvature computations in [2] extend
readily to the (pseudo-)Kähler case. If we write Θj(t) = Θ(t) :=

∑`
r=−1 art

`−r, then
the complex orbits have constant holomorphic sectional curvature B = 1

4
a−1.

Following [2], we may introduce holomorphic coordinates ur + itr on the complex
orbits by writing θr = dtr+αr and Jdur = dtr for r ∈ {1, . . . `}, where αr are pullbacks
of 1-forms on S. Thus

Jdur = −αr − (−1)r
∑̀
j=1

ξ`−rj

Θj(ξj)
Jdξj

where dαr =
∑

u(−1)rωu(A
`−r
S ·, ·), and these formulae extend to any r ≤ `. For r ≥ 1,

dJdur = 0, whereas dJdu0 = −ω and dJdu−1 = φ+ σ1ω, where φ = g(JA·, ·).
In particular, if Θj(t) = Θ(t), then

∑̀
r=−1

(−1)rar(Jdur + αr) = −Jdσ1

and hence

dJdσ1 = a−1(φ+ σ1ω) + a0ω −
∑
u

ωu(Θ(A)·, ·).

However, σ1 differs from traceA = Aa
a by an additive constant, so dσ1 = −Λ and

hence dJdσ1 = −2∇JΛ, i.e.

2∇Λ = (a−1 + a0σ1)g + a−1g(A·, ·)−
∑
u

gu(Θ(A)·, ·). (225)
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6. Metric c-projective structures and nullity

Henceforth, we assume that (M,J) is a complex manifold (i.e. with J integrable)
of real dimension 2n ≥ 4, equipped with a metric c-projective structure, i.e. a c-
projective structure [∇] containing the Levi-Civita connection of a (pseudo-)Kähler
metric g, which we denote by ∇g, or ∇ if g is understood. We may also consider a
metric c-projective structure as an equivalence class [g] of (pseudo-)Kähler metrics on
(M,J) having the same J-planar curves.

By Proposition 4.5, the map sending a metric g ∈ [g] to η = τ −1
g g−1 embeds [g]

into mc = mc[∇] as an open subset of the nondegenerate solutions to the metrisability
equation (126). We refer to dimmc as the mobility of g for any g ∈ [g], cf. Section 4.4,
and we are interested in the case that dimmc ≥ 2. In Section 5, we obtained some
consequences of this assumption for the geodesic flow of g on M . We now turn to the
relationship between mobility and curvature.

As explained in Section 4.5, mc may be identified with the space of parallel sections
of the real tractor bundle V with respect to the prolongation connection (157)–(158).
However, in [44, Theorem 5], it was shown that if dimmc ≥ 3, then mc may also be
identified with the space of parallel sections of V with respect to the connection

∇α

AβγΛβ

ρ

 =

∇αA
βγ + δα

(βΛγ) + Jα
(βJε

γ)Λε

∇αΛ
β + ρδα

β − 2BgαγA
βγ

∇αρ− 2BgαβΛ
β


for some uniquely determined constant B. In this section we explore this phenomenon,
and its implications for the curvature of M . First, as a warm-up, we consider the
analogous situation in real projective geometry.

6.1. Metric projective geometry and projective nullity. A metric projective
structure on a smooth manifold M of dimension n ≥ 2 is a projective structure [∇]
containing the Levi-Civita connection of a (pseudo-)Riemannian metric, or (which
amounts to the same thing) an equivalence class [g] of (pseudo-)Riemannian metrics
with the same geodesic curves. As in the c-projective case (see Section 4.3 and Re-
mark 4.4), up to sign, [g] embeds into the space m = m[∇] of solutions to the projective
metrisability equation (135) as the open subset of nondegenerate solutions.

A metric projective structure has mobility dimm ≥ 1, and we are interested in the
case that dimm ≥ 2. However, it is shown in [57] that, on a connected projective
manifold (M, [∇]) with mobility dimm ≥ 3, there is a constant B such that solutions
Aβγ of the mobility equations may be identified with parallel sections for the connection

∇α

Aβγµβ
ρ

 =

 ∇αA
βγ + 2δα

(βµγ)

∇αµ
β + ρδα

β −BgαγAβγ
∇αρ− 2Bgαβµ

β

 (226)

on the tractor bundle associated to the metrisability equation. This connection is
the main tool used in [45] to determine all possible values of the mobility of an n-
dimensional simply-connected Lorentzian manifold.

This result is an example of a general phenomenon: in metric projective geome-
try, solutions to first BGG equations are often in bijection with parallel sections of
tractor bundles for a much simpler (albeit somewhat mysterious) connection than the
prolongation connection. We illustrate this with a toy example. The operator

Γ(TM(−1)) 3 ηβ 7→ (∇αη
β)◦ = ∇αη

β − 1
n
δα

β∇γη
γ
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is projectively invariant, where TM(−1) denotes the bundle of vector fields of projec-
tive weight −1; its kernel consists of solutions to the concircularity equation

(∇αη
β)◦ = 0, (227)

called concircular vector fields. This equation is especially congenial in that its pro-
longation connection coincides with the Cartan connection. Indeed, following [7], for
any solution ηα of (227) there is a unique function ρ (of projective weight −1) such
that ∇αη

β = −δαβρ, namely ρ = − 1
n
∇γη

γ. We then have

Rαβ
γ
δη
δ = (∇α∇β −∇β∇α)ηγ = δα

γ∇βρ− δβγ∇αρ, (228)

and tracing over αγ yields Ricβδη
δ = (n− 1)∇βρ. We conclude that ηα lifts uniquely

to parallel section of the standard tractor bundle for the connection

∇α

(
ηβ

ρ

)
=

(
∇αη

β + δα
βρ

∇αρ− Pαβη
β

)
(229)

induced by the (normal) Cartan connection, where Pαβ ≡ 1
n−1

Ricαβ.
The simpler connection arising in the metric projective case is described as follows.

Theorem 6.1. Let (M, [∇]) be a metric projective manifold, and for any p ∈ M , let
Np be the dimension of the span at p of the local solutions of (227). Then for any
metric g with Levi-Civita connection ∇g ∈ [∇], there is a function B on M , which is
uniquely determined and smooth where Np ≥ 1, such that every concircular vector field
lifts uniquely to a parallel section of the standard tractor bundle for the connection

∇α

(
ηβ

ρ

)
=

(
∇g
αη

β + δα
βρ

∇g
αρ−Bgαβηβ

)
. (230)

Moreover B is locally constant on the open set where Np ≥ 2, which is empty or dense
in each connected component of M . If M is connected and B is locally constant on a
dense open set, it may be assumed constant on M .

Proof. We take ∇ = ∇g and use g to raise and lower indices. Suppose that
∇αη

β + δα
βρ = 0 and ∇αη̃

β + δα
β ρ̃ = 0

for solutions ηα, η̃α of (227). Then (228) implies that

Rg
αβγδη

δ = gαγ∇βρ− gβγ∇αρ and Rg
αβγδη̃

δ = gαγ∇β ρ̃− gβγ∇αρ̃,

and so 2η̃[α∇β]ρ = Rg
αβγδη̃

γηδ = −Rg
αβγδη

γ η̃δ = 2η[β∇α]ρ̃.
(231)

In particular, η[α∇β]ρ = 0 and so there is a unique smooth function B on the open set
where ηα 6= 0 such that

∇αρ−Bgαβηβ = 0 (232)
on M for any extension of B over the zero-set of ηα (since ∇αρ also vanishes there).
Equation (231) now implies that any two concircular vector fields have the same func-
tion B where both functions are determined. Thus B is uniquely determined and
smooth where Np ≥ 1. Differentiating (232) on the open set where B is smooth gives

∇β∇αρ− ηα∇βB +Bgαβρ = 0,

and so η[α∇β]B = 0. Hence ∇αB = 0 on the open set where Np ≥ 2. This subset is
empty or dense in each component ofM , since two solutions of (227) that are pointwise
linearly dependent on an open set are linearly dependent on that open set.

It remains to show that if M is connected and B is locally constant on a dense open
subset U (which could be disconnected), then it may be assumed constant. To see this,
we use only that

Pβγη
γ = Bηβ and ∇αB = 0
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on U , for then we may differentiate once more to conclude that

(∇αPβγ)η
γ + Pβγ∇αη

γ = B∇αηβ

and hence that
(∇αPβγ)η

γ − Pαβρ = −Bgαβρ
on U . Tracing over αβ yields

(∇αP
α
γ)η

γ − Pα
αρ = −nBρ

and hence that (
Pαβ 0

− 1
n
∇αP

α
β

1
n
Pα

α

)(
ηβ

ρ

)
= B

(
ηα

ρ

)
(233)

on U . Although this equation was derived on U , it is a valid stipulation everywhere
on M . Moreover, the tractor (

ηβ

ρ

)
is nowhere vanishing on M (else in (229), the vector field ηβ would vanish identically).
From this point of view, we see that B extends as a smooth function on M . Finally,
since B is locally constant on U , it is locally constant and hence constant on M . �

The connection (230) of Theorem 6.1 differs from the tractor connection (229) by
the endomorphism-valued 1-form(

0 0
Pαβ −Bgαβ 0

)
: Xα ⊗

(
ηβ

ρ

)
7→
(

0
(Pαβ −Bgαβ)Xαηβ

)
The connections agree on the flat model. Specifically, on the unit sphere we have

Rαβγδ = gαγgβδ − gβγgαδ whence Pαβ = gαβ,

so that the connections coincide with B = 1.
The proof of Theorem 6.1 may be broken down into two steps. First, one shows that

the connection (230) has the required lifting property for some function B, which may
only be uniquely determined and smooth on an open set. Secondly, one establishes
sufficient regularity to determine the connection globally on M (in this case, with B
constant). In the literature, the second step has often been carried out by probing M
with geodesics. In the above proof we advocate an alternative line of argument that
we believe to be simpler and more generally applicable.

Remark 6.1. For example, we may apply the same technique to the mobility equa-
tions (226), where the replacement for (233) has the form R 0 0

∇R R 0
∇∇R +R ./ R ∇R R

Aβγµβ
ρ

 = B

Aβγµβ
ρ

− Aδ
δ

n

 gβγ

0
1
n
Pγ

γ

 .
As above, this is sufficient to show that B is constant if it is locally constant on a
dense open set. One striking difference between this case and Theorem 6.1, however,
is that the connection (230) actually has the same covariant constant sections as does
the standard Cartan or prolongation connection (229). For the mobility equations,
however, not only is the resulting connection (226) different from the prolongation
connection [43] but also their covariant constant sections are generally different. Nev-
ertheless, all solutions of the mobility equations lift uniquely as covariant constant
sections with respect to either of these connections (and this is their crucial property).
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We next seek to elucidate the first step in the proof of Theorem 6.1. Here we observe
that the key equations (231) used to establish the uniqueness of B may be viewed as
a characterisation of B in terms of the curvature Rg of g, namely that

Rg
αβγδη

δ = B(gαγηβ − gβγηα).

This motivates the introduction of some terminology, following Gray [50].
Definition 6.1. Let (M, g) be a (pseudo-)Riemannian manifold and suppose that the
tensor Rαβγδ has the symmetries of the Riemannian curvature of g. Then a nullity
vector of R at p ∈M is a tangent vector vα ∈ TpM with Rαβγδv

δ = 0, and the nullity
space of R at p is the set of such nullity vectors. We say R has nullity at p if the nullity
space is nonzero, i.e. the nullity index is positive.

In particular, if Rg is the Riemannian curvature of g, then at each p ∈ M , there is
at most one scalar B ∈ R such that RB

αβγδ := Rg
αβγδ − B(gαγgβδ − gβγgαδ) has nullity

at p. Indeed if vα and ṽα are nullity vectors for RB and RB̃ respectively then

0 = (B − B̃)(gαγgβδ − gβγgαδ)ṽβvδ = (B − B̃)(vβ ṽ
βgαγ − vαṽγ),

which implies that B = B̃ unless vα or ṽα are zero.
Definition 6.2. Let (M, g) be a (pseudo-)Riemannian manifold. Then the (projective)
nullity distribution of g is the union of the nullity spaces of RB

αβγδ over B ∈ R and
p ∈M . We say that g has (projective) nullity at p ∈M if there is a nonzero vα ∈ TpM
in the nullity distribution of g, i.e.(

Rg
αβγδ −B(gαγgβδ − gβγgαδ)

)
vδ = 0, (234)

for some B ∈ R, uniquely determined by p.
The definition of B is reminiscent of an eigenvalue; indeed, the αγ trace of (234) is

Pα
βvα = Bvβ,

so B is an eigenvalue of the endomorphism Pα
β. On the other hand the trace-free part

of (234) provides a projectively invariant characterisation, using the projective Weyl
tensor Pαβγδ := Rαβ

γ
δ − δαγPβδ + δβ

γPαδ, as follows (cf. [49]).
Proposition 6.2. Let (M, g) be a (pseudo-)Riemannian manifold of dimension n ≥ 2,
and let vδ ∈ TpM be nonzero. Then the following statements are equivalent :

(1) vδ is a projective nullity vector at p
(2) there exists B ∈ R such that Pαβγδvβ = (Pαδ −Bgαδ)vγ
(3) Pαβγδvδ = 0.

Proof. (1)⇒(2). Since Pαβv
β = Bgαβv

β, Rαβγδ = Rγδαβ and Pαβ = Pβα, we have

Pαβγδv
β = Rγδαβv

β − gαγPβδvβ + gβγPαδv
β

= B(gαγgβδ − gβγgαδ)vβ −Bgαγgβδvβ + gβγPαδv
β = (Pαδ −Bgαδ)gβγvβ,

and (2) follows by raising the index γ.
(2)⇒(3). Since P[αβ

γ
δ] = 0, which follows easily from R[αβ

γ
δ] = 0,

Pαβ
γ
δv
δ = (Pαδ

γ
β − Pβδγα)vδ,

which vanishes by (2), since Pαβ −Bgαβ is symmetric in αβ.
(3)⇒(1). Observe that 0 = Rαβγδv

γvδ = (gαγPβδ − gβγPαδ)vγvδ = v[αPβ]δv
δ. Hence

there exists B ∈ R such that Pβδvδ = Bgβδv
δ, and hence

Rαβγδv
δ = (gαγPβδ − gβγPαδ)vδ = B(gαγgβδ − gβγgαδ)vδ,

i.e. vδ is in the projective nullity at p. �
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In particular, this shows that the projective nullity distribution is a metric projective
invariant, as is the expression Pαβ − Bgαβ wherever there is projective nullity, hence
so is the special tractor connection (230). The above argument for this fact is given
in [49], where the special connection on the standard tractor bundle is also discussed.

Remark 6.2. In the 2-dimensional case, all metrics have nullity at all points and B
is the Gaußian curvature. On the unit n-sphere the nullity distribution is the tangent
bundle and B ≡ 1. Condition (234) may be written as

Cαβγδv
δ =

(
1

(n−1)(n−2)
Scal− 1

n−2
B
)
(gαγvβ − gβγvα)− 1

n−2
(Ricαγvβ − Ricβγvα)

where Cαβγδ is conformal Weyl curvature tensor. For a Riemannian metric, we may
orthogonally diagonalise the Ricci tensor to see that if Cαβγδ = 0 (as it is in three
dimensions or in the conformally flat case in higher dimensions) then Rαβγδ has nullity
if and only if all but possibly one of the eigenvalues of Pαβ coalesce with B being the
possible exception. So in the three-dimensional Riemannian case Rαβγδ has nullity if
and only if the discriminant of the characteristic polynomial of Pαβ vanishes:

(Pα
α)6 − 9(Pα

α)4(Pβ
γPγ

β) + 21(Pα
α)2(Pβ

γPγ
β)2 − 3(Pβ

γPγ
β)3

+ 8(Pα
α)3(Pδ

εPε
γPγ

δ)− 36(Pα
α)(Pβ

γPγ
β)(Pδ

εPε
ζPζ

δ) + 18(Pδ
εPε

γPγ
δ)2 = 0.

Indeed, in three dimensions (where Rαβγδ is determined by Pαβ) it is also the case in
Lorentzian signature that Rαβγδ has nullity if and only if Pαβ is diagonalisable with
eigenvalues distributed in this manner. In any case, in three dimensions it follows that
B is a continuous function and is smooth except perhaps at points where Pαβ is a
multiple of gαβ. In the four-dimensional Riemannian case, one can check that if Rαβγδ

has nullity and the eigenvalues of Pαβ are B, λ2, λ3, λ4, then

I ≡ CαβγδC
αβγδ = 6

(
(λ2 − λ3)2 + (λ3 − λ4)2 + (λ4 − λ2)2

)
and if this expression is nonzero, then

B = 1
4
Pα

α + 1
4I

(
Cαβ

γδCγδ
εζCεζ

αβ − 18Cαβ
γδPγ

αPδ
β
)
.

It follows that B is smooth on {I 6= 0} whilst on {I = 0} three of the four eigenvalues
of Pαβ merge as above and B is the odd one out unless Pαβ ∝ gαβ. Therefore, as in
three dimensions, it follows that B extends as a continuous function that is smooth
except where Pαβ is a multiple of gαβ. We anticipate similar behaviour in general but,
for the moment, the regularity of B remains unknown.

6.2. C-projective nullity. We return now to metric c-projective geometry, where
we seek to develop analogous interconnections between curvature and special tractor
connections to those in the metric projective case. In order to do this, we first de-
velop a notion of c-projective nullity for (pseudo-)Kähler metrics, modelled on the
curvature of complex projective space (48) in the same way that projective nullity for
(pseudo-)Riemannian metrics is modelled on the curvature of the unit sphere.

We suppose therefore that (M,J, g) is a (pseudo-)Kähler manifold with ∇ the Levi-
Civita connection of gαβ and Ωαβ = Jα

γgγβ the Kähler form. Further let us write

Sαβγδ ≡ gαγgβδ − gβγgαδ + ΩαγΩβδ − ΩβγΩαδ + 2ΩαβΩγδ (235)

for the Kähler curvature tensor of constant sectional holomorphic curvature 4. As in
the (pseudo-)Riemannian case, at each p ∈M , there is at most one scalar B ∈ R such
that GB

αβγδ := Rαβγδ −BSαβγδ has nullity at p. Indeed, if vα and ṽα are nullity vectors



84 D.M.J. CALDERBANK, M.G. EASTWOOD, V.S. MATVEEV, AND K. NEUSSER

for GB
αβγδ and GB̃

αβγδ respectively then

0 = (B − B̃)Sαβγδṽ
βvδ

= (B − B̃)(vβ ṽ
βgαγ − vαṽγ + Jβ

δvδṽ
βΩαγ + Jα

δvδJγ
β ṽβ + 2Jγ

δvδJα
β ṽβ)

which implies that B = B̃ unless vα or ṽα are zero. By analogy with Definition 6.2, and
again following Gray [50] (who used the term “holomorphic constancy”), we therefore
define c-projective nullity as follows.

Definition 6.3. The (c-projective) nullity distribution N of a (pseudo-)Kähler mani-
fold (M,J, g) is the union of the nullity spaces of GB

αβγδ over B ∈ R and p ∈ M , and
for each p ∈M , we write Np for the (c-projective) nullity space N ∩TpM . We say that
(J, g) has (c-projective) nullity at p ∈M if Np is nonzero, i.e.(

Rαβγδ −BSαβγδ
)
vδ = 0, (236)

for some B ∈ R, uniquely determined by p, and some nonzero vα ∈ TpM .

Thus Np is the kernel of the linear map

vδ 7→ GB
αβγδv

δ,

for some B ∈ R depending on p. Let us remark that, since G = GB has the symmetries
of the curvature tensor of a Kähler metric,Np is a J-invariant subspace of TpM (i.e. vδ ∈
Np implies Jαδvα ∈ Np), hence is even dimensional.

Bearing in mind the discussion of Section 4.1, we may write (236) in barred and
unbarred indices. We find that(

Rab̄cd̄ + 2B(gab̄gcd̄ + gcb̄gad̄)
)
vd̄ = 0(

Rab̄c̄d − 2B(gac̄gdb̄ + gab̄gdc̄)
)
vd = 0.

(237)

As in the projective case, tracing (236) over αγ yields an eigenvalue equation

Ricβδv
δ = 2(n+ 1)Bvβ, equivalently Pβδv

δ = 2Bvβ, (238)

since Pαβ = 1
n+1

Ricαβ by (25) and (109). This can equivalently be expressed in barred
and unbarred indices as

Pbdv
d = 2Bvb, or as Pb̄d̄v

d̄ = 2Bvb̄. (239)

Of course, we may derive (239) also directly by tracing the second equation of (237),
respectively its conjugate, with respect to ac̄, respectively āc. Further, note that the
symmetries of the Ricci tensor of a (pseudo-)Kähler metric show that (239) can be also
equivalently written as Pdbvd = 2Bvb, respectively Pd̄

b̄vd̄ = 2Bvb̄.
Now assume that (237) is satisfied and decompose Rab̄

c
d according to (28) as

Rab̄
c
d = Hab̄

c
d + δa

cPb̄d + δd
cPb̄a.

Then equation (239) implies

Hab̄
c
dv
b̄ = (Rab̄

c
d − δacPb̄d − δdcPb̄a)vb̄ = 2B(δa

cvd + δd
cva)− (δa

cPb̄d + δd
cPb̄a)v

b̄ = 0.

Furthermore,

Hab̄
c
dv
d = (Rab̄

c
d − δacPb̄d − δdcPb̄a)vd

= (2B(gab̄v
c + δa

cvb̄)− 2Bδa
cvb̄ − Pb̄av

c)

= (2Bgab̄ − Pb̄a)v
c,

which implies Hab̄
c
dv
avd = 0. It fact these two conditions are also sufficient for nullity.
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Proposition 6.3. Let (M,J, g) be a (pseudo-)Kähler manifold of dimension 2n ≥ 4,
and let vd ∈ T 1,0

p M ∼= TpM be a nonzero tangent vector. Then the following statements
are equivalent :

(1) vd ∈ Np
(2) there exists B ∈ R such that Hab̄

c
dv
d = (2Bgab̄ − Pab̄)v

c

(3) Hab̄
c
dv
avd = 0 and Hab̄

c
dv
b̄ = 0,

where, as in (28), Hab̄
c
d is the trace-free part of Rab̄

c
d ≡ −gēcRab̄dē.

Proof. We have just observed that (1) implies (2) and (3). Note, moreover that taking
the trace with respect to a and c in (2) gives (239), which shows immediately that (2)
implies (1). Hence, it remains to show that (3) implies (1). If (3) holds, then

Rab̄
c
dv
avd = (δa

cPb̄d + δd
cPb̄a)v

avd ⇒ Rab̄c̄dv
avd = 2vc̄Pb̄dv

d

so 0 = v[c̄Pb̄]dv
d and we conclude that Pc̄dvd = 2B̄vc̄, for some constant B̄. Substituting

the conjugate conclusion Pd̄cv
d̄ = 2Bvc into Rab̄

c
dv
b̄ gives

Rab̄
c
dv
b̄ = (Hab̄

c
d + δa

cPb̄d + δd
cPb̄a)v

b̄ = 2Bδa
cvd + 2Bδd

cva

which, after lowering the index c is equivalent to (237), as required. (Note that B is
necessarily real, since Rab̄

c
d and Sab̄cd are real tensors.) �

Corollary 6.4. At any p ∈ M , the nullity distribution of Np is a metric c-projective
invariant, i.e. the same for c-projectively equivalent (pseudo-)Kähler metrics gab̄ and
g̃ab̄. Furthermore, if Np is nonzero, and B, B̃ ∈ R are the corresponding scalars in the
definition of Np with respect to g, g̃ respectively, then P̃ab̄ − 2B̃g̃ab̄ = Pab̄ − 2Bgab̄.

Proof. By Proposition 2.13, criterion (3) of Proposition 6.3 is c-projectively invariant.
In fact, by Proposition 4.4, Hab̄

c
d is precisely the harmonic curvature of the underlying

c-projective structure. The last part follows immediately from criterion (2). �

Remark 6.3. For later use, we apply the projectors of Section 1 to reformulate the
equivalent conditions of Proposition 6.3 directly in terms of vδ ∈ TpM as follows:

(1) vδ ∈ Np
(2) there exists a constant B ∈ R such that Hαβ

γ
δv
δ = (Jα

εPεβ − 2BΩαβ)Jδ
γvδ

(3) Hαβ
γ
δv
αvδ = 0 and (Hαβ

γ
δ + Jβ

εJζ
γHαε

ζ
δ)v

β = 0,

where Hαβ
γ
δ ≡ Rαβ

γ
δ − δ[α

γPβ]δ + J[α
γPβ]ζJδ

ζ + Jα
ζPβζJδ

γ and Pβδ ≡ 1
n+1

Rαβ
α
δ.

Proposition 6.5. Let (M,J, g) be a (pseudo-)Kähler manifold of dimension 2n ≥ 4,
and B a smooth function on an open subset U . Then for any (real) vector field v in
the nullity of G = GB on U , if v is non-null at p ∈ U , then dB = 0 there.

Proof. The differential Bianchi identity ∇[aRb]c̄d
e = 0 on U implies that

∇[aGb]c̄d
e = 2(∇[aB)gb]c̄δd

e + 2(∇[aB)δb]
egdc̄.

Since va and vā belong to the nullity of G, we may contract with vc̄vd to obtain

0 = 2(∇[aB)gb]c̄v
c̄ve + 2(∇[aB)δb]

egdc̄v
dvc̄.

A further contraction with ve = gef̄v
f̄ yields (∇[aB)vb]gdc̄v

dvc̄ = 0, so if v is non-null at
p, (∇[aB)vb] = 0 there; hence (∇[aB)δb]

e = 0, which implies ∇aB = 0, i.e. dB = 0. �
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6.3. Mobility, nullity, and the special tractor connection. Our aim in this sec-
tion is to show that, under certain conditions, the solutions of the mobility equa-
tion (129) on a (pseudo-)Kähler manifold (M,J, g) lift uniquely to parallel sections of
V ⊆ VC for the special tractor connection:

∇VCa

 Ab̄c

Λb | Λb̄
µ

 =

 ∇aA
b̄c + δa

cΛb̄

∇aΛ
b + µδa

b − 2BAa
b | ∇aΛ

b̄

∇aµ− 2BΛa


∇VCā

 Ab̄c

Λb | Λb̄
µ

 =

 ∇āA
b̄c + δā

b̄Λc

∇āΛ
b | ∇āΛ

b̄ + µδā
b̄ − 2BAb̄ā

∇āµ− 2BΛā

 ,

(240)

where ∇ is the Levi-Civita connection for gab̄ and B is a smooth function on M . Here
VC is identified via gab̄ with a direct sum of unweighted tensor bundles, and we write
the connection in barred and unbarred indices, so that for sections of V ⊆ VC, the two
lines of (240) are conjugate.

Remark 6.4. By Theorem 4.6, we know already that any solution Aāb of the mobility
equation (129) lifts uniquely to a parallel section of V for the more complicated pro-
longation connection (157)–(158). If it also lifts to a parallel section for (240), then
(cf. Remark 6.1) the two lifts may differ, albeit only in the last component. More
precisely the last component µ of the parallel lift for the special tractor connection is
given by µ = µ′ − 1

n
(Pab̄ − 2Bgab̄)A

āb, where µ′ is the last component of the parallel
lift for the prolongation connection. Note that if the metric gāb itself lifts to a parallel
section for (240), then B must be locally constant.

In [44, Theorem 5], it is shown that if the mobility of (M, g, J) is at least three, then
there is a constant B such that all solutions of the mobility equation lift uniquely to
parallel sections of V for (240). Before developing this, and related results, it will be
useful to establish some basic properties of special tractor connections (240) and their
parallel sections. Throughout this section we set, for a given function B,

Gab̄cd̄ := Rab̄cd̄ + 2B(gab̄gcd̄ + gcb̄gad̄). (241)

The equations satisfied by parallel sections of (240) are

∇aAb
c = −δacΛb (242a)

∇aΛc̄ = −µgac̄ + 2BAac̄ and ∇aΛb = 0, (242b)
∇aµ = 2BΛa (242c)

and their complex conjugates. Of course, the first line is simply the mobility equation.
In particular, from (145)–(146) (and the symmetry of Pbc̄) we have

gdb̄∇aΛc̄ − gac̄∇b̄Λd = Rab̄ec̄Ad
e −Rab̄dēA

ē
c̄

= Wab̄ec̄Ad
e −Wab̄dēA

ē
c̄ − gac̄Peb̄Ade + gdb̄PaēA

ē
c̄,

(243)

where Wab̄ec̄ = Hab̄ec̄, since J is integrable.

Lemma 6.6. If Abc and Λb satisfy (242a)–(242b) for smooth functions B, µ, then

Gab̄c
eAe

d = Gab̄e
dAc

e (244)

Gab̄c
dΛd = −gcb̄(∇aµ− 2BΛa) + 2(∇aB)Acb̄. (245)
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Proof. We substitute (242b) into (243) to obtain
Rab̄ec̄Ad

e −Rab̄dēA
ē
c̄ = gac̄(µgdb̄ − 2BAdb̄)− gdb̄(µgac̄ − 2BAac̄)

= 2B(gdb̄gaēA
ē
c̄ − gac̄geb̄Ade),

and (244) follows from (241). To obtain (245), we apply (241) instead to the identity

Rab̄c
dΛd = (∇a∇b̄ −∇b̄∇a)Λc = ∇a(−µgcb̄ + 2BAcb̄)

= 2(∇aB)Acb̄ − 2Bgab̄Λc − gcb̄(∇aµ). �

In Theorem 6.11, we will show that if (M, g, J) of mobility ≥ 2 has c-projective
nullity, then all solutions of the mobility equation lift uniquely to parallel sections of V
for (240), where B is characterised by nullity. First we establish the following converse
and regularity result.

Theorem 6.7. Let (M,J, g) be a connected (pseudo-)Kähler manifold with a non-
parallel solution Aāb of the mobility equation, which lifts, over a dense open subset U
of M , to a real parallel section (Aāb,Λa, µ) for (240) with B locally constant. Then:

(1) B is constant and (Aāb,Λa, µ) extends to a parallel section over M ;
(2) Gab̄c

dΛd = 0, and hence (J, g) has c-projective nullity on the dense open subset
where Λa is nonzero.

Proof. As noted in Remark 6.4, Theorem 4.6 provides a real section (Aāb,Λa, µ′) of V
(defined on all of M) which is parallel for the connection given by (157) and (158). On
U we compute, using (242b) and (243), that

Rab̄
d
fA

c̄f +Rab̄
c̄
ēA

ēd = 2B(δa
dAc̄b̄ − δb̄c̄Aad), (246)

which implies
1
n
(Ricb̄fA

c̄f +Rab̄
c̄
ēA

ēa) = 2B(Ac̄b̄ − 1
n
δb̄
c̄Aa

a). (247)
Applying ∇d̄ to (247) and taking the trace with respect to d̄ and c̄ shows that

1
(1−n)(n+1)

(
(∇d̄Ricb̄f )A

d̄f + (∇d̄Rab̄
d̄
ē)A

ēa + (1− n)Ricb̄fΛ
f
)

= 2BΛb̄. (248)

Recall that
−µδab + 2BAa

b = ∇aΛ
b = −µ′δab + Pac̄A

c̄b − 1
n
Hac̄

b
dA

c̄d

and that Pab̄ = 1
n+1

Ricab̄. Hence, applying∇h to (248) and taking trace shows, together
with the identities (247) and (248), that we have an identity of the form R 0 0

∇R R 0
∇∇R +R ./ R ∇R R

AābΛa

µ′

 = 2B

AābΛa

µ′

− Ac
c

n

 gāb

0
1
n
Pd

d

 . (249)

Since the left-hand side of (249) is defined on all of M and (Aāb,Λa, µ′) is a nowhere
vanishing section on M , the identity (249) can be used to extend B smoothly as
a function to all of M . Since B is locally constant on U and M is connected, B
is actually a constant and (Aāb,Λa, µ) extends smoothly to a parallel section of the
connection (240) on all of M .

The second part is immediate from (245) with ∇aB = 0 and ∇aµ = 2BΛa. �

Remark 6.5. When (J, g) has c-projective nullity, Pab̄−2Bgab̄ (with B given by (236))
is a metric c-projective invariant by Corollary 6.4, and hence the connection (240) is
metric c-projectively invariant. In particular, by Theorem 6.7, the connection is metric
c-projectively invariant if B is constant and it admits a parallel section with Λa nonzero.

On the other hand, if the connection (240) admits a parallel section with Λa = 0,
then (242b) shows that B = 0 unless the corresponding solution Aab̄ of the mobility
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equation is a (necessarily locally constant) multiple of gab̄. Thus a parallel solution of
the mobility equation which is not a multiple of g lifts to a parallel section for (240) if
and only if B = 0.

Theorem 6.8. Let (M,J, [∇]) be a connected metric c-projective manifold of dimen-
sion 2n ≥ 4 arising from a (pseudo-)Kähler metric g with mobility ≥ 3. Then either
(J, g) has c-projective nullity on a dense open subset U ⊆M , with B constant in (236),
or 2n ≥ 6 and all metrics c-projectively equivalent to g are affinely equivalent to g
(i.e. have the same Levi-Civita connection).

To prove this theorem, we use a couple of lemmas, the first of which is a purely
algebraic (pointwise) result.

Lemma 6.9. Suppose that Rab̄cd̄ is a tensor which has Kähler symmetries (108) with
respect to gab̄. Let Aab̄, Ãab̄, Λab̄ and Λ̃ab̄ be (real) tensors that satisfy

Rab̄c̄eAd
e +Rab̄df̄A

f̄
c̄ = gac̄Λdb̄ − gdb̄Λac̄ (250)

Rab̄c̄eÃd
e +Rab̄df̄ Ã

f̄
c̄ = gac̄Λ̃db̄ − gdb̄Λ̃ac̄. (251)

If Aab̄, Ãab̄ and gab̄ are linearly independent, then Λab̄, respectively Λ̃ab̄, are linear
combinations of gab̄ and Aab̄, respectively gab̄ and Ãab̄, with the same second coefficient.

Proof. Note first that these equations remain unchanged if we add scalar multiplies
of gab̄ to the tensors Aab̄, Ãab̄, Λab̄ and Λ̃ab̄. Hence, we can assume without loss of
generality that the trace of these tensors vanishes. We then have to show that Λab̄ and
Λ̃ab̄ are a common scalar multiple of Aab̄ and Ãab̄ respectively.

From equation (250) it follows immediately that

Ãa
h(Rhb̄c̄eAd

e +Rhb̄df̄A
f̄
c̄)− Ãī b̄(Rāic̄eAd

e +Rāidf̄A
f̄
c̄)

= Ãac̄Λdb̄ + Ãdb̄Λac̄ − gac̄Ãī b̄Λd̄i − gdb̄ÃahΛhc̄. (252)

By the symmetries (108) of Rab̄cd̄, the left-hand side of identity (252) equals

(Ãa
hRhb̄c̄e − Ãī b̄Rāic̄e)Ad

e + (Ãa
hRhb̄df̄ − Ãī b̄Rāidf̄ )A

f̄
c̄

= (Ãa
hRhb̄c̄e + Ãī b̄Rec̄āi)Ad

e − (Ãa
hRdf̄ b̄h + Ãī b̄Rdf̄aī)A

f̄
c̄

= Aac̄Λ̃db̄ + Adb̄Λ̃ac̄ − gac̄Aī b̄Λ̃d̄i − gdb̄AahΛ̃hc̄ (253)

where the last equality follows from (252). From (252) and (253) we therefore obtain

gac̄τdb̄ + gdb̄τac̄ = Adb̄Λ̃ac̄ + Aac̄Λ̃db̄ − Ãdb̄Λac̄ − Ãac̄Λdb̄, (254)

where τab̄ = Aa
eΛ̃eb̄ − Ãf̄ b̄Λaf̄ . Taking the trace with respect to a and c yields

nτdb̄ + gdb̄τa
a = 0, (255)

which shows that τab̄ = 0. Therefore, we conclude from (254) that

Adb̄Λ̃ac̄ + Aac̄Λ̃db̄ = Ãdb̄Λac̄ + Ãac̄Λdb̄.

Since any nonzero tensor of this form determines its factors up to scale, and Aab̄ and
Ãab̄ are linearly independent, we conclude that Λab̄ and Λ̃ab̄ are the same multiple of
Aab̄ and Ãab̄ respectively. �

We next relate linear dependence to pointwise linear dependence.
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Lemma 6.10. Let (M,J, g) be a connected (pseudo-)Kähler 2n-manifold (n ≥ 2) and
let Aab be a solution of (128) such that Ãab := pδa

b + qAa
b is also a solution for real

functions p and q. Then p and q are constant or Aab = ξδa
b for constant ξ.

Proof. By assumption, we have ∇aAb
c = −δacΛb and ∇aÃb

c = −δacΛ̃b, hence

∇ap δb
c +∇aq Ab

c = −(Λ̃b − qΛb)δac

If∇aq = 0, it follows easily that p and q are locally constant hence constant. Otherwise,
contracting this expression with a nonzero tangent vector Xa in the kernel of ∇aq, we
deduce that Λ̃b = qΛb and ∇ap = −ξ∇aq for some function ξ. Thus ∇aq (Ab

c− ξδbc) =
0. If Abc = ξδb

c, it follows from what we have already proven that ξ is constant.
Otherwise, we deduce that p and q are constant. �

Proof of Theorem 6.8. Suppose that Aab̄ and Ãab̄ are nondegenerate solutions of the
mobility equation such that gab̄, Aab̄ and Ãab̄ are linearly independent. At each point
of M , (243) implies that Aab̄ and Ãab̄ satisfy (250)–(251), with Λac̄ = ∇aΛc̄ and Λ̃ac̄ =

∇aΛ̃c̄. By Lemma 6.10, gab̄, Aab̄ and Ãab̄ are pointwise linearly independent on a dense
open set U ′, and hence, on U ′, Lemma 6.9 implies that Aab̄ and Ãab̄ lift to smooth
solutions (Aab̄,Λa, µ) and (Ãab̄, Λ̃a, µ̃) of (242a)–(242b) for the same smooth function
B. Thus we may apply Lemma 6.6.

The trace-free parts of Aab and Ãab are pointwise linearly independent on U ′, hence
if n = 2, their common centraliser at each p ∈ U ′ consists only of multiples of the
identity. By (244), Gab̄c

d is a multiple αab̄ of δad, hence zero, since Gab̄c
d = Gcb̄a

d. Thus
g has constant holomorphic sectional curvature, which proves the theorem for 2n = 4.

To prove the theorem for 2n ≥ 6, we substitute (245) into Gab̄c
d = Gcb̄a

d to obtain

gcb̄(∇aµ− 2BΛa)− 2(∇aB)Acb̄ = gab̄(∇cµ− 2BΛc)− 2(∇cB)Aab̄.

If we contract this equation with a vector Y c in the kernel of ∇cB, then since n ≥ 3,
we obtain a degenerate Hermitian form on the left hand side, equal to a multiple of
gab̄. Hence both sides vanish, i.e. Y c is in the kernel of ∇cµ− 2BΛc and we have

Acb̄Y
c = ξgcb̄Y

c and ∇aµ− 2BΛa = 2ξ(∇aB)

for some function ξ on U ′. Hence (245) now reads

Gab̄c
dΛd = 2(∇aB)(Acb̄ − ξgcb̄) = 2(∇cB)(Aab̄ − ξgab̄).

If ∇cB is nonzero on an open subset of U ′, it follows that Aab − ξδab has (complex)
rank at most one there, with image spanned by ∇aB and kernel containing the kernel
of ∇aB. Since the same holds for Ãab− ξ̃δab for some function ξ̃, we have that δab, Aab

and Ãab are linearly dependent, a contradiction. Hence ∇cB is identically zero on U ′,
i.e. B is locally constant. The result now follows from Theorem 6.7. �

Remark 6.6. The above proof shows (for mobility ≥ 3) that any solution of the
mobility equation (129) lifts to a parallel section for (240), where B is given by (236),
unless all solutions are parallel (i.e. affine equivalent to g). However, in the latter case,
any solution of (129) lifts to a parallel section for (240) with B = 0 (cf. Remark 6.5).
This establishes [44, Theorem 5]; the next result may be seen as a strengthening of this
theorem in which c-projective nullity is brought to the fore, cf. also [26, Theorem 2].

Theorem 6.11. Let (M,J, g) be a connected (pseudo-)Kähler manifold admitting a
solution of the mobility equation that is not a constant multiple of g. Assume that there
is a dense open subset U ⊆ M on which (J, g) has c-projective nullity and denote by
B the function in (236). Then the following hold :
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• B is constant
• any solution Aāb of the mobility equation lifts uniquely to a section of V which
is parallel for the special tractor connection (240).

We divide the proof of Theorem 6.11 into several propositions.

Proposition 6.12. Under the assumptions of Theorem 6.11, there is a dense open
subset U ′ ⊆ U on which B is smooth, and for any solution Abc̄ of the mobility equation:

(1) there is a smooth real-valued function µ on U ′ such that (242b) holds, and if B
is locally constant then (242c) also holds on U ′;

(2) for any vector va in the nullity distribution of (J, g),

2(∇aB)Acb̄v
c + vb̄(2BΛa −∇aµ) = 0. (256)

In particular, if va is not in any eigenspace of Aab then B is locally constant.

Proof. To see that (1) holds for Abc̄, first recall that Λa, given by (242a), is holomorphic.
Next, by assumption, at any p ∈ U there is a nonzero tangent vector vb̄ such that
vb̄Gab̄cd̄ = 0. Hence, by equation (243), on U we have

−vc∇aΛd̄ + gad̄v
b̄∇b̄Λc = vb̄Rab̄cēA

ē
d̄ − vb̄Rab̄ed̄Ac

e

= −2B(gaēvc + gcēva)A
ē
d̄ + 2B(gad̄ve + ged̄va)Ac

e

= 2B(gad̄v
b̄Acb̄ − vcAad̄)

(257)

and so
vcVad̄ − gad̄vb̄V b̄c = 0,

where Vab̄ ≡ ∇aΛb̄ − 2BAab̄. As vb̄ 6= 0 on U , it follows that Vab̄ is pure trace, i.e. the
second equation of (242b) holds pointwise. By assumption, there is a dense open subset
U ′ ⊆ U on which gab̄ and Aab̄ are pointwise linearly independent for some solution Aab̄,
from which it follows that B is a smooth real-valued function on U ′. Hence (242a)–
(242b) hold on U ′ for any solution, with µ smooth on U ′.

By Lemma 6.6, any solution satisfies (245), which implies (256). Now if ∇aB = 0 it
follows immediately from the existence of nullity that (242c) holds on U ′. �

Proposition 6.12 and Theorem 6.7 have the following immediate consequence.

Corollary 6.13. Theorem 6.11 holds unless the nullity distribution is contained in an
eigendistribution of every solution of the mobility equations.

It remains to show that Theorem 6.11 also holds when the nullity distribution is
contained in an eigendistribution of every solution of the mobility equations, and for
this it suffices to show that ∇aB = 0 on a dense open set. Suppose then that vb is
a nonzero nullity vector such that Aabva = ξvb for some smooth function ξ, so that
∇aµ− 2BΛa = 2ξ∇aB by (256) and hence (245) reads

Gab̄c
dΛd = 2(∇aB)(Acb̄ − ξgcb̄) = 2(∇cB)(Aab̄ − ξgab̄) (258)

as in the proof of Theorem 6.8. Since va is an eigenvector of Aab with eigenvalue ξ,
vb̄ is an eigenvector of Aāb̄ with eigenvalue ξ̄. However vb̄ is in the nullity of G, so
the contraction of (258) with vb̄ yields (∇cB)(Aab̄ − ξgab̄)vb̄ = 0. If we now combine
these observations with Proposition 6.5, we obtain that either ∇aB = 0 on a dense
open set (and we are done) or there is an open set on which Ãa

b := Aa
b − ξδa

b has
(complex) rank at most one, va is a null vector in its kernel, and ξ is real. Hence the
generalised ξ-eigenspace of Aab is nondegenerate, and so has (complex) dimension at
least two, which implies that ξ is locally constant by Lemma 5.16. Now Ãa

b is a rank
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one solution of the mobility equation with a nonzero (but null) nullity vector in its
kernel, and so Theorem 6.11 is a consequence of the following proposition.

Proposition 6.14. Suppose (M,J, g) is a connected (pseudo-)Kähler manifold of di-
mension 2n ≥ 4 admitting a non-parallel solution of the mobility equation Aab̄ such
that Aab is a complex endomorphism of rank 1. Assume that g has nullity on some
dense open set U ⊆ M and that there is a nonzero vector in the nullity distribution
that is in the kernel of Aab. Then the function B defined as in (236) is a constant and
the conclusions of Theorem 6.11 hold.

Before we give a proof of Proposition 6.14 we collect some crucial information about
solutions of the mobility equation of rank 1:

Lemma 6.15. Suppose (M,J, g) is a connected (pseudo-)Kähler manifold of dimension
2n ≥ 4 admitting a non-parallel solution of the mobility equation Aab̄ such that Aab is
a complex endomorphism of rank 1. Assume that g has nullity on some dense open
set U ⊆ M and that there is a nonzero vector in the nullity distribution that is in the
kernel of Aab. Denote by B the function defined as in (236) and let Λa = ∇aλ with
λ = −Aaa. Then the following holds on a dense open subset U ′ ⊆ U :

(1) the triple (Aa
b,Λa, µ) satisfies system (242) (and its conjugate) for some smooth

nonvanishing real-valued function µ;
(2) Aab̄ = µ−1ΛaΛb̄ and −µλ = ΛaΛ

a;
(3) ∇aB is proportional to Λa, and at any x ∈ U ′ either ∇aB = 0 or the nullity

space of g at x lies in the kernel of Aab.

Proof. Statement (1) follows immediately from (132), Proposition 6.12 and the ex-
istence of a nullity vector in the kernel of Aab. Since Aab has rank 1, its nonzero
eigenvalue is −λ, and Λa is a nonzero section of the corresponding eigenspace by
Corollary 5.17. Thus on the dense open subset U ′ ⊆ U where Λa 6= 0, Aab = ξΛaΛ

b,
with ξ = −λ/(ΛaΛa), and differentiating this identity using (242) yields

(∇aξ + 2Bξ2Λa)Λc̄ = (ξµ− 1)gac̄.

Since the left hand side is simple and gab̄ nondegenerate both sides must vanish, which
shows that ξ = µ−1, and hence (2) holds. The identity (245) may now be written

Gab̄c
dΛd = 2(∇aB)Acb̄ = 2µ−1(∇aB)ΛcΛb̄

This immediately implies the second statement of (3), while the first statement follows
from the symmetry of Gab̄c

d in a and c. �

Proof of Proposition 6.14. We have already noted that to prove Proposition 6.14 it
suffices to show that B is locally constant. By Lemma 6.15, Aαβ is of the form

Aα
β = 1

2µ
(ΛαΛ

β + ΩγαΛ
γJδ

βΛδ). (259)

Let us write D ⊂ TM for the distribution defined by the kernel of Aαβ and

Pα
β = δα

β − 1
ΛγΛγ

(ΛαΛ
β + ΩδαΛ

δJζ
βΛζ) = δα

β + 1
2µλ

(ΛαΛ
β + ΩδαΛ

δJζ
βΛζ)

for the orthogonal projection P : TM → D, where we use Lemma 6.15(2) to rewrite
ΛγΛ

γ = 2ΛcΛ
c = −2λµ. Note that (J, g) induces by restriction a complex structure

JD and a JD-invariant metric gD on D. The projection P also determines a linear
connection on D by

∇D
αX

β = Pγ
β∇αX

γ, for X ∈ Γ(D)
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which preserves this Hermitian structure on D. Since Λ and JΛ commute and preserve
D, LΛP = 0 and Γ(D) is generated by sections commuting with Λ and JΛ, which are
called basic. For any basic X ∈ Γ(D), Lemma 6.15(1) implies

∇ΛX = ∇XΛ = −µX (260)

and hence for any other basic element Y ∈ Γ(D) we compute

(LΛgD)(X, Y ) = LΛ(gD(X, Y )) = ∇Λ(gD(X, Y )) = −2µgD(X, Y ).

Since LΛλ = ∇Λλ = g(Λ,Λ) = −2λµ, it follows that LΛ(λ−1gD) = 0. Let us now
regard ∇D as a partial connection on D, i.e. an operator ∇D : Γ(D) → Γ(D∗ ⊗ D).
Since ∇D

Xλ = ∇Xλ = 0 for any X ∈ Γ(D), the partial connection ∇D preserves λ−1gD.
Furthermore, its partial torsion, given by

∇D
XY −∇D

YX − P ([X, Y ]) for X, Y ∈ Γ(D),

vanishes. It follows that LΛ∇D is a section of D∗ ⊗D∗ ⊗D ∼= D∗ ⊗D∗ ⊗D∗, which
is symmetric in the first two entries and skew in the last two entries, which implies it
vanishes identically. We conclude that LΛR

D = 0, where the horizontal curvature RD

of ∇D is defined, for X, Y, Z ∈ Γ(D), by

RD(X, Y )(Z) = ∇D
X∇D

Y Z −∇D
Y∇D

XZ −∇D
P ([X,Y ])Z.

For basic X, Y, Z ∈ Γ(D) we compute via (260) that

∇D
X∇D

Y Z = P (∇X∇YZ)− 1
2λ
g(∇YZ,Λ)X − 1

2λ
g(∇YZ, JΛ)JX

∇D
∇DXY

Z = P (∇∇YXZ)− 1
2λ
g(∇XY,Λ)Z − 1

2λ
g(∇XY, JΛ)JZ.

Using g(Y,Λ) = 0 = g(Y, JΛ) for Y ∈ Γ(D), we also obtain, for X ∈ Γ(D), that

g(∇XY,Λ) = µg(X, Y ) and g(∇XY, JΛ) = µg(Y, JX),

from which we deduce, for (basic) X, Y, Z ∈ Γ(D), that

RD(X, Y )Z = P (R(X, Y )Z)− µ
2λ
S(X, Y )Z, (261)

where S is the constant holomorphic sectional curvature tensor defined as in (235).
Let us write RicD(Y, Z) = trace(X 7→ RD(X, Y )Z) and RicP (Y, Z) = trace(X 7→

P (R(X, Y )Z)) for the Ricci-type contractions of RD and P (R(X, Y )Z). Via the inverse
g−1
D of gD, we view RicD and RicP as endomorphism of D, from which viewpoint
equation (261) implies that they are related as follows:

RicD = RicP − nµ
λ

IdD . (262)

By assumption, at each point of a dense open subset, there is a vector V in D that
lies in the nullity distribution of g. Inserting V into equation (261) yields

RD(X, V )Z =
(
B − µ

2λ

)
S(X, V )Z, (263)

which implies that
λRicD(V ) = 2n

(
Bλ− µ

2

)
V. (264)

Set C := Bλ− µ
2
. By (1) and (3) of Lemma 6.15 we see that ∇XC = 0 for all X ∈ Γ(D)

and that ∇JΛC = 0. Equation (264) shows that V is an eigenvector of λRicD with
eigenvalue 2C. Since LΛR

D = 0 and LΛ(λg−1
D ) = 0, it follows that LΛ(λRicD) = 0,

and hence ∇ΛC = LΛC = 0 as well. Thus C is locally constant, which implies that B
is locally constant by Lemma 6.15(1), and this completes the proof. �
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Remark 6.7. Proposition 6.14 may alternatively be proved as follows. Starting with
the usual equations

∇αΛβ = −µgαβ + 2BAαβ

∇αµ = 2BΛα

∇αλ = Λα

where
Aαβ =

ΛαΛβ +KαKβ

2µ
Kα = Jβ

αΛβ

ΛαΛ
α + 2λµ = 0

(265)

we may consider the new metric

g̃αβ ≡ λgαβ + (1 + 2µ)Aαβ (266)

and verify from (265) that
• LΛg̃

αβ = 0,
• for any vβ such that Aαβvβ = 0, we have

R̃icαβv
β = Ricαβv

β −
(
2B +

nµ

λ
+

1

2λ

)
vα, (267)

where R̃icαβ is the Ricci tensor of g̃αβ.
Hence, if vβ is a nullity vector for gαβ so that in addition Ricαβv

β = 2(n+ 1)Bvα, then

g̃αγR̃icγβv
β =

(
n(2Bλ− µ)− 1

2

)
vα. (268)

Now, since LΛ(g̃αγR̃icγβ) = 0, it follows that any eigenvalue of this endomorphism is
preserved by the flow of Λα. Therefore,

0 = LΛ

(
n(2Bλ− µ)− 1

2

)
= n

(
2λLΛB + Λα(2B∇αλ−∇αµ)

)
= 2nλLΛB.

But from (265) we see that 0 = ∇[α∇β]µ = 2(∇[αB)Λβ] whence ∇αB = 0, as required.
The only drawback with this proof is that verifying (267), though straightforward,

is computationally severe, whereas the corresponding identity (264) in the previous
proof is more easily established. The previous proof may be seen as a limiting case of
the reasoning just given. Specifically, for any constant c 6= 0, consider the metric

g̃αβ ≡
1

λ
gαβ +

1

λ2

(
1 +

c

µ

)
Aαβ with inverse g̃αβ ≡ λgαβ + (1 +

µ

c
)Aαβ (269)

to arrive at
R̃icαβv

β = Ricαβv
β −

(
2B +

nµ

λ
+
c

λ

)
vα (270)

instead of (267), an equation in which one can take a sensible limit as c→ 0 essentially
to arrive at (264) instead of (268). The metrics (269) and their invariance LΛg̃αβ = 0
can also be recognised in the previous proof. More precisely, the first equation from
(265) can be expressed as LΛgαβ = −2µgαβ + 4BAαβ or, more compactly, as

LΛ(λ−1gαβ) = 4λ−1BAαβ,

which implies, using our earlier terminology, that the metric λ−1gαβ restricted to D is
invariant under the flow of Λα. We also observed in the previous proof that orthogonal
projection Pαβ = δα

β + λ−1Aα
β onto D is invariant under this flow. We are therefore

led to invariance of the covariant quadratic form

Pα
γPβ

ελ−1gγε = λ−1(gαβ + λ−1Aαβ),

which is the limit of (269) as c→ 0 whilst the nondegenerate metric g̃αβ is obtained by
decreeing that the remaining vectors Λα and Kα at each point be orthogonal to D and
each other and satisfy g̃αβΛαΛβ = g̃αβK

αKβ = 2c. The metric (266) is the case that
Λα and Kα are taken to be orthonormal. In any case, it follows that LΛg̃αβ = 0. �
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6.4. The standard tractor bundle for metric c-projective structures. The met-
ric theory of the standard tractor bundle T turns out to be rather degenerate. For a
metric c-projective structure (M,J, [∇]) induced by the Levi-Civita connection ∇ of a
Kähler metric g, we have Pab = 0 and so the standard tractor connection (52)–(53) is
given by

∇Ta
(
Xb

ρ

)
=

(
∇aX

b + ρδa
b

∇aρ

)
∇Tā

(
Xb

ρ

)
=

(
∇āX

b

∇āρ− PābX
b

)
. (271)

The kernel kerDT of the first BGG operator (59) consists of vector fields Xb with
c-projective weight (−1, 0) which satisfy

∇aX
b + ρδa

b = 0 ∇āX
b = 0 (272)

for some section ρ of E(−1, 0); then ρ = − 1
n
∇aX

a, and, setting the torsion to zero in
Proposition 3.3, (Xa, ρ) defines a parallel section for the tractor connection (271). This
is similar to the projective case, with the following distinction: although the tensor ηα
in Theorem 6.1 is projectively weighted, the bundle E(1) is canonically trivialised by
a choice of metric; here, in contrast, it is the real line bundle E(1, 1) that enjoys such
a trivialisation, and not the complex line bundle E(1, 0).

However, taking care to use (45) (see also Proposition 2.13), it follows that any
solution of (272) satisfies

−δbc∇āρ = (∇ā∇b −∇b∇ā)X
c = Rāb

c
dX

d + PābX
c

= Hāb
c
dX

d − δbcPādXd,
(273)

where Hāb
c
d = Hād

c
b and Hāb

b
d = 0. We may rearrange this as

δb
c∇āρ = δb

cPādX
d −Hāb

c
dX

d; (274)

then the trace over b and c shows that ∇āρ = PābX
b (as in Proposition 3.3) and hence

that Hāb
c
dX

d = 0. Following the projective case (Theorem 6.1), we lower an index
in (273) and (274) to obtain

Rābc̄dX
d = −gbc̄∇āρ− PābXc̄. (275)

It follows that for any solutions (Xa, ρ) and (X̃a, ρ̃) of (272),

Rābc̄dX̃
bXd = −X̃c̄∇āρ− PābX̃

bXc̄ = −X̃c̄∇āρ−Xc̄∇āρ̃

and hence, by symmetry,
X[ā∇c̄]ρ̃ = X̃[c̄∇ā]ρ.

As in Theorem 6.1, by first taking X̃ = X, we conclude that there is a real function B,
uniquely determined and smooth on the union of the open sets where some solution
Xa of (272) is nonzero, such that for any solution (Xa, ρ) of (272),

∇āρ = PābX
b = 2BXā. (276)

Theorem 6.16. Let (M,J, [∇]) be a connected c-projective manifold, where ∇ pre-
serves a (pseudo-)Kähler metric gab̄. Suppose that dim kerDT ≥ 2. Then there is a
unique constant B such that any element of the kernel of DT lifts to a parallel section
of T for the connection

∇a

(
Xb

ρ

)
=

(
∇aX

b + ρδa
b

∇aρ

)
∇ā

(
Xb

ρ

)
=

(
∇āX

b

∇āρ− 2BgābX
b

)
. (277)
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Proof. By Proposition 3.3 and (276), it remains only to show that the smooth function
B is actually a constant. Differentiating the equation 2Bgc̄bX

b = ∇c̄ρ and using (272)
gives

2(∇aB)Xc̄ − 2Bgc̄aρ = ∇a∇c̄ρ and 2(∇āB)Xc̄ = ∇ā∇c̄ρ. (278)
With (46), the second equation of (278) implies that X[c̄∇ā]B = 0. Where there are
two nonzero solutions Xa and X̃a, it follows from (272) that the sections Xa, X̃b ∈
Γ(M,T 1,0(−1, 0)) and therefore X [aX̃b] ∈ Γ(M,T 2,0(−2, 0)) are holomorphic. Conse-
quently, U = {X [aX̃b] 6= 0} is the complement of an analytic subvariety and is thus
connected. On U we also have X̃[c̄∇ā]B = 0 whence ∇āB = 0, i.e. B is locally constant
on U , hence constant. �

By analogy with the projective case, one might now expect c-projective nullity to
appear. However, when we combine (275) and (276), we obtain(

Rābc̄d + Pābgc̄d + 2Bgc̄bgād
)
Xd = 0,

which is a halfway house on the way to (237). Underlying this degeneracy is the fact
that T is associated to a holomorphic representation of SL(n+ 1,C).

Nevertheless the constant B in Theorem 6.16 is generically characterised by c-
projective nullity in the following degenerate sense.

Theorem 6.17. Let (M,J, g) be a connected (pseudo-)Kähler manifold admitting a
non-parallel solution Xa of (272). For any function B, the following are equivalent :

(1) B is characterised by c-projective nullity (237) on a dense open subset ;
(2) B is constant and Xb lifts to a section of T parallel for (277);
(3) Pāb = 2Bgāb.

In particular, g is an Einstein metric, and the connections (271) and (277) coincide.

Proof. (1)⇒(2). This follows from Theorem 6.11 because X ā ⊗Xb is a solution of the
mobility equation which is not a constant multiple of gāb, and by contracting (273) by
a nullity vector vb.
(2)⇒(3). The identity (45) implies

Pābρ = (∇ā∇b −∇b∇ā)ρ = −2Bgāc∇bX
c = 2Bgābρ,

which establishes (3) on the dense open subset {ρ 6= 0}, hence everywhere.
(3)⇒(1). Since ∇āρ = PādX

d = 2BgādX
d, equation (273) implies

−2BgādX
dδb

c = Rāb
c
dX

d + PābX
c = Rāb

c
dX

d + 2BgābX
c, (279)

and we deduce that Gāb
c
dX

d = 0. Hence, Xd/ρ is a nullity vector for g on the dense
open subset {ρ 6= 0}. �

6.5. Special tractor connections and the complex cone. Let (M,J, [∇]) be a
metric c-projective structure. Then for any compatible metric g and any function B,
there is a special tractor connection on T defined by (277). We first observe that
the induced connection on VC = T ⊗ T is the special tractor connection (240) (for
the given g and B). This can be seen easily by taking Ab̄c = XbXc, Λa = ρ̄Xa and
µ = ρ̄ρ in (240). Consequently, parallel sections for the special tractor connection on V
define parallel Hermitian forms on T ∗. This was used in [26] to characterise, for Kähler
manifolds (M,J, g), the presence of nontrivial parallel sections for (240) in terms of
the local classification of [2] (see Section 5.7). Using the extension of this classification
(pseudo-)Kähler manifolds [16], together with Remark 5.7, and Theorems 6.7 and 6.11,
we have the following more general characterisation.
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Theorem 6.18. Let (M,J, g) be a connected (pseudo-)Kähler manifold admitting a
solution A of the mobility equation which is not parallel (i.e. Λ 6= 0), and let B be a
function on M . Then the following are equivalent.

(1) For the given function B, (J, g) has c-projective nullity on a dense open set.
(2) Any solution to the mobility equation lifts to a global parallel section for (240)

with B constant.
(3) On a dense open subset of M , A lifts to a parallel section for (240) with B

locally constant.
(4) Λ lies in the c-projective nullity of (J, g) with constant B.
(5) B is constant and its c-projective nullity distribution contains the complex span

(tangent to the complex orbits) of the Killing vector fields of the pencil A+ t Id.
(6) Near any regular point, (J, g) is given by (222), where for all j ∈ {1, . . . `},

Θj(t) = Θ(t), a polynomial of degree ` + 1, with constant coefficients, leading
coefficient 4B, and divisible by any constant coefficient factor of the minimal
polynomial of A.

Proof. (1)⇒ (2) by Theorem 6.11, (2)⇒ (3) trivially, and (3)⇒ (4) by Theorem 6.7,
and (4)⇒ (1) because Λ is nonzero on a dense open subset ofM . Clearly (5)⇒ (4), and
conversely, (1)–(4) imply (244), i.e. Gab̄c

d = Rab̄c
d + 2B(gab̄δc

d + gcb̄δa
d) commutes with

Aa
b: therefore, since Gab̄c

dΛd = 0 and Λα is the sum of the gradients of the nonconstant
eigenvalues ξ1, . . . ξ` of Aab, which are sections of the corresponding eigenspaces, it
follows that gradgξj and Jgradgξj are in the nullity for j ∈ {1, . . . `}; this is the
tangent distribution to the complex orbits.

Now (5) implies that the restriction of the metric to the complex orbits has constant
holomorphic sectional curvature, and hence the functions Θj(t) are equal to a common
polynomial Θ(t) of degree ` + 1. Now comparing (242b) with (225), we conclude
that Θ(t) has leading coefficient a−1 = 4B, and that gu(Θ(A)·, ·) = 0 for all irreducible
constant coefficient factors ρu of χA; thus all constant coefficient factors of the minimal
polynomial of A are also factors of Θ.

Conversely, given (6), (225) implies (242b) with B constant, and hence, by equa-
tion (245) of Lemma 6.6, and the Bianchi symmetry Gab̄c

d = Gcb̄a
d, we have

Yb̄(∇aµ− 2BΛa) = −Gab̄c
dΛdY

c = gab̄(∇cµ− 2BΛc)Y
c

for any (1, 0)-vector Y c. Since the left hand side is degenerate, whereas gab̄ is nonde-
generate, we conclude that ∇aµ = 2BΛa, thus establishing (3). �

Secondly, we observe that by Lemma 3.4, the special tractor connection on T induces
a complex affine connection on the complex affine cone πC : C → M described in
Section 3.2. Combining these observations, as in Remark 4.6, any solution Ab̄c of the
mobility equation which lifts to a parallel section of V for the special tractor connection
on V , and is nondegenerate as a Hermitian form on T ∗, induces a Hermitian metric on
C which is parallel for the induced complex affine connection on C.

In particular, if B is constant, then the metric g itself induces a parallel section of
V with Ab̄c = gb̄c, Λa = 0 and µ = 2B, which is clearly nondegenerate on T if and only
if B 6= 0.

Proposition 6.19. Let (M,J, [∇]) be a metric c-projective structure. Then any com-
patible metric g and any real constant B 6= 0 induce a Hermitian metric on the complex
affine cone C →M defined by the c-projective structure.

For B > 0, this Hermitian metric is, up to scale, a metric cone dr2 + r2ĝ over a
(pseudo-)Sasakian metric ĝ = g + (dψ + α)2 on a (local) circle bundle over (M,J, g)
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whose curvature dα is a multiple of the Kähler form ω of g (see e.g. [19]). In the present
context, as observed by [78, 81], any solution of the mobility equation which lifts to
parallel section for the special tractor connection (240) on V (with B 6= 0 constant)
induces a Hermitian (0, 2) tensor on M which is parallel for the cone metric of g,B or
−g,−B. Combining this with Theorem 6.18, we have the following extension of one
of the key results of [78] to the (pseudo-)Kähler case.

Theorem 6.20. Let (M,J, g) be a connected (pseudo-)Kähler manifold admitting a
non-parallel solution of the mobility equation, and assume that there is a dense open
subset U ⊆M on which (J, g) has c-projective nullity. Then, perhaps after replacing g
by a c-projectively equivalent metric, there is a nonzero constant B such that solutions
of the mobility equation on M are in bijection with parallel Hermitian (0, 2) tensors on
the cone C.

Proof. Under these assumptions, the equivalent conditions of Theorem 6.18 apply.
Hence the constant 4B is the leading coefficient of the common polynomial Θj(t) =
Θ(t) of degree `+ 1 appearing in (222), which therefore vanishes if and only if Θ has a
root at infinity. However, by Remark 5.6, Θ transforms as a polynomial of degree `+1
over projective changes of pencil parameter, and since Θ is not identically zero, we may
change the pencil parameter so that ∞ is not a root, while keeping the metrisability
solution nondegenerate. We thus obtain a c-projectively equivalent metric with nullity
constant B 6= 0, and the rest follows from Theorem 6.18(2), Proposition 6.19 and the
subsequent observations (above) applied to this metric. �

By Theorem 6.8, the hypotheses of this theorem are satisfied when (M,J, g) has
mobility at least 3 and the compatible metrics are not all affinely equivalent. In the
case that g is positive definite, this allowed V. Matveev and S. Rosemann [78] to obtain
the following classification of the possible mobilities of Kähler metrics, using the de
Rham (or de Rham–Wu) decomposition of the cone.

Theorem 6.21. Let (M,J, g) be a simply connected Kähler manifold of dimension
2n ≥ 4 admitting a non-parallel solution of the mobility equation. Then the mobility
of (g, J) has the form k2 + ` for k, ` ∈ N with 0 ≤ k ≤ n − 1, 1 ≤ ` ≤ (n + 1 −
k)/2 and (k, `) 6= (0, 1), unless (g, J) has constant holomorphic sectional curvature.
Furthermore, any such value arises in this way.

6.6. The c-projective Hessian, nullity, and the Tanno equation. Let (M,J, g)
be a (pseudo-)Kähler manifold of dimension 2n ≥ 4 and denote by ∇ the Levi-Civita
connection of g. Recall that for any solution Aab̄ of the mobility equation of g the gra-
dient, respectively the skew gradient, of the function Aaa = −λ is a holomorphic vector
field, respectively a holomorphic Killing field, which is, by Corollary 5.5, equivalent
to the real section σ = λvol(g)−

1
n+1 ∈ E(1, 1) being in the kernel of the c-projective

Hessian. With respect to the Levi-Civita connection and the trivialisation vol(g)−
1

n+1

of E(1, 1), the c-projective Hessian equation reads as

∇a∇bλ = 0, respectively ∇ā∇b̄λ = 0. (280)

In Section 4.7 we prolonged the c-projective Hessian equation and have seen that any
(real) solution of this equation lifts to a unique section of the connection (178)–(179),
which shows that (280) implies that the function λ = λ̄ satisfies also the following
system of equations

∇a∇b∇cλ = 0 ∇a∇b̄∇cλ = −Pcb̄∇aλ− Pab̄∇cλ−Hab̄
d
c∇dλ

∇ā∇b∇cλ = 0 ∇ā∇b̄∇cλ = −Pcb̄∇āλ− Pcā∇b̄λ−Hāc
d̄
b̄∇d̄λ.

(281)
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Suppose now that g has mobility ≥ 2 and that g has nullity on a dense open subset
of M . Then Theorem 6.11 shows that the function B defined as in (236), is actually
constant and any solution Aab̄ lifts to a (real) section of VC for the connection (240).
The connection (240) induces a connection on the dual vector bundleWC = V∗C, which
is given by

∇WC
a

 λ
µb | νb̄
ζbc̄

 =

 ∇aλ− µa
∇aµb | ∇aνb̄ + 2Bgab̄λ− ζab̄

∇aζbc̄ + 2Bgac̄µb

 (282)

∇WC
ā

 λ
µb | νb̄
ζbc̄

 =

 ∇āλ− νā
∇āµb + 2Bgābλ− ζbā | ∇āνb̄

∇āζbc̄ + 2Bgābνc̄

 , (283)

where WC is identified via g with a direct sum of unweighted tensor bundles. By
Proposition 2.13 the two equations on the right-hand side of (281) can be also written
as

∇a∇b̄∇cλ = −Rab̄
d
c∇dλ and ∇ā∇b̄∇cλ = −Rāc

d̄
b̄∇d̄λ.

Comparison of these equations with (282) and (283), shows immediately that any
function λ satisfying (280) lifts to a parallel section for the special connection (282)–
(283) if and only if the gradient of λ lies in the nullity distribution of g. Note that, by
Theorem 6.7, for any solution of the mobility equation Aab̄ the function Aaa = −λ has
this property. Moreover, in fact, the following Proposition holds:

Proposition 6.22. Let 0 6= B ∈ R be some constant. Suppose λ be a smooth real-
valued function and write Λa = ∇aλ for its derivative. Then the following statements
are equivalent :

(1)
Gab̄c

dΛd = 0 and ∇aΛb = 0

(2) λ lifts uniquely to a parallel section of the connection (282) and (283) (and B
is characterised by (236))

(3)
∇a∇bΛc = 0 and ∇a∇b̄Λc = −2B(Λagcb̄ + Λcgab̄)

∇ā∇bΛc = 0 and ∇ā∇b̄Λc = −2B(Λāgcb̄ + Λb̄gcā),
(284)

where Gab̄cd̄ ≡ Rab̄cd̄ + 2B(gab̄gcd̄ + gcb̄gad̄).

Proof. In the discussion above we have already observed that (1) is equivalent to (2).
Let us now show that (1) is equivalent to (3), as shown also by Tanno [97, Prop. 10.3].
Suppose first that (1) holds. Then, obviously also the first two equations on the left-
hand side of (284) hold. Moreover, we immediately deduce from (1) that

−2B(Λagcb̄ + Λcgab̄) = Rab̄c
dΛd = ∇a∇b̄Λc, (285)

which shows that the first equation of the right-hand side of (284) holds. The conjugate
of (285) implies the second equation of the right-hand side of (284), since ∇ā∇b̄∇cλ =
∇ā∇c∇b̄λ. Conversely, suppose now that (3) holds. Then, obviously the identity (285)
is satisfied, which shows that Gab̄c

dΛd = 0. Hence, it remains to show that Λa is a
holomorphic vector field. From (284) we deduce that

∇a∇b∇c̄Λd = −2B((∇aΛb)gcd̄ + (∇aΛd)gbc̄).

Since Rab
c
d = 0 and Rab

c̄
d̄ = 0, skewing in a and b yields

0 = −B((∇aΛd)gbc̄ − (∇bΛd)gac̄)),

which implies 0 = −B(n− 1)∇aΛd. �
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Remark 6.8. If a function λ satisfies (1) for B = 0, then this is still equivalent to (2),
and the equivalent statements (1) and (2) imply (3), but the implication from (3) to
(1) is not necessarily true.

The system of equations (284) can also be written as

∇α∇β∇γλ = −B(2Λαgβγ + gαβΛγ + gαγΛβ − ΩαβJγ
δΛδ − ΩαγJβ

δΛδ), (286)

where Λα = ∇αλ. Since on Kähler manifolds equation (286) (respectively (284)) was
intensively studied by Tanno in [97], we refer to this equation as the Tanno equation.

7. Global results

We now turn to the global theory of (pseudo-)Kähler manifolds of mobility at least
two. In Section 5.7 we presented a local classification [2, 16] which shows that such
a (pseudo-)Kähler manifold (M,J, g) is locally a bundle of toric (in fact, “orthotoric”)
(pseudo-)Kähler manifolds over a local product S of (pseudo-)Kähler manifolds. When
M is compact, and g is positive definite, this is not far from being true globally.

Indeed, several simplifications occur. First, any compact smooth orthotoric Kähler
2`-manifold is biholomorphic (though not necessarily isometric) to CP` [3]. Secondly,
when g is positive definite, the Hermitian endomorphism Aa

b is diagonalisable, and
the local classification (222) simplifies to give

g =
∑
u

χnc(ηu)gu +
∑̀
i=1

∆j

Θj(ξj)
dξ2

j +
∑̀
j=1

Θj(ξj)

∆j

(∑̀
r=1

σr−1(ξ̂j)θr

)2

,

ω =
∑
u

χnc(ηu)ωu +
∑̀
r=1

dσr ∧ θr, with dθr =
∑
u

(−1)rη`−ru ωu

where ηu are the (real) constant eigenvalues of A, while the nonconstant eigenvalues ξj,
and functions Θj, are all real valued. Thirdly, the eigenvalues are globally ordered and
do not cross. However, if ηu is a root of Θj (for some u, j) and gu is a Fubini–Study
metric on CPmu , it is possible to have ξj = ηu along a critical submanifold of ξj, in
which case χnc(ηu) = 0 along that submanifold, and the corresponding factor of the
base manifold S collapses. We thus have the following global description [3].

Theorem 7.1. Let (M,J, g) be a compact connected Kähler manifold admitting a c-
projectively equivalent Kähler metric that generates a metrisability pencil η◦(A−t Id) of
order `. Then the blow-up ofM , along the subvarieties where nonconstant and constant
eigenvalues of A coincide, is a toric CP`-bundle over a complex manifold S covered by
a product, over the distinct constant eigenvalues, of complete Kähler manifolds with
integral Kähler classes.

Conversely, such complex manifolds do admit Kähler metrics of mobility at least two,
but we refer to [3] for a more precise description. In particular, examples are plentiful,
and have been used to construct explicit extremal Kähler metrics [4], including in
particular, weakly Bochner-flat Kähler metrics [5].

As soon as we impose nullity—for instance, by requiring metrics of mobility at
least three—this plenitude disappears, even in the (pseudo-)Kähler case: a compact
connected (pseudo-)Kähler 2n-manifold satisfying the equivalent conditions of Theo-
rem 6.18 is isometric to CPn, equipped with a constant multiple of the Fubini–Study
metric [44], and this rigidity result extends to compact orbifolds (see [26]).

In the remainder of this section, we focus on positive definite complete Kähler met-
rics, and begin by showing, in Section 7.1, that the rigidity result for Kähler metrics
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with nullity also obtains in this case. In Section 7.2, we then discuss the group of c-
projective transformations and the Yano–Obata Conjecture. This was established for
compact (pseudo-)Kähler metrics in [77], and here we show it also holds for complete
Kähler metrics.

7.1. Complete Kähler metrics with nullity. In this section we prove the following.

Theorem 7.2. Let g be a complete Kähler metric on a connected complex manifold
(M,J) of real dimension 2n ≥ 4 that has nullity on a dense open subset of M . Then
any complete Kähler metric on (M,J) that is c-projectively equivalent to g, is affinely
equivalent to g, unless there is a positive constant c ∈ R such that the Kähler manifold
(M,J, cg) is isometric to (CPn, Jcan, gFS).

Since, by Theorem 6.8, a connected Kähler manifold (M,J, g) of degree of mobility
at least 3 has nullity on a dense open set unless all c-projectively equivalent metrics
are affinely equivalent to g, we obtain the following immediate corollary, which in the
case of closed Kähler manifolds was proved in [44, Theorem 2].

Corollary 7.3. Let g be a complete Kähler metric on a connected complex manifold
(M,J) of real dimension 2n ≥ 4 with mobility at least 3. Then any complete Kähler
metric on (M,J) that is c-projectively equivalent to g, is affinely equivalent to g, unless
there is a positive constant c ∈ R such that the Kähler manifold (M,J, cg) is isometric
to (CPn, Jcan, gFS).

Remark 7.1. It is easy to construct a complete Kähler manifold (M,J, g) of noncon-
stant sectional holomorphic curvature with mobility ≥ 3 such that all complete Kähler
metrics on (M,J) are affinely equivalent to g. Indeed, take the direct product

(M1, g1, J1)× (M2, g2, J2)× (M3, g3, J3)

of three Kähler manifolds. It is again a Kähler manifold (M,J, g) with complex struc-
ture J := J1 + J2 + J3 and Kähler metric g := g1 + g2 + g3. Obviously, (M,J, g)
has mobility ≥ 3, since c1g1 + c2g2 + c3g3 is again a Kähler metric on (M,J) for any
constants c1, c2, c3 > 0. Note also that all these Kähler metrics are affinely equivalent
to g and that, if (Mi, gi, Ji) is complete for i = 1, 2, 3 the metric c1g1 + c2g2 + c3g3 is
also complete for any constants c1, c2, c3 > 0.

Remark 7.2. Suppose that g̃ is (pseudo-)Kähler metric that is compatible with [∇g],
then we may write

vol(g̃) = e(n+1)fvol(g) and τg̃ = e−fτg, (287)

where f = 1
n+1

log
∣∣vol(g̃)

vol(g)

∣∣. We have seen in Section 2.1 that the Levi-Civita connections
∇̃ and ∇ of g̃ and g are related by (11) with Υα = ∇αf . For later use, note that that
∇̃αg̃βγ = 0 implies that the derivative ∇αf of f satisfies the equation

∇αg̃βγ = (∇αf)g̃βγ + g̃α(β∇γ)f − Jαδg̃δ(βJγ)
ε∇εf. (288)

Thus ∇ = ∇̃, i.e. g and g̃ are affinely equivalent, if and only if ∇αf = 0.

In order to prove Theorem 7.2 suppose that g is a complete Kähler metric on a
complex connected manifold (M,J) of dimension 2n ≥ 4 with nullity on a dense
open set. Further we may assume that g has mobility at least 2, since otherwise
Theorem 7.2 is trivially satisfied. Then Theorem 6.11 implies that the function B
defined as in (237) is actually a constant. We shall see that for B > 0, the theory of
the Tanno equation implies that (M,J, g) has positive constant holomorphic sectional
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curvature. For B ≤ 0, we will show that any complete Kähler metric that is c-
projectively equivalent to g, is necessarily affinely equivalent to g. The proof will make
essential use of the following two Lemmas. Recall for this purpose that a geodesic
which is orthogonal to a Killing vector field at one point is orthogonal to it at all
points.

Lemma 7.4. Suppose (M,J, g) is a Kähler manifold of dimension 2n ≥ 4 with mobility
≥ 2 and nullity on a dense open subset of M . Let g̃ be a Kähler metric that is c-
projectively equivalent to g and f the function defined as in (287), whose derivative
Υα ≡ ∇αf relates the Levi-Civita connections of g̃ and g as in (11). Consider a
geodesic c = c(t) that is orthogonal to the canonical Killing fields of the pair (g, g̃),
defined as in Theorem 5.11. Then, for the constant B ∈ R defined as in Theorem 6.11,
the function f(t) = f(c(t)) satisfies the following ordinary differential equation:

...
f (t) = −4Bg(ċ, ċ)ḟ(t) + 3ḟ(t)f̈(t)− (ḟ(t))3. (289)

Proof. By Corollary 6.4 and identity (26) we have

∇αΥβ = −2B̃g̃αβ + 2Bgαβ + 1
2
(ΥαΥβ − JαγJβδΥγΥδ). (290)

Differentiating (290) and inserting (288) yields

∇α∇βΥγ =

− 2B̃(Υαg̃βγ + g̃α(βΥγ) − Jαδg̃δ(βJγ)
εΥε) + 1

2
(∇α(ΥβΥγ)−∇α(Jβ

δJγ
εΥδΥε)).

Substituting for −2B̃g̃ the expression (290) we therefore obtain

∇α∇βΥγ = (∇βΥγ)Υα − 2BgβγΥα − 1
2
(ΥβΥγ − JβδJγεΥδΥε)Υα

+ (∇αΥ(β)Υγ) − 2Bgα(βΥγ) − 1
2
(ΥαΥβΥγ − JαδΥδΥεJ(β

εΥγ))

− Jαδ(∇δΥ(β)Jγ)
ζΥζ − 2Bgδ(βJγ)

ζΥζ − 1
2
(ΥδΥ(βJγ)

ζΥζ − JδηΥηΥεJ(β
εJγ)

ζΥζ))

+ 1
2
(∇α(ΥβΥγ)−∇α(Jβ

δJγ
εΥδΥε)).

Note that the determinant of the complex endomorphism Aa
b relating g and g̃ as in

(133) is given by e−f . Hence the canonical Killing field K̃β(0) = Jαβ∇α detA =
Jαβ∇αe

−f , defined as in (209), is proportional to JαβΥα = Jαβ(∇αf) and we have
ΥβJα

β ċα = 0. Thus, contracting the above equation with ċαċβ ċγ all terms involving the
complex structure J disappear and we derive that f(t) satisfies the desired ODE. �

Lemma 7.5. Let g and g̃ be c-projectively equivalent metrics on a complex manifold
(M,J) of dimension 2n ≥ 4. Let c be a geodesic of g that is orthogonal to all canonical
Killing fields of (g, g̃) (as defined in Theorem 5.11). Then there is a reparametrisation
φ such that c̃(t) = c(φ(t)) is a geodesic of g̃. The inverse τ of the reparametrisation φ
satisfies the formula

d

dt
f(t) =

d

dt
log
∣∣∣dτ
dt

∣∣∣, (291)

where f(t) = f(c(t)) with f defined as in (287).

Proof. Let c be a geodesic of g that is orthogonal to the canonical Killing fields asso-
ciated to (g, g̃). Then formula (11) for the difference of the Levi-Civita connections ∇̃
and ∇ implies

∇̃ċċ = Υ(ċ)ċ−Υ(Jċ)Jċ = Υ(ċ)ċ,

where the last identity follows from the fact that ΥβJ
αβ is proportional to a canonical

Killing field, as explained in proof of Lemma 7.4. Hence, ∇̃ċċ is a multiple of ċ and
therefore there exists a reparametrisation φ of c such that c̃(t) = c(φ(t)) is geodesic of g̃.
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Differentiating c(t) = c̃(τ(t)), where τ denotes the inverse of φ, gives ċ(t) = τ̇(t) ˙̃c(τ(t))
and hence

0 = ∇ċ(t)ċ(t) = ∇ċ(t)(τ̇(t) ˙̃c(τ(t))) = τ̇(t)2∇ ˙̃c(τ(t))
˙̃c(τ(t)) + τ̈(t) ˙̃c(τ(t))

=
(
τ̈(t)− τ̇(t)2Υ( ˙̃c(τ(t)))

)
˙̃c(τ(t)),

since c̃ is a geodesic of g̃. This implies that τ̈(t) = τ̇(t)2Υ( ˙̃c(τ(t))) = τ̇(t)Υ(ċ(t)), which
is equivalent to (291), since Υα = ∇αf . �

Proof of Theorem 7.2. Let (M,J, g) be a connected complete Kähler manifold with
nullity on a dense open set. We may assume that (M,J, g) has mobility at least
2. Hence, by Theorem 6.11 any solution of the mobility equation lifts uniquely to a
parallel section of the connection (240) with B constant. This in turn, by Theorem 6.7,
shows that for any solution Ab̄c of the mobility equation of g the function λ = −Aaa
satisfies (1) of Proposition 6.22. Hence, by Proposition 6.22 and Remark 6.8 λ satisfies
the Tanno equation (284). Tanno showed in [97] that on a complete connected Kähler
manifold and for a constant B > 0, the existence of a nonconstant solution λ of the
Tanno equation (284) implies that (M,J, g) has positive constant holomorphic sectional
curvature, which in turn implies that (M,J, g) is actually closed and isometric to
(CPn, Jcan, cgFS) for some positive constant c. Since any metric that is c-projectively
but not affinely equivalent to g gives rise to a non-parallel solution of the mobility
equation of g and hence to a nonconstant solution of the Tanno equation, Theorem 7.2
holds provided B is positive.

It remains to consider the case that the constant B defined as in Theorem 6.11 is
nonpositive. Let g̃ be another complete Kähler metric on (M,J), which is c-projectively
equivalent to g. Denote by f again the function defined as in (287), which has the
property that Υα = ∇αf relates the Levi-Civita connections of g and g̃ as in (11).
We will show that B ≤ 0 implies Υα ≡ 0, that is, g and g̃ are necessarily affinely
equivalent.

Note first that, since the canonical Killing fields associated to (g, g̃) are Killing
for both metrics by Theorem 5.11 and f is constructed in a natural way only from
the pair (g, g̃), the local flows of the canonical Killing fields preserve f . Hence, the
canonical Killing fields lie in the kernel of Υ. To show that Υ is identically zero, it
therefore remains to show that Υ vanishes when inserting vector fields orthogonal to
the canonical Killing fields.

Consider a parametrised geodesic c of g, which at one (and hence at all points) is
orthogonal to the canonical Killing fields. Since g and g̃ are complete, c is defined for
all times and τ from Lemma 7.5 is a diffeomorphism of R. Without loss of generality
we assume that τ̇ is positive, otherwise replace t by −t. By Lemma 7.5, the function
τ : R→ R satisfies (291), which we rewrite as

f(t) = log(τ̇(t)) + const0. (292)

Now let us consider equation (289) and set τ̇(t) = (p(t))−1. Substituting (292) into
(289) yields ...

p = −4Bg(ċ, ċ)ṗ. (293)
If B = 0, the equation simplifies to

...
p = 0 and its general solution is of the form

p(t) = C2t
2 + C1t+ C0,

where Ci is a real constant for i = 0, 1, 2. Hence, we get

τ(t) =

∫ t

t0

dξ

C2ξ2 + C1ξ + C0

+ const. (294)
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If the polynomial p(t) = C2t
2 + C1t + C0 has real roots (which is always the case if

C2 = 0, C1 6= 0), then the integral starts to be infinite in finite time. If the polynomial
has no real roots, but C2 6= 0, the function τ is bounded. Thus, the only possibility
for τ to be a diffeomorphism is C2 = C1 = 0 implying τ̇ = 1

C0
, which shows that f is

constant along the geodesic c.
If B < 0, the general solution of equation (293) is

C + C+e
2
√
−Bg(ċ,ċ)·t + C−e

−2
√
−Bg(ċ,ċ)·t, (295)

for real constants C, C+ and C−. Hence, τ is of the form

τ(t) =

∫ t

t0

dξ

C + C+e
2
√
−Bg(ċ,ċ)ξ + C−e

−2
√
−Bg(ċ,ċ)ξ

+ const. (296)

If one of the constants C+, C− is not zero, the integral (296) is bounded from one side,
or starts to be infinite in finite time. In both cases, τ is not a diffeomorphism of R.
The only possibility for τ : R → R to be a diffeomorphism is when C+ = C− = 0, in
which case τ̇ is constant implying f is constant along the geodesic c. Hence, in both
cases (B = 0 and B < 0) the one form Υα = ∇αf vanishes when inserting vector fields
orthogonal to the canonical Killing fields. �

7.2. The Yano–Obata Conjecture for complete Kähler manifolds. For a Käh-
ler manifold (M,J, g) let us write Isom(J, g), Aff(J, g) and CProj(J, g) for the group
of complex isometries, the group of complex affine transformations (i.e. of complex
diffeomorphisms preserving the Levi-Civita connection) and the group of c-projective
transformations of (M,J, g) respectively. By definition of these groups we obtain the
following inclusions

Isom(J, g) ⊆ Aff(J, g) ⊆ CProj(J, g)

and consequently we also have

Isom0(J, g) ⊆ Aff0(J, g) ⊆ CProj0(J, g),

where subscript 0 denotes the connected component of the identity.
Recall that Lie groups of affine transformations of complete Riemannian manifolds

are well understood; see for example [68]. As explained there, if a connected Lie
group G acts on a simply-connected complete Riemannian manifold (Mn, g) by affine
transformations, then there exists a Riemannian decomposition

(Mn, g) = (Mn1
1 , g1)× (Rn2 , geuc)

of (Mn, g) into a direct product of a Riemannian manifold (Mn1
1 , g1) and a Euclidean

space (Rn2 , geuc) such that G acts componentwise. Specifically, it acts on (Mn1
1 , g1)

by isometries and on (Rn2 , geuc) by affine transformations (i.e. compositions of linear
isomorphisms and parallel translations). Note that this implies that for closed simply-
connected Riemannian manifolds one always has Isom0(J, g) = Aff0(J, g), which holds
in fact for any closed (not necessarily simply-connected) Riemannian manifold; see
[102, Theorem 4]. If in addition (Mn, g) is Kähler for a complex structure J , and G
is a connected Lie group of complex affine transformations, then (Mn1

1 , J1, g1) and
(Rn2 , Jcan, geuc) are also Kähler; furthermore, G acts on (Mn1

1 , J1, , g1) by complex
isometries and on (Rn2 , Jcan, geuc) by complex affine transformations.

For the complex projective space CPn equipped with its natural complex structure
Jcan and the Fubini–Study metric gFS we have Aff(Jcan, gFS) 6= CProj(Jcan, gFS). To
see this recall from the introduction that the J-planar curves of (CPn, Jcan, gFS) are pre-
cisely those smooth regular curves that lie within complex lines. Moreover, recall that
any complex linear isomorphism of Cn+1 induces a complex transformation of CPn that
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sends complex lines to complex lines and hence induces a c-projective transformation of
(CPn, Jcan, gFS) by Proposition 2.2. In fact, Proposition 2.10 shows that all c-projective
transformations of (CPn, Jcan, gFS) arise in this way, i.e. CProj(Jcan, gFS) can be iden-
tified with the connected Lie group PGL(n + 1,C) ∼= PSL(n + 1,C). Note that an
element in GL(n+ 1,C) induces a complex isometry on (CPn, Jcan, gFS) if and only if
it is proportional to a unitary automorphism of Cn+1, which shows that Isom(Jcan, gFS)
can be identified with the connected Lie group PU(n+1) = U(n+1)/U(1) of projective
unitary transformations. For (CPn, Jcan, gFS) we also clearly have Isom(Jcan, gFS) =
Aff(Jcan, gFS).

In [77] in conjunction with [44] it was shown that any closed connected Kähler
manifold (M,J, g) of dimension 2n ≥ 4 with the property that CProj0(J, g) contains
Isom0(J, g) = Aff0(J, g) as a proper subgroup is actually isometric to (CPn, J, cgFS)
for some positive constant c. This rigidity result answers affirmatively in the case of
closed Kähler manifolds the so-called Yano–Obata Conjecture, which is a c-projective
analogue of the Projective and Conformal Lichnerowicz–Obata Conjectures ; see the
introductions of the papers [74, 77] for a historical overview. Most recently the conjec-
ture has been proved for closed (pseudo-)Kähler manifolds of all signatures in [16]. We
now show that the Yano–Obata Conjecture also holds for complete connected Kähler
manifolds.

Theorem 7.6 (Yano–Obata Conjecture). Let (M, g, J) be a complete connected Kähler
manifold of real dimension 2n ≥ 4. Then Aff0(g, J) = CProj0(g, J), unless (M, g, J) is
actually compact and isometric to (CPn, Jcan, cgFS) for some positive constant c ∈ R.
Remark 7.3. In the projective case, a stronger version of the analogous Lichnerowicz–
Obata result has recently been established [76]: on a complete Riemannian manifold
(M, g) of dimension n ≥ 2, the quotient of the projective group Proj(g) by the affine
group Aff(g) has at most two elements unless (M, g) has constant positive sectional
curvature. It would be natural to establish such a result in the c-projective case.

7.3. The proof of the Yano–Obata Conjecture. Note that if the mobility of
(M,J, g) is 1, then any metric g̃ that is c-projectively equivalent to g is homothetic to
g. In particular, any c-projective transformation has to preserve the Levi-Civita con-
nection of g and hence Aff0(g, J) = CProj0(g, J) in this case. On the other hand, since
the pullback of a complete Kähler metric by a c-projective transformation is again a
complete Kähler metric, Theorem 7.6 follows from Corollary 7.3 or Theorem 7.2 in the
case that g has mobility ≥ 3 or has mobility ≥ 2 and nullity on a dense open set.

For the rest of this section we will therefore assume that (M,J, g) is a connected
complete Kähler manifold of dimension 2n ≥ 4 with mobility 2. To show that Theo-
rem 7.6 holds in this case (which for closed Kähler manifolds was proved in [77]), let us
write Sol(g) for the 2-dimensional solution space of the mobility equation of g, which
we view as a linear subspace of the space of J-invariant sections in S2TM(−1,−1).

Suppose now that Aff0(g, J) does not coincide with CProj0(g, J). Then there exists
a complete c-projective vector field V that is not affine. Since the flow Φt of V acts
on (M,J, g) by c-projective transformations, for any t ∈ R and for any η ∈ Sol(g)
the pullback Φ∗tη is an element of the vector space Sol(g). Hence, the Lie derivative
LV η = d

dt
|t=0Φ∗tη can also be identified with an element of Sol(g), which implies that

LV induces a linear endomorphism of Sol(g). By the Jordan normal form, in a certain
basis η, η̃ ∈ Sol(g), the linear endomorphism LV : Sol(g) → Sol(g) corresponds to a
matrix of one of the following three forms:(

a 0
0 b

) (
a b
−b a

) (
a 1
0 a

)
, (297)
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where a, b ∈ R. We will deal with these three cases separately. The last two cases are
easy and will be considered in Section 7.3.1 The challenging case is the first one, which
will be treated in Section 7.3.2.

7.3.1. LV has complex-conjugate eigenvalues or a nontrivial Jordan block. Suppose
first that the endomorphism LV : Sol(g)→ Sol(g) has two complex-conjugated eigen-
values. Hence, in some basis η, η̃ ∈ Sol(g) the endomorphism LV corresponds to a
matrix of the second type in (297). If b = 0, then V acts by homotheties on any
element in Sol(g) and hence preserves in particular the Levi-Civita connection of g,
which contradicts our assumption that V is not affine. Therefore, we can assume that
b 6= 0. Then the evolution of the solutions η, η̃ along the flow Φt of V is given by

Φ∗tη = eat cos(bt)η + eat sin(bt)η̃
Φ∗t η̃ = −eat sin(bt)η + eat cos(bt)η̃

.

Write g−1vol(g)
1

n+1 ∈ Sol(g) as cη + dη̃ for some real constants c and d. Then one has

Φ∗t (cη + dη̃) = c(eat cos(bt)η + eat sin(bt)η̃)
+d(−eat sin(bt)η + eat cos(bt)η̃)

= eat
√
c2 + d2(cos(bt+ α)η + sin(bt+ α)η̃),

where α = arccos( c√
c2+d2

). Since g is a Riemannian metric, for any point x ∈M there
exists a basis of TxM in which η and η̃ are diagonal matrices. Hence, in this basis the
i-th entry of Φ∗t (cη + dη̃) is given by eat

√
c2 + d2(cos(bt + α)ei + sin(bt + α)ẽi), where

ei and ẽi are the i-th diagonal entries of η and η̃. Therefore, we see that Φ∗t (cη + dη̃)

is degenerate for some t, which contradicts the fact that cη + dη̃ = g−1vol(g)
1

n+1 is
nondegenerate. The obtained contradiction shows that LV can not have two complex-
conjugate eigenvalues.

Suppose now that LV : Sol(g)→ Sol(g) is with respect to some basis η, η̃ ∈ Sol(g) a
matrix of the third type in (297). Then the evolution of η and η̃ along Φt is given by

Φ∗tη = eatη + teatη̃

Φ∗t η̃ = eatη̃.

We assume again that g−1vol(g)
1

n+1 = cη + dη̃. Then we obtain

Φ∗t (cη + dη̃) = c(eatη + eattη̃) + d(eatη̃)
= eat(cη + (d+ ct)η̃).

Hence, we see again that for c 6= 0 there exists t such that Φ∗t (cη + dη̃) is degenerate
which contradicts the fact that g is nondegenerate. Now, if c = 0, then Φt acts by
homotheties on g, which contradicts our assumption that V is not affine. Thus LV can
also not be of the third type in (297).

7.3.2. LV has two real eigenvalues. Now we consider the remaining case, namely the
one where LV has two different real eigenvalues a and b (the case where the two
eigenvalues are equal was already excluded in the previous section). Without loss of
generality, we can assume that at least one of the eigenvalues is positive, since we can
otherwise just replace V by −V . Hence, we can assume without loss of generality that
a > b and that a > 0. Since φ∗tη = eatη and φ∗t η̃ = ebtη̃, we see that neither η nor η̃ can
equal g−1vol(g)

1
n+1 , since otherwise φt acts by homotheties on g, which contradicts our

assumption that V is not affine. Hence, g−1vol(g)
1

n+1 = cη + dη̃ for constant c, d 6= 0.
By rescaling η and η̃, we can therefore assume without loss of generality that

gαβvol(g)
1

n+1 = ηαβ + η̃αβ.
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Let us write Dαβ = ηαβvol(g)−
1

n+1 and D̃αβ = η̃αβvol(g)−
1

n+1 such that

gαβ = Dαβ + D̃αβ.

Note that for a Kähler manifold (M,J, g) of mobility 2, the dense open subset of
regular points (Definition 5.4) does not depend on the choice of non-proportional c-
projectively equivalent metrics from the c-projective class of g. In particular, the
set of regular points is invariant under c-projective transformations and hence under
the action of the flow of a c-projective vector field. Thus if we fix a regular point
x0 ∈M and consider the integral curve φt(x0) of our complete c-projective vector field
V through x0, then there is an open neighbourhood U of the curve φt(x0) in the set of
regular points, and, since g is positive definite, a frame of TU , in which g corresponds
to the identity matrix and D and D̃ to diagonal matrices:

D =


d1

d1

. . .
dn

dn

 , D̃ =


d̃1

d̃1

. . .
d̃n

d̃n

 , (298)

where di and d̃i are smooth real-valued functions on U such that di + d̃i = 1 for
i = 1, . . . , n. Then in the local frame the tensor Aαβt = φ∗t (η

αβ + η̃αβ)vol(g)−
1

n+1

corresponds to the following diagonal matrix:

At =


eatd1 + ebtd̃1

eatd1 + ebtd̃1

. . .
eatdn + ebtd̃n

eatdn + ebtd̃n

 . (299)

Since g and φ∗tg are positive definite, all diagonal entries of (299) are positive for all
t ∈ R. Hence, di + e(b−a)td̃i > 0 respectively e(a−b)tdi + d̃i > 0 for all t and taking the
limit t → ∞ respectively t → −∞ shows that di, d̃i ≥ 0 for all i = 1, . . . , n. Since
di + d̃i = 1, we conclude that

0 ≤ di ≤ 1 and 0 ≤ d̃i ≤ 1 for all i = 1, . . . , n.

Now consider the (1, 1)-tensor fieldDα
β = gαγη

γβvol(g)−
1

n+1 and its pullback φ∗t (Dα
β) =

φ∗t (gαγη
γβvol(g)−

1
n+1 ). Since gαβvol(g)−

1
n+1 is inverse to ηαβ + η̃αβ, we conclude that

φ∗t (Dα
β) is given by a block diagonal matrix whose i-th block is given by the following

2× 2 matrix
eatdi

eatdi + ebt(1− di)
Id2 . (300)

By definition φt acts on the endomorphism Dα
β as φ∗t (Dα

β) = (Tφt)
−1 ◦ Dα

β ◦ Tφt,
which implies that the eigenvalues of φ∗t (Dα

β) at a point x ∈ M are the same as the
eigenvalues of Dα

β at φt(x). Therefore, it follows from (300) that the only possible
constant eigenvalues of Dα

β on U are 0 and 1 (i.e. the only possible constant diagonal
entries in (298) are 0 or 1). Note that di = 0 (respectively di = 1) on some open set
implies that d̃i = 1 (respectively d̃i = 0). Hence, the only possible constant eigenvalues
of At defined as in (299) are eat and ebt. Since U consists of regular points, the distinct
eigenvalues of At (for any fixed t) are smooth real-valued functions with constant
algebraic multiplicities on U . Let us write 2m, respectively 2m̃, for the multiplicity
of the eigenvalues ea and eb of A1 on U . By Lemma 5.16, the number of distinct
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nonconstant eigenvalues of A1 is given by n −m − m̃, and m, m̃ are constant on the
set of regular points by Corollary 5.17. We allow, of course, that m, respectively m̃,
are zero.

Lemma 7.7. If at least one of the following two inequalities,

(n− m̃)a+ (m̃+ 1)b ≤ 0 and (m+ 1)a+ (n−m)b ≥ 0. (301)

is not satisfied, then the vector field Λα given by the gradient of λ = −1
2
Dβ

β lies in the
nullity space of M at x0.

Proof. Set Gt := detR(At)
− 1

2A−1
t and note that φ∗tg = g(Gt·, ·). We may assume that

the first 2` := 2n − 2m − 2m̃ elements of D are not constant (which is equivalent to
assuming that di(x0) 6= 0, 1 for i = 1, . . . , `), the next 2m elements are equal to 1, and
the remaining 2m̃ elements are zero on U . Then, we deduce from (299) that Gt on U
is a block diagonal matrix of block sizes 2`× 2`, 2m× 2m and 2m̃× 2m̃ respectively,
where the three blocks are given by

Ψ(t)


1

d1eat+(1−d1)ebt
1

d1eat+(1−d1)ebt

. . .
1

d`eat+(1−d`)ebt
1

d`eat+(1−d`)ebt

 (302)

Ψ(t)e−at Id2m, respectively Ψ(t)e−bt Id2m̃,

where

Ψ(t) := e−amte−bm̃t
∏̀
i=1

1

dieat + (1− di)ebt
.

Let us write ν1, . . . , ν`, ν and ν̃ for the eigenvalues of these respective diagonal matrices.
Note that their asymptotic behaviour for t→ +∞ respectively for t→ −∞ is as follows

t→ +∞ νi(t) ∼ e−((n−m̃+1)a+m̃b)t

di
∏
dj

ν(t) ∼ e−((n−m̃+1)a+m̃b)t∏
dj

ν̃(t) ∼ e−((n−m̃)a+(m̃+1)b)t∏
dj

t→ −∞ νi(t) ∼ e(ma+(n−m+1)b)t

(1−di)
∏

(1−dj) ν(t) ∼ e((m+1)a+(n−m)b)t∏
(1−dj) ν̃(t) ∼ e(ma+(n−m+1)b)t∏

(1−dj) .

(303)
Let us now assume that (301) is not satisfied. We can assume without loss of general-
ity that the first inequality of (301) is not satisfied, that is to say we can assume that
(n − m̃)a + (m̃ + 1)b > 0, since otherwise we can change the sign of V , which inter-
changes the inequalities. Then it follows from (303) that all eigenvalues of Gt decay
exponentially as t→∞. Consider now the sequence (φk(x0))k∈Z≥0

. We claim that it is
a Cauchy sequence. Indeed, note that the distance d(φk(x0), φk+1(x0)) between φk(x0)
and φk+1(x0) satisfies

d(φk(x0), φk+1(x0)) ≤
∫ 1

0

√
g(V (φk+t(x0)), V (φk+t(x0)))dt (304)

=

∫ 1

0

√
(φ∗kg)(V (φt(x0)), V (φt(x0)))dt.

Since φ∗kg = g(Gk·, ·) and all eigenvalues of Gt decay exponentially as t → ∞, the
inequality (304) shows that d(φk(x0), φk+1(x0)) decays geometrically as k →∞ (i.e. for
sufficiently large k we have d(φk(x0), φk+1(x0)) ≤ const qk for some q < 1). Hence,
(φk(x0))k∈Z≥0

is a Cauchy sequence and completeness of M implies that (φk(x0))k∈Z≥0
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converges. We denote the limit of (φk(x0))k∈Z≥0
by p ∈ M . Now consider the smooth

real-valued function F on M given by

F = Hαβ
γ
δHεζ

θ
ηgγθg

αεgβζgδη,

where Hαβ
γ
δ denotes the harmonic curvature of (M,J, [∇g]) defined as in Proposition

4.4, respectively Proposition 2.13. Since Hαβ
γ
δ is c-projectively invariant, we deduce

that (φ∗kF )(x0) = F (φk(x0)) equals

F (φk(x0)) = (Hαβ
γ
δHεζ

θ
η φ
∗
kgγθ φ

∗
kg

αε φ∗kg
βζ φ∗kg

δη)(x0). (305)

Moreover, since F is continuous, we have limk→∞ F (φk(x0)) = F (p).
Since in the frame we are working the matrices corresponding to g and Gt are

diagonal, we see that the function F (φt(x0)) is a sum of the form∑
1≤i,j,k,`≤2n

C(ijk`; t)
(
Hαiαj

αk
α`(x0)

)2
, (306)

where the coefficient C(ijk`; t) is the product of the k-th diagonal entry and the recip-
rocals of the i-th, j-th and `-th diagonal entry of the diagonal matrix that corresponds
to Gt (in our chosen frame). The coefficients C(ijk`; t) depend on t and their as-
ymptotic behaviour for t → ±∞ can be read off from (303). Note moreover that all
coefficients C(ijk`; t) are positive.

We claim that, if at least one of the indices i, j or ` is less or equal than 2n−2m−2m̃,
then Hαiαj

αk
α`(x0) vanishes. Indeed, note that, by (303), φ∗tg decays exponentially at

least as e−((n−m̃+1)a+m̃b)t, which is up to a constant the smallest eigenvalue of Gt, and
φ∗tg

−1 goes exponentially to infinity at least as e((n−m̃)a+(m̃+1)b)t as t → ∞. Suppose
now that at least one of the indices i, j or ` is less or equal than 2n − 2m − 2m̃.
Then we deduce that up to multiplication by a positive constant C(ijk`; t) behaves
asymptotically as t→∞ at least as

e((n−m̃)a+(m̃+1)b)te((n−m̃)a+(m̃+1)b)te((n−m̃+1)a+m̃b)te−((n−m̃+1)a+m̃b)t = e2((n−m̃)a+(m̃+1)b)t.

Since (n−m̃)a+(m̃+1)b > 0 by assumption, we therefore conclude that the coefficient

C(ijk`; t)→∞ as t→∞.
Since all terms in the sum (306) are nonnegative and the sequence F (φ`(x0)) converges,
we therefore deduce that Hαiαj

αk
α`(x0) = 0 provided that at least one of the indices

i, j or ` is less or equal than 2n− 2m− 2m̃.
Observe now that Λα equals the negative of the sum of the gradients of the distinct

nonconstant eigenvalues d1, . . . , dn−m−m̃ of D. We therefore conclude that at x0

Hαβ
γ
δΛ

α = 0, Hαβ
γ
δΛ

β = 0 and Hαβ
γ
δΛ

δ = 0.

It follows that (3) of Remark 6.3 is satisfied, which implies that the vector field Λα lies
in the nullity space of M at x0. �

Since x0 is an arbitrary regular point and the conditions (301) do not depend on
the choice of regular point, Lemma 7.7 shows that, if the inequalities (301) are not
satisfied, then (M,J, g) has nullity on the dense open subset of regular points, since Λα
does not vanish at regular points (otherwise V is necessarily affine, which contradicts
our assumption). Hence, by Theorem 7.2, we have established Theorem 7.6, except
when the inequalities (301) are satisfied.

Therefore, assume now that the inequalities (301) are satisfied. Subtracting the
second inequality from the first shows that

(n−m− m̃− 1)(a− b) ≤ 0.
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Since a − b > 0 by assumption, we must have n −m − m̃ = 0 or n −m − m̃ = 1. In
the first case φ∗tg is parallel for the Levi-Civita connection of g for all t and hence V
is affine, which contradicts our assumption. Therefore, we must have n−m− m̃ = 1.
Now substituting this identity back into (301) shows that (m+ 1)a+ (m̃+ 1)b ≤ 0 and
(m + 1)a + (m̃ + 1)b ≥ 0, which implies (m + 1)a = −(m̃ + 1)b. Hence, we conclude
that we must have

n−m− m̃ = 1 and (m+ 1)a = −(m̃+ 1)b. (307)
Therefore, locally around any regular point D has precisely one nonconstant eigen-
value, which we denote by ρ, and the constant eigenvalues 1 and 0 with multiplicity
2m, respectively 2m̃. Hence, for any regular point x0 ∈M we can find an open neigh-
bourhood U of the curve φt(x0) in the set of regular points and a frame of TU such
that D corresponds to a matrix of the form

D =


ρ

ρ
Id2m

02m̃

 , (308)

where ρ is a smooth function on U with ρ(x) 6= 0, 1 for x ∈ U . Note that we have
λ = −1

2
Dα

α = −(ρ+m) and consequently
Λα = −∇αρ,

which is nowhere vanishing on U . Recall also that the pair (D,Λ) satisfies the mobility
equation (131), and that by Corollary 5.17 Λα is an eigenvector of Dα

β with eigen-
value ρ. Hence, Λα and JβαΛβ form a basis for the eigenspace of Dα

β corresponding
to the eigenvalue ρ.

For later use, let us also remark that by (300) the action of the flow φt on D
preserves its block structure (308). This implies, in particular, that LVΛ = [V,Λ] is
an eigenvector of D with eigenvalue ρ. Since furthermore ∇αρ = −Λα vanishes in
direction of all vector fields orthogonal to Λα and [Λ, JΛ] = 0, we therefore conclude
that [V, JΛ] · ρ = 0 implying that the vector field [V, JΛ] = J [V,Λ] is actually a
proportional to JΛ. Hence, the c-projective vector field V preserves the orthogonal
projection from TM to the 1-dimensional subspace spanned by Λα, which is defined
on the dense open subset on which Λα is not vanishing (hence in particular on U).

Lemma 7.8. Assume n −m − m̃ = 1 and (m + 1)a = −(m̃ + 1)b. Then in a neigh-
bourhood of any regular point there exists a real positive constant B and a smooth
real-valued function µ such that

∇αΛβ = −µgαβ + 2BDαβ (309)
∇αµ = 2BΛα. (310)

Proof. Fix a regular point x0 ∈ M , an open neighbourhood U of φt(x0) in the set of
regular points, and a frame of TU with respect to which g corresponds to the identity
and D is of the form (308). Since Λα is an eigenvector of Dα

β with eigenvalue ρ, we
can furthermore assume without loss of generality that Λα is proportional to the first
vector of our fixed local frame. We restrict our considerations from now on to U .

Differentiating the equation Dα
βΛα = ρΛβ, and substituting (131) and ∇αρ = −Λα,

we obtain
(ρδγ

β −Dγ
β)∇αΛβ = −1

2
(gαγΛβΛ

β − ΛαΛγ − JαβΛβJγεΛε). (311)

Since Dα
β commutes with ∇αΛ

β by Proposition 5.13, the block diagonal form of Dα
β

implies that ∇αΛ
β has the same block diagonal form. Equation (311) therefore shows
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that the second and the third block of ∇αΛ
α are proportional to the identity with

coefficient of proportionality − ΛβΛ
β

2(ρ−1)
and −ΛβΛ

β

2ρ
respectively. The condition (309)

therefore reduces to the following three equation

(∇αΛβ)Λβ = (−µ+ 2Bρ)Λα ΛβΛ
β = 2(µ− 2B)(ρ− 1) ΛβΛ

β = 2ρµ, (312)

which can be equivalently rewritten as

(∇αΛβ)Λβ = 2B(2ρ− 1)Λα ΛαΛ
α = −4B(ρ− 1)ρ µ = −2B(ρ− 1). (313)

First note that,

ΛαV
α = d

dt |t=0
φ∗tλ = − d

dt |t=0

ρeat

ρeat + (1− ρ)ebt
= (b− a)ρ(1− ρ), (314)

which is nowhere vanishing on U . It follows that

φ∗t (ΛαV
α) =

(b− a)ρ(1− ρ)eatebt

(ρeat + (1− ρ)ebt)2
. (315)

Let us write P for the orthogonal projection of TU to the line subbundle spanned
by Λα. We have already noticed that V preserves this projection, which implies in
particular that LV P (V ) = 0. Note also that by (314) the vector field P (V ) is nowhere
vanishing on U . Hence, we deduce from (302) that

φ∗t (g(P (V ), P (V ))) = g(GtP (V ), P (V )) =
g(P (V ), P (V ))

(ρeat + (1− ρ)ebt)2e(am+bm̃)t
. (316)

Since by assumption (m + 1)a + (m̃ + 1)b = 0, equations (315) and (316) show that
the function

t 7→ φ∗t

(
g(Λ, V )

g(P (V ), P (V ))

)
=

(b− a)ρ(1− ρ)

g(P (V ), P (V ))
(317)

is constant. Since g(Λ, V ) = g(Λ, P (V )), we therefore obtain

φ∗t (Λ) =
ρ(1− ρ)(b− a)

g(P (V ), P (V ))
φ∗t (P (V )),

and hence (315) implies

φ∗t (ΛαΛ
α) =

(b− a)2ρ2(1− ρ)2eatebt

(ρeat + (1− ρ)ebt)2g(P (V ), P (V ))
. (318)

Differentiating identity (318) gives

(∇αΛβΛ
β)V α = d

dt |t=0
Φ∗t (ΛβΛ

β) =
(b− a)3ρ2(1− ρ)2(2ρ− 1)

g(P (V ), P (V ))
. (319)

Since (∇αΛβ)Λα = 1
2
∇α(ΛβΛ

β), we can rewrite the first condition of (313) as

∇α(ΛβΛ
β) = 4B(2ρ− 1)Λα,

and we conclude from (319) and (314) that contracting the above identity with V α

yields

B =
1

4

(b− a)2ρ(1− ρ)

g(P (V ), P (V ))
. (320)

By (318) the second condition of (313) reads
(b− a)2ρ2(1− ρ)2

g(P (V ), P (V ))
= 4B(1− ρ)ρ, (321)

which is of course equivalent to (320). Since the third condition of (313), given by
µ = −2B(ρ − 1), simply defines µ in terms of ρ and B, we conclude that there exist
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functions µ and B on U such that (309) is satisfied. Note that by (320) the function
B is also positive as required. It remains to show that B is constant (in a sufficiently
small neighbourhood of x0), which implies in particular that µ = −2B(ρ−1) is smooth
and that (310) is satisfied.

The formula (320) for B shows that B is proportional with a constant coefficient to
(317). Hence, we have ∇VB = 0. To show that the derivative of B also vanishes along
vector field transversal to V consider the 2n − 1 dimensional submanifold of U given
by the level set of ρ

My := {x ∈ U : ρ(x) = ρ(y)}, (322)
where y is some arbitrary point in U . Since the derivative of ρ is nontrivial along
the c-projective vector field V by (314), V is transversal to My. We claim that the
derivative of B at y vanishes along all vectors in TyMy. Indeed, note that in view of
(320) this is equivalent to the vanishing of the derivative of g(P (V ), P (V )) at y along
tangent vectors of My. Since Λ and P (V ) are proportional to each other by definition,
we have

g(P (V ), P (V )) =
(g(P (V ),Λ))2

g(Λ,Λ)
.

It is thus sufficient to show that at y the derivative of g(P (V ),Λ), respectively g(Λ,Λ),
vanishes along tangent vectors of My. By (314) this follows immediately for the de-
rivative of g(P (V ),Λ) = g(V,Λ). Now consider g(Λ,Λ) and let W ∈ TyMy. Then we
compute

Wα∇α(ΛβΛ
β) = 2Wα(∇αΛβ)Λβ

= −2µWαΛα + 4BWαDαβΛ
β = −2µWαΛα + 4BρWαΛα.

Since Λα = −∇αρ, we see thatWαΛα vanishes and consequently so doesWα∇α(ΛβΛ
β).

Hence, the derivative of B vanishes at y ∈ U . Since y ∈ U was an arbitrary point, we
conclude that ∇B is identically zero on U , which completes the proof. �

We can now complete the proof of Theorem 7.6. Under the assumption that (307)
holds, Lemma 7.8 shows that in an open neighbourhood of any regular point there
exists a positive constant B (which a priori may depend on the neighbourhood) and a
function µ such that the triple (D,Λ, µ) satisfies, in addition to the mobility equation,
the equations (309) and (310). Since the set of regular points is open and dense, The-
orem 6.7 implies that B is actually the same constant at all regular points and that
the equations (309) and (310) hold on M for some smooth function µ. Theorem 6.7
also implies that the function λ = −1

2
Dα

α satisfies the equivalent conditions of Propo-
sition 6.22 on M for a positive constant B. Since Λα = ∇αλ is not identically zero,
Tanno’s result [97] completes the proof.

8. Outlook

There has been considerable activity in c-projective geometry since we began work
on this article in 2013. Despite this, there remain many open questions and opportu-
nity for further work. In this final section, we survey some of the developments and
opportunities which we have not discussed already in the article.

8.1. Metrisability and symmetry. One of the main focuses of this article has
been metrisable c-projective structures and their mobility. However, in later sections,
we restricted attention to integrable complex structures (the torsion-free case). It
would be interesting to extend more of the theory to non-integrable structures with a
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view to applications in quasi-Kähler geometry, including 4-dimensional almost Kähler
geometry—here some partial results have been obtained in [1].

Even in the integrable case, however, a basic question remains wide open: when is a
c-projective structure metrisable? One would like to provide a complete c-projectively
invariant obstruction, analogous to the obstruction found for the 2-dimensional real
projective case in [21].

Additional questions concern the symmetry algebra cproj(J, [∇]) of infinitesimal au-
tomorphisms of an almost c-projective 2n-manifold (M,J, [∇]). As with any parabolic
geometry [29, 36], the prolongation of the infinitesimal automorphism equation (see
Section 3.4, Proposition 3.9) shows that cproj(J, [∇]) is finite dimensional, with its di-
mension bounded above—in this case, by 2(n+ 1)2−2. This bound is attained only in
the c-projectively flat case, and, as shown in [65], in the non-flat case, the dimension of
cproj(J, [∇]) is at most 2n2−2n+4+2δ3,n (the so-called “submaximal dimension”). The
determination of the possible dimensions of cproj(J, [∇]) remains an open question.

The symmetry algebra cproj(J, [∇]) acts (by Lie derivative) on the space of solutions
to the metrisability equation, and for any nondegenerate solution, corresponding to a
compatible metric g, it has subalgebras isom(J, g) ⊆ aff(J, g) of holomorphic Killing
fields and infinitesimal complex affine transformations. Thus the presence of compat-
ible metrics constrains cproj(J, [∇]) further, the Yano–Obata theorems being global
examples of this. Even locally, if (M,J, g) admits an essential c-projective vector field,
i.e., an element X ∈ cproj(J, [∇]) \ isom(J, g), then g must have mobility ≥ 2, and if
X /∈ aff(J, g), then there are metrics c-projectively, but not affinely, equivalent to g.
For example, nontrivial c-projective vector fields with higher order zeros are essential
(because a Killing vector field is determined locally uniquely by its 1-jet at a point),
and such strongly essential local flows exist only on c-projectively flat geometries [79].

Constraints on the possible dimensions of cproj(J, [∇])/isom(J, g) for Kähler mani-
folds are given in [78], and an explicit classification of 4-dimensional (pseudo-)Kähler
metrics admitting essential c-projective vector fields is given in [14].

An open question here is whether locally nonlinearizable c-projective vector fields
exist on nonflat c-projective geometries.

8.2. Applications in Kähler geometry. The original motivation for c-projective
geometry [90] was to extend methods of projective geometry to Kähler metrics (and
this is one reason why we have concentrated so much on the metrisability equation).
Thus one expects ideas from c-projective geometry to be useful in Kähler geometry, and
indeed important concepts in Kähler geometry have c-projective origins: for instance,
Hamiltonians for Killing vector fields form the kernel of the c-projective Hessian.

Apostolov et al. [2, 3, 4, 5] use c-projectively equivalent metrics (in the guise of
Hamiltonian 2-forms) to study extremal Kähler metrics, where the scalar curvature of
a Kähler metric lies in the kernel of its c-projective Hessian, and it would be natural to
consider extremal quasi-Kähler metrics in the same light. Kähler–Ricci solitons (and
generalisations) admitting c-projectively equivalent metrics have also been studied in
special cases [5, 67, 71], but the picture is far from complete.

A more recent development is the work of Čap and Gover [32], which extends previ-
ous work on projective compactification of Einstein metrics [31] to Kähler (and quasi-
Kähler) metrics using c-projective geometry.

Let us now touch on prospective applications in the theory of finite dimensional
integrable systems. As we have seen in Section 5, the Killing equations for Hermit-
ian symmetric Killing tensors are c-projectively invariant. This suggests to study
these equations from a c-projective viewpoint. We expect that in this way one may
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find interesting new examples of integrable systems, in particular on closed Kähler or
Hermitian manifolds (note that only few such examples are known). Moreover, the
analogy between metric projective and c-projective geometries suggests that ideas and
constructions from the theory of integrable geodesic flows on n-dimensional Riemann-
ian manifolds could be used in the construction and description of integrable geodesics
flows on 2n-dimensional Kähler manifolds. For Killing tensors of valence two this ap-
proach is very close to the one in [59], and we expect similar applications for Killing
tensors of higher valence.

8.3. Projective parabolic geometries. We noted in the introduction that there are
many analogies between methods and results in projective and c-projective geometry,
and we have followed the literature in exploiting this observation. We have already
noted a partial explanation for the similarities: both are Cartan geometries modelled
on flag varieties G/P , one a complex version of the other. However, the c-projective
metrisability equation for compatible (pseudo-)Kähler metrics is not the complexifica-
tion of the corresponding projective metrisability equation. Instead, both are first BGG
operators for a G-representation with a 1-dimensional P -subrepresentation. These rep-
resentations determine projective embeddings of the model G/P , namely, the Veronese
embedding of RPn as rank one symmetric matrices in the projective space of S2Rn+1,
and the analogous projective embedding of CPn using rank one Hermitian matrices.

Symmetric and Hermitian matrices are examples of Jordan algebras, and this rela-
tion with projective geometry is well known (see e.g. [11]), which suggests to define a
projective parabolic geometry as one in which the model has a projective embedding
into a suitable Jordan algebra. Apart from projective and c-projective geometry, the
examples include quaternionic geometry, conformal geometry, and the geometry asso-
ciated to the Cayley plane over the octonions. In his PhD thesis [47], G. Frost has
shown the much of the metrisability theory of these geometries can be developed in a
unified framework. Further, in addition to being analogous, projective parabolic ge-
ometries are closely interrelated. For instance, S. Armstrong [6] uses cone constructions
to realise quaternionic and c-projective geometry as holonomy reductions of projective
Cartan connections, while the generalised Feix–Kaledin construction [17] shows how to
build quaternionic structures from c-projective structures, modelled on the standard
embedding of CPn in HPn.
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