
Wielandt’s proof of the main Sylow theorem

This is an alternative proof of the main part of Sylow theory due to Wielandt (1959). Notably
it does not use Cauchy’s Theorem. However it uses a similar technique to the proof of Cauchy’s
Theorem in lectures, namely to look in a bigger set than the one you want, and do some
counting modulo p to show that what you are looking for is in there somewhere!

The method actually proves the following result due to Frobenius (1895).

Theorem. Let G be a finite group, p a prime and r ∈ N such that pr divides |G|. Then the
number of subgroups of G of order pr is congruent to 1 (mod p).

Proof. Let |G| = prm and X = {A ⊆ G : |A| = pr}, the set of subsets of G of order pr. Then
G acts on X by g · A = {ga : a ∈ A} and any orbit orbG(B) of G contains an element A
with 1 ∈ A (since if b ∈ B, 1 ∈ A = b−1 · B). Now StabG(A) acts on A by left multiplication
g ·a = ga ∈ A and so partitions A into a union of right cosets of StabG(A), including the identity
coset. Thus ∃ s 6 r such that | StabG(A)| = ps and | orbG(A)| = |G|/| StabG(A)| = pr−sm (by
the Orbit–Stabilizer Theorem) with

| orbG(A)| = m ⇔ s = r ⇔ StabG(A) = A ⇔ A 6 G,

in which case orbG(A) is the set of left cosets of A. Otherwise, | orbG(A)| is divisible by pm.
We conclude that the number u of subgroups of order pr is the number of orbits of size m in
X, and that |X| ≡ um (mod pm).

Now it is possible at this point to make a combinatorial argument to compute |X| modulo pm.
However, there is an ultra-slick trick which avoids this.

The key is to observe that |X| is independent of the group structure of G: it depends only on
|G| = prm. Hence to compute |X| modulo pm, we can replace G by any group H with prm
elements! Everything we have proven above applies equally to H, and so |X| ≡ vm (mod pm),
where v is the number of subgroups of order pr in H. Now there is a choice of H for which
we already know what v is: for H = Zprm (or any cyclic group of order prm), v = 1. Hence
|X| ∼= m (mod pm).

Returning now to the original group G, we thus have that um ≡ m (mod pm), i.e., um =
m + kpm for some k ∈ Z, i.e., u = 1 + kp and u ≡ 1 (mod p).


